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Abstract
Echocardiography is essential in evaluating fetal cardiac anatomical structures and functions when clinicians conduct early
treatment and screening for congenital heart defects, a common and intricate fetal malformation. Nevertheless, the prenatal
detection rate of fetal CHD remains low since the peculiarities of fetal cardiac structures and the variousness of fetal CHD.
Precisely segmenting four cardiac chambers can assist clinicians in analyzing cardiac morphology and further facilitate CHD
diagnosis. Hence, we design a dual-path chain multi-scale gated axial-transformer network (DPC-MSGATNet) that simul-
taneously models global dependencies and local visual cues for fetal ultrasound (US) four-chamber (FC) views and further
accurately segments four chambers. Our DPC-MSGATNet includes a global and a local branch that simultaneously operates
on an entire FC view and image patches to learn multi-scale representations. We design a plug-and-play module, Interac-
tive dual-path chain gated axial-transformer (IDPCGAT), to enhance the interactions between global and local branches. In
IDPCGAT, the multi-scale representations from the two branches can complement each other, capturing the same region’s
salient features and suppressing feature responses to maintain only the activations associated with specific targets. Extensive
experiments demonstrate that the DPC-MSGATNet exceeds seven state-of-the-art convolution- and transformer-based meth-
ods by a large margin in terms of F1 and IoU scores on our fetal FC view dataset, achieving a F1 score of 96.87% and an IoU
score of 93.99%. The codes and datasets can be available at https://github.com\/QiaoSiBo/DPC-MSGATNet.
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Introduction

Congenital heart defect (CHD) is one of the most common
inborn malformations, with the highest incidence of all con-
genital disability diseases and the leading cause of death in
infancy [1]. Infants with CHD in China currently account
for approximately 6‰–8‰ of all the born living neonates.
Then, we can estimate that about 150,000 babies with CHD
are born in China each year [2]. Therefore, the early diagno-
sis and recognition of CHD are of tremendous matter for the
healthy growth of the fetus.

In recent years, echocardiography has been prevalently
employed in clinical diagnosis and screening for pregnant
women thanks to its quick imaging, low fees, and no radi-
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ation exposure properties. In particular, echocardiography
can effectively assess the fetal cardiac structure and func-
tion and plays a crucial position in recognizing and curing
CHD [3]. The fetal ultrasound (US) four-chamber (FC) view
provides clinicians with a clear view of the fetal cardiac
morphology, the preferred view in prenatal diagnosis and
examinations for fetal CHD [4]. In the early examinations
of fetal CHD, the structural and functional parameters of
the fetal heart are clinicians’ primary object of evaluation
[5]. It is worth mentioning that the segmentation of organs
or lesions can quantitatively analyze the clinical parame-
ters related to volume or developmental morphology, help
clinicians accurately diagnose the patient’s condition, and
schedule a suitable treatment strategy [6].

For instance, the extraction of the ejection fraction of the
left ventricle needs precise delineation of the left ventricular
endocardium in both end-diastole and end-systole [7].

Motivation

Figure 1 shows the fetal FC structures, including the left
atrium (LA), left ventricle (LV), right atrium (RA), and right
ventricle (RV). Proper segmentation of fetal cardiac struc-
tures can provide an essential metric for evaluating fetal mal-
formations.However,when analyzingFCviews, the complex
and variable structures of the fetal heart require clinicians to
be professional in fetal cardiac anatomic structures and accu-
rately measure parameters related to structure and function
in a short period. Moreover, identifying and evaluating fetal
cardiac structures and functions is a knowledge-intensive
task that relies heavily on the extensive experience of clin-
icians. Therefore, it will be challenging for inexperienced
clinicians to complete early diagnosis and examinations of
fetal CHD. Simultaneously, the learning curve of this pro-
cedure may be very long due to several factors, such as the
quality of the fetal ultrasound image, the different positions
of the fetus in the womb, and the diversity of the fetal CHD
[5]. As a result, a computer-aided system automatically seg-

Fig. 1 The instance of the four chambers in a fetal FC view. The left col-
umn is fetal cardiac anatomical structures, the middle column is a fetal
ultrasound FC view, and the right is fetal cardiac segmentation struc-
tures. As can be seen, the segmentation contours of the four chambers
are very close to the anatomical contours

menting the fetal four chambers will be highly welcomed
to reduce the routine obstetric workload [8]. In addition, the
computer-aided fetal cardiac segmentation system can also
help medical novices learn through computerized feedback
from score-based quality control procedures [9]. Further-
more, the computer-aided fetal cardiac segmentation system
can provide pixel-level structural representations for other
fetal FC view analysis tasks (e.g., classification), capture the
pathological knowledge implied by ultrasound images, and
further reduce empirical operations such as manual measure-
ment of heart parameters. These operations can significantly
improve the early diagnosis rate of fetal CHD.

However, precise segmentation of fetal US FC structures
faces the following challenges: first, the fetal US FC view
often has poor image quality caused by diverse elements like
imaging artifacts of acoustic shadows and speckles, defor-
mation of soft tissues, fetal development, signal missing
[9–11]. Second, the physical boundaries between the four
chambers are not distinct or even disappear in the FC views
when the mitral valve, tricuspid valve, atrium, or ventri-
cle opens, making it more difficult to delineate the cardiac
chambers accurately. Third, due to the involuntary move-
ment of the fetus in the womb, position, or small heart
size, there may be a high degree of similarity between FC
structures in the FC view. Accordingly, even for experi-
enced obstetricians, the category identification can be misled
by the unique cardiac morphology [5,12]. Fourth, medical
image data and expert annotations are significantlymore lim-
ited and challenging to obtain than conventional computer
vision tasks. Affected by the sonographers’ technical level
or the echocardiographic instrument’s resolution, acquir-
ing a large number of standard fetal FC views is a very
time-consuming task. Meanwhile, labeling the fetal cardiac
structures requires clinicians to process professional obstet-
ric knowledge and is also time-consuming. In addition, due to
the limited training data, the power of any machine learning-
based computer-aided fetal FC segmentation method will be
limited,making it challenging to obtain distinctive and robust
representations to distinguish one identity from another.
Hence, we should design a fetal FC segmentation model
to capture context-invariant, position-sensitive, and identity-
definite representations for fetal FC views.

Convolutional neural networks (CNNs) have achieved
remarkable success in computer vision owing to their impres-
sive feature learning ability, providing solid support for
developing the computer-aided fetal FC segmentation sys-
tem. Thanks to its inherent inductive bias in modeling local
visual structures, CNNs can obtain excellent local features
(e.g., edges and corners) by calculating local dependencies
among neighbor pixels [13–15]. Moreover, rich low-level
features are captured at shallow CNNs layers and then grad-
ually aggregated into high-level semantic features through
many stacked convolutional modules. Hence, many archi-
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tectures based on CNNs have emerged in medical image
segmentation [16–21]. These architectures achieve outstand-
ing performance on various medical datasets, demonstrating
the significance of CNNs in segmenting organs or lesions
from medical images. Nevertheless, CNNs can only focus
on local areas and cannot model global dependencies in an
image.Moreover, long-distance dependencies are significant
for medical image segmentation models, which should com-
prehend which pixels correspond to the targets and which
pixels correspond to the background. Due to the background
of an image being scattered, thus, capturing long-range
dependencies between pixels corresponding to the back-
ground can help the model prevent background pixels from
misclassifying as targets, thereby reducing false positives.

Transformer [22] has indicated a domination trend in
almost all natural languageprocessingbenchmarks, attributed
to their powerful ability to capture long-distance inter-
actions among word tokens via the self-attention mecha-
nism [23,24]. Subsequently, such excellent properties have
inspired the development of traditional computer vision
architectures [25–30]. In addition, several transformer-based
approaches have been introduced to medical image seg-
mentation recently [31–36], achieving more impressive per-
formance than CNNs-based models. However, transformer-
based methods usually require large-scale training data from
these researches because (1) the applicable positional embed-
ding required for a sequence of image tokens is challenging
to learn from a small-scale dataset, and (2) they lack inherent
inductive bias in modeling local visual structures and pro-
cessing targets at different scales like convolutions.

Contribution

Inspired by the above viewpoints, we design two comple-
mentary strategies to solve the problem mentioned above:
(1) we adopt the gated axial attention mechanism to con-
trol how much information is in positional embedding by
applying four gates to key, query, and value parameters in
self-attention [33] while factorizing 2D self-attention into
two 1D self-attentions [37]. (2) We design a dual-path chain
architecture that combines transformers with CNNs tomodel
global and local dependencies to extract multi-scale repre-
sentations for pixel-level dense segmentations. Hence, our
contributions are mainly summarized as the following:

(1) Wepropose aDual-PathChainMulti-ScaleGatedAxial-
Transformer Network (DPC-MSGATNet) to segment
four chambers from fetal US FC views. The DPC-
MSGATNet includes a global and a local branch that
simultaneously processes the entire FC views and image
patches, capturing global and local visual cues to obtain
multi-scale representations from fetal FC views.

(2) We propose an Interactive Dual-Path Chain Gated
Axial-Transformer (IDPCGAT) module to enhance the
interactions between the global and local branches. The
IDPCGAT is a plug-and-play module that captures the
same region’s salient features and suppresses feature
responses to retain only the activations relevant to the
specific targets.

(3) Our proposedDPC-MSGATNet outperforms seven state-
of-the-art (SOTA) CNNs- and transformer-based meth-
ods by a large margin in terms of both F1 and IoU scores
on the fetal US FC view dataset, achieving a F1 score of
96.87% and an IoU score of 93.99%.

(4) We adopt two public medical datasets to verify the gen-
eralization of the DPC-MSGATNet, which also achieves
the best performance compared with the seven SOTA
methods. Experimental outcomes show that

the DPC-MSGATNet acquires a F1 score of 85.22% and
an IoU score is 75.29% on GLAS dataset [38] and a F1 score
of 82.61% and an IoU score of 70.69% onMonuSeg dataset
[39], respectively.

The rest of this paper is organized as follows: Sect.
“Related work” provides several studies related to CNN-
based and transformer-based segmentation methods in med-
ical images. Then, we review several deep-learning methods
in segmenting fetal cardiac anatomic structures from fetal
FC views. Section “Our proposed DPC-MSGATNet” intro-
duces our proposedDPC-MSGATNet and IDPCGATmodule
in detail. Section “Performance analysis” evaluates and dis-
cusses the performance of our proposed DPC-MSGATNet
and its main components on the segmentation task. Finally,
in Sect. “Conclusion”, we present this paper’s conclusion,
our model’s shortcomings, and future works.

Related work

This section summarizes the typical methods based on CNNs
in medical image segmentation. Then, we review several of
the transformer’s related works in computer vision, particu-
larly in medical image segmentation.

Medical image segmentationmethods based on
CNNs

CNNs are commonly used for image segmentation because
of their powerful feature-learning capabilities. For exam-
ple, for the first time, the fully convolution network (FCN)
[40] abandons the full-connected layer in the model and
uses full convolutions to semantically segment the image,
directly demonstrating the feature expression ability of the
CNNs. Further, the encoder-decoder-based U-Net [16], and
its variants have shown excellent performance in medical

123



4506 Complex & Intelligent Systems (2023) 9:4503–4519

image segmentation. For instance, U-Net++ [17] designed a
series of nested and dense skip connections to reduce the
semantic gap between shallow and deep features. Atten-
tion U-Net [18] proposed a novel attention gate mechanism
that automatically filters negative features from different lev-
els in shortcut connections, allowing the model to focus
on prominent features beneficial for segmentation targets.
Res-UNet [19] added a weighted attention mechanism to
the original U-Net [16], enabling the model to learn high-
distinguished features that identify retinal blood vessels,
thereby improving the performance of segmenting retinal
vessels. DenseUNet [20] applied dense connections to the
U-Net [16], allowing the model to explore the mixed repre-
sentations of the liver and tumors end-to-end. UNet 3+ [21]
employed full-scale skip connections and deep supervision to
fuse high-level and low-level semantic features from differ-
ent scales, further learning hierarchical representations from
aggregated multi-scale features. Stacked U-Net [41] itera-
tively integrates features fromvarious resolution scaleswhile
maintaining high spatial resolution at the output for recog-
nizing small targets and sharp boundaries, enabling optimal
segmentation performancewith low computational complex-
ity.

The above works all focus on improving network perfor-
mance, but not too much attention is paid to computational
complexity, inference time, or the number of parameters,
which are crucial in many clinical diagnoses. Several net-
works [42,43], based on multilayer perceptron (MLP), have
recently been proposed to be competent in computer vision
tasks to reduce the computational overhead and accelerate the
inference time. They can provide comparable performance to
transformers yet with less computation. Furthermore, Vala-
narasu et al. [44] proposed a high-efficiency medical image
segmentation model, UNeXt, which integrates CNNs and
MLP to provide a more rapid inference time while keeping
good performance; this makes it possible to deploy medi-
cal segmentation models in edge devices for rapid disease
diagnosis.

In addition, methods based on CNNs have long been suc-
cessfully applied to segment the cardiac anatomic structures,
such as the LV [45,46], the RV [47,48], and biventricular seg-
mentation [49].Wang et al. [50] proposed a 2-stage improved
U-Netmodel in which the RoI region of the heart is first auto-
matically extracted in full-resolution cardiac CT and MR
images, and then the whole heart is segmented into multi-
ple categories in the RoI region. All of the above works are
aimed at adult cardiac segmentation. Numerous studies have
been conducted on segmenting cardiac anatomical structures
in the fetal US FC views. Yu et al. [51] proposed a dynamic
CNN model to segment the fetal LV in the fetal ultrasound
images, which only selects a small LV area from the orig-
inal ultrasound image for segmentation experiments. Xu et
al. [8] proposed a cascading CNN model, DW-Net, which

segments the LV, RV, LA, and RA in the fetal ultrasound FC
views to be more consistent with clinical practice. Yang et
al. [52] combined the data proportional balance strategy with
Deeplab V3+ to segment the fetal ultrasound FC views.

Furthermore, several works [53–55] employ attention
mechanisms to improve the segmentation performance.An et
al. [53] proposed a category attention instance segmentation
network (CA-ISNet) for the fetal four chambers segmen-
tation. The CA-ISNet includes a category branch, a mask
branch, and a category attention branch, which are used to
predict the semantic category, segment the four chambers
and extract category information of instances. Guo et al. [54]
proposed a dual-path feature fusion network to segment LV
and LA from fetal US FC views, which captures rich repre-
sentations (e.g., high-level and low-level representations) via
channel attention and spatial attention. Several works [56,57]
adopt the advantages of the feature pyramid networks (FPN)
[58] to extract multi-scale features, which is essential to cap-
ture high-level semantic and low-level boundary information.
Pu et al. [57] proposed a MobileUNet-FPN to segment 13
anatomical structures in fetal US FC views, an encoder–
decodermodel combining the feature pyramid networks [58],
andMobileNet [59]. To learnmulti-scale features, Zhao et al.
[60] proposed a two branches model, a multi-scale wavelet
network (MS-Net), to segment LA and LV from FC views,
which can capture detailed information through a discrete
wavelet transform and bidirectional feature fusion. Table 1
summarizes several important segmentation works employ-
ing CNNs on cardiac anatomies. We can get those methods
based on CNNs playing an essential role in medical image
segmentation, especially the fetal cardiac anatomic struc-
tures.

Medical image segmentationmethods based on
transformer

Transformers are first applied to NLP and achieve excel-
lent performance on machine translation. Moreover, it can
compensate for several shortcomings of CNNs in captur-
ing global context due to its ability to model long-range
dependencies. Therefore, inspired by the success of trans-
formers in various NLP, many researchers have explored its
application to computer vision. For example, ViT [25] is
a pioneering attempt to employ pure transformers, which
requires large-scale datasets such as ImageNet-22K and
JFT-300M to achieve SOTA performance in image classifi-
cation. Furthermore, Swin Transformer [30] is a hierarchical
transformer architecture, making the model have linear com-
putational complexity by shifted windows strategy. Axial-
DeepLab [37] decomposes the 2D self-attention into two
1D self-attentions to reduce the computational complex-
ity and presents a position-sensitive axial attention scheme
for segmentation. The transformer also shows outstanding
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Table 1 Several important
segmentation works employing
CNNs on cardiac anatomic
structures

Adult/fetus Methods Segmentation
structures

Medical image type

Adult DPM [45] LV MRI

LDAMT [46] LV MRI

CNNs and Stacked Autoencoders [47] RV MRI

RegressionCNN [48] RV MRI

SSLLN [49] LV, RV MRI

Two-Stage U-Net [50] LA, LV, RA,
RV, AsAo,
PA, MoLV

CT, MRI

Fetus DW-Net [8] LA, LV, RA,
RV, TR, ED

US

Dynamic CNN [51] LV US

CA-ISNet [53] LA, LV, RA,
RV

US

DP-PEM [54] LA, LV US

AIDAN [55] LA, LV US

MFP-UNet [56] LV US

MobileUNet-FPN [57] LA, LV, RA,
RV, LVW,
RVW, IS, LL,
RL, SN, RB,
DAO, IVS

US

MS-Net [60] LA, LV US

performance on medical image segmentation. TransUNet
[31], for example, uses transformers as a powerful encoder
for U-Net, enhancing the detailed structures by restoring
local spatial information when segmenting medical organs.
TransFuse [32] blends transformers and CNNs in parallel,
simultaneously learning global contextual information and
low-level spatial detail. MedT [33] introduces gated axial
attention from Axial-deeplab [37] and sets gating parame-
ters to improve the accuracy of position embedding. At the
same time, the global and local branches of MedT [33] learn
different levels of image features from the whole image and
the local image patches, respectively, to improve segmenta-
tion performance significantly. Karimi et al. [34] proposed
a transformer deep neural network for 3D medical image
segmentation, which splits 3D medical images into several
3D image patches and calculates the 1D embedding for each
image patch. MBT-Net [35] fuses transformer and sketch
structure branch to extract textured features and cell sketch
position fromcorneal endothelial cell images. TransBTS [36]
first uses a 3D CNN to extract brain MRI spatial feature
mappings and then uses a transformer tomodel global depen-
dencies for the extracted feature mappings. Inspired by the
above methods, especially of MedT [33], we propose a dual-
path chain encoder-decoder model based on transformer and
CNNs to extract multi-scale local and long-range features
and segment the fetal four chambers in FC views. Next, we
will introduce our proposed model in detail.

Our proposed DPC-MSGATNet

Notations and problem definition

In this work, we adopt bold uppercase or lowercase letters
(e.g., X , x) anduppercase letters (e.g., X ) to representmatrics
and scalars, respectively. For example, for a fetalUSFCview,
X ∈ R

H×W×C , X is a matric that has three dimensions, the
scalars of H , W , and C are the height, width, and the num-

ber of channels of X . For an image patch, x ∈ R
H
7 ×W

7 ×C ,
x is also a matric that has three dimensions, and its height,
width, and channel are defined by H

7 ,
W
7 , and C . Further-

more, we construct 49 patches from a fetal US FC view,
that is X = [x1, . . . , xN ], N = 49. The ground truth of
the segmentation mask is described by S ∈ R

H×W×C , in
which C = 5 represents the mask of LV, LA, RV, RA, and
Background, respectively. The prediction of the segmenta-
tion mask is defined by Ŝ.

With the help of these notations, the purpose of this work
is to jointly input X and xi to capture discriminative rep-
resentations to obtain expected segmentation mask Ŝ. From
the prior knowledge, models based on the U-Net architec-
ture can evenly distribute high- and low-resolution features
from bottom-up across encoders and decoders, allowing the
entiremodel to be trained end-to-end. During the decoding or
deconvolution phase, the shallow high-resolution and high-
level low-resolution feature maps are fused to produce an
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Fig. 2 Theoverall training and inferenceflowchart ofDPC-MSGATNet
for the fetal US FC view segmentation. In the training phase, given a
fetal US FC view X , we first adopt the image preprocessing methods to
normalize and resize X . Then, we feed it into the DPC-MSGATNet to
obtain the predicted segmentation mask Ŝ. We employ Cross-Entropy
to measure the distance between the predicted mask Ŝ and ground truth

S. In order to quickly reduce the distance, we use the Adam to opti-
mize the model and constantly update the model’s parameters until
the distance stabilizes. In the inference phase, we employ the trained
DPC-MSGATNet, which already has specialized clinical knowledge
for analyzing fetal US FC views, to obtain our desired segmentation of
fetal four chambers

upsampled feature map by shortcut connections. However,
these models do not perform well when faced with complex
noise, artifacts, and low contrast in US images. Moreover,
the high-resolution representations from the shallow layer
fused by the decoder do not effectively encode rich seman-
tic information. Hence, we propose a DPC-MSGATNet in
this work, which is composed of two branches that can
process bottom-up and top-down representations and cap-
ture long-distance interaction information at multiple scales.
The general flowchart of DPC-MSGATNet with an exam-
ple of fetal US FC view X as its input is illustrated in
Fig. 2.

DPC-MSGATNet

As shown in Fig. 3, our proposed DPC-MSGATNet con-
sists of the global branch that processes the whole image
and the local branch that processes the image patches.
These two branches comprehensively understand the input
images at different scales, simultaneously capturing the
image’s high-level semantic information and long-distance
spatial dependencies among image patches, further obtain-
ing precise contours information of the segmented objects.
However, transformer-based models are hungry for train-
ing data sets because of the required learning of appropriate
position embedding, and medical images with high-quality
annotations are expensive and challenging to collect. There-
fore, the gated position-sensitive axial-transformer as the

basic building module is adopted to encode input fetal US
FC views in the two branches. In a gated position-sensitive
axial-transformer, we adopt four gates to control how much
information is learned by the positional embedding. These
gates are all learnable parameters that enable the proposed
network to be used for any data set of any size. Depending
on the size of the training set, these gates will know if the
number of the training set is enough to learn the proper posi-
tional embedding and then adaptively change depending on
whether the information obtained by the position embedding
is valid.

As shown in Fig. 3, we perform the operations for an input
fetal US FC view X and image patch xi in stage I, which is
represented as follows:

C I = Fglobal,I (X), (1)

C ′
I = Flocal,I (xi ), (2)

D′
I = Ψ (C ′

I ), (3)

Ffusion,I = C I + D′
I , (4)

where X ∈ R
H×W×C is an input FC view, C is the number

of channels of an input FC view, H × W is the image size

of each input FC view. xi ∈ R
H
7 ×W

7 ×C is a patch of an input
FC view, H

7 × W
7 is the size of each image patch. Fglobal(·)

denotes a mapping of the global branch. Flocal(·) denotes a
mapping of the local branch. Ψ (·) is the resample function

for patches of an input FC view. Ffusion,I ∈ R
H×W×C

′
is the
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Fig. 3 The architecture of our proposed DPC-MSGATNet

fused feature map of global branch and local branch, C
′
is

the number of channels of the fused feature map.
In stage II, we adopt the following operations to process

the fused feature map Ffusion,I and employ the shortcut con-
nections to mix with the upsampled feature map in stage I:

C I I = Fglobal,I I (Ffusion,I ) + C I , (5)

C ′
I I = Flocal,I I ( f fusion,I ), (6)

D′
I I = Ψ (C ′

I I ) + D′
I , (7)

Ffusion,I I = C I I + D′
I I , (8)

where f fusion,I ∈ R
H×W×C

′
is a patch of the fused fea-

ture map Ffusion,I . Here, we define the computation in stage
II as an interactive dual-path chain gated axial-transformer
(IDPCGAT) module. As illustrated in Fig. 4, we can insert
any number of the IDPCGATmodules depending on the size
of the training set.

Then, we adopt the following operations to get the final
segmentation:

Ŝ = Conv1×1(σ (Conv3×3(Ffusion,I I ))), (9)

where Ŝ ∈ R
H×W×C , C = 5. Conv1×1(·) represents a con-

volution operation with the filter size of 1×1, σ(·) represents

Fig. 4 The dual-path chain gated axial-transformer module

a ReLU activation function, Conv3×3(·) represents a convo-
lution operation with the filter size of 3 × 3. Next, we will
introduce the main components of our DPC-MSGATNet in
detail. More ablation studies on the architecture can be found
in Tables 2, 3, and 4.
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Table 2 Quantitative
comparison against SOTA
methods on the fetal FC view
dataset

Methods Fetal FC view dataset

F1 (%) IoU (%)

Axial-Attention U-Net [37] 92.87 ± 0.48 86.98 ± 0.74

Gated-Axial-Attention U-Net [33] 93.94 ± 0.77 88.72 ± 1.23

U-Net [16] 95.40 ± 0.79 91.34 ± 1.27

Res-UNet [19] 95.47 ± 0.37 91.46 ± 0.60

U-Net++ [17] 95.55 ± 0.51 91.57 ± 0.83

Attention U-Net [18] 95.60 ± 0.51 91.66 ± 0.89

MedT [33] 95.69 ± 1.12 91.93 ± 1.91

DPC-MSGATNet 96.87 ± 0.73 93.99 ± 1.28

Bold metric means that its corresponding method performs best among other SOTA methods

Global/local branch

The global and local branches repeat the IDPCGAT module
twice to achieve multi-scale fusion processing of features
from bottom-up and top-down.When low-resolution shallow
representations flow through multiple IDPCGAT modules,
the upsampled high-resolution representations input to the
decoder efficiently encode semantic information from the
deep layers. The local branch is employed to capture more
salient target details. Here we create 49 patches with the size
of H

7 × W
7 in the local branch. Furthermore, each patch is

fed forward through the local branch, and the output patch
feature maps are resampled based on their relative location
in the input FC views, obtaining the whole output feature
maps. Hence, in stage I of the global and local branches,
we first adopt three convolution operations to capture low-
level representations of a fetal FC view X , which can be
represented as Eq. 10:

Z1 = σ(BN(Conv7×7(X))),

Z2 = σ(BN(Conv3×3(Z1))),

AI = σ(BN(Conv3×3(Z2))),

(10)

where BN (·) represents Batch Normalization operation. For
a patch xi , we also adopt Eq. 10 to learn low-level represen-
tations:

A′
I = Eq.10(xi ). (11)

Then, the downsampled feature map AI and A′
I are fed

into a gated axial-transformer encoder, respectively. Here, a
gated axial-transformer is represented as Eq. 12:

Zi−1 = σ(BN (Conv1×1(Zi−1))),

Zi = MHH ASA(Zi−1),

Zi+1 = MHW ASA(Zi ),

Zi+2 = σ(BN (Conv1×1(Zi+1))),

(12)

Table 3 Quantitative comparison of the branch ablation study in our
DPC-MSGATNet

Methods Fetal FC view dataset

F1 (%) IoU (%)

Local Branch 87.54 ± 5.01 77.98 ± 5.96

Global Branch 96.63 ± 0.32 93.61 ± 0.57

DPC-MSGATNet 96.87 ± 0.73 93.99 ± 1.28

Bold metric means that its corresponding method performs best among
other SOTA methods

Table 4 Quantitative comparison of the CI ablation study in our DPC-
MSGATNet

Methods Fetal FC view dataset

F1 (%) IoU (%)

DPC-MSGATNet without CI 96.59 ± 0.88 93.50 ± 1.55

DPC-MSGATNet 96.87 ± 0.73 93.99 ± 1.28

Bold metric means that its corresponding method performs best among
other SOTA methods

where MHHASA(·) denotes a multi-head height-axial self-
attention operation. MHWASA(·) denotes a multi-head
width-axial self-attention operation. We adopt GAT(·) to
denote Eq. 12. Hence, a gated axial-transformer encoder for
the AI is represented as Eq. 13:

Z3 = GAT (AI ),

Z4 = GAT (Z3),

B I = GAT (Z4).

(13)

Here we also adopt Eq. 13 to encode A′
I :

B′
I = Eq.13(A′

I ). (14)

Then, we begin to decode the B I by Eq. 15:

Z5 = σ(Upsampling(Conv3×3(B I ))),

C I = σ(Upsampling(Conv3×3(Z5))),
(15)
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where Upsampling(·) is a bilinear interpolation method in
this work. Here we also employ Eq. 15 to decode B′

I , and
then to resample decoded patches:

C ′
I = Eq. 15(B′

I ), (16)

D′
I = Ψ (C ′

I ). (17)

Gated axial-transformer

To an input medical image X ∈ R
H×W×C , we flatten it into

a matrix X ∈ R
HW×C and conduct multi-head self-attention

operation as proposed in the transformer [22]. Moreover, the
output of the self-attention module for a single head can be
formulated as follows:

O = so f tmax

(
QK T

√
dk

)
V , (18)

where queries Q = XWq , keys K = XW k , values V =
XWv . Wq , W k ∈ R

C×dk and Wv ∈ R
C×dv are learnable

projection parameter matrices for the input X . Hence, the
outputs of all heads are computed as follows:

MHSA(X) = Concat[O1, O2, . . . Oh]WO , (19)

where WO ∈ R
dv×dv is a learnable projection parameter

matrix. The self-attention mechanism allows transformers to
model long-distance dependencies between pixel tokens or
captures non-local information from the whole feature map.
That is why transformers have had excellent success in lan-
guage and vision. However, transformer networks are hungry
for data sets to achieve state-of-the-art performance. There-
fore, as shown in Fig. 5, limits to the medical image scale,
we adopt a gated axial-transformer as proposed in Axial-
DeepLab [37] to perform self-attention on the height axis
and width axis of the feature map, respectively. Hence, for
instance, a gated axial self-attention for the height axis in the
gated axial-transformer layer is formulated as:

Oi j =
H∑

h=1

softmax(Qi j K
T
ih + GqQi j R

T
ih;q

+GkKih R
T
ih;k)(Gv1Vih + Gv2 Rih;v),

(20)

where Gq , Gk , Gv1 and Gv2 are all learnable gating param-
eters. R ∈ R

H×H is relative positional encoding. Initially
initialized to 1.0, gating parameters are employed to control
the influence of the relative positional encodings in a non-
local context.

Fig. 5 The architecture of the gated axial self-attention

Performance analysis

Datasets and preprocessing

Weobtain the fetal FCviewdataset from theQingdaoWomen
andChildren’sHospital.We randomly selected 556FCviews
of fetuses from the hospital from 24 to 26 weeks of ges-
tation. These views are collected from 600 fetuses as the
entire experimental dataset, which has different degrees of
artifacts, speckle noise, and inconspicuous borders, making
them very convenient for confirming the effectiveness of the
DPC-MSGATNet in haggling with the segmentation task.
Furthermore, two professional radiologists tag all the views
employed in this work, and then the annotated views undergo
rigorous verification. In addition,we randomly split the entire
experimental dataset. Here the training set consists of 446
FC views, and the test set includes 110 FC views that do not
appear in the training set. The original experimental dataset
indicates that each FC view has a different size. Hence, we
resized the FC view into 224× 224. In addition, the fetal FC
view and its corresponding mask are augmented by random
horizontal and vertical flip operations to relieve over-fitting.

In addition, two public medical datasets, Gland Segmen-
tation (GLAS) [38] and MonuSeg [39], are also used to
evaluate our DPC-MSGATNet. GLAS contains 165 micro-
scopic images and their related ground-truth mask. Here we
split it into 132 images for training and 33 for testing. Due
to images in the GLAS having different scales, in our exper-
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iments, we resize each image to a resolution of 224 × 224.
TheMonuSeg contains 46 tissue images and the correspond-
ing ground-truth mask. Here we split it into 37 images for
training and 9 for testing. Finally, we resize per image into
128 × 128.

Implementation details

Hyper-parameters setting. In our experiments, the training
step is 400 epochs, and the mini-batch size is 4. Further-
more, the initial learning rate is 0.001. We employ the Adam
optimizer to optimize the DPC-MSGATNet, whose weight
decay is 0.00001. The ReduceLROnPlateau strategy is used
to adjust our initial learning rate when the loss is not chang-
ing, wherein the factor and patience are set at 0.8 and 15,
respectively. We do not train the four gates for the first 50
epochs when training the gated axial attention layer. We
randomly divide the dataset 5 times and perform a 5-fold
cross-validation. For more detailed parameter settings of the
DPC-MSGATNet, please refer to the codes provided in this
article.

Hardware setting. We have a GPU cluster that mainly
includes a management node, a GPU node, a storage node,
and a storage array. The management node is a DELL EMC
PowerEdge R740 server with one physical CPU, and its ver-
sion is 4214 (12 CPU cores and 24 logical processors). The
GPU node has two DELL EMC PowerEdge R740 servers,
each with two physical CPUs, and its version is 6226R (16
CPU cores and 32 logical processors). Each GPU server has
two NVIDIA Telsa V100 32G. The storage node is a DELL
EMC PowerEdge R740 server with two physical CPUs, and
its version is 4216 (16 CPU cores and 32 logical processors).
The storage array is a DELL EMC ME4024 server with a
40TB HDD.

In this work, all the transformer-based models are trained
with two NVIDIA Tesla V100 32G in a parallel computing
manner, and all the CNN-based models are trained with one
NVIDIA Tesla V100 32G. We adopt an NVIDIA 3090 24G
workstation to conduct inference tests when these models
finish training. The NVIDIA 3090 24G workstation equips
one Inter i7-10700 CPU with 8 CPU cores and 16 logical
processors.

Software setting. In this work, we employ Python 3. 7. 6,
Pytorch 1. 7. 1, and Torchvision 0. 8. 2 to implement our
DPC-MSGATNet. Furthermore, in the GPU environment,
CUDA and CUDNN are 11. 0. 221 and 8. 0. 5, respectively.
In Python 3. 7. 6, the Numpy is 1. 20. 1, the Opencv is 3. 4.
2, and the Pillow is 8. 2. 0.

Objective function. To finely measure the dissimilarity
between our predicted segmentation mask and the ground
truth, we adopt Cross-Entropy as our loss function to opti-

mize our proposed model. Here the loss function used in this
work is computed by:

Loss = − 1

N

C∑
c=1

N∑
i=1

gci log pci , (21)

where gci is the ground truth binary indicator of class c of
pixel i , and pci is the corresponding predicted segmentation
probability.

Evaluationmeasures

To evaluate the segmentation performance of our proposed
DPC-MSGATNet, we adopt two general methods, F1 and
IoU scores, to measure the similarity between the ground-
truth mask and the predicted segmentation mask. The F1 and
IoU are computed by:

F1 = 2NTP

2NTP + NFP + NFN
, (22)

IoU = NTP

NTP + NFP + NFN
, (23)

where NTP represents the number of pixels marked with the
class 1 and predicted by the DPC-MSGATNet to be 1, NFP

represents the number of pixels marked with the class 0,
yet predicted to be 1. NFN represents the number of pixels
marked with class 1 yet predicted to be 0.

Results and discussion

In this subsection, we begin by comparing the segmenta-
tion performance of ourDPC-MSGATNet against the current
SOTA methods. Then, we perform detailed ablation studies
to analyze the contributions of components of our DPC-
MSGATNet and conduct an inference time comparison with
the SOTA methods. Finally, two public medical datasets are
adopted to demonstrate the generalization performance of
our DPC-MSGATNet.

Comparison with SOTA methods. To make a fair per-
formance comparison, we choose several SOTA methods
based on CNN and transformer, which include U-Net [16],
U-Net ++ [17], Attention U-Net [18], Res-UNet [19], Axial-
Attention U-Net [37], Gated-Axial-Attention U-Net [33],
and MedT [33], respectively. The above two metrics, F1
score, and IoU are used to evaluate the segmentation perfor-
mance of these models. Furthermore, U-Net [16], U-Net++
[17], Attention U-Net [18], and Res-UNet [19] are all based
onCNN.Axial-AttentionU-Net [37],Gated-Axial-Attention
U-Net [33], MedT [33], and our DPC-MSGATNet are all
transformer-based attention models. Table 2 shows the quan-
titative comparison of our DPC-MSGATNet with the two
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kinds mentioned above of methods. From Table 2, our
proposed DPC-MSGATNet achieves the best performance
among all the SOTAmethods, in which the F1 score and IoU
are 96.87% and 93.99%, respectively. On the other hand, the
Axial-Attention U-Net [37] has the worst performance, and
the F1 score and IoU are 92.87% and 86.98%, separately.

From Table 2, except for the Axial-Attention U-Net
[37] and Gated-Axial-Attention U-Net [33], the transformer-
based attention models achieve better segmentation perfor-
mance on the FC views dataset than the CNN-based models.
The Attention U-Net [18] realizes the best effect with the F1
score of 95.60%and IoUof 91.66%among theseCNN-based
models. Therefore, ourDPC-MSGATNet improves by1.27%
and 2.33% than the best convolutional baseline in terms of F1
score and IoU. For the transformer-based attention models,
our proposed DPC-MSGATNet outperforms MedT [33] by
a large margin in terms of both F1 score and IoU, which
also processes global and local branches to capture fetal
four-chamber multi-scale non-local content. The F1 score
and IoU are improved by 1.18% and 2.06%, respectively.
Transformer-based models require lots of training data to
learn SOTA representations because of the positional embed-
ding. It is worth mentioning that the Gated-Axial-Attention
U-Net [37] performs better than the Axial-Attention U-Net
[33], demonstrating that the gated mechanism works in con-
trolling the information learned by the positional embedding.

Figure 6 illustrates the visual segmentation results of
fetal FC views by DPC-MSGATNet and 7 SOTA meth-
ods. As shown in Fig. 6, our DPC-MSGATNet performs
best on the segmentation of fetal FC views, in which the
FC contours predicted by DPC-MSGATNet are closest to
the ground truth. Furthermore, we can notice that the CNN-
based models are prone to misclassification. For example,
in the fourth row of Fig. 6, the segmentation mask pre-
dicted by the U-Net [16], U-Net++ [17], Attention U-Net
[18], and Res-UNet [19] shows that more background pixels
are incorrectly labeled as positives. On the contrary, except
for Axial-Attention U-Net [37] and Gated-Axial-Attention
U-Net [33], the transformer-based attention models such
as MedT [33] and our DPC-MSGATNet, precisely iden-
tify which pixels correspond to the positives and which to
the background. The Axial-Attention U-Net [37] and Gated-
Axial-Attention U-Net [33] are inferior to the CNN-based
models.

Unfortunately, transformers require large-scale training
data to learn excellent positional encodings. Nevertheless,
this is a dilemma for medical images because collecting and
labeling large-scale medical datasets is very time-consuming
and expensive. In this work, the fetal FC views training data
is limited. The Axial-Attention U-Net [37] is based on tradi-
tional transformers, which require large-scale training data
and a more extended training schedule. The Gated-Axial-
Attention U-Net [33] adopts gated parameters to control the

amount of information obtained by the positional embedding,
thereby achieving better performance than Axial-Attention
U-Net [37] by reducing the dependencies on the number of
the training dataset. Moreover, the MedT [33] and DPC-
MSGATNet design a unique architecture that includes a
global and local branch to capture long-range interactions
among image patches through global, learnable, and adapted
attention coefficients to the input images. In particular, our
DPC-MSGATNet performs this operation better. We pro-
pose a chain architecture in DPC-MSGATNet, enhancing the
interactions between the global and local branches. Further-
more, our extensive experiments found thatwhen to train four
gating parameters is also critical to the segmentation perfor-
mance of the model. If the four gating parameters are trained
from the beginning, the model may be unstable or turbulent
during training due to the relatively scarce training data, lead-
ing to a decrease in the model’s performance. Therefore, in
this work, we employ a training trick in that the four gat-
ing parameters are initialized with 1.0 and trained after 50
epochs. As we all know, transformers do well in modeling
global dependency using the self-attention mechanism, yet
they lack an intrinsic inductive bias in extracting local visual
context. Our DPC-MSGATNet combines convolutions with
transformers to learn abundant multi-scale representations
of FC views. The above analysis indicates why our DPC-
MSGATNet outperforms 7 SOTAmodels in segmenting fetal
four chambers.

Ablation study.To analyze the contributions of each compo-
nent in our DPC-MSGATNet, we perform detailed ablation
studies on the branch, chain interactions (CI), and layers. All
the models are trained for 400 epochs on the fetal FC views
dataset and follow the same training strategy described in
Sects. “Datasets and preprocessing” and “Implementation
details”. Next, we will conduct a detailed discussion on the
ablation study.

Branch ablation. As shown in Table 3, we investigate the
sub-structures in our DPC-MSGATNet, namely local and
global branches, by isolating them separately. For example,
an input image of size 224 × 224 is first split into 49 image
patches of 32 × 32 in the local branch. Then, these image
patches are continually fed into the local branch to extract
local representations. As can be seen, the local branch per-
forms poorly than the global branch, only achieving a F1
score of 87.54% and an IoU score of 77.98%. On the other
hand, the global branch performs better, inwhich the F1 score
and IoU are improved by 9.09% and 15.63%, separately.

Figure 7 shows the visual segmentation results of differ-
ent structures in our DPC-MSGATNet. We also observed
that the global branch performs much better than the local
branch, close to the DPC-MSGATNet’s performance. The
global branch is fed into a whole image, which is essen-
tial in improving the performance of DPC-MSGATNet. On
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Fig. 6 Visual segmentation comparison of fetal FC views by DPC-MSGATNet with 7 SOTA methods

Fig. 7 Visual segmentation comparison of the branch ablation study in
our DPC-MSGATNet

the other hand, the local branch is fed into image patches,
which are limited to focusing on the local physical area of
the input image, fail to establish a good connection with
other image patches, and easily ignore the whole image’s
contextual correlation information. Nevertheless, the local
branch can provide more detailed contours of four cham-
bers which the global branch ignored. Furthermore, the chain
structures in our DPC-MSGATNet can increase the interac-
tions between global and local branches. Then, we can obtain
more comprehensive representations that encode both the
global context and local visual cues.

Hence,DPC-MSGATNet outperforms any sub-architectures,
improving the segmentation performance on the fetal FC
views dataset by 0.24% in F1 score and 0.38% in IoU score
than the global branch.

CI ablation. To demonstrate the effectiveness of the pro-
posed IDPCGAT in fusing multi-scale representations, we
compare our DPC-MSGATNet with DPC-MSGATNet with-
out CI in the same training settings. DPC-MSGATNet
without CI means no interactions between the global and
local branches, and the representations learned by the two
branches are not fused until the end of the model.

The quantitative results are shown in Table 4. As can be
seen, DPC-MSGATNet without CI also achieves good per-
formance on the segmentation task, inwhich the F1 score and
IoU are 96.59% and 93.50%, respectively. The interactive
integrations between multi-scale representations are signifi-
cant, and thereby the IDPCGAT helps our DPC-MSGATNet
achieve better performance, in which the F1 score and IoU
are enhanced by 0.28% and 0.49%, respectively. It is worth
noting that the global branch performs better than the DPC-
MSGATNet without CI, improving by 0.04% and 0.11% in
terms of F1 score and IoU, respectively. Although the local
branch can bring more delicate representations to the whole
DPC-MSGATNet, if the model does not fuse and absorb
advantages from the global branch throughout the training
process but only perform a straight fusion at the end of the
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Fig. 8 Visual segmentation comparison of the IDPCGATablation study
in our DPC-MSGATNet

model, it is easy to confuse the learned representations,which
in turn makes the model have poor performance.

Figure 8 shows the visual segmentation effect of the
IDPCGAT in our DPC-MSGATNet. It can be seen that the
IDPCGAT makes the model automatically identify salient
feature map regions and fuse feature responses from multi-
scale representations to conserve only the activations relevant
to the fetal four chambers. Patches of various scales can
complement each other in representation extraction. Large
patches can better capture coarse-grained representations,
while small patches can better capture fine-grained rep-
resentations. Hence, increasing the interactions between
multi-scale representations can improve performance on seg-
mentation.

Layers ablation.As shown inFig. 3,we stack two IDPCGAT
modules in our DPC-MSGATNet. Then, we adopt a short-
cut path to transfer high-resolution feature maps between the
two IDPCGAT modules. As the data flows through multiple
IDPCGATmodules, high-resolution feature maps from shal-
low layers also can encode rich semantic context information.
In this work, we build our base model, DPC-MSGATNet-S,
by stacking two IDPCGAT modules. In addition, we also
introduce DPC-MSGATNet-T, DPC-MSGATNet-B, and a
giant version ofDPC-MSGATNet-L, which are about 0.34×,

1.65×, and 2.32×model parameters, respectively. The archi-
tectures of these models are as follows:

• DPC-MSGATNet-T: stacking IDPCGAT numbers = 1
• DPC-MSGATNet-S: stacking IDPCGAT numbers = 2
• DPC-MSGATNet-B: stacking IDPCGAT numbers = 3
• DPC-MSGATNet-L: stacking IDPCGAT numbers = 4

The chain interaction, IDPCGAT, is a plug-and-play mod-
ule.Whenwehave a large-scale training dataset,we can stack
more IDPCGAT with no bells and whistles. Table 5 and Fig.
9 show quantitative results and visual segmentations. As can
be seen, our DPC-MSGATNet outperforms three variants on
the fetal FCviews in thiswork. Furthermore, the performance
of the DPC-MSGATNet-B outperforms DPC-MSGATNet-T
and DPC-MSGATNet-L. We suspect this phenomenon may
be related to the scale of the dataset, and more data will be
collected in the future to validate the conjecture.

Inference time. In clinical practice, clinicians often want
to be able to detect diseases effectively and give reasonable
treatment measures in the shortest possible time. Therefore,
their inference speed is critical for clinical diagnosis when
computer-aided models are deployed on edge devices or AI
servers. We conduct an inference time test on the test dataset
in this work. Table 6 compares SOTA methods’ inference
time mean on NVIDIA GPU 3090. Table 6 shows that CNN-
basedmethods have less inference time for fetal FCUSviews
segmentation than transformer-based attention methods, in
which the U-Net has a minimum inference time during all
theCNN-basedmethods.OurDPC-MSGATNet has themax-
imum inference time compared with the 7 SOTA methods in
the manuscript yet has the best segmentation performance.
For the segmentation task of a fetal USFCview, the inference
time of DPC-MSGATNet is 0.8464 seconds. It is worth men-
tioning that the Global Branch of our DPC-MSGATNet has
a lower inference time, 0.4869 seconds, which is not much
different from the inference time of CNN-based methods.

However, the Global Branch has a better segmentation
performance than the 7 SOTAmethods, only 0.24% less than
the DPC-MSGATNet in F1 score.

Generalization on two public medical datasets. To further
analyze the generalization of our proposedDPC-MSGATNet

Table 5 Quantitative
comparison of the layers
ablation study in our
DPC-MSGATNet

Methods Params (M) Fetal FC view dataset

F1 (%) IoU (%)

DPC-MSGATNet-T 2.2 96.46 ± 0.74 93.25 ± 1.29

DPC-MSGATNet-B 10.8 96.62 ± 0.85 93.54 ± 1.45

DPC-MSGATNet-L 15.2 96.27 ± 0.59 92.92 ± 1.04

DPC-MSGATNet-S 6.5 96.87 ± 0.73 93.99 ± 1.28

Bold metric means that its corresponding method performs best among other SOTA methods
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Fig. 9 Visual segmentation
comparison of the layers
ablation study in our
DPC-MSGATNet

Table 6 Inference time comparison of our DPC-MSGATNet against
SOTA methods

Methods Inference Time (s)

U-Net [16] 0.2494

Res-UNet [19] 0.2507

U-Net++ [17] 0.2513

Attention U-Net [18] 0.2549

Axial-Attention U-Net [37] 0.4398

Gated-Axial-Attention U-Net [33] 0.4448

MedT [33] 0.9604

Global Branch 0.4869

DPC-MSGATNet-T 0.6617

DPC-MSGATNet-S 0.8464

DPC-MSGATNet-B 1.0529

DPC-MSGATNet-L 1.2435

Bold metric means that its corresponding method performs best among
other SOTA methods

on other downstream tasks, we choose two public medi-
cal datasets, GLAS [38], and MonuSeg [39], to test our
model. The 7 SOTA methods are also adopted to compare
performance with our DPC-MSGATNet. Table 7 shows the
quantitative comparison of our DPC-MSGATNet with the
7 SOTA mentioned above methods. As can be seen, the
CNN-based models outperform the one-branch transformer-

based attention models, Axial-Attention U-Net [37], and
Gated-Axial-Attention U-Net [33], on the GLAS [38], and
MonuSeg [39] datasets, which is quite different from their
performance on the fetal FC view dataset. The two public
datasets have fewer images than the fetal FC view dataset.
From this point, one-branch transformer-based attention
models are inferior to CNN-based baselines with small-
scale training data. Furthermore, with the assistance of the
gated axial attention mechanism and multi-scale branches,
the MedT [33], and our DPC-MSGATNet perform better
than other methods. It is noteworthy that our proposed DPC-
MSGATNet outperforms the MedT [33] by a large margin
on both GLAS [38] and MonuSeg [39] datasets, which
attributes to our extraordinary global branch architecture and
IDPCGAT. Figures 10 and 11 show the visual segmentation
performance of our DPC-MSGATNet and 7 SOTA methods
on GLAS and MonuSeg datasets. We can see that the visual
results are consistent with the above description, proving that
our model has solid generalized performance on other down-
stream tasks.

Conclusion

In this work, we propose a DPC-MSGATNet to precisely
segment the fetal cardiac four chambers, which can assist

Table 7 Quantitative
performance comparison of our
DPC-MSGATNet with SOTA
methods on two public datasets

Methods GLAS dataset MonuSeg dataset

F1 (%) IoU (%) F1 (%) IoU (%)

Axial-Attention U-Net [37] 78.00 ± 0.25 65.36 ± 0.38 76.19 ± 1.21 61.86 ± 1.51

Gated-Axial-Attention U-Net [33] 78.90 ± 0.99 65.81 ± 0.46 76.78 ± 0.41 62.61 ± 0.45

U-Net [16] 79.19 ± 1.04 67.42 ± 0.68 79.30 ± 0.53 65.84 ± 0.52

U-Net++ [17] 79.54 ± 0.78 67.45 ± 0.50 79.54 ± 0.59 66.23 ± 0.15

Res-UNet [19] 79.97 ± 0.76 67.86 ± 0.50 79.57 ± 0.63 66.31 ± 0.11

Attention U-Net [18] 81.45 ± 0.61 69.75 ± 0.54 79.76 ± 0.72 66.48 ± 0.99

MedT [33] 82.72 ± 0.41 72.05 ± 0.48 80.65 ± 0.88 67.34 ± 0.81

DPC-MSGATNet 85.22 ± 0.17 75.29 ± 0.26 82.61 ± 1.18 70.69 ± 1.68

Bold metric means that its corresponding method performs best among other SOTA methods
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Fig. 10 Visualization segmentation comparison of our DPC-MSGATNet with SOTA methods on GLAS

Fig. 11 Visualization segmentation comparison of our DPC-MSGATNet with SOTA methods on MonuSeg

clinicians in analyzing cardiacmorphology and promote fetal
CHD diagnosis. The DPC-MSGATNet includes a global and
a local branch, which operates on the whole image and
image patches, and captures global and local visual cues
to obtain multi-scale representations from fetal FC views.
Moreover, we propose an IDPCGAT to enhance the inter-
actions between global and local branches. The multi-scale
representations from the two branches can complement each
other, capture the same region’s salient features, and suppress
feature responses to retain only the activations associated
with specific targets. Extensive experiments demonstrate that
our DPC-MSGATNet performs better than the seven SOTA
CNNs- and transformer-based methods by a large margin in
terms of both F1 and IoU scores on the fetal FC views dataset.
In addition, we also adopt two public medical datasets (e.g.,
GLAS and MonuSeg) to verify the generalization of our
DPC-MSGATNet, achieving the SOTA segmentation perfor-
mance.

Our DPC-MSGATNet still has two shortcomings: (1)
the model is not a lightweight network, which will affect
the model’s efficiency in the actual deployment. (2) The

model requires labeled data to conduct supervised training.
In general, the FC views’ annotation is complex and needs
experienced cardiologists to spend a long time annotating the
dataset.

In the future, we will focus on design principles to reduce
the computational cost of the model while maintaining its
accuracy. The multilayer perceptron will be combined with
convolutional layers to capture effective representations of
fetal cardiac contours. Then, the new methods will reduce
the number of parameters and speed up the inference time
while achieving good performance on segmentation. Further-
more, we will train the model in a semi-supervised strategy,
drastically reducing reliance on labeled data.
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Appendix: Abbreviations

As shown in Table 8, we provide the abbreviations of the
professional terms used in this work.

Table 8 Abbreviations of their professional terms

Abbreviations Descriptions

CT Computed tomography

MRI Magnetic resonance imaging

US Ultrasound

FC Four chamber

LA Left atrium

LV Left ventricle

RA Right atrium

RV Right ventricle

CNNs Convolutional neural networks

FCN Fully convolution network

AsAo Ascending aorta

PA Pulmonary artery

MoLV Myocardium of the LV

TR Thorax

ED Epicardium

LVW Left ventricular wall

RVW Right ventricular wall

IS Interatrial septum

LL Left lung

RL Right lung

SN Spine

RB Ribs

DAO Descending aorta

IVS Inter-ventricular septum
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