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Abstract: In this paper, we present a theoretical formulation of magnetization dynamics in disordered
binary alloys, based on the Kubo linear response theory, interfaced with a seamless combination
of three approaches: density functional-based tight-binding linear muffin-tin orbitals, generalized
recursion and augmented space formalism. We applied this method to study the magnetization
dynamics in chemically disordered FexCo1−x (x = 0.2, 0.5, 0.8) alloys. We found that the magnon
energies decreased with an increase in Co concentration. Significant magnon softening was observed
in Fe20Co80 at the Brillouin zone boundary. Magnon–electron scattering increased with increasing Co
content, which in turn modified the hybridization between the Fe and Co atoms. This reduced the
exchange energy between the atoms and softened down the magnon energy. The lowest magnon
lifetime was found in Fe50Co50, where disorder was at a maximum. This clearly indicated that
the damping of magnon energies in FexCo1−x was governed by hybridization between Fe and Co,
whereas the magnon lifetime was controlled by disorder configuration. Our atomistic spin dynamics
simulations show reasonable agreement with our theoretical approach in magnon dispersion for
different alloy compositions.

Keywords: chemical disorder; magnetization dynamics; alloy

1. Introduction

The dynamics and damping of magnetic excitations play a pivotal role in many mod-
ern day spintronic devices through the exploration of the nature of magnon dispersion and
spin transport in pristine metals, semiconductors and their alloys. Band theory of ferro-
magnetism based on itinerant electrons has successfully predicted the magnetic properties
of metallic systems, including transition metals, Heusler alloys and rare-earth magnets.
However, these theoretical investigations have been a controversial subject for modern
science due to the dual character of the d-electrons. Their ground state is described by the
band-like itinerant electrons at T = 0. However, many open questions arise regarding the
more general finite temperature ab initio approach, which includes spin excitation [1,2].
The spin wave theory of magnetism includes the fluctuations that switch from band theory
of ferromagnetism to the spin dynamics approach [3–7].

A first principles study of the spin correlation function and magnon lifetimes of disor-
dered magnetic systems has become important for both fundamental and technological
interests. Recent advancements in experimental techniques have enabled us to probe
magnon dynamics [8–15]. In a recent experiment using the spin-polarized electron energy
loss spectroscopy (SPEELS) technique, it was shown that magnon energies were reduced
(referred to as magnon softening) for a single ferromagnetic monolayer of Fe on W, com-
pared with pure bulk Fe [16]. Theoretical predictions based on an itinerant electron model
are in contradiction with the above experimental finding. Theoretical limitations have
hindered a correct understanding of the fundamental nature of spin-wave excitations. The
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structural relaxation between the Fe and W layers influences the hybridization between Fe
and W states, which modifies the exchange interactions [17]. Disordered local moments
(DLM) configuration reduces the exchange interaction strengths. This leads to significant
magnon softening compared with bulk Fe. The magnetic ordering from Dzyaloshinskii–
Moriya interactions (DMI), as a consequence of spin–orbit coupling, also leads to magnon
softening. For the bulk system, these effects can be ignored.

Continuum and atomistic models have been developed to study spin dynamics in real
materials. In micromagnetic simulations, a continuum model of magnetization is consid-
ered at a length scale much bigger than the interatomic distance [18]. Regarding atomistic
models based on first principles methods, one may directly solve the time-dependent den-
sity functional equation, which requires huge computational cost and time to make realistic
predictions for materials. The standard approach used to simulate the time evolution of the
spin texture is to propagate the Landau–Lifshitz–Gilbert (LLG) equation [19,20]. However,
the Hamiltonian required for solving the LLG equation contains several terms involving
magnetic exchange and anisotropy. It should be mentioned that for a disordered magnetic
alloy, the exchange interaction between atoms may strongly depend on the chemical com-
position [21–24]. Therefore, the magnon spectrum and lifetimes in a material depend on
the configuration of the magnetic state via the local atomic environment [25]. Another
important parameter in the LLG equation is the Gilbert damping parameter, which can be
calculated by first principles electronic structure calculations. Two successful models in this
regard are the breathing Fermi surface model (BFS) [26] and the torque correlation model
(TCM) [27]. Unfortunately, neither of these models are parameter-free, nor do they really
shed light on the microscopic origins of damping. Finally, it was found that damping arose
from microscopic scattering processes [28–30]. Ebert et al. calculated the Gilbert damping
parameter for the bcc FexCo1−x alloy from a CPA approach via linear response theory [30].
However, the microscopic origins of damping is still being uncovered.

The dynamical relaxation of various complex systems have also been a focus of
considerable interest. In particular, spin relaxation in transition metal-based alloys have
received considerable attention over the years. The relaxation time for ferromagnetic
transition metals such as Fe, Co and Ni is strongly spin-dependent. The spin-averaged
relaxation time in these metals is much shorter than in noble metals. The analysis of
the peak-positions and broadening of magnon excitation provides us information on the
magnon energy and lifetime, respectively. Magnon energy decays exponentially, such as
exp(-γt/2h̄), where γ represents the intrinsic line width of the Lorentzian peak in magnon
spectral density and h̄ is the reduced Plank constant. The magnon lifetime τ = 2h̄/γ is
usually defined as the time in which the amplitude drops to e−1 of its initial value. This is
similar to the concept of a quantum mechanical broadening parameter and lifetime of an
energy eigenstate [31–35].

The physical picture underlying the spin-dynamics method, which we present here, is
not completely new, but their implementations in the presence of chemical and magnetic
interactions within first principles accuracy are of fundamental importance. Augmented
space formalism (ASF) has been successfully used to describe the effects of different
disorders [36–46]. Here, we applied ASF for the simulation of spin dynamics, which
enabled the characterization of magnetic excitations in the presence of chemical disorder
within Kubo linear response formalism, in combination with a density functional-based
first principles approach. The Hamiltonian parameters obtained from first principles theory
provides a reliable tool for the analysis and even prediction of complex collective modes of
magnetic materials. Our aim is to probe the magnon dynamics in chemically disordered
FexCo1−x alloys.

This article is organized as follows: In Section 2, we describe the Hamiltonian for spin
dynamics for binary alloys in the presence of chemical disorder. We use the augmented
space recursion (ASR) approach to tackle the disordered Hamiltonian, techniques for the
calculation of the adiabatic magnon lifetime and an atomistic scheme for the numerical
integration of the equations of motion. We present computational details to describe the
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dynamical spin response functions. Section 3 discusses the applicability of our method,
taking bcc Fe as a testing ground, and results and discussions on FexCo1−x. Finally, our
conclusions and research outlook are in Section 4 .

2. Methodology
2.1. Spin Transport at Low Temperatures

We analysed the spin transport in ferromagnetic alloys. We began with a ferromagnetic
sea as our unperturbed state. A spin flip is an excitation or fluctuation in that state. We used
the XXZ Heisenberg Hamiltonian with a random distribution of the exchange parameters
in terms of creation and annihilation operators:

H = −∑
~R

∑
~R′

J(~R− ~R′)
(

a†
~R

a~R′ + a†
~R′

a~R + ∆ ñ~R ñ~R′

)
(1)

where ∆ is the anisotropic exchange parameter describing the magnon–magnon interaction,
J(~R− ~R′) is the strength of the exchange interaction, a†

~R
and a~R are the magnon creation

and annihilation operators, respectively, and ñR = a†
~R

a~R. The excitations in this model
are described by spin waves or magnons that can be envisaged as spin patterns against
a uniform spin background, moving on the underlying lattice. Here, we consider ∆ ∼ 0,
neglecting the magnon–magnon interaction within linear approximations.

The linear response to an external homogeneous disturbance was described in terms
of two-particle Green’s functions within the Kubo linear response theory [47]. If a spin
system is disturbed by an external field that causes a perturbation in the XXZ Heisenberg
Hamiltonian, then the spin response function Γ(~R− ~R′, t− t′) is related to the disturbance
by a spin–spin correlation function C(~R− ~R′, t− t′) [47–49], which is given by:

Γ(~R− ~R′, t− t′) =
i
h̄

Θ(t− t′)〈Φ0|[σ(~R, t), σ(~R′, t′]|Φ0〉

where C(~R− ~R′, t− t′) = 〈Φ0|[σ(~R, t), σ(~R′, t′]|Φ0〉, σ(~R, t) is the spin operator, Θ is the
Heaviside step function and |Φ0 > is the ground state. The dynamical structure factor
S(~q, ω) is the Laplace transform of the spin correlation function C(~R− ~R′, t− t′).

2.2. Recursive Approach to Dynamical Spin Response Functions

Our starting point was a dynamical variable described by the Hermitian operator
D(~q, t), following the time evolution such that |Φ(t)〉 = D(t)|Φ0〉. Our guiding equation
was the Kohn–Sham equation:

i
∂|Φ(t)〉

∂t
= H|Φ(t)〉

We followed the recursion procedure described by Gagliano and Balserio [50] and,
Viswanathan and Muller [48,49,51,52]. We first chose a denumerable basis of representation
{|φn >}, and expanded the ”wave function” on this basis:

|Φ(t)〉 =
∞

∑
n=1

Dn(~q, t)|φn〉 (2)

We began with |φ1〉 = a†(~q)|Φ0〉, where a†(~q) = 1√
N ∑~R e−i~q·~Ra†(~R). In the next step,

|φ2〉 = H|φ1〉 − α1|φ1〉 and orthogonality leads to < φ1|φ2〉 = 0 ⇒ α1 =
< φ1|H|φ1 >
< φ1|φ1 >

.

Finally, for n > 2
|φn+1 >= H|φn > −αn|φn > −β2

n|n− 1 >
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orthogonality < φn|φn+1 >= 0 ⇒ αn =
< φn|H|φn >
< φn|φn >

β2
n =

< φn+1|φn+1 >
< φn|φn >

. The

{αn, βn} are the recursion parameters.
Substituting this into Equation (2), we get:

i
∂Dn(~q, t)

∂t
= Dn−1(~q, t)− αnDn(~q, t)− β2

n+1Dn+1(~q, t)

Taking the Laplace transformation:

(z− αn)Dn(~q, z)− iδn0 = Dn−1(~q, z) + β2
n+1Dn+1(~q, z)

where
D0(~q, z) =

i

z− α1 −
β2

1

z− α2 −
β2

2
z− α3 . . .

The dynamical structure factor is then

S(~q, ω) = lim
δ→0

Re[D0(~q, ω + iδ)]

where z = ω + iδ.

2.3. Dynamical Spin Response Functions in the Presence of Disorder: The Augmented
Space Approach

Then, we introduced disorder in the exchange parameters J(~R− ~R′) by a set of random
variables {n~R}.

The randomness can be introduced in the exchange parameter through a local, binary
random variable n~R (~R can be occupied by an A or B type of atom for binary alloys), taking
the values 0 and 1 with probabilities x and y = 1− x, respectively:

J(~R) = JAA(~R)n~Rn~R+~x + JBB(~R)(1− n~R)(1− n~R+~x) +

JAB(~R)
(

n~R(1− n~R+~x) + (1− n~R)n~R+~x

)
where ~R′ = ~R +~x.

The augmented space method [53–57] replaces these random variables {n~R} by opera-
tors {N~R}. The eigenvalues are the random numbers taken by the variables {n~R} and the
spectral functions are the probability densities of the operator {N~R} [58]. The augmented
space is an outer product of real space Φ~R (lattice space) and configuration space {∅}
(random space). Then, the configuration (disorder) averaged spin response function was
given by:

� Γ(~q, z)� = 〈Φ~q ⊗ {∅}|(zĨ − H̃)−1|Φ~q ⊗ {∅}〉

where H̃ is the disordered Hamiltonian.
Now, the configuration-averaged dynamical operator in the disordered system can be

expressed as a continued fraction of recursion coefficients {α̃n, β̃n}, as:

� D0(~q, z)�=
i

z− α̃1 −
β̃2

1

z− α̃2 −
β̃2

2
z− α̃3 . . .
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Then, the configuration-averaged dynamical structure factor was obtained by:

� S(~q, ω)�= lim
δ→0

Re� D0(~q, ω + iδ)�

The self-energy Σ(~q, z), via the recursion method suggested by Viswanath and
Müller [48,49,51,52], was given by:

Σ(~q, z) =
β̃2

2

z− α̃2 −
β̃2

3

z− α̃3 −
β̃2

4
. . . z− α̃n − β̃2

nT(~q, z)

The terminator T(~q, z), which reflects all the singularities in the response function, was
constructed from the calculated {α̃n, β̃n} for n = 1, . . . N [52,59–63]. Therefore, we used
the square-root terminator [60,61] with the calculated recursion coefficients to taken into
account the convergence of the continued fraction. Im[Σ(~q, ω)] counts the disorder-induced
broadening, which provides the disorder-induced lifetime τ of the magnon state by
Im[Σ(~q, ω)] = 1/τ(~q)

We studied the configuration-averaged dynamical response function of chemically disor-
dered binary alloys, using ASR within Kubo linear response theory [53–57]. The ASR tech-
nique went beyond the usual single-site mean-field coherent potential approximation (CPA)-
like approach to study the environmental effects for chemically disordered alloys. In particular,
the methodology we implemented here was an admixture of the tight binding linear muffin-
tin orbitals (TB-LMTO) technique, ASF and generalized recursion (GR) [48,49,51,64]. This
provided an accurate computational framework for analysing dynamical response properties.

We calculated the configuration-averaged dynamical structure factors� S(~q, ω)� of
FexCo1−x for three different Co contents (x = 0.2, 0.5, 0.8). This relates the response of the
systems in the presence of an external perturbation (in our case, chemical disorder) from the
self-energy. We also calculated the magnon lifetime τ(~q) of FexCo1−x. The Brillouin zone
boundary in the [001] direction of FeCo was nearly 2 Angstrom−1. We neglected the effects
of magnon–magnon and magnon–stoner interactions. We focused on the magnon–electron
interactions to study the effects of chemical disorder on FexCo1−x.

2.4. Atomistic Spin Dynamics

To compare our results, we also calculated the magnon dispersion spectra of FexCo1−x
(x = 0.2, 0.5, 0.8) from the Uppsala Atomistic Spin Dynamics (UppASD) code [6,7]. The
necessary exchange parameters for UppASD were calculated in the the framework of
ab-initio density functional theory (DFT). These were performed by means of the Korringa–
Kohn–Rostocker Green’s function formalism, as implemented in the SPRKKR package [65].
The shape of the potential was treated by the atomic sphere approximation (ASA), whereas
relativistic effects were considered by taking the fully relativistic Dirac equation. The effect
of the exchange correlation part of the energy was treated by considering the generalized
gradient approximation (GGA), as devised by Perdew, Burke and Ernzerhof [66]. Substitu-
tional disorder between sub-lattices could also be studied by making the use of the CPA.
Interatomic exchange interactions were calculated via the LKAG formalism [67].

The UppASD code [68] is based on the framework of LLG formalism. The temporal
evolution of an atomic moment in LLG formalism is given by:

dmi(t)
dt

= − γ

1 + α2 mi(t)× [Hi
eff +

α

ms
(mi(t)×Hi

eff)]

where mi(t) is the atomic moment on the i’th site at time t. γ is the gyromagnetic ratio and
α is the Gilbert damping factor, which we have assumed to be 3× 10−4. ms is the saturation
moment for the i’th atom. The temperature effect in ASD was measured using a stochastic
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magnetic field, included in the term of effective fieldHi
eff. The effective fieldHi

eff on the
i’th atom is calculated from the effective magnetic Hamiltonian given by

HMag = Hex

through

Hi
eff = −

∂HMag

∂mi(t)
.

Hex describes the magnetic exchange interactions between the spins. HMag is given by

HMag = ∑
i,j

JijSi · Sj

In order to calculate magnon dispersion relation, one should calculate spin–spin correlation
function. The spin–spin correlation in an effective field is obtained by solving the LLG
equation and can be written as:

C(R− R′, t) = 〈mR(t)mR′(0)〉 − 〈mR(t)〉〈mR′(0)〉

where the ensemble average is represented in angular brackets and k is the Cartesian
component. The Fourier transform of the spin–spin correlation function, known as the
dynamical structure factor, is written as:

S(~q, ω) =
1√

2πN
∑

R,R′

∫ ∞

−∞
eiωtC(R− R′, t)dt

S(~q, ω) is measured in neutron-scattering experiments.

3. Results and Discussion

Before studying the magnetization dynamics in FexCo1−x, we investigated the charge
distribution of a body-centered, disordered Fe50Co50 alloy. We compared the disordered
alloy with a corresponding ordered, B2-structured alloy. In Table 1, we show the chemical
effects of disorder and the redistribution of charge upon alloying. In these alloys, there
was a small decrease of sp-like charges and a corresponding small increase in the d-like
channel in both Fe and Co. These effects were small, with the introduction of disorder. The
magnetocrystalline anisotropy is the energy difference between the magnetic ground state,
when the magnetic quantization (spin) axis is along the easy axis (which is along the c-axis
for FeCo) and along the easy plane (which is the ab-plane for FeCo), i.e., Ku = Ec - E||. Bulk
FeCo has c

a ∼ 1 without any tetragonal distortion. Therefore, we ignored the effects of
single-ion anisotropy in FeCo alloys.

Table 1. Charge redistribution upon alloying: distribution for the ordered B2 and disordered body-
centered cubic (BCC) structures for the 50-50 FeCo alloy. The charge is given in units of electronic
charge e.

Alloy Fe0.5Co0.5
Component Fe Co

Atomic radius R0 = 2.64 Å R0 = 2.60 Å

Charge sp d Tot sp d Tot

Atomic state 2.0 6.0 8.0 2.0 7.0 9.0

B2 ordered 1.44 6.52 7.96 1.46 7.58 9.04

BCC disordered 1.43 6.55 7.99 1.43 7.63 9.06
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We were interested in calculating the ensemble-averaged dynamical structure factor
� S(~q, ω) � to understand the magnetization dynamics in disordered FexCo1−x alloys.
Figure 1a–c shows the momentum-resolved dynamical structure function� S(~q, ω) �,
convoluted with a Lorenzian function with three disorder concentrations (x = 0.2, 0.5, 0.8)
along the symmetric Γ− H direction. Irrespective of the disorder concentration, for low~q
values, the spectral intensity, estimated from the peak value of the Lorenztian, was high.
The spectral intensity dropped to minimum values for intermediate~q, after which it again
rose with increasing ~q. At the same time, the peak width monotonically increased with
increasing energy, as well as wave vectors (~q). The broadening of the peak in� S(~q, ω)�
for larger~q values came from a magnon–electron scattering mechanism due to chemical
impurity. The itinerant collective excitations of spin waves (magnon) lost their energy
as a consequence of chemical disorder. A large damping of magnons in the tetragonally
distorted bulk FeCo compound was also previously predicted [69,70].

(a) (b) (c)

Figure 1. The dynamical structure factors� S(~q, ω) � for a selection of wave vectors ~q, varying
from 0.1 to 0.9 along the symmetric Γ− H direction in the Brillouin zone of bcc FexCo1−x alloys
with (a) x = 0.2, (b) x = 0.5 and (c) x = 0.8, respectively. In order to identify the peak position, the
dynamical structure function� S(~q, ω)� was convoluted with a Lorentzian function, normalized
to unity.

Here, we elaborate on the technique of peak finding from� S(~q, ω) �. After con-
figuration averaging, in order to identify the position of the intensity peaks of the dy-
namical structure factor� S(~q, ω)�, we convoluted the respective intensity profiles of
� S(~q, ω) � for each ~q vector with a Lorentzian function, normalized to unity. In order
to justify this technique, we applied it to calculate magnon dispersion of the bulk bcc Fe
(see Figure 2a). This was to show that the implemented technique was able to qualitatively
predict our experimental findings.

Then, we employed a different technique for the chemically disordered FexCo1−x
alloys. We calculated the magnon dispersion of disordered FexCo1−x alloys along the
Γ− H direction, and studied the effects of chemical disorder on it. We found quadratic
dependence upon~q for the spin wave spectrum of magnon, as shown in Figure 2b. Bulk
Fe had a steeper magnon dispersion compared with the disordered structure. This was
expected due to the absence of magnon–electron scattering in the disorder-free material. The
interesting point to note here is that the steepness of magnon energy gradually decreased
with increasing Co concentration. Fe80Co20 exhibited higher magnon velocity for weaker
scattering effects, and vice versa.
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Bulk Fe
(a) (b) (c)

Figure 2. (a) Magnon dispersion spectrum for bulk bcc Fe along the Γ−Y direction from ASR. For
comparison, the experimental spin-wave spectrum of bulk bcc Fe by Lynn (Ref. [71]) and data from
another experimental study corresponding to a spin-wave stiffness constant of D = 280 Å2 by Mook
et al. (Ref. [72]) are displayed. The blue triangles represent theoretical data by Halilov et al. (Ref. [73]).
All comparisons were consistent with with the data from ASR [72]. (b) Magnon dispersion spectrum
for bulk bcc FexCo1−x alloys along the high symmetric Γ− H direction in the Brillouin zone for three
different Co concentrations from ASR. This shows magnon softening in the Fe20Co80 alloy, compared
with the others. (c) Magnon dispersion spectra for disordered Fe20Co80 from ASR and ASD.

The magnon softening is clearly visible in Fe20Co80 at the zone boundary. This is
due to the fact that magnon–electron scattering modifies the exchange energy between
Fe and Co moments. The chemical disorder between the Fe and Co atoms influenced the
hybridization between Fe and Co states, which reduced the exchange interactions. This is
shown in Table 2. The strength of exchange interaction for FexCo1−x gradually decreased
with increasing Co content. This clearly indicates the softening of FexCo1−x with increasing
Co content. The chemical disorder between Fe and Co also increased damping, which
enhanced magnon softening. Ebert et al. calculated the Gilbert damping parameter from
first principles theory for bcc FexCo1−x alloys [30]. Damping was at a minimum for 20%
Co content and gradually increased with increasing Co content. This led to strong magnon
softening in the Fe20Co80 alloy. Our results are also consistent with an experiment by
Oogane et al. on bcc FexCo1−x alloys [74].

Table 2. The calculated nearest-neighbour exchange parameters in the framework of ab-initio density
functional theory using the Korringa–Kohn–Rostocker Green’s function formalism, implemented in
the SPRKKR package [65].

Alloy Fe-Fe Fe-Co Co-Co
(meV) (meV) (meV)

Fe80Co20 2.065 2.302 1.740
Fe50Co50 2.083 2.117 1.418
Fe20Co80 1.919 1.880 1.208

For completeness, we also computed the magnon dispersion spectrum along the
Γ− H direction in the Brillouin zone. We compared the magnon spectra of disordered
Fe20Co80 between ASR and ASD, taking the first nearest-neighbour exchange interaction
into consideration (as shown in Figure 2c). The ASD simulations were performed with a
system size of 120× 120× 120 at a temperature of 0.1 K. ASD followed similar characteristic
behavior with increasing Co concentrations. It was observed that the softening became
stronger near the zone boundary (higher~q values). The steepness of dispersion reduced as
magnon–electron scattering increased. It was also observed in the profile of� S(~q, ω)�
in Figure 1a. Both the numerical techniques exhibited the same effect.

To justify our results further, we performed ASD simulations for the nearest neighbour
(Figure 3a–c) and 12 neighbor exchange interactions (Figure 3d–f). The qualitative features
in the magnon spectra for the first and 12 neighbor shells were similar. The softening
of the magnon spectra for the Fe20Co80 alloy was similar to that obtained from the ASR
calculations as shown in Figure 2c. Additionally, we observed some branching in dispersion
along H − N for higher Co concentrations. A stronger tendency for branching was visible
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at the N point of the Brillouin zone. However, we focused only on the magnon softening
in Γ− H direction. This strong magnon softening was in contradiction with a previous
study based on an itinerant electron model at T = 0 K [75,76]. Our findings present the
possibility that a disordered FexCo1−x may not be a simple itinerant ferromagnet. The
effects of spin correlations are important for this system. This behaviour is commonly
interpreted as a transition from conductivity-like behaviour. This reflects the dominance of
intra- and interband transitions. This is related to the broadening of electron energy bands
caused by an increase in scattering events with concentrations of Co. An increase in the
Co content in FexCo1−x led to more impurity-scattering. This was responsible for band
broadening, which increased the damping of magnon. This effect completely suppressed
the conductivity-like behaviour in the low-temperature regime, and increased scattering
due to chemical disorder.

The broadening of the magnon excitation peak (� S(~q, ω) �) provides a way to
calculate the magnon lifetime τ. The Fourier transform of the Lorentzian in the energy
(or frequency) domain is an exponential decay of magnon lifetime, such as exp(−tΓ/2h̄),
where Γ represents the intrinsic linewidth of the Lorentzian peak in energy and h̄ is the
reduced Planck constant. The relaxing magnetic modes or patterns are labelled by~q, such
that the average ‘size’ of the mode is O(q−1). We obtained the magnon lifetimes from the
Fourier transform of the configuration-averaged correlation function. The large broadening
of� S(~q, ω)� yielded a small relaxation time, which clearly indicated strong scattering.
Figure 3g shows the lifetime τ for FexCo1−x (x = 0.8, 0.5, 0.2) as a function of~q (Angstrom−1).
We found the minimum magnon lifetime in Fe50Co50. This confirmed that the disorder was
at a maximum in 50-50 configurations where� S(~q, ω)� became maximally broadened
for higher ~q values (see Figure 1b. Therefore, the magnon lifetime was not governed by
hybridization between Fe and Co, but rather controlled by disorder configuration.

(a) (b) (c)

(f)(e)(d)

(g)

Figure 3. The figures in the top row (a–c) show the magnon dispersion of FexCo1−x (where x = 0.2,
0.5 and 0.8) alloys with nearest-neighbour exchange parameters and the bottom row figures show the
plots (d–f) with the 12 neighbour shell exchange parameters. (g) Magnon lifetimes for disordered
FexCo1−x alloys for x = 0.2, 0.5 and 0.8 from ASR.

In the current study, we propose using the ASR technique to study magnatization
dynamics in chemically disordered alloys (which could also be generalised to surfaces and
interfaces) and compare calculated magnon energy spectra with ASD-simulated magnon
spectra. There are two different approaches within first principles theory for studying
magnatization dynamics in materials: ASR and ASD. These approaches are based on two
different working principles. ASD is based on the LLG theory, whereas the ASR based on
the Kubo linear response theory. ASR captures the effect of hybridization between Fe and
Co on the magnon softening of Fe20Co80 alloys (see Figure 2c), as well as magnon lifetimes
in chemically disordered alloys originating from magnon band broadening (see Figure 3g).

4. Conclusions

In conclusion, we have investigated magnetization dynamics in the presence of chemi-
cal disorder using a first principles TB-LMTO-ASR method, interfaced with Kubo linear
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response theory. This serves as a general and powerful computational tool for studying
the effect of chemical disorder on magnetic excitations in binary random alloys. We ap-
plied our technique to study the magnetization dynamics in disordered FexCo1−x alloys,
which are of great fundamental and technological interest [77–80]. We showed that the
magnon–electron scattering mechanism plays a crucial role in determining the exchange
interaction between Fe and Co. Magnon softening increases with Co concentration as the
exchange interaction decreases. Our findings were further supported by atomistic spin
dynamics simulations. Moreover, we calculated magnon lifetimes from the broadening
widths of dynamical structure factors. It was found that the maximally disordered alloy
showed the smallest lifetime. Therefore, magnon softening depends on the hybridization
between Fe and Co, whereas the magnon lifetime depends on the disorder configuration.
The proposed formalism could be used to study the magnetization dynamics in any binary
random alloy.
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