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Abstract: Pug dogs with thoracolumbar myelopathy (PDM) present with a specific clinical phenotype
that includes progressive pelvic limb ataxia and paresis, commonly accompanied by incontinence.
Vertebral column malformations and lesions, excessive scar tissue of the meninges, and central
nervous system inflammation have been described. PDM has a late onset and affects more male than
female dogs. The breed-specific presentation of the disorder suggests that genetic risk factors are
involved in the disease development. To perform a genome-wide search for PDM-associated loci,
we applied a Bayesian model adapted for mapping complex traits (BayesR) and a cross-population
extended haplotype homozygosity test (XP-EHH) in 51 affected and 38 control pugs. Nineteen associ-
ated loci (harboring 67 genes in total, including 34 potential candidate genes) and three candidate
regions under selection (with four genes within or next to the signal) were identified. The multiple
candidate genes identified have implicated functions in bone homeostasis, fibrotic scar tissue, in-
flammatory responses, or the formation, regulation, and differentiation of cartilage, suggesting the
potential relevance of these processes to the pathogenesis of PDM.

Keywords: pug; myelopathy; GWAS; dog genetics; BayesR; bayesian; selection; XP-EHH; bone
homeostasis; cartilage; inflammatory response; fibrotic scar tissue

1. Introduction

The pug has been bred to promote characteristics such as small stature, flat face, large
head, bulging eyes, wrinkled forehead, and soft, thin ears. The selection for specific traits
and a small population size has contributed to a strong predisposition to several disorders.
The 2020 Breed Health and Conservation Plan for Pugs included spinal problems in their
list of priority health issues [1], with a two-fold increase in the risk of spinal cord disorder in
pugs compared to other breeds [2]. The orthopedic foundation of America has reported that
pelvic limb abnormalities are the second most common health concern in the pug breed. In
addition, the insurance data from the biggest animal insurance company in Sweden, Agria
Pet Insurance, has shown a seven-fold increase in the mortality rate in pugs with ataxia
and paresis, which are the clinical consequences of a spinal cord problem. Pug dogs with
thoracolumbar myelopathy (PDM) commonly present with a chronic, progressive clinical
course of ataxia and paraparesis, often accompanied by incontinence [3–7]. Although
no exact prevalence of PDM has been established, gait abnormalities (including, but not
exclusively, PDM) are a common problem in pugs [4].

Genes 2023, 14, 385. https://doi.org/10.3390/genes14020385 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes14020385
https://doi.org/10.3390/genes14020385
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-9549-4909
https://orcid.org/0000-0001-5131-3144
https://orcid.org/0000-0003-3402-023X
https://orcid.org/0000-0001-8338-0253
https://doi.org/10.3390/genes14020385
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes14020385?type=check_update&version=1


Genes 2023, 14, 385 2 of 15

PDM has a late age of onset and usually exhibits neurological deficits at the age of
around seven [5,7,8]. In Sweden, the affected pugs are usually euthanized within a year
of the onset of pelvic limb ataxia [8]. The histopathologic characteristics of PDM include
meningeal fibrosis with associated spinal cord destruction, often accompanied by neighbor-
ing vertebral column pathology. In addition, central nervous system (CNS) inflammation
has been reported in a considerable number of pugs with PDM [8]. Differences in meningeal
and vertebral column pathologies have led to various proposed etiologies, however shared
pathological findings suggest they belong to a spectrum of the same disorder. Due to the
breed-specific appearance of PDM, there are likely genetic risk factors contributing to the
condition, although no genes associated with the disorder have hitherto been reported.

In this study, we analyzed 89 pugs (51 cases and 38 controls) with the aim of identifying
the genes associated with PDM. First, we applied a Bayesian model adapted to complex
trait mapping, BayesR, a well-suited method when defining multiple genetic risk factors
with smaller effects, which is common for complex traits. BayesR assesses the effect
size variances of all genetic variants simultaneously, resulting in a lower risk of false
negatives. Moreover, by treating the effect sizes as random effects, the corresponding
estimates are unbiased [9]. Second, we performed a cross-population extended haplotype
homozygosity analysis (XP-EHH), which aims to detect candidate regions under recent
selection by comparing the integrated extended haplotype homozygosity (EHH) in two
subpopulations [10,11]. This methodology was employed to explore the possibility that
the increased risk for PDM derives from pleiotropic or hitchhiking effects resulting from
artificial selection. The selection of the specific pug characteristics could have created large
genetic regions with high linkage disequilibrium (LD) and, if it is associated with PDM risk,
this could be detected as an extended haplotype homozygosity differing between cases and
controls. In total, we identified 19 associated loci with BayesR and three candidate regions
under selection. These loci and regions harbor candidate genes with implicated functions
in bone homeostasis, cartilage, fibrotic scar tissue, and inflammatory responses, and are
therefore potentially relevant to the pathogenesis of PDM.

2. Materials and Methods
2.1. Ethical Statement

The study was approved by the Local Ethical Committees in Uppsala and Stockholm,
Sweden. Signed informed consent was obtained from all of the dog owners.

2.2. Study Population

All of the dogs included in this study were privately owned and sampled in collabo-
ration with veterinary clinics in Sweden, between 2010–2020. In addition, samples were
included from phenotyped dogs that had donated blood to the biobank at the Swedish
University of Agricultural Sciences, Uppsala, Sweden.

The study was comprised of affected pugs with signs of a myelopathy localized to
the thoracolumbar spinal cord and control pugs without these signs. The affected pugs
presented with a history of more than one month of a bilateral pelvic limb gait abnormal-
ity, described by the owner as incoordination and weakness. In addition, the author, C.
Rohdin, performed a neurological examination of potential cases to confirm pelvic limb
ataxia and paraparesis, suggestive of a myelopathy localized to the thoracolumbar spinal
cord. Magnetic resonance imaging was performed, as previously described in Rohdin
et al. [8], to confirm the focal spinal cord pathology in 37 affected pugs. We have previously
shown that pugs presenting with a history of more than one month of bilateral pelvic limb
gait abnormality alongside a neurological examination confirming pelvic limb ataxia and
paraparesis, all had spinal cord pathology involving the meninges and spinal cord [8]. A
subset of the recruited dogs was also included in two previous studies investigating the
presence of vertebral malformations and pathology, respectively, of pugs with PDM [4,8].

The control pugs were at least eight years old with no history or signs of a neurological
disorder. Specifically, to be included as a control, no signs of incoordination, weakness or
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incontinence should be present; nor should they exhibit worn-down nails or skin on the
dorsum of the paws in the pelvic limbs.

Before quality control, the affected pugs consisted of 27 females (40.3%) with an
average age at onset of 81.5 months (SD 23.7, median 84, interquartile range 68–96.5), and
the control pugs consisted of 28 females (60.9%) with an average age at phenotyping of
132 months (SD 18.9, median 129, interquartile range 116–145).

Blood samples were collected in EDTA tubes and stored in −70 ◦C until analysis. One
subset of the sample set, which included 31 pugs (10 cases/21 controls), was genotyped
using Illumina 230k CanineHD BeadChip (Illumina, San Diego, CA, USA), and the other
subset, 86 pugs (60 cases/26 controls), was whole-genome sequenced at low coverage
using Gencove’s low-pass sequencing followed by imputation against a reference panel of
676 dogs (Pipeline Dog low pass v2; Gencove Inc, New York, NY, USA). The chromosomal
coordinates were based on the dog CanFam3.1 genome assembly [12].

2.3. Imputation

The Illumina genotyped pugs underwent genetic imputation using the 86 Gencove
low-pass sequenced pugs as the reference panel. To remove low confidence genotypes,
variants that were not present in the reference panel were excluded prior to imputation,
as were variants with minor allele frequency (MAF) < 0.05 and call rate < 95%. One case
dog from the Illumina dataset with a <95% call rate was excluded. The remaining 30 dogs
were phased using Shapeit v4.1.3 [13] and the imputation was performed using Impute2
v2.3.2 [14]. To validate the imputation, a selection of 5% random variants (n = 4965) were
removed from the Illumina genotype dataset before imputing a second time. For this set of
variants, the concordance rate between the imputed genotypes and the Illumina genotypes
was 96.7%.

2.4. Quality Control

Quality control (QC) was performed using PLINK v1.9. [15]. After imputation, all in-
dividuals and variants had a call rate of >95%. The Hardy-Weinberg Equilibrium threshold,
set to 1e−10 for both the cases and controls, removed 475 variants, and 24,745 variants
with MAF below 0.01 were removed. The multidimensional scaling revealed no clusters or
outliers. To correct for any batch effect deriving from the different genotyping technologies
used in the two sample sets, we contrasted these two groups and found 6229 variants
with a statistical difference at p < 1e−03, which we subsequently discarded. After QC,
2,140,239 variants remained. All of the dogs showed concordance between the reported and
genotype predicted sex, and no dogs had an outlying (3 SD) average heterozygosity rate.

Using KING v2.2.7 to test for relatedness [16], five duplicates were identified within
or between the genotyping technique groups. The duplicates were confirmed from the
official records of individual registration numbers. An additional 22 pairs of pugs with a
relatedness score above 0.177 (corresponding to a kinship between first- and second-degree
relatives) were identified. From the duplicate pairs and the pairs above the relatedness
threshold of 0.177, the individual with the lower call rate was excluded, resulting in
89 pugs (51 cases and 38 controls) in the final dataset.

2.5. Genetic Analyses

We used R v4.0.2 [17] and the following R-packages: GWASTools v1.40.0 [18] and
GENESIS v2.24.0 [19] for handling the genotype data, and SNPRelate v1.28.0 [20] for
defining the PCs and kinship. All of the figures were generated with ggplot2 v.3.3.5 [21].

The BayesR software (v. 1, updated 1 April 2021) implements a Bayesian mixture
model for the analysis of complex traits, assuming that the variant effects belong to four
different variance distributions: zero effect, 0.01σ2 g, 0.001σ2 g, and 0.0001σ2 g. Markov
Chain Monte Carlo sampling is applied to arrive at the posterior inference about the variant
effects based on the four distributions. Random effects, rather than fixed effects, provide
less biased estimates than the traditional GWAS models and, as the effect of all variants are
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assessed simultaneously, the analysis is not subjected to multiple testing [9]. Before running
the BayesR model, we LD-pruned the imputed QCed dataset using Plink v1.9 (window size
25 kb, step size 5 kb, correlation threshold [r2] 0.999). The Illumina genotyped variants that
had been deleted in the LD-pruning were then merged back in. The final dataset consisted
of 266,687 variants. The model, adjusted for genotyping technique (Illumina vs. Gencove)
and sex, was run using 300,000 iterations and 100,000 burn-in samples, with every tenth
sample saved for posterior inference. This was repeated five times to assess the convergence
of the model, and the absolute values of the average variant effects were reported as the
final results. The top 50 effect size variants were defined as effect variants and the associated
loci were defined by variants in LD at r2 > 0.8. The sum of the risk alleles at the top effect
variant per associated locus (risk index) was compared between cases and controls using
the two-tailed Welsh Two Sample T test, and the phenotypic variance explained by the
associated loci and sex, was calculated using ANOVA (R package stats v. 4.1.2).

To investigate whether the artificial selection for desired pug characteristics has re-
sulted in the accumulation of risk or protective factors for PDM, we performed a selection
signature analysis, comparing cases and controls. First, we used fastPHASE v.1.4.8 [22]
with random starts set to 10, to identify the haplotypes for cases and controls and then
the R package rehh v3.2.1 [23,24] to identify EHH in cases and controls separately. EHH
detects the transmission of an extended haplotype without recombination [10] and XP-
EHH compares the integrated EHH between two populations at each variant position [11].
XP-EHH detects regions with an extended haplotype around the alleles at a position in
one population, but with a more rapid decay of LD in the other. We compared cases to
the controls; thus, the positive XP-EHH scores indicate the selection in cases, whereas the
negative scores indicate the selection in controls. The candidate regions under selection
were defined by the variants with −log10(p) XP-EHH > 5.

2.6. Data Availability

The genotype datasets (plink files: bed, bim, fam, pheno), after quality control
and relatedness filtering, have been uploaded onto the SciLifeLab data repository (DOI
10.17044/scilifelab.21948521).

3. Results

The final sample set consisted of 89 pugs (51 PDM cases and 38 controls). Thirty-two
of the affected pugs (62.7%), and fourteen of the control pugs (36.8%) were males, as
expected given the higher prevalence of PDM in males. The mean onset of clinical signs
for the affected pugs was 78 months (standard deviation [SD] = 23), and the mean age at
phenotypic confirmation of the control pugs was 132 months (SD = 19). An LD-pruned
subset of the imputed variants was used (n = 266,687) for the Bayesian analysis, while the
complete set of imputed variants (n = 2,140,239) was used for the XP-EHH analysis.

3.1. Bayesian Analysis Defined Nineteen Genetic Loci

From the 50 (0.02%) top variant effects in the BayesR model, we identified 19 associated
loci, defined by variants in LD r2 > 0.8 with the top variant, harboring, in total, 67 genes
(Table 1 and Figure 1). The associated loci with the highest variant effects and with more
than one effect variant per region were chr4:11 Mb (intragenic in BicC Family RNA Binding
Protein 1 [BICC1]), chr12:65 Mb (intragenic in SEC63 Homolog, Protein Translocation
Regulator [SEC63]), chr17:53 Mb (top effect variant intragenic in Calsequestrin 2 [CASQ2]),
and chr33:31 Mb (intragenic in Large 60S Subunit Nuclear Export GTPase 1 [LSG1]).
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Table 1. PDM associated loci identified with BayesR.

Top
Variant A1/A2 Effect Size 1 EAF

A/U
VAR EXP

(%)
Variants in
Top 50 (N)

LD Region 2

(Size in Kb)
Genes Closest to

Top Variant Genes in LD Region Bone
Homeostasis Cartilage Osteoarthritis Fibrotic

Scar Tissue
Inflammatory

Response

chr2:60108854 G/A 5.36E−05 0.42/0.59 4.77 1
chr2:60095511–

60653394
(558)

CES5A (intergenic
55 Kb); GNAO1

(intergenic
128 Kb)

CAPNS2, CES1,
CES5A, IRX6,

LPCAT2, MMP2,
SLC6A2

CES1 [25],
MMP2 [26]

[27], IRX6 [28]
GNAO1 [29]

chr3:71553918 A/G −3.64E−05 0.58/0.34 13.57 1
chr3:71521315–

71768914
(248)

APBB2 APBB2 APBB2 [30]

chr4:10805369 C/T 4.88E−05 0.14/0.37 10.83 17
chr4:9844757–

11012379
(1168)

BICC1
BICC1, CCSAP,
RAB4A, RHOU,
TFAM, UBE2D1

BICC1 [31],
TFAM [32],
RHOU [33]

[34]

TFAM [35]
[36], BICC1

[37]

TFAM [38],
RHOU [39] TFAM [40]

chr6:65661296 T/C −4.09E−05 0.16/0.04 4.67 1
chr6:65386176–

65714252
(328)

ADGRL2 ADGRL2

chr7:70300935 A/G −3.90E−05 0.22/0.09 1.66 1
chr7:69701081–

71152660
(1452)

DLGAP1 DLGAP1, MYL12B,
MYOM1, TGIF1

TGIF1 [41],
MYL12B [42] TGIF1 [43] MYOM1

[37]
MYL12B

[44]

chr12:65015175 C/T 5.76E−05 0.21/0.41 3.80 2
chr12:64968699–

65110915
(142)

SEC63 SEC63, OSTM1 OSTM1 [45]

chr12:66289122 G/A 4.18E−05 0.16/0.38 0.27 1
chr12:66266562–

66343853
(77)

CD164 (intergenic
6 Kb); CCDC162P
(intergenic 5 Kb)

CCDC162P/C12H6orf183,
CD164, PPIL6 CD164 [46] CD164 [46] CD164 [47] CCDC162P

[48]

chr17:5061849 A/G 3.90E−05 0.29/0.46 3.67 1
chr17:4062154–

5436291
(1374)

RNF144A
(intergenic

424 Kb); ID2
(intergenic

895 Kb)

CMPK2, RNF144A,
RSAD2 ID2 [49]

RNF144A
(as GRASLND,

i.e., RNF144-AS1;
human

transcript) [50]

RSAD2
[51–53]

chr17:9192869 G/C −3.62E−05 0.33/0.12 7.78 1
chr17:8871659–

9520837
(649)

TRIB2 (intergenic
33 Kb) TRIB2 TRIB2 [54]

chr17:39587560 A/G −4.43E−05 0.19/0.07 1.64 1
chr17:39502199–

39589843
(88)

SH2D6 (intergenic
15K Kb),

MAT2A(intergenic
55 Kb)

GGCX, MAT2A GGCX [55]

chr17:53278611 T/A 8.22E−05 0.28/0.53 1.44 11
chr17:53239890–

53619454
(380)

CASQ2, SLC22A15 CASQ2, MAB21L3,
NHLH2, SLC22A15

CASQ2 [56],
NHLH2 [57] CASQ2 [58] CASQ2 [59]

chr17:54018787 C/T −4.27E−05 0.54/0.30 0.06 1
chr17:54018787–

54024163
(5)

IGSF3 IGSF3 IGSF3 [60]
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Table 1. Cont.

Top
Variant A1/A2 Effect Size 1 EAF

A/U
VAR EXP

(%)
Variants in
Top 50 (N)

LD Region 2

(Size in Kb)
Genes Closest to

Top Variant Genes in LD Region Bone
Homeostasis Cartilage Osteoarthritis Fibrotic

Scar Tissue
Inflammatory

Response

chr20:22144318 A/G −5.05E−05 0.42/0.27 0.31 1
chr20:21579384–

22373451
(794)

MITF (intergenic
271 Kb), FRMD48

(intergenic
258 Kb)

FRMD4B, MITF MITF [61] MITF [62]

chr26:15777160 C/T 3.86E−05 0.01/0.14 5.00 2
chr26:15350328–

16204269
(854)

CIT

BICDL1, CCDC60,
CIT, GCN1, PRKAB1,
PXN, RAB35, RPLP0,

TMEM233

PKAB1 [63],
PXN [64],

TMEM233 [65]
PXN [66] PXN [67]

chr28:21986613 C/T 3.96E−05 0.44/0.57 0.03 1
chr28:21986613–

22282079
(295)

RBM20 BBIP1, PDCD4,
RBM20, SHOC2 PDCD4 [68] PCDC4 [69] PDCD4 [70],

SHOC2 [71] PDCD4 [72]

chr28:30266337 G/T −6.34E−05 0.33/0.24 0.47 1
chr28:30041108–

30695769
(655)

ARF1 (intergenic
26 Kb), PLPP4

(intergenic
244 Kb)

SEC23IP, PLPP4 SEC23IP [73],
ARF1 [74]

chr32:9378372 C/T −4.51E−05 0.28/0.22 0.41 1
chr32:9192329–

9505692
(313)

ARHGAP24 ARHGAP24 ARHGAP24
[75]

chr33:31097826 C/T −5.78E−05 0.10/0.04 0.63 5
chr33:31088620–

31160245
(72)

LSG1 LSG1

chr35:23618123 T/C −3.65E−05 0.44/0.41 0.02 1
chr35:23525268–

23956076
(431)

SCGN

CARMIL1,
HIST1H2AA,

HIST1H2BA, SCGN,
SLC17A1, SLC17A2,
SLC17A3, SLC17A4,

TRIM38

TRIM38 [76],
SLC17A2

(i.e., SLC34A1)
and

SLC17A1 [77]

CARMIL1 [78] CARMIL1
[78]

CARMIL1
[78],

TRIM38 [79]

1 Effect size off A1; 2 LD r2 > 0.8; Abbreviations: EAF effect allele frequency; VAR EXP variance explained.
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When comparing the risk index, i.e., the sum of the risk alleles from the 19 associated
loci, between cases and controls, we found a statistically significant difference (p = 3.7e−12;
Figure 2), with the risk index explaining 45.6% of the PDM variance (p = 4.3e−16;) and sex
explaining 15.3% (p = 1.1e−07).
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distribution of summed risk alleles at the associated loci (risk index) in cases and controls (A), and
the boxplots indicate the median, first and third quartiles, and range (B).

3.2. Selection Signature Analysis Defined Three Regions

The XP-EHH analysis identified three candidate regions under selection. The most
significant region (p = 2.3e−7) was located on chromosome 15, with the top two selec-
tion variants mapping to positions chr15:28,234,106 and chr15:28,234,130. This signal
included 1635 selection variants (i.e., variants with −log10(p) XP-EHH > 5) encompassing
~1.2 Mb (chr15:27,882,677–29,065,882) and overlapping the gene MGAT4 family member
C (MGAT4C). The XP-EHH value was negative (−5.18) and the integrated haplotype
homozygosity (iHH) for allele A was higher in controls (iHH = 7.3 Mb) than in cases
(iHH = 2.0 Mb), thus indicating selection in the controls. The second candidate region
under selection was detected on chromosome 17. The top selection variant mapped to
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position chr17:57,069,701, and the signal included 19 selection variants, encompassing
~7 Kb (chr17:57,064,222–57,071,120). No genes have been annotated within this region,
however, the closest genes were SEC22 Homolog B, Vesicle Trafficking Protein (SEC22B)
and NOTCH receptor 2 (NOTCH2), located 23 Kb and 44 Kb from the top selection variant,
respectively. The third candidate region under selection was located on chromosome 30,
with the top variant mapping to position chr30:8,951,408. This region harbored 79 selection
variants, encompassing ~20 Kb (chr30:8,933,970–8,954,088), which overlapped the gene EH
domain containing 4 (EHD4). Both the regions on chromosome 17 and chromosome 30
indicated signals of selection in the cases (Figure 3).
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4. Discussion

This is the first study to identify genetic loci associated with PDM, a disorder so far only
reported in pugs. The BayesR analysis identified 19 associated loci harboring 67 genes, out
of which more than half (n = 34) were putative candidate genes for PDM (Table 1). Of these
34 genes, 14 had implicated functions in more than one of the below defined categories,
with possible connections to PDM pathogenesis. The XP-EHH analysis identified three
candidate regions under selection, defining four candidate genes in total, within or next
to the selection signals, with potential functions related to PDM. The candidate genes,
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potentially associated with the PDM phenotype, are implicated in bone homeostasis,
cartilage, fibrosis, and inflammation.

The stability and structure of the spine is maintained by the vertebrae (bone), the
vertebral endplates, the facet joints, and the intervertebral discs (cartilage). Bone is a multi-
functional, dynamic, mineralized connective tissue undergoing considerable change over
time. It exhibits different types of cells, including immature osteoblasts, that differentiate
into long-lived osteocytes, and bone-marrow derived osteoclasts [80,81]. Osteocytes are
the most common cellular components of bone and are essential for bone mass regulation.
The potential loss of the structural vertebral column integrity through spinal instability
has been implicated as the cause for the clinical signs of PDM. Vertebral anomalies are
suggested to interfere with spinal biomechanics and to result in instability and repeated
spinal cord injury [3,6,82–84]. Pugs have been identified to possess the progressive loss
of vertebral column integrity and an increase in spinal kyphosis (the abnormal curvature
of the spine) [85,86]. From the BayesR analyses, we found 24 candidate genes (50.7% of
the total number of genes) with potential functions in bone homeostasis. Nine of these
have previously been reported to be involved in osteoblast metabolism. For instance,
Tripartite Motif Containing 38 (TRIM38) and TGFB Induced Factor Homeobox 1 (TGIF1)
play critical roles in bone remodeling and are involved in osteoblast and osteoclast differen-
tiation [41,76]. Furthermore, BICC1, Nescient Helix-Loop-Helix 2 (NHLH2), and Protein
Kinase AMP-Activated Non-Catalytic Subunit β 1 (PRKAB1) have been shown to affect
bone mineral density [31,57,63]. In addition to being a tumor suppressor gene and being
involved in inflammation, Programmed Cell Death 4 (PDCD4) is evolutionarily highly
conserved and has a role in regulating osteogenic differentiation and bone defect repair [68].

Skeletal development, maintenance, and remodeling is regulated by osteoclasts [87].
Of the genes identified in our study, ten (14.9%) were specifically associated with the
functions in osteoclasts, including TRIM38 and TGIF1, discussed above. Ras Homolog
Family Member U (RhoU) is an encoding member of the Rho family, a family of small
GTPases proteins active in the organization of the actin cytoskeleton [88] and involved in
migration, epithelial cell morphogenesis, and osteoclastogenesis [39,89–92]. RhoU has been
identified in the differentiation of macrophages into osteoclasts (osteoclastogenesis), and
in decreasing bone resorption by its role in the adhesion structures of osteoclasts [89]. In
addition, the disruption of Mitochondrial transcription factor A (TFAM) has been implicated
in increased bone resorption through its presence in osteoclasts [32]. Of the candidate
genes from the XP-EHH analysis, NOTCH2 is of particular interest, as it is implicated in
osteoclastogenesis [93]. NOTCH2 expression in osteoblasts has been observed to regulate
the cancellous bone volume and microarchitecture [94].

Cartilage is a tissue comprised of extracellular matrix components, including compact
collagen, which is a fibrous protein that adds to tissue strength and structure. It is present
in the vertebral column in the intervertebral discs and vertebral endplates, and in the
articular surfaces of bone [95]. Soft cartilage is a desirable characteristic in pugs; for
instance, kennel clubs (e.g., the American Kennel Club and United Kennel Club; [96,97])
define the ear characteristics of the standard pug breed as thin, small, and soft, similar
to black velvet. However, the selection for this trait may have affected the supportive
structure in more parts of the body, including the cartilage in the spine, thereby increasing
the risk for PDM. The candidate region under selection on chromosome 30, with suggested
selection pressure acting in the cases, includes the gene EHD4, which has been implicated
in the cartilage functions [98]. Fourteen (20.9%) candidate genes from the associated loci
have been involved in cartilage-related processes. Six of them are directly associated with
cartilage, and ten through their association with osteoarthritis, which can be described
as the degradation of cartilage in the joints at the end of bones. TGIF1, in addition to
its role in bone remodeling described above, has been directly implicated in controlling
cartilage as it encodes a transcription regulator described to inhibit differentiation into
cartilage [43]. TGIF1 has also been described as playing a role in directing the differentiation
of mesodermal cells (during TGFβ signaling) toward fibrogenesis instead of following
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chondrogenic differentiation [99]. From the XP-EHH analysis, NOTCH2 has been observed
to mediate chondrogenesis differentiation in cartilage progenitor/stem cells [100] and to
play a role in chondrocyte maturation [93], and MGAT4C has presented with upregulated
mRNA expression in osteoarthritis [36,101]. Interestingly, the XP-EHH values of the
selection variants overlapping MGAT4C were negative, i.e., indicating selection in the
controls, which may suggest that breeders are aware of the disorder and are actively
breeding against it.

Seven (10.4%) of our identified candidate genes have previously been associated with
the fibroblast functions, which can be linked to the excessive scar tissue of the meninges,
observed in PDM. One of these genes is TFAM, which shows that a reduction in protein ex-
pression, and the associated mitochondrial damage, translates into an enhanced sensitivity
of fibroblasts to profibrotic stimuli [38]. Fibrosis, or scarring, is a form of tissue repair in
which connective tissue replaces the original parenchyma. When this process is disturbed,
as in chronic diseases, it often leads to increased fibrosis [102]. The meninges are the fibrous
coverings of the CNS and consist of a variety of cell types, including CNS fibroblasts and
specialized immune cells. Fibroblasts from the meninges are major drivers of fibrotic scar
formation following CNS injury [103].

Nine (13.4%) candidate genes from the associated loci have previously been associ-
ated with inflammatory responses, the activation of a highly coordinated immunological
response specific for the initial stimulus [104]. This represents a clear link to the CNS
inflammation observed in PDM. PDCD4, already described for its role in osteogenic dif-
ferentiation above, is widely expressed in the immune cells of humans and other animals.
It plays an important role in the macrophage function and exhibits both inflammatory
and anti-inflammatory functions [105]. PDCD4-deficient mice, immunized with myelin
oligodendrocyte glycoprotein to induce experimental autoimmune encephalomyelitis, have
shown resistance to autoimmune encephalomyelitis and developed a reduced degree of
spinal cord inflammation [106]. Interestingly, PDCD4 promotes chronic inflammation and
could therefore be relevant for the gradual and protracted onset of PDM. Furthermore,
SEC22B, identified in the XP-EHH analysis, has been implicated in phagosome formation,
crucial for the defense against pathogens [107]. In addition to being implicated in fibrosis
and bone resorption, TFAM has also been shown to induce pro-inflammatory and cytotoxic
responses of microglia [40].

We identified 19 associated loci in BayesR, defined by the 50 top effect variants; a
cutoff previously used in dogs [108]. While the ratio between false negatives and false
positives has been shown to be favorable for BayesR, with lower effect sizes, the risk of
false positives increases [9]. A stricter definition, using the top 10 effect variants, would
result in seven associated loci and 26 candidate genes, out of which 13 have potential
implications in PDM and covering all of the above-mentioned biological functions. Being
aware of the higher risk of false positives among the 19 associated loci, we still defined the
definition of the top 50 effect variants to avoid losing the true positive associations. Given
the large proportion of PDM variance explained (45.6%) by the risk index, the associated
loci are indicated to be of high relevance to the development of PDM. These results will
hopefully help us understand the etiology of the disease in dogs better. While there is no
known human disorder corresponding to PDM, the rare disorder adhesive arachnoiditis
in human [109,110] has shown similarities with PDM in terms of meningeal fibrosis and
subsequent spinal cord destruction. However, no comparative studies have yet been
performed. Signals on chromosome 17 were identified both in the BayesR analysis and
the XP-EHH analysis. They were, however, approximately 4 Mb apart and neither the LD
region nor the candidate region of selection overlapped with the other, pointing to them
being different signals. Future studies should include larger sample sets to confirm our
current findings and validate the lowest effect loci in particular. Analyses of the gene and
protein expression differences in the relevant tissues from pugs would be of high interest
to explore the functions of the candidate genes in PDM.
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5. Conclusions

Taken together, this study suggests that the genes implicated in bone homeostasis,
fibrotic scar tissue, inflammatory responses, and formation, regulation, and differentiation
of cartilage are likely to be implicated in the underlying etiology of PDM. Even though the
details on how the candidate genes may be involved in these biological processes remain
to be fully elucidated, we believe that by utilizing the advanced genome-wide mapping
methods, we have increased the knowledge about this devastating disorder.
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