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Abstract
We consider f (R) gravity and Born–Infeld–Einstein (BIE) gravity in formula-
tions where the metric and connection are treated independently and integrate
out the metric to find the corresponding models solely in terms of the con-
nection, the archetypical treatment being that of Eddington–Schrödinger (ES)
duality between cosmological Einstein and Eddington theories. For dimensions
D ̸= 2, we find that this requires f (R) to have a specific form which makes the
model Weyl invariant, and that its Eddington reduction is then equivalent to
that of BIE with certain parameters. For D= 2 dimensions, where ES duality
is not applicable, we find that both models are Weyl invariant and equivalent
to a first order formulation of the bosonic string. We also discuss the form
of the boundary terms needed for the variational principle to be well defined
on manifolds with non-null boundaries. This requires a modification of the
Gibbons–Hawking–York (GHY) boundary term for gravity. This modification
also means that the dualities between metric and connection formulations are
consistent and include the boundary terms.
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1. Introduction

There has been a lot of interest in modified theories of gravity, often motivated by the sin-
gularities in black hole solutions of general relativity (GR) or the abundance of dark energy
and dark matter. A popular venue for modifying GR has been to treat the connection as an
independent variable. This can lead to a dual theory, as in the Eddington–Schrödinger (ES)
duality, or to a new model, as is the case already in the Palatini approach to GR if the matter
coupling leads to a violation of the metricity condition3.

In this letter we compare two ways of constructing a purely connection dependent gravity
model starting from f (R) theory or from Born–Infeld–Einstein (BIE) theory4. We find that
certainWeyl invariant f (R) theories lead to models that are equivalent to those from BIE theory
forD ̸= 2 where they both give actions involving the square root of the determinant of the Ricci
tensor. The constructions break down forD= 2, where they lead to Weyl invariant models still
involving both the metric and the connection. These models are then both equivalent to the
first order action of the bosonic string.

For each model we find the appropriate generalisations of the Gibbons–Hawking–York
(GHY) boundary terms that ensure a consistent derivation of the field equations in manifolds
with boundaries under a variational principle that we specify. These terms are needed for com-
plete duality.

We give a unified treatment of several models, the novel feature being a description of their
interrelations as summarised in figure 1, and some aspects of their variation. In particular, we
emphasise that the two-dimensional versions are special and related to a first order formulation
of the bosonic string. In addition we discuss the variational principle in themetric-affine setting
and introduce new GHY type terms for manifolds with boundary.

The layout of the paper is that in sections 2–4 we remind the reader of ES duality, f (R)
theory andBIE theory, respectively. Therewe display the purely connection and the dual purely
metric theories in the cases when they exist separately, as well as the mixed theories. Section 5
contains the 2D string-limit of the theories. In section 6 we discuss variational principles and
boundary terms. We collect some conclusions in section 7.

2. Eddington–Schrödinger

The original form of ES duality starts from the action [3, 4],

SES = 1
2

ˆ
dDx
√

|g|
(
gabRab(Γ)−Λ

)
(2.1)

with metric and (symmetric) connection as independent variables and |g| the absolute value of
the determinant of the metric gab. (The original discussion has D= 4.) Eliminating Γ via its
field equations determines the connection to be the Levi-Civita connection Γ(0) via the Palatini
variation of the Ricci tensor

δRab =∇cδΓ
c
ab−∇(aδΓ

d
b)d . (2.2)

3 Historical note: One of us pioneered applying the ‘Palatini variational principle’ to certain matter coupled gravity
theories [1, 2], almost fifty years ago. Not many papers followed on these until the early 2000s, but since then the
topic has grown impressively. Now there are many hundred papers, mainly due to applications in astrophysics.
4 Also known as Eddington-inspired Born–Infeld gravity.
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This returns the GR action with a cosmological term when substituted into the action

SgES =
1
2

ˆ
dDx
√

|g|
(
gabRab(Γ

(0))−Λ
)
. (2.3)

The boundary contribution generated in the process readsˆ
∇[c

(√
|g|gabδΓca]b

)
. (2.4)

Varying the metric using

δ
√
|g|=− 1

2

√
|g|gabδgab (2.5)

gives the field equation

Rab− 1
2gab

(
gcdRcd−Λ

)
= 0 . (2.6)

When D ̸= 2 this can be solved to give

gabRab =
D

D− 2
Λ . (2.7)

From (2.6) it then follows that

gabΛ = (D− 2)Rab (2.8)

and thus √
|g|=

(
D− 2
Λ

) D
2√

|detRab| . (2.9)

The dual theory, with the connection as independent variable is then, from (2.1),

SΓES =

(
D− 2
Λ

) D−2
2 ˆ

dDx
√
|detRab(Γ)| . (2.10)

3. First order f(R) and duality

The second order f (R) theories in D dimensions are defined by an action

Sgf =
ˆ

dDx
√
|g| f(R) , (3.1)

where

R(Γ(0)) = gabRab(Γ
(0)) . (3.2)

Here we will consider the action Sf , which is (3.1) but with R(Γ(0)) replaced by R(Γ) where Γ
is a general (symmetric) connection. Varying the metric and the connection independently as
in the Palatini formulation of GR will in general result in field equations inequivalent to those
from (3.1), [5]. Here we are interested in the possibility of dualising the model to one written
entirely in terms of the connection. This procedure is related to the ES duality described in
section 2.

The variation of the general action reads

δSf = δ

ˆ
dDx
√
|g| f(R)

=

ˆ
dDx
(√

|g|δgab
[
− 1

2gabf(R)+ f ′(R)Rab
]
+ 2gabf ′(R)

√
|g|∇[cδΓ

c
a]b

)
, (3.3)

3
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where use is made of the relations (2.2) and (2.5). Extremising the action will then result in a
boundary contribution

2
ˆ

dDx∇[c

(
gabf ′(R)

√
|g|δΓca]b

)
(3.4)

and the field equations

f ′(R)Rab− 1
2gabf(R) = 0 ,

∇c

(√
|g|gdbf ′(R)

)
− δdc∇a

(√
|g|gabf ′(R)

)
= 0 . (3.5)

Taking the determinant and the trace of the first of these results in√
|g|=

∣∣∣2f ′
f

∣∣∣ D2√|detRab| (3.6)

and

D=
2f ′

f
R , (3.7)

respectively. The equation (3.7) gives a first order ordinary differential equation for f which
we solve5

df
f
=
D
2
dR
R

⇒ f(R) = cR
D
2 (3.8)

with c a constant. Combining this with (3.6) eliminates the metric completely and gives the
action

Sf =
ˆ

dDx
√
|g| f(R) → SΓf = cD

D
2

ˆ
dDx
√
|detRab(Γ)| . (3.9)

The action on the left hand side is invariant under Weyl transformations of the metric

gab → Ω(X)gab (3.10)

in parallel to the construction of Weyl invariant (spinning and super) p-branes [7–11]. An
alternative way to see this is by using (3.6) and (3.7) simultaneously to massage the right hand
side of SΓf in (3.9) by direct substitution and elementary linear algebra, to arrive at

c
ˆ
dDx
√
|det(gab(gcdRcd))| , (3.11)

which is clearly Weyl invariant by (3.10).
Going back to the field equation (3.5) and tracing the second equation over (c, d) implies

∇c

(√
|g|gcbf ′(R)

)
= 0 , (3.12)

5 Here we are primarily interested in ES duality, but the question of special cases is interesting. In [6], a more detailed
analysis of the solutions to (3.5) is given, covering also the case e.g. when the first equation of (3.5) is NOT identically
satisfied (see their ‘case 2’). There they do not find any special case where the metric can be eliminated.
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in all dimensions D ̸= 2, so that, for the solution (3.8) we have6

0=∇c

(√
|g|gdbf ′(R)

)
=∇c

(√
|g|gdbR

D−2
2

)
=∇c

(√
|g|gdb

)
R

D−2
2 +

√
|g|gdb∇cR

D−2
2 . (3.13)

Tracing on (d, b) and using that

gdb∇c

(√
|g|gdb

)
= (D− 2)∇c

(√
|g|
)
, (3.14)

we find

∇c

√
|g|√

|g|
+
D
2
R−1∇cR= 0 ⇒ ∂c ln

√
|g| −Γc+

D
2
∇c lnR= 0 , (3.15)

where Γc is the contracted connection. Noting that ∂c ln
√
|g|= Γ

(0)
c , the contracted Levi-

Civita connection, and defining R−1∇cR=: ∂cφ, we have

Γc = Γ(0)
c +

D
2
∂cφ . (3.16)

Making use of this in (3.13) yields

∇c

(√
|g|gdb

)
+

(
D− 2

2

)√
|g|gdbR−1∇cR= 0 ,

=⇒ ∂c

(
ln
√
|g|
)
gdb−Γ(0)

c gdb+∇cg
db− D

2
∂cφg

db+

(
D− 2

2

)
gdb∂cφ= 0

=⇒ ∇cg
db− ∂cφg

db = 0 , (3.17)

where we have used (3.16) in an intermediate step. The last equation in (3.17) may be solved
in the way the Christoffel symbols are found from the metricity condition to give

Γacd =: Γ̃acd = Γ(0)a
cd+

1
2g

ab
(
2gb(c∂d)φ − gcd∂bφ

)
, (3.18)

with Γ(0)a
cd the Levi-Civita connection7. This is consistent with (3.16) and shows that the

connection Γ̃acd equals the Levi-Civita connection Γ(0)a
cd up to a Weyl transformation

gdb → eφ gdb . (3.19)

Since themodel isWeyl invariant, we can thus always choose the connection to be Levi–Civita.
In the preceding derivation we only used the equation (3.7) from the metric field equations

to determine the form of f (R). So if we assume that form to begin with, the result (3.18) implies
that the action SΓf in (3.9) is dual to

Sgf =
ˆ

dDx
√
|g|R D

2 (Γ(0)) . (3.20)

6 At this stage it is common to argue (in D= 4) that (3.12) leads to a Levi-Civita connection for qab := f ′gab. Since
this still contains the connection, the field equations are then used to replace Rab by the energy momentum tensor.
See, e.g. [5] or [12]. This route is not open to us since for us D is arbitrary and we have no matter.
7 Formally, we are still faced with the same nonlinear problem as discussed in footnote 4. However, now the problem
is located in the φ dependence and we may use Weyl invariance to go to a particular gauge where the connection is
independent of φ.
In D= 2 the solution contains an independent vector as part of the first order version of the bosonic string in [13].
There it also corresponds to an additional symmetry of the model, unique to D= 2.
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4. BIE Gravity

In this section we relate the previous results to a gravitational model based on an analogy to
the Born–Infeld action. We shall be brief in our presentation, since we recently discovered that
several of the calculations already exist in the literature (for D= 4) [14, 15].

The action for BIE gravity [16], with independent (symmetric) connection reads

SBIE =
1
ϵ

ˆ
dDx
(√

|det(gab+ ϵRab(Γ)| −λ
√
|detgab|

)
, (4.1)

where the Ricci tensor is assumed symmetric and ϵ is a parameter of dimension (length)2.
Abbreviating

hab := gab+ ϵRab , habhbc = δac , (4.2)

and extremising SBIE by varying the metric and the connection using (2.2) and (2.5), yields a
boundary contributionˆ

dDx∇[c

(√
|h|habδΓca]b

)
(4.3)

along with the field equations√
|h|hab−λ

√
|g|gab = 0 (4.4)

and

∇c

(√
|h|hdb

)
− δdc∇a

(√
|h|hab

)
= 0 . (4.5)

When D ̸= 2 we can solve (4.4) to give√
|h|
|g|

= λ
D

D−2 (4.6)

which substituted back yields

gab = λ
−2
D−2 hab = λ

−2
D−2 (gab+ ϵRab) , (4.7)

so that

gab =
ϵRab(Γ)

(λ
2

D−2 − 1)
, (4.8)

thus eliminating the metric in favour of the connection. Inserting this in (4.1), we find an action
with the connection as the only variable

SΓBIE =
1
ϵ

ˆ
dDx

(√
|h| −λ

√
|g|
)
= ϵ

D
2 −1

(
λ

2
D−2 − 1

) 2−D
2
ˆ

dDx
√
|detRab(Γ)| . (4.9)

For

λ=

[
ϵΛ+D− 2
D− 2

] D−2
2

, (4.10)

this agrees with the ES result in (2.10)8. The two models are thus equivalent as starting points
for deriving the R(Γ) theory, although only one of them is Weyl invariant.

8 For D= 4 (4.10) implies 2(λ− 1) = ϵΛ.

6
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Figure 1. A schematic picture of the interrelation between the models discussed.

Finding a metric action dual to (4.9) by solving (4.5) meets with several obstacles. The
solution to (4.5) is formally

Γ = Γ(0)(hab) , (4.11)

i.e. the Levi-Civita connection for hab. But this is incomplete since hab still contains Rab(Γ).
So it is rather the full metric and connection theory with field equations (4.4) and (4.5) one
has to consider.

Using (4.8) we write

hab := gab+ ϵRab = λ
2

D−2 gab . (4.12)

Since this is a constant Weyl transformation, plugging it into (4.11) gives

Γabc = Γ(0)(hab) = Γ(0)(gab) , (4.13)

in perfect agreement with the right hand side of (4.4). The on-shell theory thus found satis-
fies (4.8) with connection (4.13) is(

λ
2

D−2 − 1

)
gab = ϵRab

(
Γ(0)(gab)

)
, (4.14)

which is equivalent to Einstein’s vacuum field equations with a cosmological constant

1
2 (2−D)

(
λ

2
D−2 − 1

)
. (4.15)

This confirms the D= 4 discussion of the matter coupled system in [14, 15] where it is
shown that the vacuum solutions are the Einstein solutions.

We saw in section 2 that in D= 4 the Γ-action (3.9) is dual to GR with a cosmological
constant − 1

2Λ =− 1
16c . For general D, it corresponds to BIE with cosmological term

7
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λ=

[
ϵΛ+D− 2
D− 2

] D−2
2

.

We thus have an interesting chain of equivalences between ‘metric’, ‘affine’ and ‘metric/affine’
models. See the figure 1 for the interrelations.

5. The 2D string limits

Clearly the results in the previous sections do not hold whenD= 2.WhenD= 2, the discussion
of the model (4.1) is as follows: Taking determinants in equation (4.4) leads to

λ2 = 1 ⇒ λ=±1 , (5.1)

so that equation (4.7) gets replaced by

±gachcb =±(δab + ϵgacRcb) (5.2)

leading to √
|h| −λ

√
|g|= ϵλ

2

√
|g|gabRab(Γ) . (5.3)

Alternatively we can see this directly in the action (4.1) using that in D= 2

Rab− 1
2gabR= 0 (5.4)

for a symmetric Ricci tensor and connection. Then,

SBIE =
1
ϵ

ˆ
d2x
(√

|det(gab+ ϵRab(Γ)| −λ
√
|g|
)
=

1
ϵ

ˆ
d2x
√

|g|
(
1+ 1

2ϵR−λ
)
, (5.5)

which is the ES action (2.1) with Λ = 2
ϵ (λ− 1).

However the action (2.1) is again equivalent to the right hand side of (5.3) since tracing the
field equation (2.6) now results in

gabRab−
(
gcdRcd−Λ

)
= 0 ⇒ Λ = 0 . (5.6)

Plugging this back into the action (2.1) (forD= 2) again returns the mixed variable Lagrangian
density (5.3)9. Thus, unlike the caseD ̸= 2, both models depend on both metric and connection
as independent variables. Indeed, the actions (2.1) and (4.1) in two dimensions reproduces the
conformally invariant first order action for the bosonic string, introduced in [13]. At first sight
this action may look strange, since we are taught in string theory to ignore the 2D curvature
term because it is a total derivative. This is indeed true for the curvature for the spin connection,
or equivalently when the connection is Levi–Civita. It is not true, however, for the curvature
of an arbitrary affine connection.

Briefly, (5.3) is invariant, up to a boundary contribution10, under Weyl rescaling of the
metric and transformations of the affine connection that read

Γabc → Γabc+ 2V(bδc)
a− gcbV

a . (5.7)

9 With λϵ= 2.
10 The transformation (5.7) of Γ has the form of a conformal transformation and the usual formulae for the variation
of the Ricci tensor may be used to evaluate it and find δ

(√
|g|gabRab

)
=−2∇a(

√
|g|Va) .

8
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The Γ field equations lead to

∇a

(√
|g|gbc

)
= 0 (5.8)

as usual, but unlike when D ̸= 2, the solution is not the Levi-Civita connection Γ(0), but

Γabc = Γ(0)a
bc+ 2U(bδc)

a− gcbU
a , (5.9)

withUa the most general parameter of the transformation (5.7). It can then be shown that there
is a gauge choice where the model becomes the usual Nambu–Goto string.

6. Boundary actions

In this section we consider what boundary terms need to be added to the actions to cancel the
respective contributions (2.4), (3.4) and (4.3) and make the variational problem well defined
in the presence of a non-null boundary.

6.1. Variational principle

We are concerned with both the variation of the metric δg and the independent connection
δΓ. When the full set of field equations hold, Γ gets expressed in terms of derivatives of the
metric. In this sense the system is reminiscent of a Hamiltonian systemH(q,p)with the metric
corresponding to the coordinates q and Γ to the momenta p. The field equation that gives
Γ = Γ(g,∂g) then roughly corresponds to ∂H/∂p= q̇ which may be solved for p= p(q, q̇).

As in the variational principle forH, where the derivation of the canonical equations requires
δq= 0 on the boundary of the integration volume while no conditions are required for δp, we
shall require δg= 0 on the boundary but leave δΓ free. This choice can also be motivated
by the fact that on-shell the connection becomes the Levi-Civita connection for the metric
and its variation does not vanish on the boundary as well as by the wish to find a dual action
reproducing the boundary terms for both the dual models.

Apart from the extra variation of Γ, our derivation follows that of the GHY boundary term
[17, 18] described in [19].

The boundary is defined by

xa = xa(yi) , a= 1, . . . ,D , i = 1, . . . ,D− 1 , (6.1)

which leads to the tangential vectors to the boundary

eai =
(∂xa
∂yi

)
∂M

(6.2)

and a normal na

eai na = 0 . (6.3)

The induced metric is

γij = gabe
a
i e
b
j . (6.4)

It is related to the full metric as

gab = γab− nanb , gab = γab+ nanb . (6.5)

9
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Gauss’ divergence theorem readsˆ
M

dDx∂a

(√
|g|Va

)
=

ˆ
∂M

dD−1y
√
γ naV

a . (6.6)

In the variational principle we shall keep the normal to the boundary ∂M, as well as its partial
derivatives, constant

δna = 0 , δna = 0 , δna,b= 0 , δna,b= 0 . (6.7)

See section 4 of [19] for details. We also require that the metric is held constant when confined
to the boundary

δgab|∂M = 0 , δgab|∂M = 0 . (6.8)

Thismeans that the inducedmetric γij is fixed during the variation. It also implies that, although
δ∂cgab does not vanish on ∂M, the tangential derivatives must also vanish:

δgab,ce
c
i = 0 . (6.9)

It follows that

γijeai e
b
j δgcb,a = 0 . (6.10)

6.1.1. Gibbons–Hawking–York The GHY boundary action for GR is11

1
2

ˆ
∂M

dD−1y
√
γK , (6.11)

where

K= gabKab = gab∇anb (6.12)

is the trace of the extrinsic curvature (second fundamental form) Kab. There are various defin-
itions of Kab. One involving the Lie derivative reads

Kab = 1
2Lnγab =

1
2n

c∇cγab+ γc(a∇b)n
c . (6.13)

This has a trace which is only equivalent to that used in (6.12) when the connection is the
Levi–Civita one.

6.1.2. Eddington–Schrödinger For a general Γ the boundary term will have to be modified.
To this end we note that

1
2

ˆ
∂M

dD−1y
√
γ(gab∇anb+∇an

a) =: 1
2

ˆ
∂M

dD−1y
√
γ K̂ (6.14)

reduces to the GHY boundary action when the connection is metric. Further varying the con-
nection

1
2δ

ˆ
∂M

dD−1y
√
γ K̂= 1

2

ˆ
∂M

dD−1y
√
γ δK̂ , (6.15)

we find

δK̂= δ
(
gabKab+∇an

b
)
=−2δΓ[ca]

anc (6.16)

11 To make the action finite it is customary to also include K0, the extrinsic curvature of the boundary embedded in
flat space. In what follows we omit such terms.

10
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so that (6.14) precisely cancels the boundary contribution (2.4) that arises in the Γ variation of
the ES bulk action (2.1).

6.1.3. f(R) Similarly, we can cancel the boundary contribution (3.4) that arises in the Γ vari-
ation of the f (R) bulk action (3.1) by varying the following boundary action

1
2

ˆ
∂M

dD−1y
√
γf ′(R) K̂ , (6.17)

provided that we also set δR= 0 on the boundary. When the connection is Levi–Civita, this
reduces to the boundary term in [20]. The vanishing of the variation of R is required also there
and in [21]. We refer the reader to these references for a discussion. In both references the
connection is the Levi-Civita connection, so the implications of δR= 0 merits to be studied in
more detail.

In the case of duality, i.e. when we can eliminate the connection as an independent variable,
the connection is the Levi-Civita connection and the counterterm becomes that of the purely
metric theory as mentioned above. Similarly, on the dual side, when we eliminate the metric
using (3.5)–(3.8), the variation of the boundary action (6.17) becomes

1
2cD

D/2
ˆ

∇[c

(√
|detRab|RdeδΓcd]e

)
, (6.18)

with Rde the inverse of the affine Ricci tensor, exactly cancelling the variation of the Eddington
action (3.9). Hence for the dual theories, the counterterm action (6.17) produces the correct
counterterms, purely metric and purely affine, respectively, for the two formulations.

6.1.4. Born-Infeld-Einstein gravity Formally, we can cancel the boundary contribution (4.3)
that arises in the Γ variation of the BIE bulk action (4.1) by varying the following boundary
action

1
2

ˆ
∂M

dD−1y
√
γh K̂h , (6.19)

i.e. the same boundary action as (6.14) but with the induced metric γh and K̂h now defined
with respect to the metric (4.2) so that

γhij = habe
a
i e
b
j = (gab+ ϵRab)e

a
i e
b
j , K̂h = (hab∇anb+∇an

a) , na = habnb . (6.20)

The conditions (6.8) become

δhab|∂M = δ(gab+ ϵRab)|∂M = 0 , δhab|∂M = 0 . (6.21)

Since (6.8) also holds, this means that we must set

δRab|∂M = 0 , (6.22)

in analogy to the f (R) case in (6.17) described above. This is consistent with the equivalence
of BIE theory with f (R) for the special case (3.8).

6.1.5. The bosonic string Finally we discuss the boundary terms for the D= 2 first order
bosonic string. This differs from (6.14) by a term proportional to Ua

1
2

ˆ
∂M

dy
√
γ
(
K̂+ 2Uana

)
. (6.23)
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Here K̂ takes care of the boundary contributions from the bulk variation of R as before, while
the action is still invariant under conformal symmetry of Γ

Γabc → Γabc+ 2V(bδc)
a− gbcV

a . (6.24)

This is because

K→ K− gab
(
2V(aδb)

c− gabV
c
)
nc = K (6.25)

while

Ua → Ua+ 2V(aδb)
b− gabV

b = Ua+ 2Va (6.26)

and from the R term in the bulk
1
2

√
|g|R→ 1

2

√
|g|R− 1

2∂a
(
4
√
|g|Va

)
(6.27)

which gives a boundary contribution

−√
γVana (6.28)

that will cancel the term from (6.26). So the U boundary term ensures the invariance
under (6.24) and by the same token takes care of a general variation ofU tomake the variational
principle well defined.

7. Conclusions

We have studied first order models for f (R) theories and BIE theory with metric and connection
as independent variables, and compared them to the famous ES duality. We have shown that,
when the metric is eliminated, certainWeyl invariant f (R) models result in dual models that are
equivalent to those of ES. Similarly, for BIE we showed that eliminating the metric again leads
to the ES result. In the form where the connection is the only variable, BIE is thus equivalent
to Weyl invariant f (R) in its dual form.

These constructions hold when the space-time dimension D> 2 but break down for D= 2.
The models are then still equivalent but now equal to the first order bosonic string.

We have discussed boundary terms for all these theories in general (no specific form of
f (R)). After describing our variational principle, we showed that the necessary boundary terms
carry over from the connection form to the metric form under duality.

Open problems are to include torsion in the discussion as done for e.g. metric modified
gravity in [5], to understand if and how the Weyl invariance of our f (R) model can be related
to symmetries of the BIE action.
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