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Abstract

Pottmeier, P. 2023. Genetic Sex Differences in Early Human Neuronal Development.

An Investigation in Embryo Tissue and Embryonic Stem Cells. Digital Comprehensive
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Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1795-3.

Sex differences in the human body affect many different organs and tissues, some of them
have an effect on the human brain and its development. In the developing nervous system,
sex differences can bias the number or functionality of neurons, glial cells or synapses. As a
result, neural networks might develop with a sex-specific bias. A number of neurodevelopmental
diseases, such as Tourette-Syndrome or Attention-Deficit/Hyperactivity Disorder, show sex
differences in symptoms, onset and prevalence. It seems likely that sex differences in brain
development contribute to differences in neurological disease susceptibility between males and
females. In my work, I am investigating sex differences in gene expression during neuronal
development in human embryo brain tissue, embryonic stem cells and neural stem cells. Of
particular interest for sex differences are the genes of the sex chromosomes, since a large number
of X-linked genes and even some Y-linked genes are implicated in neurodevelopment.

In our first study, we found that Y chromosome genes are highly expressed in fetal brain
tissues and 5 X/Y homologous genes have an increased gene dosage in male samples. We
suggest 6 novel long non-coding RNAs that were expressed in previously unannotated regions
of the Y chromosome in male fetal brain tissue. In our second study, we identified an
increased rate of proliferation in male neural stem cells but similar neuronal differentiation
trajectories in cells of both sexes. An increased expression of DCX and DLG4 suggests a
faster differentiation of male neural stem cells, but sex differences disappeared after 14 days.
Male cells overexpressed MASH1 and RELN, markers for Cajal-Retzius neurons, and the two
demethylases KDMSD and UTY. Female cells overexpressed RMST a long non-coding RNA
critical for neurogenesis. In the third study, sex-biased gene expression was investigated in
human embryonic stem cells during 37 days of neuronal differentiation. Male and female cell
lines showed sex-biased expression of genes involved in neurodevelopment, suggesting a sex
difference in differentiation trajectory. We propose 13 sex-biased candidate genes that could
strongly affect neuronal development. In addition, we confirmed the gene dosage compensation
of X/Y homologs escaping XCI through the Y-homolog and identified a significant expression
of the Y-homologs TXLNGY and UTY after 37 days of neuronal differentiation. We have also
measured a significant increase of the Y-linked genes PCDH11Y, UTY and USP9Y during
differentiation. The fourth study was an investigation of sex differences in H3 methylation and
acetylation marks in embryonic stem cells. We found that H3K4me3, a transcription activation
mark, was enriched at promotor sites of major pluripotency genes and related pathways, in
female cell lines.

In conclusion, we confirm the importance of Y chromosome genes for neuronal development
and show that sex differences in gene expression exist during neuronal differentiation.
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Introduction

The prevalence, age of onset, and clinical symptoms of many neurological
disorders differ between males and females. Disorders such as Parkinson’s
disease and autism spectrum disorder are for example more common in males,
while depression and anxiety spectrum disorder are more frequent in females
(more examples and references in Table 1). Many sex-biased neurological
disorders are believed to be of neurodevelopmental origin. Neurodevelopmen-
tal disorders arise from deviations in the normal developmental trajectory of
the brain, which can result in an abnormal neuronal architecture or function.
The development of the human brain starts already soon after conception and
continues into early adulthood. During this time, any difference between the
male and female physiology could contribute to the acquisition of sex differ-
ences in the developing brain.

One of the most investigated and best documented factors leading to sex dif-
ferences are sex hormones. Sex-specific hormones are released after the dif-
ferentiation of the gonads and act on hormone receptors, which in turn regulate
a wide range of trophic effects in cells of the developing embryo, including
cells of the developing brain. But sex hormones are not the only factors that
have an effect on the developing brain. Also, genetic components, such as
genes of the sex chromosomes or the autosomes, can be expressed in a sex-
specific manner and thus contribute to a sex-biased development of the brain.
The effect of sex-biased gene expression is most notable in the early develop-
mental period of sex determination, before sex hormones are synthesized and
released. After this point, sex hormones and sex-biased gene expression work
in combination to contribute to sex differences.

Relatively little is known about sexual differential gene expression in early
brain and neuron development. In my work I am investigating sex-biased gene
expression in early embryo tissue and in human embryonic, as well as neu-
ronal stem cells that differentiate into neurons. With this, I am contributing to
the understanding of the magnitude and potential effects of sex-biased gene
expression during early brain and neuron development. Ultimately, | hope that
my results also add to the identification of sex differences and equalities in
neuron development, as well as to the identification of factors leading to the
sex-biased susceptibility of neurological disorders.
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Sex differences and sexual dimorphisms

The terms sex difference and sexual dimorphism both describe differences be-
tween females and males of the same species. Although, the term sexual di-
morphism is often used to describe morphological differences, it can also be
used to describe any other biological process that differs between the sexes.
In my work, I will use these terms interchangeably.

In mammals, sexual dimorphisms can manifest in many ways, such as in dif-
ferences in size, weight and color or the development of different secondary
sexual characteristics. Apart from the previously mentioned anatomical and
physiological differences, sex differences can also lead to differences in be-
havior, such as courtship or mating. In fact, the best documented sexual di-
morphisms are often related to reproduction and lead to e.g. difference in re-
productive organs and reproductive behaviors.

In humans, the most obvious sex differences are also related to reproduction,
such as the difference in sex organs and secondary sexual characteristics. Con-
temporary research however, shows that sex differences in humans go far be-
yond those of reproduction. Sex differences between females and males are
reported in many disciplines of life-science, such as immunology, genetics
and epigenetics, cancer research, behavioral research and neuroscience [1-5].

Especially in the field of developmental biology and neuroscience, researchers
have been working extensively to understand sex differences and their origin.
The importance of understanding sex differences in these fields is highlighted
by many neurological and neuropsychiatric diseases that show sex biases in
disease prevalence, symptoms and age of onset [6].

The origins of sex differences are not easily deciphered. Scientists have dis-
covered a multitude of factors that each contribute to the development of sex-
ual dimorphisms. They can roughly be categorized into genetic, genomic, ep-
igenetic, hormonal and environmental factors. The contribution of each of
these factors will be discussed in later chapters of this work ‘Sources for sex-
ual differential gene expression’. However, in principle any of these factors
can contribute to the sexual dimorphic differentiation of tissues during human
development.
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Sex differences in neurological disorders

A surprisingly large number of neurological disorders show differences in
prevalence, age of onset or symptoms between males and females (Table 1).
Neurological disorders arise from deviations in neuroanatomy and neural cir-
cuitry, often as a result from disruptions in normal neurodevelopmental tra-
jectories, and lead to a cascade of downstream effects across physiology, cog-
nition, behavior, and affect. Based on the manifestation of the symptoms, their
effect and their physiological cause, disruptions in the nervous system are then
classified into different neurological disorders. Some of the most predominant
neurological disorders that display sex differences are listed in the table below.

Table 1: Neurological disorders with sex biases in prevalence, age of onset

or symptoms

Prevalence ratio

Disorder M:F Sex Bias

Alzheimer’s 1:2 Almost twofold higher prevalence in

Disease (AD) women [7—11]. Faster cognitive decline in
women [12,13].

Depression 1:2 Twofold higher prevalence in women
[14,15]. Depression and anxiety are often
present together [16].

Anxiety spectrum 1:2 Prevalence for anxiety spectrum disorders

disorders twice as high in women [17-20].

Eating disorders 1:3-10 Higher prevalence for eating disorders in
females [21-25].

Parkinson’s 2:1 Prevalence and age of onset higher in males

Disease (PD) [26-29]. Faster cognitive decline in males
[30]. Symptoms differ among male and fe-
males [31-33].

Autisms spectrum 4:1 Prevalence higher in males [34-37].

disorders (ASD)

Schizophrenia 1.4:1 Higher prevalence in males [38,39]. Symp-

(SCZ) toms differ between males and females
[40,41]. Age of onset earlier in men, lower
chance of full recovery, and poorer progno-
sis in men, anatomical brain differences be-
tween male and female patients [42,43].

Attention-deficit 2:1-10:1 Prevalence higher in males [44—47]. High

hyperactivity comorbidity with ASD [48].

disorder (ADHD)

Tourette’s 3-4:1 Prevalence is higher in males [49].

syndrome
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Interestingly, many male-biased neurological conditions are early-onset neu-
rodevelopmental disorders, such as autism, attention-deficit hyperactivity dis-
order (ADHD), conduct disorder, specific language impairment, Tourette syn-
drome, dyslexia, schizophrenia or cerebral palsy. Symptoms of some early
onset neurodevelopmental disorders can already be seen in infants and latest
in toddlers. Female-biased neurological disorder on the other hand, are often
so called emotional disorders such as depression, anxiety disorder, and eating
disorders, which usually start during puberty or later in life [6,50-52]. The
term emotional disorder describes a set of chronic and often recurring psychi-
atric disorders that come along with significant impairments in quality of life,
productivity, and interpersonal functioning.

The presence of so many sex differences in neurological disorders and espe-
cially the neurodevelopmental component in male-biased early onset disor-
ders, indicates that the developing nervous system includes components that
differ between male and females. These differences are not insignificant, as
they seem to provide females with a protective advantage against neurodevel-
opmental disorders, underlining the importance of sex differences in neuro-
science and developmental biology.
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Sexual differentiation in humans

To understand how and why sex differences arise in the human body, it is
essential to understand the concept of sexual differentiation. Sexual differen-
tiation is the process in which cells and tissues develop differently between
the sexes. For a long time genetical sex determination and the subsequent re-
lease of sex hormones was thought to be the main driver of sexual differenti-
ation. This theory is referred to as the classical theory. Today however we
know that more factors including gene expression from sex chromosomes and
autosomes a well as epigenetic and environmental factors, are involved in sex-
ual differentiation.

The classical theory of sexual differentiation

In the classical theory of sexual differentiation, genetical sex determination
sets the foundation for all other sexual differentiations. In humans, the sex
chromosomes (X and Y) are responsible for genetic sex determination. The
presence of a Y chromosome in the genome of the zygote leads to the differ-
entiation of the primordial gonads into testes later in development. The ab-
sence of a Y chromosome, on the other hand, leads to the development of
ovaries. Our current understanding of these processes is still limited but in
principle it is the influence of the gene SRY, which is present on the Y chro-
mosome, that leads to the development of testes [53—55], while the factors that
are expressed when a Y chromosome is absent, such as FOXL2, lead to the
development of ovaries [S6—58]. Researchers have found that the expression
of SRY, and thus also the beginning of sexual differentiation, starts as early
as week 6 in the human embryo development [59].

According to the classical theory of sexual differentiation, sex differences in
humans arise as a result of different concentrations in circulating steroid hor-
mones (sex hormones). The male sex hormones (androgens) are first secreted
in the beginning of week 12 of development, after the primordial gonads dif-
ferentiated into testes [60]. This leads to high levels of androgens (testos-
terone, androstenedione) in the male embryo while the fetal ovaries of female
embryos promote an elevation of estrogen concentrations. Sex hormones bind
to androgen or estrogen receptors in the developing tissues and can lead to
permanent organizational effects (irreversible) or temporary activational
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effects (reversible), which in turn lead to the sexual differentiation of tissues
or whole regions [61]. It is believed, that sex hormones convey their major
effects in specific hormone sensitive periods [62]. The first of such periods, is
for example, the previously mentioned period in which sex hormones are first
secreted and cause the differentiation of the primordial gonads (week 12 to
14) in embryo development. Another such period is the so called ‘mini-pu-
berty’, which stretches across the first 3-6 month after birth and that is char-
acterized by a testosterone surge in males, as well as increasing estradiol levels
in females [63,64]. The last well described period of increased tissue hormone
sensitivity is puberty, at the age of 10-16 years [65-67].

This knowledge about sex hormones and sex chromosomes has led to the clas-
sical two-stage concept of sexual differentiation. In a first stage, sex chromo-
somes initiate the genetic sex determination. Once the male and female gonads
have formed, stage two begins and is characterized by the sexual differentia-
tion of tissues through the effect of differences in sex hormone concentrations
[68].

A change in sexual differentiation theories

Today, the classical two-stage hormone-centered theory is considered as in-
complete. Researchers have found undisputable evidence that demonstrate the
presence of sex differences before the production of sex hormones. First evi-
dence came from developmental studies in rats. It was found, that male rat
embryos weighed more than female rat embryos before sexual differentiation
had occurred [69]. Another study in rats displayed a higher number of tyro-
sine-hydroxylase-immunoreactive dopaminergic neurons in female rat em-
bryos before hormone release [70]. At a similar time, a number of experiments
in mice have demonstrated that different numbers of Y chromosomes in the
same mouse strain lead to different aggressive behaviors [71,72]. The study
of a rare bilateral gynandromorphic zebra finch has led to some remarkable
implications regarding the role of genes in sex differences. This bird was
showing female-typical phenotypes in the left side of its body and male-typi-
cal phenotypes in the right side. It was shown that one half is entirely genet-
ically female (ZW) and the other entirely genetically male (ZZ) [73]. Since
the different sex-typical phenotypes, including brain differences, were ex-
pressed in the same body, they were exposed to the same sex hormones. This
speaks for a major involvement of genetics in the development of sexual dif-
ferentiation. Similar work on zebra finches [74], gynandromorphic chickens
[75] as well as tammar wallabies [76] strengthened this implication. An out-
standing approach of demonstrating the involvement of sex chromosomes on
sexual differentiation was done by the creation of the so called ‘Four Core
Genotype’ (FCG) mouse model. The main principle in this approach was the
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removal of the gene Sry from the Y chromosome (Y™?) and the translocation
onto an autosomal chromosome (+S7y). This allowed the generation and com-
parison of the following four distinct genotypes: 1) ‘XY™ +Sry’ and 2) ‘XX
+Sry’ which are both gonadal male, as well as 3) ‘XY™*?"and ‘XX’ which are
both gonadal female [77]. By comparing the phenotypes of these mice, effects
of hormones and sex chromosomes can be dissected. This has led to new in-
sights into XX and XY difference of behavior, gene expression, and disease
susceptibility, that are not mediated by gonadal hormones [78]. Apart from
the FCG mouse model, there is the XY* mouse model, which is also fre-
quently used to decipher the effect of sex chromosome genes [79].

A modern framework for sexual differentiation

The classic theory of sexual differentiation is relatively simple. It is based on
the effects of sex chromosomes that affect gonadal differentiation and subse-
quently the sex hormone concentrations in males and females. A modern the-
ory of sexual differentiation however, must incorporate a multitude of factors,
such as gene expressions from sex chromosomes as well as autosomes; epige-
netic effects of imprinting, DNA methylation, histone modification and X-
inactivation; hormonal influences, as well as environmental influences includ-
ing sociocultural factors. While the classical theory is a relatively linear
model, a new model should resemble more of a branched network with back-
and-forward interactions that altogether shape the sexual differences in human
tissues and organs. The following figure (Figure 1) summarizes the different
factors that should be considered in a modern theory of sexual differentiation.

While previously, it was believed that the point of gonadal differentiation was
also the key point for sexual differentiation, contemporary research has come
to a point at which sex-biased differential gene expression has already been
identified in the germ line [80,81] and as early as in the 2-8 cell stage of em-
bryonal development [82—88]. This is long before the differentiation of the
gonads and before the influence of fetal sex hormones. This vast evidence
proves that sexual differential gene expression occurs basically as soon as the
transcriptional machinery is active.
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Sources for sexual differential gene expression

There is a consensus among neuroscientists that the development of the human
brain continues into peoples 20’s. During most of the time sex hormones as
well as genetic factors simultaneously and in combination lead to the sexual
differentiation of the brain. However, there is a particular interesting period in
the early point of human embryo development, which stretches from the point
of fertilization until week 12 of development. In this period sex hormones are
not released yet [60,90]. This means that any sex differences at this point are
a result of genetic factors, since embryonic gene expression is already acti-
vated hours after fertilization, in a process called maternal to zygotic transition
[91,92]. This early period in human embryo development is particularly inter-
esting from a genetic point of view, as a number of critical events that initiate
the development of the early nervous system, such as neural plate formation,
neural tube closure, neural crest differentiation and the beginning of neuro-
genesis, are taking place (Figure 2). Sexual differential gene expression in
this period of development can therefore be decisive for the development of
sex differences in the brain. In fact, the presence of sex-biased gene expression
this early has already been documented [85,87,93—95]. The most obvious ge-
netic factors, are the sex chromosomes (XX or XY). However, even genes on
the autosomes display sexual differentially expression [96-98]. The presence
of differential gene expression suggests, that there are also sex differences in
the mechanisms that regulate gene expression. However, these mechanisms
are numerous and complex and thus not easy to decipher. Epigenetic and ge-
netic features, such as non-coding RNAs, genomic imprinting, X-inactivation,
DNA methylation and histone modifications are all able to modify gene ex-
pression, alone or in combination, in a sex-specific manner.

In the following section, I am listing the currently known sources for sexual
differential gene expression.
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Sex chromosomes

The human genome is not exactly the same between males and females. The
largest difference, and therefore theoretically the largest contributor to sex dif-
ferences, is presented by the so-called sex chromosome complementation, the
presence of a Y chromosome or an additional X chromosome in the genome
of an individual. However, since the X and Y chromosomes have originated
from a common ancestor autosomal pair, they also share a number of genes,
the so-called homologous genes of X and Y aka. gametologous genes, which
are discussed in a later section ‘Gametologous genes, gene dosage and X-in-
activation’. Over the course of evolution, the Y chromosome has lost a lot of
its genetic content. Only about 3 % of the original ancestral genes survived
[99,100] compared to 98% of ancestral genes on the X chromosome [101]. It
seems like the Y chromosome has mainly preserved genes that were beneficial
for males and harmful (or had no effect) for females. Today, the Y chromo-
some consists of approximately 60 mbp (accounts to ca. 2 % of the genome)
from which almost half is constitutive heterochromatin which is considered
inactive and without genes. Nevertheless, the Y chromosome encodes approx-
imately 48 protein-coding genes, from which 28 are unique to the male ge-
nome. In large, these unique genes are coding for proteins and factors involved
in reproduction such as testes development and sperm production. Apart from
the protein coding genes, the Y chromosome also encodes 122 long-noncod-
ing RNAs (IncRNAs) and approximately 379 pseudogenes (Table 2).

The X chromosome is comprised of ca. 155 mbp (accounts to ca. 5 % of the
genome) and harbors approximately 859 protein-coding genes, 715 IncRNAs
and 873 pseudogenes (Table 2). Unlike the Y chromosome, the genes on the
X chromosome are involved in many different biological processes. The large
number of pseudogenes on the X and Y chromosome might be surprising at
first, for a long time pseudogenes have been considered as ‘junk’ DNA, how-
ever recent studies challenge this narrow perception and highlight the possi-
bilities of pseudogenes to contain elements that allow the regulation of protein
coding genes [102,103].

Table 2: Number of genes and non-coding elements of the X and Y chromosome
and across the average autosome

X- Y- Gametolo- Average
chromosome | chromosome | gous autosome*
Protein-coding | 859 48 21 886
Pseudogenes 873 379 13 606
IncRNAs 715 122 ? 96
Total 2447 549 34+ 1588

* calculated as average number across all autosomes
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Recombination events (crossing-overs) on the sex chromosomes are restricted
to two narrow regions called pseudoautosomal regions 1 and 2 (PAR), Figure
3. These regions are located at each end of the chromosomes and are 2.6 mbp
and 0.32 mbp in size. Within these regions genetic material is exchanged be-
tween the X and the Y chromosome, the rest of the chromosomes are so called
non-combining regions. The non-combining region of the Y chromosome
(NRY) is of special interest since theoretically, any gene or non-coding RNA
expressed from this region is only present in males and should therefore di-
rectly contribute to sex differences.

It has been shown, that genes on the sex chromosomes contribute to sex dif-
ferences in behavior (addiction, pain, learning, feeding, parental, sleep, so-
cial), in brain phenotypes and diseases, and in mouse models of various dis-
eases including autoimmune, aging, neural tube closure defects, cardiovascu-
lar diseases (hypertension, cardiac ischemia/reperfusion injury, stroke, hyper-
tension, atherosclerosis, and abdominal aortic aneurysms), immunity,
metabolic disease and many more [79].
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X-linked genes

The study of gene expressed on the X chromosome (X-linked genes) has at-
tracted a lot of attention in recent years since X chromosome genes have been
extensively linked to functions and development of the nervous system
[104,105]. On the X chromosome, the number of genes involved in neurode-
velopmental and neurophysiological processes is predicted to be six-fold
higher than on autosomes [106—108]. In addition, studies in human and mice
have revealed, that X-linked genes are expressed at higher levels in the nerv-
ous system than in other tissue [108—110]. Mutations in X-linked genes are
also often associated with disorders characterized by cognitive impairment
such as Rett, Fragile X and Borjeson-Forssmann-Lehman syndrome [111—
113]. Some of the X-linked genes that are of special importance for neurode-
velopment and neurophysiology are KDM6A and KDM5C, MECP2, HDACS,
MSL3, MORF4L2, as they encode genes that function as epigenetic regulators
of transcription. Others encode transcription factors such as PHF6 and others
are proteins involved in translation and mRNA metabolism such as DDX3X,
EIF2S3X and FMR1. There are modulators of protein activity through post-
translational modifications such us deubiquitinase USP9X, ubiquitin ligase
MID1 and the glycosyltransferase OGT. And at least there are also integral
membrane proteins such us TMEM47/BCMP1 and the synaptic vesicle-pro-
tein synaptophysin (SYP).

Y-linked genes

In contrary to studies of X-linked genes, studies of the Y-linked genes in the
sexual differentiation of the brain are not as popular. This is most likely due
to the fact that the Y chromosome is believed to encode just a handful of pro-
tein-coding genes from which the most are associated with male reproduction.
Some studies have, however, demonstrated that genes such as Uty, Ddx3y and
Nlgn4y are critical for the development of the brain in males [114-118]. In
addition, the potential of the non-coding regions of the Y as well as the X
chromosome should not be underestimated. As mentioned previously, non-
coding RNAs and pseudogenes display huge gene regulatory potential [119].

Gametologous genes, gene dosage and X-inactivation

Not all genes present on the Y chromosome are unique to males. In fact, a
large part of the protein-coding genes 20 of 48 are also present on the X chro-
mosome. The shared genes are referred to as homologous genes of the sex
chromosomes or gametologous genes, Figure 4 A. These genes exist because
the X and Y chromosome evolved from a common ancestor autosomal pair.
The shared genes are highly conserved among mammals [120], but a number
of gametologous genes on the Y chromosome have accumulated mutations
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that have rendered their gene products unfunctional or have changed their
function to cater to male specific biological processes. Gametologous genes
have been shown to be associated to a large number of essential biological
processes including cell signaling, expression of structure proteins, regulation
of gene expression and histone modification (Table 3).

One approach to analyze sexual differential gene expression, is to compare the
gene dosage between males and females. It is generally believed that there
should be a balanced gene dosage between the two sexes [121-123]. Since
females have two copies of the X chromosomes, they theoretically express
twice the number of X chromosome genes. However, there is an epigenetic
mechanism that prevents an increased X-linked gene dosage, as this kind of
aneuploidies would be lethal to a human embryo. The mechanism is called X
chromosome inactivation (XCI) and is mediated by the long non-coding RNA
Xist which coats one X chromosome and recruits protein complexes to facili-
tate gene repression [124]. XCI leads to the packaging of the DNA into heter-
ochromatin and therefore disables most parts of the second X chromosome. In
this way, a balanced gene dosage of approximately one X is maintained. How-
ever, there are several mechanisms that can have an effect on this X-inactiva-
tion mediated gene dosage balance. One of them is the escape of X-inactiva-
tion which is controlled through an epigenetic mechanism of chromatin mod-
ification. Through this mechanism, some genes of the X chromosome are es-
caping the X-inactivation and are continuously able to be expressed from both
X chromosomes. These genes are referred to as XCl-escapees. About 15 % of
the genes on the human X chromosome escape X-inactivation (ca. 127 genes)
and most of them are located in the PAR regions [125], Figure 4 B. In this
context, gametologous genes play a special role. Since males possess an X and
a Y chromosome they are subjected to gametologous gene expression from
each of these two chromosomes. Females on the other hand, have two X chro-
mosomes of which one undergoes XCI. By escaping XCI, some of the genes
have demonstrated to compensate for the increased gametologous gene ex-
pression in males [110,126]. In general, most genes of the X/Y homologs in
the PAR region are XCl-escapees. Genes that are located outside of the PAR
and escape XCI are important candidates in eliciting sex differences as they
are higher expressed in females [127], Figure 4 B. It has been shown that
XCI differs among tissues and among individuals, which adds another level
of complexity [128—130]. The escapees state can be switched on and off in
certain genes, making them so called variable escapees [131,132]. In sum-
mary, X-inactivation and escapee mechanisms are complex and important reg-
ulators of X chromosome gene expression and dosage compensation.
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Genomic imprinting

Genomic imprinting is an epigenetic mechanism that leads to the silencing of
one of the two alleles of a gene. It is facilitated through DNA methylation and
histone modifications [133]. Imprinting is a complex mechanism that has not
been fully understood yet. Imprinting marks are accumulated throughout the
lifetime of an organism and can be passed down from parents to their children.
When we speak of an imprinted gene, one allele of the gene is silenced. Which
allele that is, depends if it is maternally or paternally imprinted. If a gene is
maternally imprinted, the copy of the imprinted gene from the mother is si-
lenced. The opposite is true for paternally imprinted genes. About 100 auto-
somal genes are known to be imprinted and many of these imprinted genes are
expressed in early-stage embryos, placenta and brain [134]. Aberrant imprint-
ing can lead to disorders such as the behavioral and neurodevelopmental dis-
orders Prader-Willi and Angelman syndromes [135].

Imprinting plays a special role in sex chromosomes. In females paternally de-
rived X chromosomes are preferentially X-inactivated, while maternal X chro-
mosomes are imprinted to not undergo X-inactivation [136]. Genomic im-
printing is believed to have evolved to control the dosage of a subset of genes
that play critical roles in the reproduction-related physiology and behavior
[137]. Genes that are parentally imprinted, i.e. expressed unequally from the
maternal and paternal allele, are thus possible sources of sex differences [138].

Non-coding RNAs

Non-coding RNAs are known to play an important role in gene regulation by
interacting with e.g. translation, splicing or DNA replication [139,140]. In this
way they contribute significantly to the way genes are expressed. Especially
long non-coding RNAs have been implicated in reproduction, development
and cell differentiation [141-143]. The average autosome has approximately
96 non-coding RNAs and 606 pseudogenes. While chromosome X encodes
715 non-coding RNAs and 873 pseudogenes, chromosome Y encodes for 122
and 379 subsequently. Compared to the number of coding sequences on the Y
chromosome (28 unique genes), the number of non-coding elements is rela-
tively high. Even though, the Y chromosome is represented to large part by
non-coding regions, we still know very little about them and about the non-
coding RNAs originating from it.
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DNA methylation and histone modifications

DNA methylation and histone modification are two major epigenetic mecha-
nism that can affect gene expression. In the following, I will explain the rele-
vance of these two mechanisms for the regulation of sex-biased gene expres-
sion.

DNA methylations

DNA methylation is a biological process in which methyl groups from S-ade-
nosyl-l-methionine (SAM) are added to a cytosine of a CpG island immedi-
ately following DNA replication. The methylation can change the activity of
a DNA segment. Methylation in the DNA of a gene promotor or transcription
factor, will for example repress gene transcription. DNA methylation is asso-
ciated with a number of key processes such as genomic imprinting, X chro-
mosome inactivation, repression of transposable elements and carcinogens.
The addition and subtraction of methyl groups is tightly regulated by antago-
nizing enzymes, such as the DNA methyl transferases (DNMT) which add
methyl groups. DNMT1 is expressed in at high levels in all tissue and plays a
role in the maintenance of cytosine methylation following progression through
the cell cycle, DNMT3a and 3b are involved in the de novo initiation of meth-
ylation patterns. The ten-eleven translocation (TET) family of proteins is a
methylcytosine dioxygenases and can reverse the methylation actions of
DNMTs by oxidizing SmC. Methyl-CpG-binding domain proteins (MBDs)
bind to methylated DNA and mediate the effects of DNA methylation on gene
transcription and other processes.

Dynamic changes in DNA methylation are involved in modulating cell-, tis-
sue-, and developmental stage-specific gene expression. Different DNA meth-
ylation profiles are also linked to a broad spectrum of processes in neurode-
velopment, such as synaptic functioning, homeostasis, and plasticity [144—
146], as well as in the sex-biased risk for psychiatric disorders [147].

Histone modifications

The nucleosome, the basic packaging unit of DNA, consists of an octamer of
core histones that contains two of each histone H2A, H2B, H3, and H4. These
histone proteins largely control chromatin architecture, nucleosomal position-
ing, and ultimately access to DNA for gene transcription. Modifications to the
histone proteins can affect the condensation of the chromatin into transcrip-
tional active euchromatin or inactive heterochromatin. At least nine different
types of histone modifications have been discovered, from which methyla-
tions, acetylations, phosphorylation and ubiquitination are the most common
and best understood.
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Histone methylation describes the process in which a methyl group is attached
to a nitrogen atom in amino acid side chains and/or at the amino termini. Meth-
ylation occurs at various sites of histone proteins but primarily on lysine (Lys
or K) and arginine (Arg or R) residues. Based on the affected residue and the
genomic context of the methylation, it can have an activational or repressive
effect on gene expression. The primary site of histone methylation is H3, alt-
hough other core histones also show methylations. Histone methylations can
exist in different states, such as mono- di- or tri-methylations. Di- and tri-
methylations at H3K4 are typically gene-activating with tri-methylations
(H3K4me3) targeting promoters [148]. Mono-methylation of H3K4 is an ac-
tivating mark unique to enhancers [148]. H3K9 and H3K27 methylations are
generally gene-repressive [148] but both serve a unique function. H3K27me3
marks dynamically regulated genes and is highly reversible [149]. It is there-
fore, especially important in development where genes are switched ‘on’ and
‘off” based on periods of growth or differentiation. H3K9me3 is a character-
istic of heterochromatin and leads to silencing of gene expression and is used
to prevent chromosomal instability, whereas H3K9me?2 is found more com-
monly at silent or lowly expressed genes in euchromatin [150]. Often,
H3K27me3 and H3K4me3 are present together near gene promoters, creating
a ‘bivalent state’ where genes are ‘poised’ for activation by the removal of
H3K27me3 or repression by the removal of H3K4me3 during development
[151] ref). Methylation-based histone modifications are regulated by different
enzymes: ‘writers’ methyltransferases (KMT) which add modifications and
‘erasers’ demethylases (KDM) which remove modifications, as well as ‘read-
ers’ chromodomain and bromodomains which recognize modifications and
influence gene expression [152,153]. A number of KMTs and KDMs are en-
coded on the sex chromosomes (Table 4).

Next to histone methylations, histone acetylations are also implicated in gene
transcription. Histone acetylation is the process by which the lysine residue at
the N-terminal tail that protrudes from the histone core is acetylated. Acetyla-
tions are usually associated with transcriptional activation. Important histone
acetylation marks are for example, H3K27ac a mark that is associated with
the upregulation of genes as it is deployed at poised and active gene enhancers
often in combination with H3K4mel [154]. H3K27ac and H3K27me3 modi-
fications are sharing the same location on the histone and therefore antagonize
each other [155]. H3K9ac and H3K14ac have been shown to be part of the
active promoter state. They are also present over bivalent promoters and active
enhancers [156]. Active H3K4me3 and H3K9ac are deposited in the promot-
ers of genes in neurons related to neuronal functions in two modes: de novo
establishment or increase from existing levels in NSCs. In addition, changes
of H3K27ac and H3K9ac in promoters and enhancers synergistically upregu-
late genes with functional enrichment for neuron differentiation and
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downregulate genes with functional enrichment for neural progenitor cell-re-
lated pluripotency [157].

Similar to histone methylations, acetylations are modulated by two opposing
groups of enzymes: histone acetyl transferases (HAT), which are responsible
for adding acetyl groups and histone deacetylases (HDAC), which in turn re-
move acetyl groups. Like KMTs and KDMs, HATs and HDACs are also ex-
pressed from the human sex chromosomes (Table 4).

Table 4: Gene name and chromosome of gene products with histone modification
activity (methylation and acetylation)

Modifiers of methylation Modifiers of acetylation
Chr. | KMT KDM HAT HDAC
X SUV39H1 KDMS5C (esc) MSL3 (esc) HDAC6
X - KDMO6A (esc) TAFI HDACS
X - PHFS - MORF4L2
X - - - RBBP7(esc)
X _ - - TBLIX (esc)
Y - KDM5D CDY24 TBLI1Y
Y - UTY (KDM6C) CDYI -
1-22 | 67 26 40 33

*esc marks XCl-escapees

Since the histone modifiers can have such a wide-ranging effect on basically
all DNA-dependent processes, the possibility of a sex-biased expression from
the X and Y chromosomes makes them highly valuable for the investigation
of sex differences. In the nervous system, Kdmé6a is involved in the determi-
nation of neural stem cells and their subsequent differentiation into glial cells
and neurons through removal of H3K27me3 at promoter regions [158,159].
KDMS5C is involved in sexual differentiation of the brain by actively contrib-
uting to a repression of gene expression through H3K4 demethylation, further
it is involved in the control of the transcriptional programs within neurons to
impact their differentiation, neurite growth and synaptic activity [160—166].
The Y chromosome homolog to UTX, the histone demethylase UTY, has been
implicated in brain development of males [114,115]. Uty appears to be func-
tionally similar to Utx [167] but their expression levels and patterns differ in
female and male brains, suggesting that they may mark genes in a sex-specific
manner [168].
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Research models for the identification of
genetic sex differences

For centuries scientists have tried to understand how disorders affect the brain
and what causes them. The result is a sheer endless list of biological processes
that are involved in the development and maintenance of the nervous system.
Some of the processes are for example, neurogenesis, gliogenesis, cell migra-
tion, differentiation of neurotransmitter specific cells, synaptic functioning,
morphological differences, neuronal projections, neurotransmitter generation,
release and uptake through receptors and last but not least cell death. It is pos-
sible that these processes are also affected by sex differences in one or the
other way. Unfortunately, the study of sex differences is a relatively modern
field of science and thus a lot of work remains to be done. The interplay be-
tween genetic, hormonal and environmental factors makes it hard to identify
the origin of sex differences. However, a number of model system have been
developed with the goal to distinguish genetic from hormonal sex differences.

Cell culture systems

With the recent breakthroughs in the generation of induced pluripotent stem
cells (iPSC) from something as simple as a skin cell, stem cells became widely
accessible to the research community after 2007. This breakthrough was pio-
neered by the work of John B. Gurdon and Shinya Yamanaka [169,170], as
well as many other scientists that also dedicated their research to the repro-
gramming of iPSCs. Since then, human or mouse stem cells are frequently
used for the identification of gene expression differences in a multitude of
tissues. Following one of the many protocols available, stem cells can be dif-
ferentiated into the desired tissue and a subsequent RNA sequencing analysis
can give insights into the transcriptome of the cells. Using this approach, we
can also identify sex-specific difference. The crux however, is to distinguish
between interindividual differences of cell lines from different donors and
‘real’ sex differences. One way to ensure that ‘real’ sex differences are iden-
tified, is to use an adequate number of cell lines from each sex. Fortunately,
the popularity of stem cells as a research model has led to the rise of human
stem cell banks in many countries and European wide initiatives like the
ECACC and EBiSC, in which stem cells usually are readily accessible. A
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factor that can contribute to interindividual difference of stem cell lines and
can affect their comparability, is the way the lines are generated and main-
tained. Difference in reprogramming protocols can lead to different genetic
and epigenetic baselines, so that certain stem cell lines differentiate more or
less readily into certain cell types. Similarly, the composition of culture me-
dium and treatment of cells during cultures can lead to differences between
cell lines. However, these issue is are currently tackled with the introduction
of globally acknowledged guidelines for characterization, reprogramming,
handling and culture conditions of human pluripotent stem cells through
ISSCR Standards Initiative for Pluripotent Stem Cell Research [171], ex-
pected to be released in the beginning of 2023.

The possibility to reprogram iPSCs has also made it possible to generate in-
duced pluripotent stem cell from individuals with sex chromosome aneu-
ploidies, such as Klinefelter or Turner syndrome (Table 5). These cell models
are useful to investigate the effect of X and Y chromosome dosage abnormal-
ities [172—-174].

Table 5: Sex chromosome aneuploidies

Genotype Genetic sex Gonadal sex | Name

45, X0 Female Female Turner syndrome
Decreased X dosage

46, XX Female Male Testicular difference
SRY present of sex development

47, XXX Female Female Trisomy X
Increased X dosage

47, XXY Male Male Klinefelter syndrome
Increased X dosage

48, XXYY Male Male XXYY syndrome
Increased X and Y dosage

48, XXXY Male Male XXXY syndrome
Increased X dosage

49, XXXXY | Male Male XXXXY syndrome
Increased X dosage

The downside with any cell model is, that they are considered as quite ‘artifi-
cial’. The cells are extracted from the body and are thus not subjected to the
complex interactions within an organism. They therefore do not behave the
same way they would do in the body. At the same time a certain simplicity is
desired in a model system to be able to study biological processes at a basic
level. Researchers have started to add complexity to the traditional 2D culture
models by culturing cells floating or in scaffolds so that a self-organizing 3D
growth is achieved. Such 3D stem-cell derived systems are typically referred
to as organoids. The combination of multiple organoids from different cell
types or primary tissue are called assembloids. In addition, a combination of
cell culture and microfluidic systems called organ-on-a-chip has been

38



developed to increase the interaction between multiple tissue types. The sys-
tem is used to co-culture different tissue types in defined compartments on a
microfluidic chip. The compartments can be connected to each other so that it
becomes an interactive system.

Scientists from Israel have taken a particularly interessting approach in mini-
mizing interindividual differences of cell lines and the possibility to investi-
gate genetic sex differences. Using somatic cells from a Klinefelter syndrome
patient, they have generated an iPSCs line with different sex chromosome
complements: 47,XXY/46,XX/46,XY/45X0. These nearly isogenic lines are
ideal to identify genetic sex differences [174].

The four core genotype mouse model

One remarkable way how scientists have been identifying genetic sex differ-
ences, is the so called four core genotype (FCG) mouse model. In the model,
the Sry gene can either be removed from the Y chromosome of a mouse, or
inserted in an autosome. The absence of the Sry gene will lead to the develop-
ment of ovaries. While a presence of the Sry gene will lead to the development
of testes. Through mating it is then possible to generate XX as well as XY
offspring with ovaries or testes (Figure 5). In this way, effects of sex chromo-
some complement can be distinguished from effects of gonadal hormones.

Sex chromosomes
XX = » XY
Has chr. Y o
& Y . =3 . but no Sry g
s XX XY~ 3
w
: 1E ),
= o
(=]
=
W
(=N
o
w
9 »P ».P | &
E. a
@
=
Both have Sryon an autosome

Figure 5: Schematic representation of the genotype options in the FCG mouse model.
The options are: 1) normal XX genotype with ovaries; 2) XY genotype without Sry
on the Y chromosome which will develop ovaries; 3) XX genotype with Sry on auto-
some which will develop testes; 4) XY genotype with Sry on autosome which will
develop testes.
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Relevant sex difference for neurodevelopment

Every cell of our body has a sex, it is either male or female, it has either an
XY or XX sex chromosome set. Regardless of their sex, most of them can
perform the same functions such as proliferation, differentiation or apoptosis.
Liver cells perform glycolysis and kidney cells work together to retain water
and regulate blood pressure. However, sometimes the sex of the cells makes a
difference. It is clear that for reproductive tissue the sex chromosome comple-
ment has a huge impact. The presence of a Y chromosome commits cells to a
testicular fate while the absence leads to an ovarian fate. However, in the fol-
lowing I would like to demonstrate how the difference in sex chromosomes
can affect tissues and functions apart from reproduction, such as in the cells
of the nervous system.

- Midbrain dopaminergic neurons from XY embryos show more ex-
pression of tyrosine hydroxylase, the rate-limiting enzyme of dopa-
mine production, regardless of the gonad type [175].

- Aromatase expression in developing mouse brain embryos seems to
be under control of sex chromosomes. Aromatase converts testos-
terone to estradiol. Studies found increased aromatase expression in
the stria terminalis and anterior amygdaloid area of XY mouse em-
bryos, as well as increased expression of estrogen receptor beta. Es-
tradiol or dihydrotestosterone treatments increased aromatase expres-
sion in cell culture of amygdala neurons derived from XX mouse em-
bryos. In both cases gonadal sex was irrelevant [176,177].

- Investigations of gene expression in the basolateral amygdala of mice
has shown the following. A decreased expression of mood-related
genes in XY mice weanlings. Adult XY mice under stress showed
lower expression of the GABA related gene somatostatin (Sst). At the
same time higher levels of Sst correlated with lower anxiety-like be-
havior [178]. Two other studies that investigated genes relevant to
mood, found an increased expression of mood-related genes due to
stress in the prefrontal cortex of XX mice [179,180].

- Somatotropin is an essential hormone in human embryo development,
including the development of the brain. A study in adult mice has
identified that in XX mice sex chromosomes but also estradiol led to
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an increase of growth hormone (somatotropin) in the arcuate part of
the hypothalamus [181]. Its release has been shown to be sex-biased
in many mammalian species, including humans [182]. Another study
that investigated neurons of the hypothalamus, showed that neurons
of male mice showed lower expression of neurogenin 3 and decreased
neurogenesis. The effect could be recovered through the effects of es-
tradiol [183].

Hypothalamic neuronal cultures from wild-type and transgenic FCG
mice showed higher expression of X-linked genes Kdmé6a, Eif2s3x
and Ddx3x in XX neurons, regardless of gonadal sex. Kdm6a down-
regulation using siRNA reduced axonal length and Ngn3 expression
only in female neurons. The results suggest Kdmo6a as a key mediator
of the higher axogenesis and Ngn3 expression observed in XX neu-
rons before the critical period of brain masculinization [184].

Male mice showed higher density of vasopressin-immunoreactive fi-
bers in the lateral septum and habenular nucleus [77]. Vasopressin
acts as a neurohormone and is involved in social and parental behavior
and stress response. Anomalies in vasopressin signaling have been
observed in neuropsychiatric disorders.

Dendritic spines are tiny protrusions from dendrites that form func-
tional contacts with neighboring axons. Female rats in proestrus have
a greater density of dendritic spines in CA1 of the hippocampus than
males. Under stress the spine density is affected in opposite direction,
increased in male and decreased in female hippocampus [185].

Rat male and female oligodendrocyte precursor cells (OPCs) display
sexual dimorphic properties in vitro. Female derived OPCs show
higher cell proliferation and migratory properties, as well as a higher
resistance to oxygen-glucose deprivation. Male OPCs in contrast,
show a significant faster differentiation capacity and a higher rate of
myelination [186].

The previously mentioned group that created a 46,XX and a 46,XY
isogenic iPSC cell line from a Klinefelter syndrome patient, have used
their cell lines to identify sex-biased gene expression during neuronal
differentiation. They found that, during neural differentiation, most of
the differentially expressed genes are upregulated in the male cells.
Among them GRIN3A4 and SF3B, two genes associated with schizo-
phrenia and cerebral palsy. Additional upregulated genes in males
were associated with amyotrophic lateral sclerosis, autism spectrum
disorder, and Rett syndrome gene sets. All of the disorders are known
for their sex-biased prevalence and phenotypes [174].
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Rats were infused with BrdU, a DNA synthesis marker that labels di-
viding neurons in the dentate gyrus (DG). Male rats showed a greater
density of neural stem cells in the dorsal but not the ventral DG and
had a higher level of cell proliferation than females. However, males
showed a significant reduction in neurogenesis between one and two
weeks after mitosis while neurogenesis in females was unchanged
throughout the measured period of three weeks. In line with this, male
adult-borne neurons also showed a faster rate of maturation after two
weeks displayed by expression of NeuN. The results suggest a sex
difference in the potential for neurogenesis in rats [187].

An investigation of sex chromosome effects on the vulnerability of an
Alzheimer disease mouse model (XY/XX-hAPP) showed that the
presence of a Y chromosome results in worse mortality and deficits in
the AD mice, while a second X chromosome, even in male mice, was
beneficial. The resilience effect of a second X chromosome is poten-
tially conferred through Kdmé6a, among other genes. In cell culture
experiments, they showed that XY neurons display greater cell death
than XX neurons when exposed to the neurotoxin AfB. However,
Kdmé6a overexpression slightly reduced, while a Kdmé6a knockdown
increased neurotoxicity in XX neurons. Similarly, mice engineered to
express mutated forms of the human amyloid precursor protein (hAPP
mice), individuals carrying a single X showed reduced longevity and
worse spatial learning and memory performance compared to XX
mice. When Kdmé6a was overexpressed using lentivirus in the hippo-
campus of XY-hAPP mice, a significant improvement in learning and
memory performance was observed in these animals compared to con-
trol XY-hAPP mice. Thus, the presence of a single X/Kdmé6a copy
consistently worsened hAPP/AB-related mortality, cognitive impair-
ment and cellular viability compared to two X/Kdmé6a copies.
KDMG6A expression in the human brain was higher in women than in
men and in Alzheimer’s disease patients compared to controls. Con-
sidering all these observations in the human brain and in mouse mod-
els of the disease, authors suggested that having two copies of Kdmo6a
compared to just one copy of the gene confers stronger resilience to
the disease, and speculated that increased KDMO6A in brains of people
with Alzheimer’s disease might be a neuroprotective, compensatory
response [188].

An investigation of sex-biased expression in primary neurons of mice
showed a sexual dimorphic expression in microglia (264 genes), neu-
rons (69 genes) and astrocytes (30 genes). The Y chromosome genes
Ddx3y, Eif2s3y, KdmS5d, and Uty were highly expressed in the neu-
rons and an overexpression of Eif2s3y led to increased synaptic



transmission specifically in male neurons and caused autism-like be-
haviours specifically in male mice [189].

A study analyzing 120 human brains from fetus with an average age
of 14 weeks post conception (pcw), identified the overexpression of
43 Y-linked, 48 X-linked genes, as well as 1377 autosomal genes in
male samples. In contrast, in female samples they identified an over-
expression of 107 X-linked genes and 1181 autosomal genes. They
also found an enrichment in genes associated with neurodevelopmen-
tal disorders in male samples (13 genes overexpressed in male fetus
tissue (ADNP , MEDI3L, TCF4 , EP300 , FOXP1, CDKI13 ,
TBL1XR1 , KAT6B, CHD2, POGZ, EHMT1, CTCF, AUTS2) and 3
in female samples (SCN2A, COL4A3BP , DNM1) [95]. An investi-
gation of the same data set from another group, identified a consistent
sex bias in biological processes such as cell cycle, cell differentiation,
energy metabolism and extracellular matrix organization [190].

In a study investigating the gene expression profile of human brains
at major developmental stages (prenatal: 8-24 pcw, early child:
4 mos - 4 yrs, puberty: 8 yrs - 19 yrs, adult: 21 yrs - 40 yrs) it was
found, that in prenatal most brain regions show more male-biased
genes, except for four brain regions (AMY, MD, STR and V1C). This
confirms that the brain transcriptome bias between males and females
is already present at the prenatal stage and that it is mainly driven by
male-biased genes. Y chromosome gene expression of KDMS5D,
DDX3Y, ZFY, PCDH11Y, USP9Y, RPS4Y1, CYorfl5B, TMSB4Y,
NLGNA4Y, UTY, EIF1AY and GYG2P was detected at all develop-
mental stages, while TBL1Y and SRY were overexpressed prenatally.
In addition, they observed a sharp contrast between male and female
biased genes in relation to brain disorders. Male biased genes during
prenatal time, are significantly enriched for diseases including OCD
(obsessive compulsive disorder), schizophrenia, microcephaly, epi-
lepsy, bipolar disorder, autism and Alzheimer’s disease [191].
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An ethical side note: Why neuroscience of sex
differences is indispensable and how to
prevent neurosexism

Sex differences is a topic that fascinates and inflames people but it is also
easily misinterpreted and exaggerated by the laymen. Particularly sex differ-
ences in the brain seem to attract much controversy [192,193]. The confusion
about sex differences in neuroscience has come so far, that some claim these
studies defend essentialists or sexist beliefs or challenge the idea of real equal-
ity [194—196]. Even among specialists in the field, there is a debate about the
way that research of sex differences is performed and interpreted [197-203],
although much of the debate aims to improve the neuroscience of sex differ-
ence so it does not create neurosexism [204—208].

In this section I will elucidate why studying sex differences in neuroscience is
an ethical imperative and how findings should be presented so they cannot be
misinterpreted, extrapolated or misused.

A number of neurological disorders show sex differences in their prevalence,
age of onset and symptoms. Examples for such disorders are Alzheimer’s dis-
ease, Parkinson’s disease, autism spectrum disorder and depression (Table 1).
These neurological disorders are very complex and their origin and cause are
hard to identify. Unfortunately, the complexity of the disorders and the limited
regenerative capacity of the brain make a treatment very challenging. How-
ever, the fact that the disorders display sex differences, highlights the exist-
ence of differences in the male and female physiology that promote or impede
the development of these neurological disorders. Some of the general factors
that can contribute to the susceptibility for such disorders are our genes, our
hormones, the environment we are exposed to and the life-style we are living.
By dissecting and investigating each of the factors in the context of sex differ-
ences, researchers are able to identify what contributes to the susceptibility to
neurological disorders of one sex and to the resistance of the other. In this
way, studying sex differences contributes to the understanding of disorders
and identified sex differences can serve as a starting point for additional re-
search or the development of a treatment or therapy. In addition, the study of
sex differences approaches an issue that did not receive enough attention in

44



research for a long time, the problem of sex-specific adverse effects of treat-
ments [209]. This problem persists because too little research includes female
animal models or cells in basic, as well as clinical research [210,211].

I therefore believe, that it is an ethical imperative to study sex differences in
neuroscience. It leads to advances in the understanding of the human physiol-
ogy in health and disease and thus contributes to a better public health.

In 2015, the American National Institute of Health (NIH) expanded its guide-
lines with a policy to include sex as a biological variable. This was done in an
effort to counter the overrepresentation of male animals and cells in basic and
preclinical biomedical research, as well as to address the problem of unknown
sex-specific responses to medical treatments. It is now expected from every
applicant for NIH funding to consider sex as a biological variable and adjust
research designs, analyses, and reporting in vertebrate animal and human stud-
ies accordingly, or provide strong justification to study only one sex [212].
This policy has led to a dramatic increase in the use of female animal models
and has also led to a rise in research that focuses on sex biases, including sex
differences in neuroscience.

But sex differences in neurosciences has a problem. Research is often misin-
terpreted and extrapolated by the public. Misconceptions are fueled by state-
ments in books such as Men Are from Mars, Women Are from Venus (1992),
Why Gender Matters (2005), The Female Brain (2006), Leadership and the
Sexes (2008), A Gendered Choice (2010). Books like these are exploiting the
fascination for sex differences, give seemingly easy explanations to in reality
very complex subjects and engrave perpetuated sex-stereotypes into the minds
of the reader. There is a lot of confusion among the public about sex differ-
ences and how results from publications should be interpreted. Therefore,
every researcher that publishes sex differences should carefully consider how
they present their findings. We have the responsibility to perform our experi-
ments and phrase our conclusions in a way that they cannot be misinterpreted
or misused for sexist or other discriminative purposes.

There are a number of perils and pitfalls that can be avoided before publishing.

Some of the following advice might sound like simple good research practice
but they are still often not being followed carefully enough:
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Translating results to other species or from simple/isolated to com-
plex system

Even though some animal models are used in experiments to resemble
certain features of the human organism as close as possible, results from
experiments can still not be translated directly to humans. To draw con-
clusions between a human and a model organism, without informing
about the limitations, is risky and can easily be misunderstood. The same
goes for simplified or isolated systems such as cell models and their ap-
plications. Cell models, even if they are human cells, do not resemble the
complexity of the human body e.g., the interaction between organs and
lack systems such as the hormonal, immune, vascular and lymphatic sys-
tem. Special care should also be taken when abnormal cell lines such as
immortalized or cancer cell lines are used.

Inferring a sex difference in behavior without enough evidence

Often, we infer an evolutionary or behavioral function of a sex difference
in the brain without sufficient evidence to supports this. A common ap-
proach to link sex differences to human behavior includes three aspects,
(D) the sex difference between men and women (in e.g., a brain structure),
(IT) the relation of the sex difference (brain structure) to a behavior or
ability (multitasking) and (III) the presence of an alleged sex difference in
the behavior (men and women differ in their ability to multitask). To de-
duct that there is a sex difference in the ability to multitask (III) because
of the sex difference in the brain structure (I) is invalid (false-cause fal-
lacy: a real or perceived relationship between two things means that one
is the cause for the other). Only through the link of (II) the claim is valid
(Figure 6). If we are to imply a sex difference in behavior from a sex
difference in brain structure, like in the example above, enough evidence
for all three aspects needs to be available.
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Figure 6: False-cause fallacy example. Sex difference in a behavior such as the
ability to multitask cannot be deduced from a sex difference in brain structure
without evidence that links the brain structure to the ability to multitask.

Evidence that a structure in the brain plays a defined role in a certain
behavior is often rare [213]. Likewise, well supported evidence for a sex
difference in a behavior are often scarce. The temptation to fall back to
male and female stereotypes like, the ability to multitask, language skills,
empathy, spatial orientation, mathematics skills or map reading, is large.
Without sufficient evidence, inferring from a sex difference in neurosci-
ence to a difference in behavior should be made cautiously.

Presenting sex differences as hardwired and rigid and ignoring the
socio-cultural cause of sex differences

When sex differences in the brain are identified and linked to behaviors,
the plasticity of the brain should be taken into account. Today, we know
the neural circuits of the brain are not fixed at birth. In fact, the brain is
very plastic and can be shaped and reshaped by many factors over the
course of a person’s life. This plasticity is essentially the ability of the
nervous system to modify itself in structure and functionality as a response
to injury or experience. This means, that sex differences are not neces-
sarily fixed or hardwired. In the absence of proof for genetic or hormonal
influence, any sex difference in the brain could be shaped through experi-
ence, social-, physical- and sensory stimuli. Implying that sex differences
in the brain are innate is often used to argue that gender stereotypes are
rooted in biology. This makes gender-stereotypical behavior appear pre-
determined and inevitable and can lead people to fall for the logical fallacy
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of the appeal to nature: something is good, ideal, justified, valid, or inev-
itable because it is ‘natural’. As a consequence, people may feel powerless
to change their own trajectory. However, sex stercotypes are largely
formed through experience and culture, and are therefore not innate [214].
Sex-linked genes, sex hormones and neuroanatomy are all interlinked
with sex-specific experiences and all of these factors need to be taken into
consideration if sex differences are linked to behaviors.

The three points mentioned above describe only some of the many perils and
pitfalls that an investigator can fall for. I have selected them because they were
the three most important ones for me and my work and which I would like to
share with my fellow researchers. More advice can be found in a lot of excel-
lent literature that provide guidelines to help with the correct choice of exper-
imental design, statistical tests and interpretational approach, to appropriately
analyze sex differences [5,201,215-218]. However, during my literature re-
search, I have come across a message that all of the scholarly work has in
common, the call for a cautious and considerate execution and interpretation
of experiments that identifies sex differences. This is, to avoid a consolidation
of gender stereotypes and the misuse of sex difference research for sexist and
discriminative agendas. Studying biological sex should contribute to our
health and foster the understanding of diseases etiology, manifestation, pro-
gression and its treatment.
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Summary of the papers and manuscripts

The overall aim of my work was to investigate the presence of genetic sex
differences and the contribution of X and Y chromosome gametologs, as well
as Y chromosome genes, in early human neuronal development.

Paper I

Aims

The identification of Y chromosome gene expression and sexual differential
gene expression of X and Y chromosome gametologs in early human embry-

onal CNS development, before maturation of gonads and production of sex
hormones.

Methods

To detect and quantify expressed transcripts at a stage of early CNS develop-
ment in humans, brain tissue samples were obtained from 2 male and 2 female
embryos in week 10-11 of development. Total RNA and poly(A) RNA from
the midbrain and medulla were analyzed and RNA-seq tracks were searched
for regions of high expression in previously non-annotated regions to detect
novel genes or non-coding RNAs. qPCR experiments were used to confirm
IncRNA expression on the Y chromosome in human and chimpanzee samples.

Results

Many Y chromosome genes are differentially expressed in human early em-
bryo development (Table 2)

The RNA sequencing resulted in dgene expression of 36 genes detected in
embryo samples of 11-12 pcw. Of these genes 15 were Y-linked (KDMS5SD,
DDX3Y, EIF1AY, PRKY, TXLNG2P, TTTY15, NLGN4Y, RPS4Yl,
TMSB4Y, ZFY, NCRNAO00185, USP9Y, TTTY 14, UTY, TBL1Y), one was
X-linked (XIST), and 22 were autosomal genes. Among the autosomal genes,
9 are classified as estrogen and/or androgen responsive, and another 6 code
for proteins that play a role in developmental processes. A second analysis of
the data with stricter read mapping, revealed an additional 8 differentially ex-
pressed X-linked genes (PAGE4, MAGEC3, CAPN6, APLN, ZFX, VGLLI,
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GYG@G2, and XIST), of which 5 are known XClI-escapees (MAGEC3, XIST,
ZFX, VGLL1, GYG2).

Y chromosome genes contribute to gene dosage differences and balances in
early embryo development (Figure 2)

Of the 15 Y-linked genes, 13 have X chromosome homologs. We have used
the combined gene expression of X and Y homologs in males to calculate the
gene dosage and compared it to the gene dosage in the females. In 9 cases, the
X-linked gene expression was similar in females and males. In 5 of those, the
Y-linked gene expression resulted in a significant higher overall gene dosage
in males (EIF1A, RPS4, USP9, KDM6A/UTY, TXLNG). In three cases
(NLGN4, KDMS5C, ZFX/Y), the gene expression was balanced by the Y
gametolog expression. In one case (TMSB4), the overall gene expression was
higher in males.

RNAseq reads indicate the expression of conserved long non-coding RNAs
on the Y chromosome (Figure 3 and 4)

While inspecting the Y chromosome sequencing reads, we have noticed six
regions with high expression in non-annotated areas. The regions are located
downstream of KDM5D, downstream of TTTY 14, downstream of UTY, in-
between TTTY15 and USP9, downstream of ARSEPI1, and upstream of
TXLNG2P. The presence of poly(A) positive reads in some of the regions
(Figure 3 A/C/E) indicate the presence of functional non-coding RNAs. With
the help of the RNA sequencing results of one male and one female chimpan-
zee brain sample (Figure 4), we have confirmed the conservation of these Y-
IncRNAs in 4 of the 6 cases (KDMS5D-DS, TTTY14-DS, UTY-DS,
TTTY15/USP9-intg). To look for possible annotations in the Ylnc regions, we
have consulted the database NONCODE, which lists currently described non-
coding RNAs. We did not find annotations that exactly matched our sequences
regarding length, genomic position, and tissue expression. In conclusion, com-
parisons with currently available databases indicated that we have found six
possible Y-Incs with relative high expression in the CNS.

Conclusion

The study demonstrated that a number of Y chromosome genes and X/Y
gametologs are expressed in the CNS of human embryos during week 10-11.
Publicly, available expression databases [219] and RNA-seq results [220]
confirm the expression of these genes in early embryo samples. Indicating
their importance in this stage of the male embryo development.

In addition, we found that the gene dosage of 9 of 13 gametologs are not bal-
anced at this stage of embryo development. The Y chromosome gametolog
thus contributed to a higher overall gene dosage. Recent microarray studies
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on human brain during development [221] and adulthood [97] also describe a
lack of compensation. This implicates that Y chromosome genes could be in-
volved in more than merely reproduction physiology and behavior. In addi-
tion, it fosters the importance of gametologous genes in gene dosage regula-
tion.

We have demonstrated the presence of conserved regions of Y-encoded long
non-coding RNAs via RNAseq and qPCR on human and chimpanzee samples.
Several other studies have also located long-non coding RNAs close to the
regions we have described here [222,223]. Long-non coding RNAs have been
implicated in regulatory processes for reproduction, development and cell dif-
ferentiation [141-143]. Thus, it is not unlikely that these Y-Incs could serve
an important role in early embryonal CNS development.

Paper 11

Aims

The exploration of gene expression differences relevant for neurodevelop-
ment, in neural stem cells of male and female origin (hNSC-H14 and H9 re-

spectively). A special focus was put on gene expression of X/Y chromosome
homologs.

Methods

We have studied proliferation and morphology of the neural stem cell lines
H14 (XY) and H9 (XX) in monolayer cultures with defined seeding densities
on geltrex substrate. Growth curves were created by counting the cell number
every 24 hours. To analyze the differentiation capacities of the NSCs, the cells
were allowed to differentiate for a total of 14 days by removing FGF2 in the
culture medium. Total RNA samples were obtained on day 0, 4 and 14 of
differentiation. The experiment was repeated three times to account for varia-
bility. Gene expression was measured using qPCR. Immunohistochemistry
with anti TUJ1, DCX and NEUN antibodies was used to confirm similar neu-
ral differentiation of the cell lines.

Results

Growth curves indicates faster growth in hNSC-H14 and morphology sug-
gests similar differentiation trajectories in both cell lines

Figure 1: The average duplication time across different seeding densities re-
vealed a significant faster growth of hNSC-H14 cells. HNSC-H9 cells took on
average 8.7 days to reach confluency, while ANSC-H14 cells needed 5.3 days.
Figure 2: In an undifferentiated state the cell lines were morphologically un-
distinguishable. During differentiation the two lines developed similarly and
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developed bipolar, pyramidal-shaped and multipolar cells with relatively long
and branched neurites within 7 days. A general increase in neurite formation,
branching and fasciculation together with ongoing cell migration and cluster-
ing was observed until day 14 of differentiation.

gPCR results display differences in marker gene expression during neural dif-
ferentiation of H9 and H14 cells

Figure 3: A housekeeping gene analysis revealed HPRT1 and PPIA as opti-
mal calibrator for the QPCR gene expression analysis. Figure 4: The subse-
quent qPCR analysis detected gene expression differences in H14 and H9 cells
during a 14 day-long neural differentiation. Neural marker genes, such as the
microtubule-associated protein 2 (MAP2), post synaptic density protein
(DLG4 or PSD95), synaptophysin (SYP), doublecortin (DCX) and neuron-
specific class III tubulin (TUJ1) displayed similar neural differentiation in
both NSC lines after 14 days. However, differences in gene expression be-
tween the cell lines were found during early differentiation. At day 4, the genes
DCX, DLG4 and TUJ1 were significantly higher expressed in H14 cells. For
DCX and DLGH4, this difference disappeared at 14 days of differentiation,
however the difference remained for TUJ1. H9 cells on the other hand pre-
sented a 32-fold increase in RMST, a long noncoding RNA, which is indis-
pensable during neurogenesis. This difference was already present before dif-
ferentiation, and also at D4, but disappeared at D14. The most striking expres-
sion differences between H9 and H14 cells after 14 days of differentiation
were found for RELN with almost 100-fold higher levels in male cells and
MASHI (also called ASCL1), with more than 1000-fold higher expression in
male cells at D14.

gPCR analysis reveals increased gene expression of two X and Y encoded
demethylases in H14 cells (Figure 6)

To identify whether X- or Y- encoded genes could have an effect on the dif-
ferentiation of neural stem cells, we studied the expression of X/Y homolo-
gous genes. One of the most noticeable sex differences in expression was ob-
served for the demethylase pair UTX/UTY (aka. KDM6A/KDM6C). The ex-
pression in male cells (H14) for UTX/UTY was significantly larger than the
expression of UTX in female cells (H9), with an 18-fold difference between
the sexes at 4 days and 24-fold difference at 14 days of differentiation. This
difference was due to increased expression of UTY at day 4 and 14 compared
to the NSC stage. The expression of UTX did not increase significantly over
these time points. Similarly, another pair of demethylases, KDM5C/KDM5D,
was significantly increased in male cells during differentiation, due to larger
expression of the Y-encoded gametolog in male hNSC-H14. In this case the
difference was already significant at day zero and remained over the rest of
the differentiation period (day 4 and day 14).
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Two long non-coding RNAs (Y-Incs) show increased expression during neu-
ral differentiation (Figure 7)

As mentioned in paper I, we have previously found six novel non-annotated
long non-coding RNAs on the Y chromosome (Y-Incs) with expression in
early human embryos. To evaluate whether any of the six Y-Incs are also ex-
pressed in neural stem cells before or during differentiation, we measured their
expression in hNSC-H14 cells. In addition to the six Y-Incs, we have investi-
gated an additional long non-coding RNA, located on the gene anosmin 2
(ANOS2P also known as KALP). This Y-encoded gene is gametologous to
the gene for Kallman Syndrome (KAL) located on the X chromosome, and it
was first described as a non-processed pseudogene [224]. Only two of the
novel Y-Incs described in paper 1, the one located downstream of UTY and
the one located downstream of KDMSD, displayed modified expression dur-
ing differentiation, with significantly higher values already after four days of
differentiation. Thus, the Y-Incs may be involved in the upregulation of the
expression of UTY and KDMS5D, which are also increased during the differ-
entiation of male cells.

Conclusion

We have used a male and a female NSC line to analyze gene expression during
neural differentiation. The cell lines showed differences in growth rate (faster
growth in male line) and gene expression, but same differentiation tendencies.
Male cells showed a faster differentiation indicated by the mature neuronal
marker DCX and DLG4 but the differences resolved after 14 days of differ-
entiation. Most prominent was the female-biased expression of RMST, a long
non-coding RNA promoting neurogenesis, after 4 days of differentiation, and
the male-biased expression of MASH1 and RELN which are both relevant for
the differentiation of Cajal-Retzius neurons. In general, we believe that the
gene expression differences point towards a tendency of the cells to differen-
tiate in a different way in this undirected neural differentiation. This should
be considered when cells are used for research or medical purposes. Unfortu-
nately, with our experimental setup we are not able to distinguish sex differ-
ences from individual differences of the cell lines. Thus, all claims for sex
difference should be done carefully.

When looking at gametologous gene expression, we saw that most genes had
a balanced gene dosage throughout the differentiation. However, there were
large differences in two gametologs that are expressing demethylases. The
male gene of the gametolog pairs KDMS5C/KDMS5D and UTX(KDMG6A)/
UTY(KDM6C) were significantly higher expressed in all timepoints during
differentiation in male NSCs. Demethylases play an important role in epige-
netic mechanisms due to their effect on histones. Specifically the UTX gene
has long been known to be involved in development, due to its effect on germ
layer fate of mouse ESCs [225] as well as on the fidelity and lineage
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specificity of neural progenitor cells [226]. It was long believed that the UTY
gene has lost its demethylase activity but results in knockout mice have
demonstrated that this is not the case [227]. Thus, we believe that the UTY
and UTX gametolog pair can perform similar demethylase functions.

Similarly to UTX and UTY, the demethylase KDMS5D of the gametolog pair
KDMS5C/KDMSD was upregulated in male NSCs. KDMS5C has shown to be
important during development, and mutations in this gene caused X-linked
cognitive disability [162]. Genomic analyses and functional assays demon-
strated that KdmS5c¢ plays a critical role as a repressor responsible for the de-
velopmental silencing of germ line genes during cellular differentiation, and
in fine-tuning activity-regulated enhancers during neuronal maturation [228].
In none of the two studies described above a possible effect of the intact Y
gametologous KDMS5D was taken into consideration nor discussed. Interest-
ingly, KDMS5D, can specifically demethylate Lys-4 of histone H3. Taken to-
gether, we believe that the genes UTY and KDMS5D with its demethylase abil-
ity can serve an important role in neural differentiation or neural cell fate. In-
terestingly, not only UTY and KDMS5D were increased during differentiation
in this study, but also two Y-Incs located close to these genes were upregulated
early during differentiation. These results suggest that these Y-Incs may be
involved in the control of expression of Y-encoded demethylases, which
should be investigated in the future.

Paper III (Manuscript)
Aims
The investigation of genetic sex differences during neural differentiation using

multiple human embryonic stem cell lines of each sex in an in vitro model of
neuronal differentiation.

Methods

A differentiation of human embryonic stem cell lines of both sexes (4 male
and 4 female) was performed using dual SMAD inhibition and small mole-
cules in 2D cultures. This was followed by bulk total RNA extraction and
[llumina sequencing of multiple timepoints during differentiation (D0, D4,
D9, D17, D27, D37). The subsequent differential gene expression analysis
was based on RNAseq data using DEseq2 and the gene set enrichment analy-
sis was performed with the GSEA/MSigDB software. Differential gene ex-
pression was confirmed by qPCR analysis for additional timepoints and all
available cell lines. The differentiation experiments were repeated three times
to be able to estimate the variability of the differentiation via qPCR.
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Results

The differentiation protocol and differentiation capacities of the cell lines have
proven to be robust, displayed by low gene expression variability in experi-
ment replicates and equal neuronal marker gene expression in male and female
cell lines. Differential gene expression analyses identified sex-biased gene ex-
pression already at an undifferentiated stage (DO0). After stringent filtering of
sex-biased differentially expressed genes (DEG) to exclude false-positives,
we identified a large contribution of sex chromosome genes to the sex-biased
expression at D0. With increasing neuronal differentiation, the number of dif-
ferential expressed genes increased, and with it the contribution of autosomal
genes increased, especially in male cell lines (Table 2).

At the end-point of neuronal differentiation (after 37 days), functional neu-
rons were present, detected by marker gene expression. However, a substantial
number of genes involved in neurodevelopment were found to be expressed
in a sex-biased manner. Of 148 sex-biased genes (104 overexpressed in males
and 44 in females), 32 were overexpressed in males and linked to neurodevel-
opment, and 7 were overexpressed in females that also showed an involvement
in neurodevelopment. From these genes we selected 13 candidate genes that
possess the ability to influence neurodevelopment. The selection is based on
the genes” GO-term association in neurodevelopment, upregulation during 37
days of differentiation, appearance in clusters of neuronal processes in GSEA,
expression level and appearance in literatures that attributes an involvement
in neurodevelopment. The following genes have been proposed as candidates:
NHLH2, EBF1, SLC17A6, RUNXITI, KIF5A, AKAP12, MDGA1, ONE-
CUT2, P2RX3, LMXI1B, SYAP1, AMOT, PAK3.

Since, the gene dosage balance of X/Y homologs play a special role in sex
differences, we have invested their gene expression. We noticed that a large
number of X/Y homologs that escape XCI are balanced through Y-homolog
gene expression. In addition, the Y-homolog TXLNGY and UTY are highly
upregulated in male cells during differentiation.

Conclusion

Human embryonic stem cells are a robust research model for human neuronal
differentiation. Male and female cell lines differentiate similarly without large
difference, indicated by relatively low fold-change of differentially expressed
genes. Nevertheless, the presence of sex-biases in expression in a large num-
ber of genes related to neurodevelopment indicates potential sex-biases in neu-
ral differentiation trajectories. The suggested 13 candidate genes have the po-
tential to be involved in the development of sex-biases during human neuronal
development. Most X/Y homologs displayed a balanced gene dosage during
neuronal differentiation. In X/Y homologs that escape XCI, the Y-homolog
robustly leads to balance in gene dosage.
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Paper IV (Draft Manuscript)
Aims

Investigation of sex differences of common epigenetic modifications affecting
gene expression in human embryonal stem cell lines.

Methods

Cultivation of 3 male and 4 female human embryonal stem cell lines in a plu-
ripotent stage, subsequent RNA extraction and total RNA sequencing. Cell
pellets of 2 mio cells per cell line were used for quantitative ChIP-seq (MI-
NUTE-ChIP). H3K4me3 peaks were identified and differential expression
analysis was performed with DEseq2 based on expression of gene promoters.

Results

We detected a hypermethylation (H3K4me3) of promoters of essential plurip-
otency genes (SOX2, OCT4, NANOG) and genes of corresponding signaling
pathways such as, TGF-beta, MAPK/ERK, PI3K-Akt and Wnt, in female cell
lines. Pluripotency pathways were identified by an overrepresentation assay
(enrichR) using all significantly sex-biased H3K4me3 hypermethylated pro-
moters. According to the RNA sequencing data, the increased H3K4me3 sig-
nal at promoter sites of pluripotency genes did not lead to an overexpression
of the affected genes.

Conclusion

Female mammalian embryos develop later than their male counterparts. Re-
lated to this, is a shift towards naive pluripotency that has been detected in
female human stem cell lines. We hypothesize, that the increased H3K4me3
signal at promoters of pluripotency genes leads to an increased maintenance
of cell identity. This can be achieved through an increased transcriptional re-
sponse at pluripotency genes due to higher H3K4me3 signal at associated pro-
moters. As a consequence, female cell lines resist differentiation cues longer
than their male counterparts, until a threshold is reached.
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Future perspective

During my investigation I have noticed that sex differences are still not rou-
tinely investigated even though samples and data from different sexes are
available in a study. Often the studies in question are not interessted in sex
difference but have other aims. As a result, data from both sexes are combined
and analyzed as one. In this way, sex differences or similarities are disregarded
and will never be identified. It is in everyone’s interest that we reveal sex dif-
ferences and similarities wherever possible. This is a plea to my fellow scien-
tists, even though you might not specifically be looking for sex differences, it
is still worth taking the time to do a comparison between your male and female
data and to write a small abstract about your findings. If this can be introduced
routinely into every scientific publication, we can make enormous advances
in the identification of critical sex differences, from which we all will profit
in the long run when it comes to the prediction, prevention and treatment of
sex-biased disorders.

To investigate the effect of sex-biased gene expression during human early
neurodevelopment is not trivial. The main reason for this is, that non-invasive
sampling of human embryo brain tissue during development is not possible
and even imaging techniques comes to their limitations. Luckily, we live in a
time at which the field of stem cells is developing at lightspeed and new, more
physiological differentiation techniques and models of embryo development
are established by the minute, at least that is how it feels. To clearly identify
sexual differential gene expression, a large number of male and female sam-
ples are needed in order to rule out inter-individual differences. The first large
cell banks stocking human induced pluripotent stem cells and other stem cell
types have been established in Europe and readily supply stem cells for med-
ical research. With these vast improvements, I am positive that the presence
and effect of sex-biased gene expression in neurodevelopment and its contri-
bution to sex-biased neurodevelopmental disorders, will soon be unriddled.

In regards to the findings in my studies, most of the time, genes and their pro-
teins have more than one function and I have the feeling that often only a
fraction of the functions are known and listed in databases. This applies espe-
cially to the genes and proteins of the X and Y chromosome, but also to genes
involved in neurodevelopment. During my studies I have regularly come
across genes that are expressed in an intriguing pattern during

57



neurodevelopment in research models, but lack a function in current data-
bases. This highlights how much there is still to discover. In all of my studies,
and literature researches, I have noticed the large contribution of X chromo-
some genes to sex-biased expression in neurodevelopment. In fact, a large
number of X-linked genes have already been implicated in neurodevelopment.
Therefore, I believe, that X-linked genes are highly rewarding targets for fu-
ture investigations of sex differences. Furthermore, is the X chromosome in-
activation of utmost importance in stem cell models of the future. XCI is
highly linked to gene dosage and also to pluripotency stages in female cell
lines, both are important for differentiation capabilities of stem cells. It was
only a few years ago that I asked a representative of a large US stem cell bank
regarding their characterization for XCI status and state of pluripotency, and
they have replied that its effect is not evident and therefore not regarded, while
today, it is a hot topic in the generation of stem cells. The Y-linked genes have
potential to a much smaller extend but should not be underestimated. As men-
tioned before, genes of the Y chromosome are often only annotated with a
single function, an that is within reproductive processes, but in my opinion,
this is due to the lack of functional investigations in fields other than repro-
duction. Especially from an epigentic point of view, the Y chromosome gene
has a number of interessting chromatin modifiers that can have wide ranging
effects even beyond the Y chromosome. Also, non-coding genes harness a
great potential and these are highly represented on the Y-chr gene. The im-
portance of X/Y homolog gene dosage is still elusive and needs more investi-
gation. Contradictory reports about the effect of gene dosage balance of X/Y
homologs question its relevance in disease or dysfunction. Enough data from
previous studies of X/Y homologs is available that should attract more func-
tional investigations, especially with the increasing availability of CRISPR
screens.

In conclusion, more thorough investigations, with high number of samples,
are necessary to detect sex-biased gene expression in neuronal development.
X and Y chromosome genes, as well as non-coding RNAs are targets with
high potential.
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Popular science summary

The term ‘sex differences’ describes the differences between biological males
and females. Sex differences, are present in many different forms and shapes
in the human body. Some of them are well known, such as the difference be-
tween size or muscle capacity. Others are not so prominent such as sex differ-
ences in the brain. While the exact differences between the brain in males and
females, and the molecular mechanisms that lead to them are not easily inves-
tigated, the result of sex differences can relatively easy be seen in a sex bias
in susceptibility of males and females towards neurological disorders. Males
are more susceptible to neurodevelopmental disorders, such as Autism Spec-
trum Disorders or Tourette’s syndrome, while females are more prone to de-
velop so called emotional disorders such as, Depression or Anxiety Spectrum
Disorders. These differences in disease susceptibility suggest that there are
some differences in the development of the nervous system that, for example,
make females more resilient to neurodevelopmental disorders. To be able to
identify, monitor and treat patients with neurological disorders adequately, it
is of great importance to understand what can cause sex differences in the
development of the brain.

The largest and well investigated factor that influences the sex-biased devel-
opment of the human brain are the sex hormones (e.g. testosterone and estro-
gen). However, there are other factors that are not as well understood and
studied. One of these factors is the effect of genes on the development of the
brain. Genes are the blueprints from which the body can create proteins, which
in turn are required for the structure, function, and regulation of the body's
tissues and organs. The genes of the sex chromosomes (X and Y chr) play a
special role in sex differences. In general, almost every cell in the body,
whether male or female, has 44 chromosomes called autosomes that do not
differ in content between males or females. But apart from that, female cells
possess two X chr, while male cells have one X and one Y chr. This rather
small difference can have a large impact, a single gene on the Y chr for exam-
ple is the reason why males develop testes and not ovaries. Even though the
Y chr is very small it still possesses some genes that seem to influence the
development of neurons. At the same time a lot of genes on the X chr have
also been shown to influence the development of the brain.

59



In my studies, I am investigating the presence and effects of sex chromosome
genes in the development of the brain. In addition, I am studying if genes from
the sex chromosome or even autosomes are expressed in a sex-biased manner
(expressed = decoded and put into use) and if they then could affect neurode-
velopment. To study this, I am analyzing gene expression in male and female
samples such as human fetal brain tissue and human stem cells that develop
into neurons.

In a first study, we confirmed that a lot of Y chr genes are expressed in the
fetal brain as well as in human stem cells that develop into neurons. This con-
firms, together with studies from other scientists, that Y-linked genes are in-
volved in neurodevelopment. Previously, Y chr genes have been associated
mainly with function in tissues involved in reproduction. We have also iden-
tified that Y chr genes contribute to a balanced gene dosage of so-called X/Y
homolog genes (aka. gametologs). These genes are special because they exist
in one copy on the X chr and in one copy on the Y chr. Since the X chr is
present twice in females, the X/Y homolog genes can have a higher gene dos-
age in females. An imbalance in gene dosage can lead to dysfunctions in the
body. The Y chr homolog of these genes however, seems to successfully work
towards a balanced gene dosage in fetal brain tissue as well as in stem cells
developing to neurons.

In a study that investigates neural stem cells, cells that develop into neurons
and that are essential for the development of the brain, we have found that
male cells reproduce faster than female cells. We also found that male cells at
day 4 in a neuron-development experiment have higher levels of genes in-
volved in neuron and synapse development but after 14 days of differentiation
the gene expression was at an equal level in male and female cells. These re-
sults suggest a sex difference in early neuron development. Further, we have
noticed that the gene expression of two genes (UTY, KDMS5D) involved in
the unwrapping of the DNA is increasing sharply during neuron development
in male cells. The unwrapping of DNA is essential for the decoding (transcrip-
tion) of genes into functional units. These unwrapping and rewrapping mech-
anisms are regulated by functional units that leave marks on the DNA. These
marks are then used to either unwrap the DNA and make it accessible for de-
coding, or to rewrap the DNA so it is tightly packed and does not use so much
space. A whole field of science has developed around it, called Epigenetics.

Since we noticed a high activity of genes that express epigenetic factors in the
male cells, we have conducted a study that looks for sex differences among
these factors in male and female stem cells. The study is not finalized yet, but
we have noticed a female sex bias in epigenetic marks that increase the activity
of genes involved in pluripotency. Pluripotency is the ability of stem cells to
develop into almost all other tissue types. An increase in marks at pluripotency
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genes suggests that female stem cells stay longer in a pluripotency state than
male cells. As a consequence, female stem cells eventually develop into neu-
rons later or need a stronger signal to start developing.

In another study, we used male and female stem cells and provoked them to
develop into neurons. We analyzed sex differences in gene expression and
found that male and female cells show slight differences in a number of bio-
logical processes already before developing into neurons. One of such pro-
cesses is an increase in ribosome activity in male cells, which could lead to an
increased growth of male cells. This is in line with the results we described
earlier in human neural stem cells. We also noticed that at 37 days of neuron
development there is a large number of genes that contribute to neuron
growths and function that are expressed in male cells but not in female cells.
At the same time, there is a large number of X chr genes that are expressed in
female cells but not in male cells. This suggests that male and female cells
show a sex difference in gene expression during the development of neurons
and that X chr genes contribute to this. We also identified 10 candidate genes
that are likely to provoke a sex difference in neuron development in male cells
and 3 candidate genes in female cells.

In summary, this thesis has contributed to the identification of genetic sex dif-

ferences and investigated mechanisms that alleviate and contribute to sex dif-
ferences in human neuron development.
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Popularvetenskaplig sammanfattning

Begreppet "konsskillnader" beskriver skillnaderna mellan biologiska mén och
kvinnor. Kdnsskillnader féorekommer i méanga olika former 1 méinniskokrop-
pen. Vissa av dem &r vélkdnda, som t.ex. skillnaden mellan storlek eller mus-
kelkapacitet. Andra dr inte s framtriddande, t.ex. kdnsskillnader i hjarnan. De
exakta skillnaderna mellan hjarnan hos mén och kvinnor och de molekyléra
mekanismer som leder till dem é&r inte ldtta att undersdka, men resultatet av
konsskillnader kan relativt litt ses i form av en kdnsbias nér det géller méns
och kvinnors kénslighet for neurologiska sjukdomar. Mén &r mer mottagliga
for neurologiska utvecklingsstorningar som autismspektrumstdrningar eller
Tourettes syndrom, medan kvinnor &r mer bendgna att utveckla sé kallade
kansloméssiga storningar som depression eller &ngest. Dessa skillnader i sjuk-
domskénslighet tyder pa att det finns vissa skillnader i nervsystemets utveckl-
ing som t.ex. gér kvinnor mer motstandskraftiga mot neurologiska utveckl-
ingsstorningar. For att kunna identifiera, 6vervaka och behandla patienter med
neurologiska storningar pé ett adekvat sétt dr det av stor vikt att forsta vad som
kan orsaka konsskillnader i hjarnans utveckling.

Den storsta och mest vil-undersokta faktorn som paverkar den kdnsbundna
utvecklingen av den ménskliga hjarnan ar konshormonerna (t.ex. testosteron
och 6strogen). Det finns dock andra faktorer som inte dr lika vél forstddda och
studerade. En av dessa faktorer dr genernas inverkan pa hjarnans utveckling.
Gener ir de ritningar fran vilka kroppen kan skapa proteiner, som i sin tur
kravs for struktur, funktion och reglering av kroppens vévnader och organ.
Generna i kdnskromosomerna (X och Y chr) spelar en sérskild roll for kons-
skillnader. I allménhet har nistan varje cell 1 kroppen, oavsett om den dr man-
lig eller kvinnlig, 44 kromosomer som kallas autosomer och som inte skiljer
sig i innehall mellan mén och kvinnor. Men bortsett fran detta har kvinnliga
celler tva X chr, medan manliga celler har en X och en Y chr. Denna ganska
lilla skillnad kan ha stor betydelse: en enda gen pad Y chr &r t.ex. orsaken till
att hanar utvecklar testiklar och inte dggstockar. Aven om Y chr &r mycket
liten har den énda négra gener som verkar paverka utvecklingen av nervceller.
Samtidigt har manga gener pa X chr ocksé visat sig paverka hjarnans utveckl-

ing.
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I mina studier undersoker jag forekomsten och effekterna av konskromosom-
gener 1 hjdrnans utveckling. Dessutom undersdker jag ocksa om gener fran
konskromosomen eller till och med autosomerna uttrycks pa ett konsbundet
sétt (uttryckt = avkodad och tas i bruk) och om de d& skulle kunna paverka
neuroutvecklingen. For att studera detta analyserar jag genuttryck i manliga
och kvinnliga prover, t.ex. minsklig fosterhjdrnvdvnad och ménskliga stam-
celler som utvecklas till neuroner.

I véra studier bekriftade vi att ménga Y chr-gener uttrycks i fosterhjérnan och
1 ménskliga stamceller som utvecklas till neuroner. Detta bekriftar, tillsam-
mans med studier frén andra forskare, att Y-ldnkade gener dr involverade i
neuroutvecklingen. Tidigare har Y chr-gener frimst forknippats med funktion
i vivnader som dr involverade i reproduktionen. Vi har ocksa identifierat att
Y chr-gener bidrar till en balanserad gendosering av sa kallade X/Y homo-
loggener (dven kallade gametologer). Dessa gener dr speciella eftersom de
finns 1 en kopia pé X chr och i en kopia pd Y chr. Eftersom X chr finns tva
géanger hos kvinnor kan X/Y homologgener ha en hdgre gendosering hos kvin-
nor. En obalans i gendoseringen kan leda till dysfunktioner i kroppen. Y chr-
homologen av dessa gener verkar dock framgéngsrikt arbeta for en balanserad
gendosering 1 hjarnvavnad hos foster och i stamceller som utvecklas till neu-
roner.

I en studie som undersdker neurala stamceller, celler som utvecklas till neu-
roner och som é&r viktiga for hjarnans utveckling, har vi funnit att manliga
celler forokar sig snabbare dn kvinnliga celler. Vi har ocksé funnit att manliga
celler vid dag 4 i ett experiment med neuronutveckling har hégre nivder av
gener som &r involverade i neuron- och synapsutveckling, men efter 14 dagars
differentiering var genuttrycket pd samma niva i manliga och kvinnliga celler.
Dessa resultat tyder pa en konsskillnad i den tidiga neuronutvecklingen. Vi-
dare har vi noterat att genuttrycket av tva gener (UTY, KDMS5D) som ér in-
volverade i utvikningen av DNA okar kraftigt under neuronutvecklingen i
manliga celler. Utvikningen av DNA ar nddviandig for avkodning (transkript-
ion) av gener till funktionella enheter. Dessa mekanismer for att utvika och
atervika generna regleras av funktionella enheter som ldmnar mirken pa
DNA. Dessa mérken anvénds sedan for att antingen packa upp DNA och gora
det tillgéingligt for avkodning, eller for att packa om DNA sa att det blir tétt
packat och inte tar s& mycket utrymme i ansprak. Ett helt vetenskapsomrade
har utvecklats kring detta, kallat epigenetik.

Eftersom vi noterade en hog aktivitet av gener som uttrycker epigenetiska fak-
torer i de manliga cellerna har vi genomfort en studie som letar efter kons-
skillnader bland dessa faktorer i manliga och kvinnliga stamceller. Studien &r
inte fardig 4nnu, men vi har noterat en kvinnlig kdnsbias i epigenetiska mar-
keringar som Okar aktiviteten hos gener som ar involverade i pluripotens.
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Pluripotens ér stamcellernas forméga att utvecklas till néstan alla andra viv-
nadstyper. En 6kning av markeringar vid pluripotensgener tyder pé att kvinn-
liga stamceller stannar ldngre i pluripotenstillstand &n manliga celler. Som en
foljd av detta utvecklas de kvinnliga stamceller s& smaningom senare till neu-
roner eller behdver en starkare signal for att borja utvecklas.

I en annan studie anvénde vi manliga och kvinnliga stamceller och provoce-
rade dem att utvecklas till neuroner. Vi analyserade konsskillnader i genut-
tryck och fann att manliga och kvinnliga celler uppvisar sma skillnader i ett
antal biologiska processer redan innan de utvecklas till neuroner. En av dessa
processer dr en dkad ribosomaktivitet i manliga celler, vilket skulle kunna leda
till en 6kad tillvéxt hos manliga celler. Detta stimmer 6verens med de resultat
som vi tidigare beskrivit i ménskliga neurala stamceller. Vi noterade ocksa att
det vid 37 dagars neuronutveckling finns ett stort antal gener som bidrar till
neuronernas tillvixt och funktion som uttrycks i manliga celler men inte i
kvinnliga celler. Samtidigt finns det ett stort antal X chr-gener som uttrycks i
kvinnliga celler men inte 1 manliga celler. Detta tyder pa att manliga och
kvinnliga celler uppvisar en konsskillnad i genuttryck under utvecklingen av
neuroner och att X chr-gener bidrar till detta. Vi identifierade ocksé 10 kandi-
datgener som sannolikt framkallar en konsskillnad i neuronutvecklingen i
manliga celler och 3 kandidatgener i kvinnliga celler.

Sammanfattningsvis har denna avhandling bidragit till identifieringen av ge-

netiska konsskillnader och undersokt mekanismer som lindrar och bidrar till
konsskillnader i ménsklig neuronutveckling.
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Popularwissenschaftliche Zusammenfassung

Der Begriff "Geschlechtsunterschiede" beschreibt die Unterschiede zwischen
biologisch méannlichen und weiblichen Personen. Geschlechtsunterschiede
sind im menschlichen Kd&rper in vielen verschiedenen Formen und Auspra-
gungen vorhanden. Finige von ihnen sind sehr einfach zu messen, wie der
Unterschied in Grof8e oder Muskelkapazitit. Andere sind weniger einfach zu
erkennen, wie die Geschlechtsunterschiede im Gehirn. Wahrend die genauen
Unterschiede zwischen dem ménnlichen und dem weiblichen Gehirn, und die
molekularen Mechanismen die zu diesen fithren, nicht leicht zu erforschen
sind, lasst sich das Ergebnis der Geschlechtsunterschiede relativ leicht in einer
geschlechtsspezifischen Anfilligkeit von Ménnern und Frauen fiir neurologi-
sche Stérungen erkennen. Méanner sind anfélliger fiir neurologische Entwick-
lungsstorungen wie Autismus-Spektrum-Storungen oder das Tourette-Syn-
drom, wihrend Frauen anfélliger fiir so genannte emotionale Stérungen wie
Depressionen oder Angststorungen sind. Diese Unterschiede in der Krank-
heitsanfilligkeit deuten darauf hin, dass es Unterschiede in der Entwicklung
des Nervensystems gibt, die z. B. Frauen widerstandsfahiger gegeniiber neu-
rologischen Entwicklungsstérungen machen. Um Patienten mit neurologi-
schen Storungen angemessen identifizieren, iiberwachen und behandeln zu
konnen, ist es von grofler Bedeutung zu verstehen, was diese Geschlechtsun-
terschiede in der Entwicklung des Gehirns verursacht.

Der meist- und am besten untersuchte Faktor, der die geschlechtsspezifische
Entwicklung des menschlichen Gehirns beeinflusst, sind die Sexualhormone
(z. B. Testosteron und Ostrogen). Es gibt jedoch auch andere Faktoren, die
weniger gut verstanden und untersucht sind. Einer dieser Faktoren ist die Wir-
kung der Gene auf die Entwicklung des Gehirns. Gene sind die Baupline, aus
denen der Korper Proteine herstellen kann, die wiederum fiir die Struktur,
Funktion und Regulierung der Gewebe und Organe des Korpers erforderlich
sind. Die Gene der Geschlechtschromosomen (X- und Y-Chromosomen) spie-
len bei den Geschlechtsunterschieden eine besondere Rolle. Im Allgemeinen
hat fast jede Zelle im Korper, ob mannlich oder weiblich, 44 Chromosomen,
die so genannten Autosomen, die sich in ihrem Inhalt nicht zwischen Ménnern
und Frauen unterscheiden. Abgesehen davon besitzen weibliche Zellen zwei
X-Chromosomen, wiahrend ménnliche Zellen ein X- und ein Y-Chromosom
besitzen. Dieser eher kleine Unterschied kann grofle Auswirkungen haben:
Ein einziges Gen auf dem Y-Chr ist zum Beispiel der Grund dafiir, dass
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Minner Hoden und keine Eierstocke entwickeln. Auch wenn das Y-Chr sehr
klein ist, besitzt es doch einige Gene, die die Entwicklung von Neuronen zu
beeinflussen scheinen. Gleichzeitig hat sich gezeigt, dass auch viele Gene auf
dem X-chr die Entwicklung des Gehirns beeinflussen.

In meinen Studien untersuche ich das Vorhandensein und die Auswirkungen
von Genen der Geschlechtschromosomen auf die Entwicklung des Gehirns.
AuBerdem untersuche ich, ob Gene der Geschlechtschromosomen oder sogar
der Autosomen geschlechtsspezifisch exprimiert werden (exprimiert = deko-
diert und genutzt) und ob sie die Neuroentwicklung beeinflussen kénnten. Um
dies zu untersuchen, analysiere ich die Genexpression in ménnlichen und
weiblichen Proben, wie z. B. humanem f6talen Hirngewebe und humane
Stammzellen, die sich zu Neuronen entwickeln.

In einer ersten Studie haben wir bestatigt, dass viele Y-chr-Gene sowohl im
fotalen Gehirn als auch in humanen Stammzellen, die sich zu Neuronen ent-
wickeln, exprimiert werden. Dies bestitigt zusammen mit Studien anderer
Wissenschaftler, dass Y-chr-Gene an der Neuroentwicklung beteiligt sind.
Bisher wurden Y-chr-Gene hauptsiachlich mit Funktionen in Verbindung ge-
bracht, die an der Fortpflanzung beteiligt sind. Wir haben auch festgestellt,
dass Y-chr-Gene zu einer ausgewogenen Gendosierung von so genannten
X/Y-homologen Genen (auch Gametologe genannt) beitragen. Diese Gene
sind etwas Besonderes, weil sie in einer Kopie auf dem X-chr und in einer
Kopie auf dem Y-chr vorhanden sind. Da das X-chr bei Frauen doppelt vor-
handen ist, konnen die X/Y-homologen Gene bei Frauen eine hohere Gendosis
aufweisen. Damit bei Minnern eine gleichhohe Gendosis besteht, muss das
Y-chr-homolog die Gendosis ausgleichen. Ein Ungleichgewicht in der Gen-
dosierung kann zu Funktionsstdrungen im Korper fithren. Wir haben festge-
stellt, dass das Y-chr-Homolog dieser Gene jedoch erfolgreich eine ausgewo-
gene Gendosierung in fotalem Hirngewebe sowie in Stammzellen, die sich zu
Neuronen entwickeln, bewirkt.

In einer Studie {iber neuronale Stammzellen, Zellen, die sich zu Neuronen ent-
wickeln und fiir die Entwicklung des Gehirns unerldsslich sind, haben wir
festgestellt, dass sich mannliche Zellen schneller vermehren als weibliche Zel-
len. AuBlerdem haben wir festgestellt, dass ménnliche Zellen, am 4. Tag eines
Experiments zur Entwicklung von Neuronen, eine héhere Anzahl von Genen
aufweisen die an der Entwicklung von Neuronen und Synapsen beteiligt sind,
nach 14 Tagen der Differenzierung war die Genexpression jedoch bei ménn-
lichen und weiblichen Zellen gleich hoch. Diese Ergebnisse deuten auf einen
Geschlechtsunterschied in der frilhen Neuronenentwicklung hin. Auflerdem
haben wir festgestellt, dass die Genexpression von zwei Genen (UTY,
KDMS5D), die an der Entfaltung der DNA beteiligt sind, wiahrend der Neuro-
nenentwicklung in ménnlichen Zellen stark zunimmt. Das Entpacken der
DNA ist fiir die Dekodierung (Transkription) von Genen in funktionelle
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Einheiten unerlésslich. Diese Entpackungs- und Verpackungsmechanismen
werden durch funktionelle Einheiten reguliert, die Markierungen auf der DNA
hinterlassen. Diese Markierungen werden dann verwendet, um entweder die
DNA zu entfalten und sie fiir die Entschliisselung zuginglich zu machen oder
um die DNA neu zu falten, so dass sie dicht gepackt ist und nicht so viel Platz
einnimmt. Ein ganzer Wissenschaftszweig hat sich zu diesem Thema entwi-
ckelt, die Epigenetik.

Da wir eine hohe Aktivitdt von Genen, die epigenetische Faktoren kodieren,
in minnlichen Zellen festgestellt haben, haben wir eine Studie durchgefiihrt,
die nach Geschlechtsunterschieden bei diesen Faktoren in ménnlichen und
weiblichen Stammzellen sucht. Diese Studie ist noch nicht abgeschlossen,
aber wir haben einen Geschlechtsunterschied bei den epigenetischen Markie-
rungen festgestellt, die die Aktivitdt von Genen erhdhen, die an der Pluripo-
tenz beteiligt sind. Pluripotenz ist die Fahigkeit von Stammzellen, sich zu fast
allen anderen Gewebetypen zu entwickeln. Eine Zunahme der Markierungen
an Pluripotenzgenen deutet darauf hin, dass weibliche Stammzellen ldnger in
einem Pluripotenzzustand bleiben als ménnliche Zellen. Dies hat zur Folge,
dass sich weibliche Stammzellen spater zu Neuronen entwickeln oder ein stér-
keres Signal bendtigen, um ihre Entwicklung zu beginnen.

In einer anderen Studie haben wir mannliche und weibliche Stammzellen ver-
wendet und sie stimuliert, sich zu Neuronen zu entwickeln. Wir haben die Ge-
schlechtsunterschiede in der Genexpression analysiert und fanden heraus, dass
méinnliche und weibliche Zellen bereits vor der Entwicklung zu Neuronen
leichte Unterschiede in einer Reihe von biologischen Prozessen aufweisen.
Einer dieser Prozesse ist eine erhohte Ribosomenaktivitit in ménnlichen Zel-
len, was zu einem verstirkten Wachstum der ménnlichen Zellen fithren
konnte. Dies steht im Einklang mit den Ergebnissen, die wir zuvor bei huma-
nen neuronalen Stammzellen beschrieben haben. Wir haben auch festgestellt,
dass am 37. Tag der Neuronenentwicklung eine grof3e Anzahl von Genen, die
zum Wachstum und zur Funktion von Neuronen beitragen, in miannlichen Zel-
len, nicht aber in weiblichen Zellen exprimiert werden. Gleichzeitig gibt es
eine grofle Anzahl von X-chr-Genen, die in weiblichen Zellen, nicht aber in
mannlichen Zellen exprimiert werden. Dies deutet darauf hin, dass mannliche
und weibliche Zellen wihrend der Entwicklung von Neuronen einen Ge-
schlechtsunterschied in der Genexpression aufweisen und dass X-chr-Gene
dazu beitragen. Wir haben 13 Kandidatengene identifiziert, die wahrschein-
lich einen Geschlechtsunterschied in der Neuronenentwicklung in ménnlichen
und weiblichen Zellen hervorrufen.

Zusammenfassend ldsst sich sagen, dass diese Arbeit dazu beigetragen hat,
genetische Geschlechtsunterschiede zu identifizieren und Mechanismen zu
untersuchen, die die Geschlechtsunterschiede in der menschlichen Neuronen-
entwicklung verringern aber auch zu ihnen beitragen konnen.
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