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Temperature dependence of (111) and (110) ceria surface energy
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High-temperature properties of ceria surfaces are important for many applications. Here, we report the
temperature dependencies of surface energy for (111) and (110) CeO2 obtained in the framework of the extended
two-stage up-sampled thermodynamic integration using Langevin dynamics. The method was used together with
machine-learning potentials called moment tensor potentials (MTPs), which were fitted to the results of the ab
initio molecular dynamics calculations for (111) and (110) CeO2 at different temperatures. The parameters of
MTP training and fitting were tested, and the optimal algorithm for the ceria systems was proposed. We found
that the temperature increases from 0 to 2100 K led to the decrease of the Helmholtz free energy of (111) CeO2

from 0.78 to 0.64 J/m2. The energy of (110) CeO2 dropped from 1.19 J/m2 at 0 K to 0.92 J/m2 at 1800 K.
We show that it is important to consider anharmonicity, as simple consideration of volume expansion gives the
wrong temperature dependencies of the surface energies.
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I. INTRODUCTION

Due to its attractive redox, catalytic, electronic, and me-
chanical properties, ceria (CeO2) has become a key material
in many modern technologies [1–6]. Automobile exhaust gas
catalysts [1,2], solid oxide fuel cells [5,6], and oxygen storage
[7] largely rely on the surface properties of ceria [8]. In these
applications, ceria works at elevated temperatures [7], and
therefore, the knowledge of the thermodynamic properties of
ceria surfaces at high temperatures is of great importance.
Such information, however, is still limited; even data about
the energy of different crystallographic surfaces of ceria are
scarce. At the same time, experimental information regard-
ing the properties of bulk ceria is available for different
temperatures. For example, ceria heat capacity obtained for
the temperature range of 2–900 K using adiabatic scanning
calorimetry and differential scanning calorimetry (DSC) has
been reported in several studies [9–13]. High-temperature
enthalpy data for bulk ceria in the temperature range of
391–1800 K can also be found in the literature [14–16]. Ad-
ditionally, Hisashige et al. [17] have measured the thermal
expansion of ceria by thermomechanical analysis in the tem-
perature range from 100 to 800 K and the Debye temperature
at room temperature by an ultrasonic pulse method.
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During the past decade, several ab initio studies devoted
to the high-temperature thermodynamic properties of bulk
CeO2 were published [7,13,18–20]. The self-consistent ab
initio lattice dynamical method [19], which includes the ef-
fects of phonon-phonon interactions using the quasiharmonic
approximation (QHA), provided a description of phonon and
thermodynamic properties of bulk ceria at temperatures from
0 K up to 1500–1800 K [21]. Based on the QHA method and
phonon calculations, the thermodynamic properties, such as
heat capacity, isothermal bulk modulus, Gibbs free energy,
and coefficient of thermal expansion of CeO2 polymorphs,
were obtained in the temperature range of 0–1150 K [20].
Morrison et al. [13] calculated the entropy, enthalpy, and
Gibbs functions for bulk ceria at temperatures between 5 and
400 K using the Perdew-Burke-Ernzerhof parameterization
revised for solids (PBEsol) and the simple Debye model [13].
The obtained Debye temperature (�D), 455 K [13], was in
between the previously reported experimental data: 409 K
[22], 480 K [17], and reported theoretical values of 481 K
[23], 414.5–582.9 K [24]. Additionally, Klarbring et al. [7]
used the temperature-dependent effective potential method to
investigate several high-temperature properties of ceria in-
cluding thermal expansion [25,26]. Using PBEsol+U , Weck
and Kim [23] obtained the crystalline parameters of CeO2 in
good agreement with the experimental values. They also cal-
culated the Debye temperatures within the Voigt-Reuss-Hill
approximation. Niu et al. [24] obtained the pressure and tem-
perature dependences of the specific heat, Debye temperature,
and the thermal expansion coefficient for cubic CeO2 from the
Debye-Grüneisen model.

The information about ceria surfaces at elevated tem-
peratures is scarce in experimental publications and totally
nonexistent in theoretical reports. Zouvelou et al. [27]
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described an experimental determination of the surface ener-
gies of polycrystalline CeO2 in the argon atmosphere in the
1473–1773 K temperature range, which were measured to be
1.64–1.47 J/m2. Hayun et al. [28] determined the surface
energy of nanoceria for hydrated and anhydrous samples at
room temperature to be 0.81 and 1.16 J/m2, respectively.
Hayun et al. [28] concluded that these surface energies could
be attributed to the (111) surface. This assumption was based
on the systematic study of the CeO2 nanoparticles of different
sizes using high-resolution transmission electron microscopy
[29] and the work by Vyas et al. [30] showing that CeO2

equilibrium morphologies are dominated by the (111) facets.
Here, we report the calculated free energies of the (111)

and (110) ceria surfaces at temperatures up to 2100 K.
The values were calculated with the extended two-stage up-
sampled thermodynamic integration using Langevin dynam-
ics (TU-TILD) method [31,32]. This method was previously
applied in the free energy calculations of various metallic sys-
tems, including vacancy formation free energies [33], stacking
fault free energies [31], as well as the surface free energy of
TiN [34] and W [35]. In this paper, TU-TILD is combined
with machine learning (ML) potentials, particularly the mo-
ment tensor potentials (MTPs) [36], which were trained on the
results of ab initio molecular dynamics (AIMD) calculations
[37].

II. METHODS

The methodology of the TU-TILD was applied in this
paper to determine the Helmholtz free energies of the ceria
bulk and surface supercells and consequently the surface free
energies of (111) and (110) ceria.

A. Surface free energy

The slab technique was used to determine the surface free
energy γ as

γ (T ) = Fslab(aT , T ) − Fbulk (aT , T )

2AT
, (1)

where Fbulk (aT , T ), and Fslab(aT , T ) refer to the Helmholtz
free energies of the slab and bulk calculated for the same num-
ber of formula units, respectively; aT is the lattice constant at
temperature T and zero pressure, and AT is the surface area of
the slab. Factor 1

2 accounts for the two surfaces of the slab.
The Helmholtz free energies of both bulk and surface

supercells (subscripts are omitted in the formula) can be adia-
batically decomposed into the following contributions:

F (aT , T ) = E (aT ) + F vib(aT , T ), (2)

where E denotes the conventional 0 K total energy of the sys-
tem (either bulk or slab) and F vib the vibrational free energy
of the lattice, obtained in the fully anharmonic form using the
TU-TILD method.

B. Anharmonic free energy calculations

We applied the TU-TILD method, which treats the inter-
atomic potential as an intermediate reference potential in the
thermodynamic integration. The thermodynamic integration

is split into two stages: first, from the harmonic to the ref-
erence potential and, secondly, from the reference potential to
full density functional theory (DFT) [35]. In the framework
of this paper, a modified version of the original TU-TILD
method was utilized. The first modification was the usage
of an optimized Einstein crystal as the analytic reference to
compute the absolute free energy, instead of a quasiharmonic
reference. The Einstein crystal is a simple and convenient
workaround [38]. The corresponding Einstein frequency can
be chosen quite arbitrarily within a reasonable interval spe-
cific for this system. Since the Einstein system is used only
as an auxiliary reference for thermodynamic integration, the
choice does not affect the final result obtained after the in-
tegration. The second modification of the original TU-TILD
method implemented here was the usage of a ML potential,
namely, the MTP, as an efficient bridge between the analytical
reference system and the DFT system.

Following this formalism [32,39], the full vibrational free
energy including the anharmonic is obtained as follows:

F vib = F Einst + F Einst→MTP + F MTP→DFT, (3)

where

F Einst→MTP =
∫ 1

0
dλ1〈EMTP − EEinst〉λ1

, (4)

F MTP→DFT =
∫ 1

0
dλ2〈EDFT − EMTP〉λ2

+ 〈�E〉UP, (5)

where F Einst is the free energy of an optimized Einstein crys-
tal; EEinst, EMTP, and EDFT are the energies of a particular
atomic configuration calculated for the Einstein crystal, calcu-
lated with the MTP [40] as implemented in the MLIP software
[36], and calculated with low-converged DFT parameters, re-
spectively; and 〈. . .〉λ denote the thermodynamic average for
coupling constant λ at certain temperature and volume. Fi-
nally, 〈�E〉UP is obtained within the free-energy perturbation
theory, and it accounts for the free energy difference between
the low- and well-converged DFT calculations [32].

C. ML potentials

MTPs are the class of ML potentials proposed by Shapeev
for single-component materials [40] and later extended to
multicomponent systems [41]. MTPs are efficient in combi-
nation with the TU-TILD method [1,2]. In the framework of
ML methods, each considered model should be optimized.
To avoid overfitting or underfitting during potential training,
the root mean square errors (RMSEs), calculated between the
reference outputs and model predictions, were compared at
the end of the training process [42].

MTPs represent the energy of an atomic configuration as a
sum of the contributions of the local atomic environments of
each atom i:

EMTP
tot =

n∑
i=1

Ei, (6)
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where each contribution Ei is linearly expanded via a set of
basis functions:

Ei =
∑

α

ξαBα
i , (7)

where ξ = {ξα} are parameters to be found by fitting to the
training set.

To train MTPs, an active learning technique can be applied
in the framework of the MLIP package [36]. This technique
allows one to entrust training set refinement iterations to the
computer, thus completely automating the training set con-
struction. A good training set should include all representative
structures, so that the potential does not have to extrapolate
while searching for stable phases. This goal can be achieved
by treating the active learning technique as a generalization of
the algorithm proposed for linearly parametrized models by
Gubaev et al. [43] and Novikov and Shapeev [44].

The full iteration of the active learning algorithm consists
of five steps [36]:

(1) The training set is constructed from well-converged
configurations obtained in DFT-AIMD calculations at the con-
sidered temperature.

(2) The pretraining procedure is implemented for an un-
trained MTP with the defined MTP level and cutoff radius to
define the current MTP the first time (MTP renewed at each
iteration).

(3) The simulation with the current MTP is performed
using the LAMMPS-MLIP interface, and the extrapolative con-
figurations are selected; the simulation is stopped when the
maximum extrapolation grade [3] is exceeded, and an update
of the training set is performed.

(4) Should new configurations be added to the training set,
the total energies of these configurations are calculated with
DFT-AIMD and then added to the trained set.

(5) The MTP is retrained using the updated training set.
The whole procedure should be repeated until no new con-

figurations appear in the third step. If only the first two steps
are used, we call such a procedure passive learning or training
since the training set in this case is generated manually and
the MTP is not adding any new configurations [36].

III. COMPUTATIONAL DETAILS

The DFT calculations were performed using the projector
augmented wave (PAW) method [45] as implemented in the
Vienna Ab initio Simulation Package (VASP) [46]. The ex-
change and correlation effects were treated using the PBEsol

[47] parametrization of the generalized gradient approxima-
tion.

Weck and Kim [23] previously demonstrated that PBEsol

described the experimental crystalline parameters and proper-
ties of CeO2 and Ce2O3 with good accuracy. For our purpose,
the description of cerium oxides within the DFT+U for-
malism is sufficient [48]. Therefore, the calculations were
performed using PBEsol + U energy functional with the Hub-
bard parameter U of 5 eV applied to the 4 f states of ceria. The
PAW potentials with the following electronic configurations
were used: Ce 4s4p4 f 5d6s and O 2s2p. All calculations were
spin polarized with the initial ferromagnetic spin arrange-
ment. The equilibrium lattice parameter of ceria obtained with

PBEsol+U was 5.40 Å (0 K), in fair agreement with the
experimental value [27].

A. Bulk free energy calculations

The Helmholtz free energy of the bulk system Fbulk (aT , T )
was obtained using Eq. (2). The convergence parameters were
chosen to achieve the accuracy of 1 meV/atom or below. The
0 K total energy Ebulk (aT ) was calculated for the 96-atom
supercell built as a 2×2×2 replication of the 12-atom cubic
cell. The total energies were computed for the 12 volumes,
with equilibrium at different elevated temperatures [7]. For
elevated temperatures, we used the lattice parameters de-
termined in our previous work [7], which were in good
agreement with earlier experimental [25,26] and theoretical
data [24]. The plane-wave cutoff was set to 500 eV, and the
k-point mesh was 2×2×2 [49]. The vibrational free energy
F vib

bulk (aT , T ) was calculated by the TU-TILD method. The
procedure of this calculation consisted of the following three
steps:

(1) AIMD runs performed in VASP at 12 temperatures from
450 to 2100 K with 150 K steps,

(2) 12 MTPs training in the framework of the active learn-
ing algorithm, and

(3) TU-TILD with 12 trained MTPs for each considered
temperature.

The thermodynamic integration [step (3)] includes the fol-
lowing substeps corresponding to Eqs. (3)–(5):

(a) calculations of MTP correction to the Einstein crystal
model,

(b) calculations of the DFT correction to the MTP free
energy, and

(c) additional calculations for the up-sampling term.
All 12 AIMD simulations were run with the Langevin

thermostat [50] with the damping parameter of 0.01 fs−1. The
van Gunsteren–Berendsen algorithm [51] was used for the
integration of Newton’s equations of motion. A 1-fs time step
was determined to be sufficient for AIMD runs. Each MD run
was done for 6000 steps.

For every temperature, we trained the MTP to reproduce
the energy and forces of the 6000 atomic configurations for
bulk ceria obtained from DFT-AIMD. We did it always in
the framework of the active learning approach. The 16th level
of the MTP and 5-Å cutoff radius were chosen. The result-
ing RMSE of the energy difference between DFT and the
MTP was 1.6 meV/atom, and the RMSE of the force was
0.51 eV Å−2, demonstrating a satisfactory reproducibility of
the DFT energies and forces by the fitted MTPs.

Having fitted MTPs for the 12 considered temperatures,
we could start the TU-TILD [Eqs. (3)–(5)]. The F Einst→MTP

correction was obtained for the 324-atom supercell built as
the 3×3×3 replication of the 12-atom cubic cell. The con-
vergence of the free energy correction was <1 meV/atom for
all temperatures. It might be important to use a large enough
supercell in this integration to capture the contribution of the
long-wavelength phonons. At every temperature, a dense set
of 26 λ1 values was used for the integration in Eq. (4). For
each λ1, LAMMPS MD runs up to 50 000 steps were performed
to get statistically well-converged results.
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The F MTP→DFT correction was obtained using the 96-atom
supercell. Due to a high computational cost of the calculations
at this step, only five λ2 values (0, 0.25, 0.5, 0.75, and 1)
were chosen for the integration in Eq. (5). For each λ2, one
MD run with 1000 MD steps was performed. This sampling
resulted in a statistical error <0.2 meV/atom, demonstrating
the excellent performance of the MTP in reproducing the
DFT values. Term EDFT in Eq. (5) was calculated using the
plane-wave cutoff of 500 eV and the 2×2×2 Monkhorst-Pack
[49] k-point mesh for the 2×2×2 supercell. The calculations
of the up-sampling term in Eq. (5), 〈�E〉UP, were carried
out with the plane-wave cutoff of 700 eV and the 4×4×4
k-point mesh. It appeared that it was enough to perform 10
up-sampling calculations at each temperature to obtain highly
converged energies.

B. Slab free energy calculations

The Helmholtz free energy of the surface slab Fslab(aT , T )
was obtained using Eq. (2). All the parameters were converged
to the accuracy of 1 meV/atom. The 0 K energy Eslab(aT )
was calculated for the two (111) surface supercells: 2×2 and
4×4 in the xy directions, both with the thickness of 9 layers,
containing 36 and 144 atoms, respectively. The (110) CeO2

supercell was 2×1 in the xy direction with the thickness
of 7 layers (42 atoms). The vacuum was 15 Å thick in all
cases. The Monkhorst-Pack [49] k-point meshes of 2×2×1
and 4×4×1 were used for 4×4 and 2×2 (111) supercells,
respectively. For the (110) 2×1 supercell, 4×6×1 k-point
mesh was used. The plane-wave cutoff was 500 eV in all
surface calculations.

To calculate F vib
slab(aT , T ), MTPs for the surface slabs were

fitted in the same manner as bulk MTPs. The initial DFT-
AIMD runs were performed for 12 temperatures in the range
of 450–2100 K for the (111) slab and for 7 temperatures in
the range of 600–1800 K for the (110) slab. For slab MTPs,
just like for bulk MTPs, the 16th level and cutoff radius of 5 Å
were chosen. At each temperature, the slab MTPs were trained
to the energies and forces of the 6000 atomic configurations
obtained in DFT-AIMD runs. The active learning algorithm of
MTP training was applied, just like in the case of bulk MTPs.
The resulting RMSE of the energy difference between DFT
and the MTP was 0.3–0.5 meV/atom, and the RMSE for the
force was 0.04−0.08 eV Å−2.

For the surface correction, F Einst→MTP was calculated using
the (111) 4×4 and (110) 4×8 supercells containing 512 and
672 atoms, respectively. All other parameters were set like
for the respective bulk calculations. Correction F MTP→DFT for
surface slabs was obtained using (111) 4×4 and (110) 4×2
supercells containing 144 and 168 atoms, respectively. The
same set of λ2 values (0, 0.25, 0.5, 0.75, and 1) as for the
corresponding bulk calculations was used here. At each λ2,
1000 step MD runs were carried out with the following DFT
parameters: the plane-wave cutoff energy of 500 eV and the
2×2×1, 4×4×1 Monkhorst-Pack [49] k-point meshes for the
(111) 4×4 and (110) 4×8 supercells. For up-sampling, the
following parameters were used: cutoff energy of 700 eV and
6×6×1 and 4×4×1 k-point meshes for 36 and 144 atomic
(111) CeO2 supercells, respectively, and the 6×8×1 k-point

FIG. 1. The surface free energy of (111) ceria surface as the
function of temperatures for different supercell sizes, type of mo-
ment tensor potential (MTP) training, and corrections to the free
energy (Einst → MTP and MTP → DFT). Green squares: γ Einst +
γ Einst→MTP for the 36-atom unit cell with MTPs obtained from the
passive learning procedure; blue circles: γ Einst + γ Einst→MTP for the
144-atom unit cell with MTPs trained using passive learning; blue
triangles: γ Einst + γ Einst→MTP for the 144-atom unit cell with MTPs
obtained from active learning; and orange triangles: γtot = γ Einst +
γ Einst→MTP + γ MTP→DFT for the 144-atom unit cell using MTPs ob-
tained from active learning.

mesh for the 42-atom (110) CeO2 cell. Finally, the surface
free energy was calculated according to Eq. (1).

IV. RESULTS AND DISCUSSION

Here, we present the results of the application of the above-
described methodology to the (111) and (110) ceria surfaces.
The temperature dependence of the surface free energy for
(111) CeO2 including full anharmonic vibrational contribu-
tion is shown in Fig. 1.The surface energy decreases from
0.78 J/m2 at 0 K to 0.63 J/m2 at 2100 K.

In Fig. 1, we compare results obtained for 36- and 144-
atom supercells. It is obvious that, already, the 36-atom cell
allows one to get reasonably accurate results up to high tem-
peratures. Our tests done for the 144-atom cell show that the
surface energy does not change whether we use the “active” or
“passive” learning procedure for MTP training (Fig. 1). Based
on this finding, only the last variants of MTPs were used for
the 36-atom cell to reduce computational cost. Notice that the
data in Fig. 1 also show that, in this case, neither the com-
putationally expensive MTP → DFT correction (γ MTP→DFT

including the up-sampling procedure) causes any change. This
might be explained by a rather high accuracy of our initial MD
calculations used to train MTPs in comparison with those used
in previous works [34,35], where only the � point and a rather
low cutoff energy were used. Therefore, it is not surprising
that the authors of Ref. [35] obtained a significant MTP →
DFT correction, providing a noticeable contribution to the
final surface free energy.

Based on our tests performed for the (111) surface, we
decided to use a 42-atom cell and passive training for MTPs
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FIG. 2. Surface energies calculated for (a) (111) and (b) (110) ceria surfaces as a function of the temperature. Green squares: Without
moment tensor potentials (MTPs) at 0 K using lattice parameters respective to finite temperatures. Blue circles: Using the MTPs of
corresponding surfaces at respective finite temperatures. Red diamonds: Using the 1800 K MTPs of corresponding surfaces. Yellow stars:
Using the MTPs trained for the (111) surface but applied for the (110) surface at respective finite temperatures.

in our calculations for the (110) surface. The MTP → DFT
correction γ MTP→DFT was also neglected. The results for (110)
CeO2 are shown in Fig. 2(a). Figure 2(b) presents the surface
energy dependence for (111) CeO2. The (110) surface free en-
ergy decreases from 1.19 J/m2 at 0 K to 0.92 J/m2 at 1800 K.
Thus, the surface energy decreases between 0 and 1800 K are
0.27 J/m2 for (110) CeO2 and 0.15 J/m2 for the close-packed
(111) surface for the same temperature interval. We notice
that it is necessary to consider anharmonicity to adequately
describe temperature dependence of ceria surface energy. To
demonstrate this point, Figs. 2(a) and 2(b) show the surface
energies calculated at 0 K for the volumes corresponding to
the considered temperatures.

Figures 2(a) and 2(b) also present the results of our trans-
ferability tests of the obtained MTPs. The following two types
of transferability tests were performed:

(1) The use of the MTP trained at 1800 K for the evalua-
tion of the surface free energy at lower temperatures. This test
was applied for both ceria surfaces. MTPs trained at 1800 K
[Figs. 2(a) and 2(b)] demonstrate good agreement with the
results obtained with the MTPs trained at each corresponding
temperature [Figs. 2(a) and 2(b)] both for (111) and (110).
The conclusion can be drawn that, at least in the case of ceria
surfaces, it is enough to train the MTP at a high temperature
and apply it for a range of lower temperatures to estimate the
surface free energy with reasonable accuracy.

(2) The use of the individual MTP trained at a particular
temperature for (111) ceria for the description of surface free
energy of (110) ceria at the same temperature [Fig. 2(b)]. In
this case, the best agreement can be found at lower tempera-
tures, for example, 600 K, but this approach still can be used
for a rough and quick estimation of the (110) surface free
energy even at high temperatures.

Additionally, we tried to use the MTP trained for the (110)
surface to describe the (111) surface. This attempt, however,
showed no good results even for low temperatures. We note

that the MTPs trained for the bulk provided no reasonable
description of the (111) or (110) surface.

Finally, we have shown that the calculation of surface free
energy without vibrational contribution to Helmholtz free en-
ergy gives us quite different values than the one we obtained
considering all contributions [green curves in Figs. 2(a) and
2(b)].

The calculated surface energies can be compared with
the available experimental data. Hayun et al. [28] reported
the surface energy value of 0.81 J/m2 at room temperature,
which is in fair agreement with our 0 K value for the (111)
surface [Fig. 2(b)]. Zouvelou et al. [27] reported the surface
energy of polycrystalline CeO2 to be 1.116–0.998 J/m2 in the
1473–1773 K temperature range; thus, the surface energy
decrease in this temperature interval is ∼0.12 J/m2 [27].
Note that the type of surface was not specified in Ref. [27].

FIG. 3. Atomic trajectories plotted for the (111) surface at
1800 K. (a) Projection from the [−110] direction. (b) Projection from
the [11–2] direction. Oxygen atoms are green and cerium atoms are
yellow.
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FIG. 4. Atomic trajectories for the (110) ceria surface at 1800 K.
(a) Projected along the in-plane [001]. (b) Projected along the in-
plane [110]. Oxygen atoms are green, and cerium atoms are yellow.

Figures 2(a) and 2(b) demonstrate that, for both surfaces, the
free energy decreases in the temperature interval of 1500–
1800 K. However, in the case of the (111) surface, the modest
difference of 0.03 J/m2 was obtained, whereas for the (110)
surface, it was 0.12 J/m2, in good agreement with results by
Zouvelou et al. [30].

Figures 3 and 4 present the trajectories of oxygen and ceria
atoms in (111) and (110) surface slabs, respectively, obtained
from 50 000-step MD runs at 1800 K. For both surfaces, as
expected, the mobility of surface atoms is larger than that of
the bulk atoms. Oxygen atoms shift much further from their
crystallographic sites than heavy cerium atoms. In the fluorite
structure of ceria, each oxygen is placed in the middle of a
tetrahedron of four cerium atoms. The oxygen atom move-
ment is easier through the facet of the cerium tetrahedron
than through its edge between two Ce atoms. Under some
projection angles, Figs. 3 and 4 demonstrate the characteristic
triangular shape of the trajectory distributions.

V. CONCLUSIONS

We demonstrated that the proficient methodology for com-
puting the fully anharmonic surface free energy from ab initio

calculations based on the TU-TILD method can be success-
fully applied to oxide surfaces, particularly to CeO2 (111)
and (110) surfaces. The optimal algorithm for the surface
free energy calculation in the case of ceria systems has been
proposed. It has been shown that, for the considered ceria
systems, active training of the MTPs and utilizing of the
increased supercell sizes can be excessive if the original MD
calculations are performed with reasonably high accuracy.
We have also found that MTP-DFT correction and the up-
sampling term can be neglected for ceria surfaces, again if
the initial MD calculations have more k-points than just the
� point and the cutoff energy of 500 eV. The surface free
energy changes from 0.78 J/m2 at 0 K to 0.64 J/m2 at 2100 K
in the case of CeO2 (111) and from 1.19 J/m2 at 0 K to
0.92 J/m2 at 1800 K in the case of the (110) surfaces. The
obtained results are in reasonable agreement with the experi-
mental data by Zouvelou et al. [27] and Hayun et al. [28]. It is
essential to consider anharmonic contributions to adequately
describe the temperature dependence of the surface free en-
ergy of ceria.
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