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A collisionless shock is a self-organized structure where fields and particle distributions
are mutually adjusted to ensure a stable mass, momentum and energy transfer from the
upstream to the downstream region. This adjustment may involve rippling, reformation
or whatever else is needed to maintain the shock. The fields inside the shock front are
produced due to the motion of charged particles, which is in turn governed by the fields.
The overshoot arises due to the deceleration of the ion flow by the increasing magnetic
field, so that the drop of the dynamic pressure should be compensated by the increase
of the magnetic pressure. The role of the overshoot is to regulate ion reflection, thus
properly adjusting the downstream ion temperature and kinetic pressure and also speeding
up the collisionless relaxation and reducing the anisotropy of the eventually gyrotropized
distributions.
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1. Introduction

Collisionless shocks are among the most fundamental and ubiquitous phenomena in
plasmas. The vast majority of these shocks are fast shocks in a magnetized electron–ion
plasma. Such shocks are formed in laboratory set-ups (Kurtmullaev et al. 1966; Eselevich
et al. 1971; Niemann et al. 2014; Schaeffer et al. 2017; Fiuza et al. 2020; Yao et al. 2022)
and their activity is observed in clusters of galaxies (Medvedev, Silva & Kamionkowski
2006; Simionescu et al. 2009; Iapichino & Brüggen 2012). Energy redistribution is the
central problem of the shock physics. Since energy is frame dependent, the forthcoming
discussion will be carried out either in the normal incidence frame (NIF) or in the
de Hoffman–Teller frame (HT). Both refer to the magnetohydrodynamic (MHD) shock
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description which treats a shock as a planar stationary discontinuity between the uniform
upstream and downstream states. In NIF the upstream plasma flow is along the shock
normal, whereas in HT the plasma flow is along the magnetic field in both asymptotic
regions. Let Bu be the upstream magnetic field magnitude, Vu be the upstream flow speed
in NIF and mi be the ion mass. The dominant ion species in most space plasmas is protons.
The MHD approach is valid on the scales substantially exceeding the upstream convective
gyroradius, ρi = Vu/Ωu, where Ωu = eBu/mic is the upstream ion gyrofrequency. In this
approach, the role of a shock is abrupt transfer of the conserved quantities, i.e. mass,
momentum and energy, from the upstream region to the downstream region. Real shocks
are well-structured and multi-scale self-organized systems. Self-organization means that
even if the microprocesses in the shock transition are not known, the eventual result of
these processes would be the above mentioned stable transfer. Detailed knowledge of the
processes leading to maintenance of a shock as an MHD formation requires simultaneous
solution of the kinetic equations (or equations of particle motion, which is the same) for
all species and of the Maxwell equations. At present, this is hardly possible analytically,
even if restricting the task to ions only. Self-consistent numerical simulations, which strive
to reproduce nature on a computer, are among the most powerful and important tools (see,
e.g. for some recent studies and more references Krasnoselskikh et al. 2002; Burgess et al.
2016; Haggerty, Bret & Caprioli 2021; Omidi et al. 2021; Wilson, Chen & Roytershteyn
2021). Self-consistency is both the strength and the weakness of such simulations. On the
one hand, by fixing a limited number of basic shock parameters, i.e. the Mach number,
the shock angle and the upstream temperature, all other details, like the shock width
and cross-shock potential, are obtained during the evolution. On the other hand, all the
interactions between the charged particles and fields remain entangled, and the problem
of analysis remains intact. For example, it is not possible to have a shock without an
overshoot and another one with an overshoot for the same upstream conditions. Thus, it is
not possible to compare the ion distributions which would be obtained without overshoot,
if the latter appears in a self-consistent way.

The only place where the physical processes in the shock transition can be studied with
in situ measurements is the heliosphere. More than six decades of the Earth bow shock,
planetary bow shocks and interplanetary shock studies has shown that a collisionless
shock is a well structured and multi-scale system. The structure becomes progressively
more complex with the increase of the fast magnetosonic Mach number, Mf . Note that
the Alfvénic Mach number, which is used throughout this paper and is denoted M
hereafter, is always larger than the fast Mach number. The magnetic profile of a low Mach
number, low-β shock has a simple ramp and possibly weak overshoot (see, e.g. Farris,
Russell & Thomsen 1993). The subscript u denotes upstream, β = 8πnuTu/B2

u is the ratio
of the thermal-to-magnetic pressure, nu is the upstream number density and Tu is the
upstream temperature. At higher Mach numbers, overshoots and subsequent downstream
magnetic oscillations are stronger, and a foot is developed ahead of the ramp (see, e.g.
Krasnoselskikh et al. 2013). In addition, the shock front may become non-planar (rippled)
and/or time dependent (see, e.g. Lowe & Burgess 2003), or possibly reforming (see, e.g.
Krasnoselskikh et al. 2013). We consider all these as a structure of the macroscopic fields
in the shock front. In addition, there are smaller-scale fluctuations, coherent or random,
which also affect the particle motion. The present state of art observations of the Earth
bow shock by the Magnetospheric Multiscale Mission (MMS) (Burch et al. 2016) provide
high resolutions measurements of the fields and particles (Pollock et al. 2016; Russell et al.
2016) by four spacecraft. Yet, each spacecraft measures only along its path, and even four
spacecraft are unable to provide information about the state of the plasma in all points of
even a limited region.
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Role of overshoot 3

Given the above mentioned limitations of theory, simulations and observations, a viable
approach would be to study separately and not self-consistently the effect of charged
particles on the shock structure, and separately and not self-consistently the effect of the
shock fields on the particle dynamics. After both influences are understood sufficiently
well, they may be combined to achieve a desired level of self-consistency to be further
compared with simulations and observations. At present, a theoretical description of the
formation of the overshoot, undershoot and additional coherent downstream magnetic
oscillations due to the post-ramp ion gyration is developed (Balikhin et al. 2008; Ofman
et al. 2009) and successfully confirmed with observations on low Mach number shocks
(Pope, Gedalin & Balikhin 2019; Pope 2020). According to this theory, the variations of
the magnetic pressure arise as a response to the variations of the dynamic and kinetic ion
pressures as a result of the required momentum conservation throughout the shock front.
The latter means that the momentum flux, or the total pressure, should be constant as a
function of the coordinate of along the shock normal. Upon crossing the shock front the
whole ion distribution begins to gyrate, so that the total ion pressure becomes position
dependent. This dependence is gradually smoothed out due to the gyrophase mixing.
The same one-dimensional time-independent physics is shown to be approximately valid
for moderately supercritical shocks (Gedalin 2019a,b). In rippled shocks the momentum
conservation should be modified to include time dependence and spatial dependence along
the shock front (Gedalin & Ganushkina 2022). Yet, the conservation laws are valid, and
the variations of fluxes belonging to particles should be compensated by variations of
the fluxes due to the fields. We suggest that a collisionless shock may be considered as
self-organized systems. The main task of a collisionless shock is to ensure prompt and
stable transfer of the conserved quantities (mass, momentum and energy) from one region
(upstream) to another region (downstream). The transfer of these quantities in the shock
is accompanied by entropy production. By ‘prompt’ we mean that a collisionless shock
transition is too narrow to be treated within MHD. By ‘stable’ we mean that there are no
disruptions or substantial changes on average, except those which are caused by variations
of ambient conditions. In this approach the developing shock structure is the one which
ensures this transfer. The proposed approach shifts the focus from reason to purpose: the
shock structure is considered according to its task in maintaining stable transfer of the
mass, momentum and energy. This means that, if stable transfer is not possible without an
overshoot, an overshoot has to be formed. If it is not possible without rippling, rippling
will develop. Since ions are the main carriers of these conserved quantities, it is ions
which are responsible for developing the structure and it is ions which have to be most
strongly affected by it. The main role of the shock structure is to regulate ion reflection
and shape ion distributions towards consistency of the self-organized shock. In this paper
we focus on quasiperpendicular shocks, for which the angle between the shock normal
and the upstream magnetic field θ > 45◦, since these shocks have a well-defined structure.
The objective of the present paper is to elucidate the role of the overshoot, which is one of
the main features or supercritical shocks (those in which ion reflection is significant). The
structure of quasiparallel shocks may be different and requires a separate analysis. Here
we consider only a planar time-independent shock profile.

2. Observational illustration

In order to illustrate what we are supposed to be able to explain, figure 1 shows the
magnetic field profile and the reduced ion distribution

f (t, vn) =
∫

F(v, t) dvt1 dvt2 . (2.1)
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FIGURE 1. The magnetic field magnitude, normalized to the upstream magnetic field
magnitude (black curve) and the reduced ion distribution function. See details in text.

Here, n denotes the direction along the shock normal, t1, t2 are two perpendicular
directions along the shock front, and F(v, t) is the three-dimensional distribution
as a function of time, measured in the spacecraft frame. The shock crossing was
observed by MMS 1 on 07 October 2015 at 12:07:10 and documented in the database
https://zenodo.org/record/6343989#.Yxxbbi0Rokw (Lalti et al. 2022).
The model shock normal is used (Farris & Russell 1994). The listed shock parameters
are: the Alfvénic Mach number M ≈ 5, the angle between the shock normal and the
upstream magnetic field θ ≈ 70◦ and βu = 0.4. In the figure the magnetic field magnitude
is normalized on the upstream magnetic field Bu, and the normal component of the ion
velocity is shifted into NIF and normalized on the upstream plasma speed Vu. For the
visualization the distribution is normalized on max f (t, vn) in the whole range of the
figure and plotted in the log scale. The magnetic compression Bd/Bu ≈ 3. Here, and in
what follows, u denotes upstream and d denotes downstream. Since the measurements
of the cold solar wind are not very precise, the values of vn are very approximate
and the plot is for illustrative purposes only. The arrows in the figure show the main
features which are expected to affect the ion motion, the overshoot and the undershoot
and the population of reflected ion which is expected to be affected. One blue arrow
points to the position where the dynamic pressure drops while the kinetic pressure
is not large yet. This is the position of the overshoot, that is, the point where the
magnetic pressure is maximum. The second blue arrow points to the position where
the kinetic pressure is maximum, this point corresponds to the undershoot. These
conclusions follow from the approximate constancy of the total pressure across the
shock (Gedalin 2019a,b).

3. Overshoot and ion reflection

Ion reflection in the shock front occurs due to the combined influence of the electric
and magnetic fields. In order to elucidate the effect of both let us consider the motion
of an ion entering the ramp. The most part of the magnetic field jump occurs from the
beginning of the ramp to the maximum of the overshoot. This is also the region where the
cross-shock electric field acts. Let the shock normal be in the x direction and the upstream
magnetic field reside in the x − z plane. The equations of motion for the ion inside the
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ramp-overshoot region are

dvx

dt
= e

mi
Ex + e

mic
(vyBz − vzBy), (3.1)

dvy

dt
= e

mi
Ey + e

mic
(vzBx − vxBz), (3.2)

dvz

dt
= e

mic
(vxBy − vyBx). (3.3)

Here, we assume, for simplicity of the analysis, that the shock is planar and stationary.
Then in NIF Ez = 0, Ey = VuBu sin θ/c = const. and Ex = −(dφ/dx), where φ is the
cross-shock potential depending on the coordinate along the shock normal. The subscript u
denotes upstream and θ is the angle between the shock normal and the upstream magnetic
field. At the entry to the ramp vx0 − Vu, vy0 and vz0 are of the order of the upstream thermal
speed vT . According to the observations (see, e.g. Sckopke et al. 1983), the incident
ion distribution is usually approximated by an isotropic Maxwellian distribution. For the
present analytical consideration it is not essential, vT is just the measure of the spread
in the velocity space. Upon crossing the shock the ion distribution becomes strongly
non-gyrotropic and gradually gyrotropizes and isotropizes. The ratio of the thermal speed
to the upstream plasma speed vT/Vu = √

βui/2/M and decreases with the increase of the
Mach number. An ion is reflected if at some x the ion velocity vx = 0. Up to this point
vx > 0 and we may replace (d/dt) = vx(d/dx) and integrate (3.1)–(3.3) from the entry to
the ramp, x0, to the reflection point xr, as follows:

−1
2
v2

x0 = e
mi

∫ xr

x0

Ex dx + e
mici

∫ xr

x0

(vyBz − vzBy)dx, (3.4)

vy − vy0 = e
mic

∫ xr

x0

(
Bu sin θVu

vx
− Bz

)
dx + e

mic

∫ xr

x0

(
vzBx

vx

)
dx, (3.5)

vz − vz0 = e
mic

∫ xr

x0

(
By − vyBx

vx

)
dx, (3.6)

or
1
2
v2

x0 = e
mi

φ(xr) − e
mic

∫ xr

x0

(vyBz − vzBy) dx. (3.7)

In the right-hand side of this expression vy, vz, By, Bz depend on x, so that the integral
cannot be calculated exactly but can be estimated. The width of the ramp itself is of the
order of the ion inertial length or smaller. The distance from the beginning of the ramp to
the overshoot maximum is substantially smaller than the ion convective gyroradius Vu/Ωu.
Thus, the narrow transition approximation would be appropriate. In the expressions for vy
and vz the component vx is of the order of Vu throughout, so that the variations of vy and
vz are proportional to the width and may be neglected in (3.7). Since the ion starts at the
point where By = 0, the lowest-order estimate would be

mi

2
v2

x = mi

2
v2

x0 − eφeff, (3.8)

φeff = φ(xr) − 1
c
vy0

∫ xr

x0

Bz dx. (3.9)
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At the reflection point vx = 0 and therefore

miv
2
x0

2
= eφeff, vx0 =

√
2eφeff

mi
, (3.10a,b)

which gives

Vu − vx0

vT
=

M

(
1 −

√
2eφeff

miV2
u

)
√

βui/2
. (3.11)

If the magnetic breaking is not taken into account φeff = φ ∼ 0.5(miV2
u/2e) (Morse 1973;

Schwartz et al. 1988; Dimmock et al. 2012). For typical β ∼ 1 (Farris et al. 1993) and
M = 4 the ratio (3.11) is > 1.6. That is, the reflected ions come from the tail of the
incident distribution. The number of these reflected ions should be small, but even a
modest increase of the effective potential may result in a significant increase of the number
of reflected ions. The addition to the effective potential (3.9) due to the magnetic braking
(the second term on the right-hand side) can be estimated as follows:

vy0

∫ xr

x0

Bz dx ∼ vTBmaxL, (3.12)

where Bmax is the maximum magnetic field in the ramp-overshoot region and L is the
distance from the entry to the ramp to this maximum. Without an overshoot, Bmax = Bd,
and L is the ramp width, which is of the order of the ion inertial length or smaller
(Newbury, Russell & Gedalin 1998; Hobara et al. 2010). With the overshoot Bmax may
be substantially larger than Bd, and L may be of the order of the upstream ion convective
gyroradius (Bale et al. 2003, 2005; Krasnoselskikh et al. 2013). Thus, the contribution of
the overshoot to the effective potential is significant and its presence should enhance ion
reflection.

4. Model

The objective of this study is to understand what the effects of the overshoot and
undershoot are. Since there is no hope of solving the equations of motion analytically, we
will perform a test particle analysis in a model shock profile. We are not going to reproduce
the observed profile and distributions, especially when some important parameters, like the
shock width and the cross-shock potential, are either not known or cannot be determined
with the precision required for quantitative comparison. We therefore choose a shock
model, that is, the electric and magnetic fields, and trace ions in these fields. Tracing
is done in NIF. Although at the Mach number of M ≈ 5 the shock can be expected to be
rippled, we ignore here possible deviations from planarity and time dependence. In what
follows all fields depend only on one coordinate, x, which is the direction of the shock
normal, pointing toward downstream, by definition. The non-coplanarity direction is y.
In the analysis we use the normalized variables B/Bu, v/Vu, cE/VuBu, Ωux/Vu and Ωut
without changing the notation. The basic profile is given by

Bx = cos θ, Bz = R + 1
2

+ R − 1
2

tanh
3x
D

, By = CB
dBz

dx
, (4.1a–c)

Ex = −CE
dBz

dx
, Ey = sin θ, Ez = 0. (4.2a–c)
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Here, D is the ramp width in terms of the upstream convective gyroradius Vu/Ωu, Ωu =
eBu/mic is the upstream ion (proton) gyrofrequency, Vu is the upstream plasma speed in
NIF and θ is the angle between the upstream magnetic field vector and the shock normal.
The magnetic compression is Bd/Bu =

√
R2 sin2 θ + cos2 θ . The coefficients CB and CE

are determined from the conditions

−
∫ ∞

−∞
Ex dx = sNIF, (4.3)

sNIF − sHT = tan θ

∫ ∞

−∞
By dx, (4.4)

where s = 2eφ/miV2
u is the normalized cross-shock potential. In order to avoid any

temptation to compare with the observed shock we use slightly different parameters. The
chosen shock angle is θ = 60◦ and βi = 8πnuTiu/B2

u = 0.5, where Tiu is the upstream ion
temperature. The chosen Mach number is M = 4. At these shock parameters rippling is
expected to be less pronounced (Ofman & Gedalin 2013), so that the planar stationary
model may be expected to be a satisfactory approximation. The magnetic compression
Bd/Bu = 2.8 is obtained from the Rankine–Hugoniot relations (see, e.g. Kennel 1988).
The chosen ramp width is taken as one ion inertial length D = 1/M (Newbury et al. 1998;
Hobara et al. 2010), and the chosen cross-shock potentials are sHT = 0.1 and sNIF = 0.35
(Morse 1973; Schwartz et al. 1988; Dimmock et al. 2012; Cohen et al. 2019; Hanson et al.
2019; Pope et al. 2019; Schwartz et al. 2021).

Overshoot is added using

δBz = B1

(
1 + tanh

3(x − xL)

WL

)(
1 − tanh

3(x + xR)

WR

)
, (4.5)

with the additions to By and Ex using the same relations as above. Note that the width of the
shock including the ramp and the overshoot is of the order of the upstream ion convective
gyroradius (Bale et al. 2003, 2005; Krasnoselskikh et al. 2013). Initially, Maxwellian
distributed 40 000 ions were traced across the shock and the corresponding distribution
functions f (x, v), projections, and moments were numerically derived using the staying
time method (Gedalin 2016; Gedalin, Pogorelov & Roytershteyn 2021). We shall use the
one-dimensional reduced distribution

f (x, vx) =
∫ ∞

−∞
dvy

∫ ∞

−∞
dvzf (x, v), (4.6)

and the two-dimensional reduced distribution integrated over a slab x1 < x < x2

f (vx, vy) =
∫ x2

x1

dx
∫ ∞

−∞
dvzf (x, v). (4.7)

Mean quantities are defined far downstream from the shock

〈F(v)〉 =

∫
F(v)f (x → ∞, v) d3v∫

f (x → ∞, v) d3v

. (4.8)
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FIGURE 2. Reduced 1-D distribution f (x, vx), together with the magnetic profile.

We will be interested in the normalized parallel and perpendicular temperatures defined
as follows:

T‖=〈((v − 〈v〉) · b̂)2〉, T⊥= 1
2 〈((v − 〈v〉) × b̂)2〉, (4.9)

where b̂ is the direction of the downstream magnetic field. The temperatures are
normalized on miV2

u .

5. Ion distributions

We start with the basic profile without an overshoot. Figure 2 shows the one-dimensional
(1-D) reduced distribution f (x, vx). There is weak ion reflection. The gyration of
the downstream distribution as a whole is clearly seen, as well as the gradual
gyrophase mixing. Ion phase space holes are quite pronounced. Figure 3 shows the
2-D reduced distribution integrated over the slab 1.5 < x < 1.6. The halo of the ions
which were reflected and crossed the shock again to the downstream region (hereafter
‘reflected-transmitted’ ions) is weak and their contribution to the downstream temperature
is small. The core of the directly transmitted ions is clearly non-gyrotropic. One arrow
on the plot points to the downstream drift velocity, which is approximately Vd ≈ 1/Bd.
The other one points to the maximum of the distribution (‘centre’). The distance between
the two in the velocity space determines the speed of gyration of the distribution as
a whole and, ultimately, the amount of perpendicular heating. The parallel heating is
negligible Td,‖/Tu,‖ = 1. The perpendicular downstream temperature is Td,⊥/miV2

u ≈ 0.14,
Td,⊥/Tu,⊥ ≈ 9 and the anisotropy is Td,‖/Td,⊥ ≈ 0.11.

We add an overshoot using (4.5) with WL = D, WR = 3D, XL = 0.5D, XR = 0.5D and
B1 = 1. The maximum magnetic field is Bm ≈ 3.86. Since the potential closely follows
the magnetic profile the maximum potential at the overshoot is sm ≈ sNIF(Bm/Bd) ≈ 0.48.
Figure 4 shows the 1-D reduced distribution for the profile with an overshoot. There
is a substantial population of reflected ions. Ion phase space holes are clearly seen.
Figure 5 shows a halo of reflected-transmitted ions which contribute substantially to the
downstream temperature. The core of directly transmitted ions is clearly non-gyrotropic.
Ion reflection causes parallel heating Td,‖/Tu,‖ ≈ 3.87. Perpendicular heating dominates,
Td,⊥/miV2

u ≈ 0.18, Td,⊥/Tu,⊥ ≈ 11.6. The anisotropy is weaker than in the case without
overshoot, Td,‖/Td,⊥ ≈ 0.33. The higher magnetic field of the overshoot enhances ion
reflection. There are more ions which are turned back before reaching the maximum of
the overshoot, due to the magnetic deflection adding to the electrostatic deceleration.
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FIGURE 3. Two-dimensional reduced distribution f (vx, vy) integrated over the slab
1.5 < x < 1.6.

FIGURE 4. Reduced 1-D distribution f (x, vx), together with the magnetic profile.

There are more ions which turn back after crossing the maximum of the overshoot, since
the drift speed is smaller and the ratio of the gyration speed to the drift speed increases.
On the other hand, the higher cross-shock potential at the ramp overshoot reduces the
ion velocity just after the overshoot, which reduces the gyration speed of the bulk of the
directly transmitted ions and thus reduces heating of the core. This elevated potential also
reduces reflection behind the overshoot.

In order to separate the effect of the potential from the effect of the magnetic overshoot,
we reduce the downstream cross-shock potential to sNIF = 0.25 so that the potential at
the overshoot is now sm ≈ 0.344. Figure 6 shows the 1-D reduced distribution for the
profile with an overshoot and reduced cross-shock potential. Ion reflection is weaker but
still contributes substantially to the downstream heating. Figure 7 show the corresponding
2-D reduced integrated distribution. The distance from the centre to the downstream drift
speed is smaller than for the case without the overshoot but larger than for the case with
overshoot and original potential. Accordingly, the core heating is larger and the relative
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FIGURE 5. Two-dimensional reduced distribution f (vx, vy) integrated over the slab
1.5 < x < 1.6.

FIGURE 6. Reduced 1-D distribution f (x, vx), together with the magnetic profile.

contribution of the reflected ions is smaller. The parallel heating is noticeable, Td,‖/Tu,‖ ≈
2.43, because of the reflected ions. Perpendicular heating dominates, Td,⊥/miV2

u ≈ 0.17,
Td,⊥/Tu,⊥ ≈ 11.18, as in both previous cases. It is slightly weaker because of the reduced
contribution of reflected ions. The anisotropy is weaker than in the case without overshoot
but stronger than in the case with unreduced potential, Td,‖/Td,⊥ ≈ 0.22.

The effects of the overshoot and the potential at the overshoot are shown in figure 8. The
distribution fd(v‖, v⊥) is calculated by switching to HT sufficiently far from the shock in

the downstream uniform region. Here, v‖ = v · b̂ and v⊥ =
√

v2 − v2
‖ . The heating of the

core in the perpendicular direction is the largest without overshoot (left) and smallest with
the overshoot and unreduced potential (middle). The heating of the core in the parallel
direction is nearly the same in all cases. The overall heating, which is just the measure of
the spread in the velocity space, is determined by the contribution of the reflected ions,
which is the largest with the overshoot and unreduced potential and somewhat smaller for
reduced potential. Without overshoot the contribution of the reflected ions is negligible.

https://doi.org/10.1017/S0022377823000090 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000090


Role of overshoot 11

FIGURE 7. Two-dimensional reduced distribution f (vx, vy) integrated over the slab
1.5 < x < 1.6.

(a) (b) (c)

FIGURE 8. Distributions calculated in HT. (a) No overshoot. (b) Overshoot with unreduced
potential. (c) Overshoot with reduced potential.

Figure 9 shows the total off-diagonal pressure

Pxy(x) =
∫

vxvyf (x, v) d3v, (5.1)

as a measure of non-gyrotropy. Upon the shock crossing the distribution becomes
non-gyrotropic and gradually gyrotropizes: the oscillations of Pxy damp with the distance
from the shock. The gyrotropization is the slowest without overshoot (blue curve) and
fastest with overshoot and unreduced potential (black curve).

6. Discussion and conclusions

The present study focuses on the role of the overshoot as a part of the self-organized
shock structure. In analysing the influence of the overshoot on the ion dynamics we
restricted ourselves with comparison of a model shock profile without an overshoot
with the same profile and an overshoot added. Ions were traced as test particles in both
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FIGURE 9. The off-diagonal pressure Pxy as a measure of non-gyrotropy. Blue: no overshoot.
Black: overshoot and unreduced potential. Red: overshoot and reduced potential.

profiles and the resulting downstream distributions were compared. The shock parameters,
including the ramp width, the overshoot width and the position of the overshoot maximum,
remained fixed during the numerical analysis. Ion distributions depend on all these
parameters, as well as on the shock angle, Mach number, upstream temperature and
magnetic compression. All these were not varied either, since the central question was
what difference the presence of an overshoot makes to the downstream ion distributions.
The only parameter which was varied was the cross-shock potential: in one case with an
overshoot the downstream potential was equal to the potential without an overshoot, in the
other case the maximum potential at the overshoot was equal to the potential without an
overshoot. It is clear that any quantitative comparison should be done with caution since
the scales and the potential are not known at present. However, some clear differences were
found which allow us to make conclusions about the importance of the overshoot. The
main effect is ion reflection, which is absent or too weak without an overshoot. Without
reflected ions the downstream distribution is under-heated, non-gyrotropy relaxation is
slow and eventual anisotropy is very strong. An overshoot enhances ion reflection and,
therefore, ion heating. Gyrotropization and isotropization just behind the overshoot are
more efficient, due to the reflected ions. These processes are further affected by the
undershoot and subsequent magnetic oscillations, as well by the time-dependent features,
so that the presented values should be understood literally. Yet, the presence of a
substantial population guarantees faster damping of the fluctuations of the moments of
the ion distribution. Efficiency of ion reflection depends on the shock angle and the ratio
vT/Vu = √

βi/2/M, so that at larger θ and/or smaller βi the effect of the overshoot may
look slightly different. For example, we can expect that ion phase space holes would be
observed for lower vT/Vu. In all cases, the role of the overshoot in the self-organization of
a shock structure is in adjusting the level of ion reflection as it is required for the stable
transfer of the mass, momentum and energy across the part of the shock which has not
arrived at the uniform state yet.
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