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Recently, it was shown that Kerr black holes can be described via the classical infinite-
spin limit of a special class of scattering amplitudes in a massive higher-spin quantum field
theory. Although this approach has successfully obtained state-of-the-art results for spinning
black-hole binaries, only the three-point amplitude that describes Kerr is known in full generality
and a full understanding of the underlying Lagrangian is still missing. In particular, vertices
at four points and beyond are necessary to perform higher-order calculations. Massive higher-
spin Lagrangians are highly constrained by properties such as unitarity and degrees-of-freedom
counting. A useful tool in building consistent theories is the introduction of a massive gauge
symmetry. However, constructing gauge-invariant vertices beyond the cubic level is a daunting
task, so far never attempted in the literature. We propose an alternative on-shell realisation of
gauge invariance, in the form of novel massive Ward identities, which provides a significant
simplification with respect to the traditional approach. We show that the amplitudes known to
describe Kerr are the unique lowest-derivative solution to the Ward identities combined with
a known high-energy unitarity constraint. Moreover, we apply the same methods to compute
new four-point Compton amplitudes for higher-spin states and propose them as candidates to
describe higher-order black-hole observables. In parallel, we study the amplitudes of leading
Regge states in superstring theory, as another example of consistent massive higher-spin
particles. Applying the classical-limit formalism, previously only studied in the context of black
holes, we recover known classical string solutions. This provides important insights on the
properties of the formalism. Moreover, it paves the way to studying more general string states
and attempting to reproduce black holes from strings.
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1. Introduction

In recent years, gravitational-wave experiments have collected a wealth of new

data from binary systems of black holes and neutron stars [1]. In parallel, sig-

nificant efforts have been made on the theory side, to provide high-precision

analytic calculations in general relativity. An established approach to com-

puting binary observables is to construct a worldline effective field theory and

rely on the corresponding Feynman-diagrammatic expansion [2–9].

More recently, in a number of works, it has been shown that the same ob-

servables can be obtained from the classical limit of scattering amplitudes in

an effective quantum field theory. In particular, Schwarzschild black holes are

described by the remarkably simple theory of a scalar field minimally-coupled

to gravity. This approach has provided many new state-of-the art results for

conservative and dissipative observables in the post-Minkowskian expansion,

the perturbative expansion in the gravitational coupling constant G [10–55].

Kerr black holes, on the other hand, require massive higher-spin fields but

the underlying theoretical description is poorly understood [42, 56–107]. An

exception is a special class of three-point amplitudes M (Φs
1 Φ̄s

2 h3) with mas-

sive higher-spin particles Φs coupled to the graviton h was first studied in

ref. [108],

M (Φs
1 Φ̄s

2 h3) = M 0 [111222]2s

m2s , (1.1)

in terms of massive spinor-helicity variables. Note that the subscript on each

field denotes the momentum label, and M 0 = M (Φ0
1 Φ̄0

2 h3) is the scalar am-

plitude. The amplitudes (1.1) can be rewritten in terms of the angular momen-

tum (Pauli-Lubanski) operator aμ ,

aμ =
1

2m2
εμνρσ PνMρσ , (1.2)

where εμνρσ is the Levi-Civita tensor, Pμ is the momentum operator and Mρσ
are Lorentz generators. In the infinite-spin limit one obtains the classical am-

plitude

M (Φs
1 Φ̄s

2 h3)
s→∞−−−→ (ε3 · p1)

2 exp(p3 ·a). (1.3)

This result was shown to match the linearised energy-momentum tensor of a

Kerr black hole, as given in ref. [109], and it was used to compute leading-

order post-Minkowskian observables for a black-hole binary system [57–59,

63, 70]. Although the infinite-spin limit is in principle necessary to recover

the complete classical result, the finite-spin amplitudes reproduce the same
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exponential, albeit truncated at O(a2s). In other words, the coefficients of

each power of aμ , known as spin-multipole coefficients, are independent of

the spin s. This feature is known as spin universality [110, 111].

The next-to-leading post-Minkowskian observables require knowledge of

the four-point Compton amplitude M (Φs
1 Φ̄s

2 h3 h4). This can be obtained

from the three-point amplitudes given above using Britto-Cachazo-Feng-Witten

(BCFW) on-shell recursion [112, 113], but only for states with spin s ≤ 2. At

spin s > 2, BCFW produces amplitudes with unphysical poles and attempts

to cure them leave an ambiguity in the four-point contact term [62, 108]. One

way to resolve this ambiguity is to study the classical amplitudes and iden-

tify patterns associated to black holes [90–92]. Another way is to study so-

lutions to the Teukolsky equation, describing gravitational waves on a black-

hole background, and match them to the Compton amplitude, as discussed

in part IV [85, 103, 107]. A third way is to gain a better understanding of

the quantum Lagrangians underlying the known three-point amplitudes, study

their properties and attempt to understand the full theory [82, 102]. The last

approach is the main subject of this thesis.

The Lagrangians that describe Kerr for s ≤ 2 can be seen to arise from di-

mensional reduction of the massless theories, equivalent to spontaneous sym-

metry breaking in the s= 1 case [82,114]. However, for s> 2, it is well known

that no consistent massless theory exists in flat space. A consequence of this

is that amplitudes with massive higher-spin fields diverge in the high-energy

limit, meaning that higher-spin particles must be either composite or effective

descriptions. Nonetheless, the Kerr amplitudes can be obtained from special

theories with an improved high-energy cutoff, as shown explicitly for s = 5/2

in ref. [82]. This supports the observation that black holes are extremely sim-

ple physical objects: by the no-hair theorem, they are fully defined by their

mass, charge and spin and hence they resemble elementary particles [115].

A potential issue in introducing interactions in a higher-spin theory is that

this can lead to violations of the correct number of degrees of freedom [116].

A systematic way to avoid this is to introduce a gauge symmetry for the higher-

spin field, with the help of auxiliary degrees of freedom known as Stückelberg

fields. However, constructing gauge-invariant Lagrangians is no simple task,

and even the cubic interactions are known in the literature only in a few exam-

ples [117–119]. Four-point interactions require solving quadratic equations,

and progress in this direction is largely absent in the current literature.

In this thesis, we introduce new on-shell Ward identities that implement

gauge invariance at the level of scattering amplitudes and thus bypass the com-

plexity of the underlying Lagrangians. Combining the Ward identities with

known high-energy unitarity constraints [82, 120–122], we are able to derive

the Kerr three-point amplitudes to any spin, as the unique lowest-derivative

solution. Moreover, we apply the same methods to four-point amplitudes. We

reproduce the known Kerr amplitudes for s ≤ 2 and obtain new results for

higher spins [123].
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A fully consistent example of massive higher-spin theory is string the-

ory. The study of string amplitudes has provided many important insights on

the consistency of higher spins [124–128]. Moreover, the high-energy limit

presents features that hint to a mechanism similar to spontaneous symmetry

breaking [129–141]. Another goal of this thesis is to compare string ampli-

tudes to those that describe Kerr. Explicit three-point amplitudes for massive

string states coupled to a massless graviton have been studied in the case of the

bosonic string and superstring [142, 143]. We focus on the superstring, since

it is free of tachyons, and study states from the leading Regge trajectory. The

amplitudes considered match eq. (1.1) up to s = 4. However, for higher spins,

the two amplitudes show different behaviours.

The s → ∞ limit of the superstring amplitudes is here shown to reproduce

known classical string solution. Contrary to the black-hole case, the string

amplitudes do not obey spin universality and classical physics can only be ex-

tracted from infinite-spin amplitudes. This illustrates that spin universality is a

non-trivial feature of the three-point amplitudes (1.1). Moreover, the methods

presented here can be applied to more general string states in the pursuit of a

string-theory description of Kerr black holes.

This thesis is organised as follows: section I is a review of higher-spin quan-

tum field theory. It discusses the construction of the free theory and the issues

that can arise when introducing interactions, in the massless and massive case.

The notion of massive gauge invariance is presented as a systematic way to

circumvent such issues and a few examples are studied in detail. String theory

is reviewed as an example of a consistent higher-spin theory.

Section II reviews the on-shell construction of higher-spin amplitudes via

the massive spinor-helicity formalism [108]. In particular, the three-point am-

plitudes that describe Kerr black holes are presented and their extension to the

four-point Compton case is discussed.

Section III presents the main results of this thesis. It begins with a dis-

cussion of a known high-energy unitarity constraint for higher-spin particles,

referred to as the current constraint, and its relation to Kerr black holes. Then,

it shows how to implement massive gauge invariance directly at the level of

on-shell amplitudes by introducing massive Ward identities. Combining Ward

identities and the current constraint, the Kerr three-point amplitudes are fixed

uniquely as the lowest-derivative solution. The same methods are then applied

to the Compton amplitude and new results for higher-spin states are displayed.

Moreover, an even simpler realisation of gauge invariance is presented in the

form of on-shell identities that require no knowledge of the underlying La-

grangians.

Section IV discusses the classical limit of quantum-field-theory amplitudes.

The three-point amplitudes in ref. [108] are matched to the energy momentum

tensor of a black hole and the result is used to compute the leading-order scat-

tering angle in a binary system. Moreover, the relation between the Comp-

ton amplitude and the scattering of gravitational waves on a black-hole back-

11



ground is discussed. Finally, the same classical-limit framework is applied

to superstring amplitudes. As a result, known classical string solutions are

recovered and important differences to the black-hole case are discussed.
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Part I:
Massive Higher-Spin Theory





2. Massive Spinning Particles

A massive spin-s particle is an irreducible representation of the Poincaré group,

labelled by the eigenvalues of the two Casimir operators [144, 145]

C1 = PμPμ ,

C2 =W μWμ (2.1)

where W μ = 1
2 εμνρσ MνρPσ is the Pauli-Lubanski pseudovector, Pμ generates

translations and Mμν Lorentz transformations. The eigenvalue of C1 is m2,

where m is the mass of the particle, and the eigenvalue of C2 is m2s(s+ 1),
where s is half-integer and it is known as the spin quantum number. Note that

we work with a flat Minkowski metric ημν in mostly-minus signature.

In order to label the states belonging to such representation, we need to find

a set of mutually-commuting generators. We start from the momentum Pμ ,

with four-momentum pμ as eigenvalue. The other generators form the little
group, a subgroup of Lorentz transformations that leave the momentum pμ

invariant. In the rest frame pμ = (m,0, . . . ,0), these are all the spatial rotations

Ji j, where i, j = 1, . . . ,d −1. Hence the little group is SO(d −1). Some of its

simplest irreducible representations are given by tensors ε i1...is that satisfy

ε i1...is = ε(i1...is),

δ jkε jki3...is = 0, (2.2)

where all Latin indices can take values {1, . . . ,d − 1} and δ jk is the flat Eu-

clidean metric. In words, we say that they are fully-symmetric and traceless.

We can rewrite this in a Lorentz-invariant manner by defining polarisation ten-

sor εμ1...μs(p), where all Greek indices are in the range {0, . . . ,d−1} and ε(p)
satisfies

εμ1...μs = ε(μ1...μs),

ηρσ ερσ μ3...μs = 0,

pρερμ2...μs = 0. (2.3)

The last condition is known as transversality.

Now let us try to write down a field theory for such a particle. This will be

described by an action

S =

∫
ddxL (Φμ1...μs) (2.4)
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where the field Φμ1...μs is an irreducible representation of the Lorentz group

SO(1,d −1), satisfying

Φμ1...μs = Φ(μ1...μs),

ηρσ Φρσ μ3...μs = 0, (2.5)

matching the first two conditions in eq. (2.3). We say these are off-shell con-
ditions, meaning that they are valid for arbitrary configurations of the field Φ.

However, we want the field theory to describe an irreducible representation

of the Poincaré group, as described above. The remaining conditions must be

imposed as equations of motion, so we refer to them as on-shell conditions. In

particular, given the momentum operator Pμ =−i∂μ , this implies

(∂ 2 +m2)Φμ1...μs = 0,

∂ ρΦρμ2...μs = 0. (2.6)

Now, the challenge is to find a free Lagrangian that reproduces the above equa-

tions of motion. We will see that the transversality condition will make this

a rather non-trivial task. Moreover, the field obeying eq. (2.5) will need to be

combined with additional auxiliary fields.
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3. Free Lagrangians

3.1 Low-Spin Examples

Let us begin from the simplest case, a massive spin-0 particle. This is de-

scribed by a scalar field φ and by the Klein-Gordon Lagrangian

L s=0 =
1

2
∂ μφ∂μφ − m2

2
φ 2. (3.1)

Since φ does not carry any Lorentz indices, we do not need to worry about

conditions (2.3). All we need is the Klein-Gordon equation of motion,

(∂ 2 +m2)φ = 0 (3.2)

which follows from the above Lagrangian.

The next example is a massive spin-1 particle 1. We can describe this via a

vector field Wμ and via the Proca Lagrangian,

L s=1 = ∂ [μW ν ]∂[μWν ]−
m2

2
W μWμ

=
1

2
∂ μW ν∂μWν − m2

2
W μWμ − 1

2
∂ μW ν∂νWμ . (3.3)

Since Wμ only carries one Lorentz index, eq. (2.5) is satisfied trivially and we

only need to reproduce the on-shell conditions (2.6). The equations of motion

are

Rμ ≡ ∂ 2Wμ −∂μ∂ ·W +m2Wμ = 0 (3.4)

where we use the shorthand ∂ ·W = ∂μW μ . Taking the divergence ∂ ·R = 0

we can derive

(∂ 2 +m2)Wμ = 0

∂ ·W = 0. (3.5)

Note that eq. (3.3) is very close to a sum of d Klein-Gordon Lagrangians,

one for each component of Wμ , where the difference lies in the last term

∂ μW ν∂νWμ . If we were to omit this term, the equations of motion would

reduce to (∂ 2 +m2)Wμ = 0 and we would have d wave-like propagating de-
grees of freedom. However, a spin-1 particle is in the vector representation of

1In this section we focus on bosonic fields, but the same arguments apply to the fermionic case.
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the little group SO(d − 1) and hence should have d − 1 degrees of freedom.

Therefore we need one constraint, the transversality condition, which can be

derived as a low-derivative consequence of the equations of motion only if we

add the term ∂ μW ν∂νWμ .

Next, we consider a massive spin-2 particle, with free Lagrangian

L s=2 =
1

2
∂μφνρ∂ μφ νρ −∂ ·φμ∂ ·φ μ − d −1

2(d −2)
∂μϕ∂ μϕ +ϕ∂ μ∂ νφμν

− m2

2

(
φμνφ μν − d(d −1)

(d −2)2
ϕ2

)
, (3.6)

in terms of a symmetric traceless tensor φμν and an auxiliary scalar ϕ [145].

We use the short-hand notation ∂ ·φμ = ∂ ρφρμ . The equations of motion are

Rμν =−∂ 2φμν +2∂(μ∂ ·φν) +∂μ∂νϕ −m2φμν − 2

d
ημν∂ ·∂ ·φ − 1

d
ημν∂ 2ϕ,

R̃ = (d −1)∂ 2ϕ +(d −2)∂ ·∂ ·φ +m2 d(d −1)

d −2
ϕ = 0, (3.7)

obtained from varying φμν and ϕ respectively. We use ∂ · ∂ · φ = ∂ μ∂ νφμν .

Combining ∂ · ∂ ·R and R̃, we can find ϕ = ∂ · ∂ · φ = 0. Substituting this

into ∂ ·Rμ yields ∂ ·φμ = 0. Therefore, we obtain the following equations,

(∂ 2 +m2)φμν = 0,

∂ ·φμ = 0,

ϕ = 0, (3.8)

matching all the conditions required for a spin-2 particle.

Here we see a common feature of most massive higher-spin Lagrangians:

the correct theory cannot be written down in terms of a single (traceless) field

φμ1...μs , but we need to introduce auxiliary fields. In this case, both φμν and

ϕ can be combined into a single traceful symmetric tensor Hμν , and the La-

grangian reduces to [146]

L s=2 =
1

2
∂μHνρ∂ μHνρ −∂ ·Hμ∂ ·Hμ − 1

2
∂μH∂ μH +∂ ·Hμ∂ μH

− m2

2
(HμνHμν −H2) (3.9)

where H ≡ Hμ
μ . The equations of motion become (∂ 2 +m2)Hμν = ∂ ·Hμ =

H = 0. Starting from spin-3, however, there is no conventional way to reabsorb

all the auxiliary fields into a single tensor field.

3.2 Arbitrary Spin
Free Lagrangians for any massive spin-s particle in d = 4 have been written

down systematically in ref. [147], in terms of a tower of symmetric traceless
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fields Φ(k)
μ1...μk , where k = 0, . . . ,s− 2,s. Note that there is no Φs−1 field. The

Lagrangians can be written as

L s =− 1

2
Φ(s)(∂ 2 +m2)Φ(s)− s

2
(∂ ·Φ(s))2 +

s(s−1)2

2s−1

{
Φ(s−2)∂ ·∂ ·Φ(s)

+
1

2
Φ(s−2)(∂ 2 +a2m2)Φ(s−2)− b2

2
(∂ ·Φ(s−2))2

−
s

∑
q=3

(
q−1

∏
k=2

ck

)
(−1)q

[
− 1

2
Φ(s−q)(∂ 2 +aqm2)Φ(s−q)

+
bq

2
(∂ ·Φ(s−q))2 +mΦ(s−q)∂ ·Φ(s−q+1)

]}
, (3.10)

where the Lorentz indices are omitted for simplicity, but they are all contracted

between the two fields, unless contractions with derivatives are explicitly in-

dicated. The coefficients aq,bq,cq have values

aq =
q(2s−q+1)(s−q+2)

2(2s−2q+3)(s−q+1)
,

bq−1 =
(s−q+1)2

2s−2q+5
,

cq−1 =
(q−1)(s−q+1)2(s−q+3)(2s−q+3)

2(s−q+2)(2s−2q+3)(2s−2q+5)
. (3.11)

The Lagrangian (3.10) is not unique, since it is sensitive to field redefinitions.

Despite this only describing free theory, the Lagrangian is rather involved.

As we are about to see, interactions introduce new issues to take care of and

therefore increase the complexity. One important goal of this thesis is to show

how to achieve considerable simplifications by studying higher-spin particles

from the point of view of on-shell amplitudes.

3.3 Gauge Invariance
Let us consider a generic Lagrangian L s in terms of a rank-s symmetric tensor

field Φs. The equations of motion are

Rμ1...μs ≡ ∂ρ
δL s

δ (∂ρΦμ1...μs)
− δL s

δΦμ1...μs

= 0, (3.12)

where Rμ1...μs is a linear second-order differential equation. We know that in

order to describe a spin-s particle, we need the constraint ∂ ·Φμ1...μs−1 = 0.

In the examples above, we obtained this from the divergence ∂ ·Rμ1...μs−1 2.

2Technically it is not enough to consider a single divergence, but we need to compute traces

and higher derivatives of the equations of motion, such as ∂ · ∂ ·R in the context of eq. (3.7).

However, the divergence ∂ ·R is often the first step, hence we focus on it in this analysis.
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However, since R is a two-derivative expression, its divergence will (in gen-

eral) give a three-derivative equation that cannot yield the required one-derivative

constraint. The only way to solve this issue is to require the highest-derivative

terms in ∂ ·R to cancel, namely

lim
m→0

∂ ·Rμ1...μs−1 = 0, (3.13)

where the limit m → 0 extracts the highest-derivative part, as is clear from

dimensional analysis.

We can look at a few examples. In the spin-1 case the equation of motion

is as given in eq. (3.4), and we have

lim
m→0

Rν = ∂ μFμν = 0, (3.14)

where Fμν = 2∂[μWν ]. These are just Maxwell’s equations, describing a free

massless spin-1 particle and obtained from the Lagrangian

L s=1,m=0 =−1

4
FμνFμν , (3.15)

invariant under the gauge transformation δWμ = ∂μλ , where λ is an arbitrary

function. This invariance ensures the equations of motion are divergence-free,

as required by eq. (3.13). In the spin-2 case, we have

lim
m→0

Rμν =−∂ 2(Hμν −ημνH)−∂μ∂νH−ημν∂ ·∂ ·H+2∂(μ∂ ·Hν). (3.16)

This is just the Einstein tensor Gμν for the metric gμν = ημν + Hμν , ex-

panded to first order in Hμν . The Einstein tensor is divergence-free as a conse-

quence of the diffeomorphism invariance of the Einstein-Hilbert action, hence

eq. (3.13) follows.

Similarly, it can be shown that in the m → 0 limit the Lagrangian (3.10)

is invariant under the gauge transformations δφμ1...μs = ∂(μ1
ξμ2...μs), where

ξμ1...μs−1
is a symmetric and traceless tensor field. This ensures that the highest-

derivative component of Rμ1...μs is divergence-free and ∂ ·R, combined with

higher derivatives and traces of the equations of motion, will eventually lead to

the constraints required to describe a massive higher-spin particle. In the next

section we will see that gauge invariance can be extended to the full massive

theory, by adding extra fields to the Lagrangian known as Stückelberg fields,

and that this will make it easier to introduce interactions.
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4. Gauge and Gravitational Interactions

So far we have discussed theories describing free higher-spin particles propa-

gating in flat spacetime. These theories are perfectly healthy, even in the m= 0

case. However, turning on interactions introduces a range of known patholo-

gies. For instance, we can consider an amplitude A (Φs
q X1 . . .Xn) between a

massless higher-spin particle Φs, with momentum q2 = 0, and n generic parti-

cles Xi with momentum pi. Weinberg showed that, in the soft limit q → 0, we

have [148]

A (Φs
q X1 . . .Xn)

q→0−−→
n

∑
i=1

gi
(pi · εq)

s

2q · pi
A (X1 . . .Xn) (4.1)

where gi is a constant parametrising the coupling between Xi and Φs. The

spin-s particle is described by the polarisation tensor εμ1...μs
q = εμ1

q . . .εμs
q . In a

consistent theory, the unphysical modes εμ1...μs
q = q(μ1εμ2

q . . .εμs)
q must decou-

ple, leading to the constraint

n

∑
i=1

gi p
μ1
i . . . pμs−1

i = 0. (4.2)

For s = 1, this reduces to charge conservation ∑i gi = 0. For s = 2, this is

solved by momentum conservation, ∑i pi = 0, and by requiring the gravita-

tional coupling constant to be universal, gi = κ . For s > 2, there is no solu-

tion for generic momenta pi, except the trivial solution gi = 0, meaning the

higher-spin particle cannot be interacting. This is only one of the many issues

that arise for massless higher spins in flat space. Other examples include the

Aragone-Deser problem, showing inconsistencies in the standard gravitational

coupling of higher-spin particles, and the Weinberg-Witten theorem, show-

ing that higher-spin theories cannot generate a conserved and gauge-invariant

energy-momentum tensor [149, 150].

In the m �= 0 case, the issues described above can be avoided and massive

higher spin particles exist in nature as composite states. However, interac-

tions can still introduce inconsistencies, for instance by modifying the number

of degrees of freedom. For example, the Lagrangian (3.9) gives rise to the

following equations of motion,

(∂ 2 +m2)Hμν = 0, ∂ ·Hμ = 0, H = 0. (4.3)
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If we try to couple them to electromagnetism, via the minimal coupling pre-

scription ∂μ → Dμ = ∂μ − ieAμ , we get

[Dμ ,D2 +m2]φμν � FμρDμφρν = 0 (4.4)

for a constant field strength Fμν = 2∂[μAν ]. This is an additional constraint

equation which did not exist in the free theory, and hence it violates the correct

number of degrees of freedom [145].

To get around this issue, we can introduce interactions at the level of the

Lagrangian, and only then derive the equations of motion [146]. However,

there can still be inconsistencies [116]. We start by complexifying eq. (3.9) to

give it a U(1) charge, and couple it minimally to electromagnetism via

L = DμHνρDμHνρ −DμHνρDνHμρ −D ·HμD ·Hμ +DμHD ·Hμ

+D ·HμDμH −DμHDμH −m2(HμνHμν −HH)+ ieαFμνHμρHνρ (4.5)

where α is a free coefficient. The last term is introduced due to the ambiguity

in the ∂μ → Dμ prescription, since [Dμ ,Dν ] �= 0. The equations of motion are

Rμν ≡− (D2 +m2)(Hμν −ημνH)−D(μDν)H −ημνD ·D ·H (4.6)

+2D(μD ·Hν)− ie(α +1)Fρ(μHν)ρ (4.7)

implying

D ·D ·R− m2

2
R = ieαFμνDμD ·Hν − 3

2
m4H +O(DμFνρ ,F2

μν). (4.8)

In the free-theory limit, e = 0, the equation above reduces to the constraint

H = 0. For e �= 0, the first term in eq. 4.8 contains the term F0iḦ0i, meaning

that F0iH0i becomes a new propagating degree of freedom, unless we set α = 0.

Note that we ignored derivatives of the field-strength Fμν and terms quadratic

in Fμν for simplicity, since they can only appear with at most one derivative of

the massive field Hμν and hence do not affect the above argument.

The standard approach to counting the number of degrees of freedom is the

Hamiltonian formalism [151]. However, this requires decomposing fields and

derivatives into time and space components. In the next sections we will see

an alternative covariant approach.

4.1 Massive Spin-1
A systematic way to preserve the correct number of degrees of freedom is to

introduce a massive gauge symmetry [119]. Let us start from the free theory

for a massive spin-1 field W μ . We introduce an auxiliary scalar field φ , known

as a Stückelberg field, and impose the linearised gauge transformations δ0,

δ0Wμ = ∂μλ , δ0φ = mλ . (4.9)
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The free Lagrangian L0 (with at most two derivatives) invariant under the

above transformations is

L0 = 2∂[μWν ]∂ [μW ν ]− (mW μ −∂μφ̄)(mW μ −∂ μφ). (4.10)

The gauge choice φ = 0 reproduces the complexified version of eq. (3.3),

hence the theory correctly describes a massive spin-1 particle.

Now, we wish to couple this system to electromagnetism, described by a

vector field Aμ and the Lagrangian (3.15). A standard way of doing so is

the minimal coupling prescription, realised by the replacement ∂μ → Dμ =
∂μ − ieAμ , resulting in the Lagrangian

L0 = 2D[μWν ]D
[μW ν ]− (mW μ −Dμ φ̄)(mW μ −Dμφ)− 1

4
FμνFμν . (4.11)

To ensure the interacting theory still has the correct number of degrees of

freedom, we need to preserve the gauge invariance relating the fields Wμ and

φ . However, the Lagrangian (4.11) is not invariant under δ0Wμ = Dμλ ,δ0φ =
mλ . We have

δ0L0 = DμW ν [Dμ ,Dν ]λ + c.c. =−ieDμW νFμνλ + c.c. (4.12)

where we omit the complex-conjugate term for simplicity. To fix this issue we

can add a non-minimal Lagrangian L1 and non-minimal gauge transforma-

tions δ1. The lowest-derivative solution is

L1 = ieFμνW μWν ,

δ1Aμ = ie(W μλ − λ̄Wμ). (4.13)

such that (δ0+δ1)(L0+L1) = 0. We will consistently neglect possible terms

with more than two massive fields, since they do not contribute to the ampli-

tudes discussed in this thesis. Note that the variation δ1Aμ has no relation to

the massless U(1) gauge transformation, since λ is not the massless gauge

parameter.

Setting φ = 0 and omitting the kinetic term for Aμ , we obtain

L = 2D[μWν ]D
[μW ν ]−m2W μW μ + ieFμνW μWν . (4.14)

Remarkably, this theory is realised in nature, since it is precisely the interac-

tion of W -bosons with the photon in the Standard Model. In that context, the

field φ is the component of the Higgs field that gets absorbed by Wμ and φ = 0

is known as unitary gauge. This Lagrangian yields the known three-point

amplitude A (W1W 2 A3), where the subscripts denote the momentum label,

between two massive vectors and a photon,

2ε1· ε2 ε3·p1 +2ε2· ε3 ε1·p2 +2ε3· ε1 ε2·p3. (4.15)
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Before moving onto the next example, let us discuss another convenient

gauge choice. We can add to the Lagrangian (4.10) the gauge-fixing term

Lgf = (D ·W +mφ̄)(D ·W +mφ) (4.16)

without affecting any physical scattering amplitude [152,153]. The Lagrangian

becomes diagonal,

LF = L0 +Lgf =−W μ
(D2 +m2)Wμ + φ̄(D2 +m2)φ , (4.17)

allowing us to write down simple propagators for the fields Wμ and φ and

simplifying amplitude calculations. This is equivalent to the Feynman gauge
in electrodynamics. We will see how to generalise this choice to higher spins

below.

We can also couple a massive spin-1 field to gravity, via the minimal cou-

pling prescription ∂μ → ∇μ , where ∇μ is the covariant derivative with respect

to the Levi-Civita connection. The Lagrangian is

L0 =
√−g

(
2∇[μWν ]∇[μW ν ]− (mW μ −∇μ φ̄)(mW μ −∇μφ)

)
. (4.18)

The minimal gauge transformations are δ0Wμ = ∇μλ ,δ0φ = mλ . Similarly to

the gauge-theory case in eq. (4.12), we get

δ0L0 =
√−g

(
∇μW ν [∇μ ,∇ν ]λ + c.c..

)
. (4.19)

However, here [∇μ ,∇ν ]λ = 0 since the Levi-Civita connection is torsion-free.

Hence, minimal coupling to gravity does produce a healthy theory for a mas-

sive spin-1 particle. We can confirm this by realising that the above theory is

just the Kaluza-Klein reduction of Maxwell theory in five dimensions. To see

this, we start with the action

L0 =−1

4
FMNFMN , (4.20)

where M,N = 0, . . . ,4 and the theory is invariant under δ0AM = ∂Mλ . Then we

compactify on the fifth dimension and only keep the first massive state, with

AM = (Wμ ,φ) and ∂M = (∂μ , im). This recovers the Lagrangian (4.10) and

the gauge transformations (4.9). Since eq. (4.20) can be minimally coupled to

gravity, eq. (4.18) follows.

4.2 Massive Spin-2
We can repeat the analysis for a massive spin-2 field Hμν [119]. In this case,

we introduce two Stückelberg fields Bμ and φ . The minimally-coupled La-

grangian is

L0 = L02 +L01 +L00 − 1

4
FμνFμν , (4.21)
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where

L02 =DαHμνDαHμν −DαHμνDμHνα −D ·HμD ·Hμ +D ·HνDνH

+DνHD ·Hν −DμHDμH −BμνBμν +
4(d −1)

d −2
DαφDαφ ,

L01 =2m(HμνDμBν +DμBνHμν)−2m(HD ·B+D ·BH)

+
4m(d −1)

d −2
(D ·Bφ + φ̄D ·B),

L00 =−m2(HμνHμν −HH)− 2m2(d −1)

(d −2)
(Hφ + φ̄H)+

4m2d(d −1)

(d −2)2
φ̄φ .

(4.22)

The second number in the subscript denotes the number of derivatives. When

e = 0 and Dμ = ∂μ , this is invariant under the gauge transformations

δ0Hμν = 2D(μξν) +
2m

d −2
ημνλ ,

δ0Bμ = Dμλ +mξμ ,

δ0φ = mλ .

(4.23)

In the unitary gauge Bμ = φ = 0, the above reduces to the complexified version

of eq. (3.9). When e �= 0, the invariance is broken and must be restored via

non-minimal terms. At cubic level, the lowest-derivative interesting solution

is 1

L1 = L13 +L12 +L11 (4.24)

1As discussed in ref. [119], there is another solution with at most two derivatives. However, the

theory presented is more interesting because of its connection to massless higher-spin particles

in curved spacetime. In addition, it satisfies the current constraint discussed in section III.
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where

L13 =−2ia0Fμν

(1

2
DμHαβ DαHβν −

1

2
DαHβνDμHαβ +

1

2
DαHβ μDαHβν

−DαHβ μDβ Hαν − 1

2
DμHαβ DνHαβ +

1

2
DμHναD ·Hα

− 1

2
D ·HαDμHνα +

1

2
D ·HμD ·Hν − 1

2
D ·HμDνH +

1

2
DνHD ·Hμ

− 1

2
DμHναDαH +

1

2
DαHDμHνα +

1

2
DμHDνH − d−4

2(d−2)
BμαBαν

)
,

L12 =−2ia0Fμν

{ m
d −2

(
(d −4)DμHναBα − (d −4)BαDμHνα

+(d −3)D ·HμBν − (d −3)BνD ·Hμ − (d −3)DμHBν

+(d −3)BνDμH
)
− m(d −4)(d −1)

2(d −2)2
(Bμνφ − φ̄Bμν)

}
L11 =−2ia0Fμν

( m2

2(d −2)
HμαHνα +

2m2(d −3)

d −2
BμBμ

)
,

(4.25)

and

δ1Hμν =2ia0

{1

2
(FμαD[αξν ] +FναD[αξμ])+

1

2(d −2)
ημνFαβ D[αξβ ]

}
,

δ1Aμ =2ia0

{ 2m
d −2

(BαD[μξα]−D[μξα]Bα)+DαHβ μD[αξβ ]

−D[αξβ ]DαHβ μ +
m2

d −2
(Hμαξα − ξ̄αHμα)

− 2m2

(d −2)2
(Bμλ − λ̄Bμ)

}
.

(4.26)

Here a0 ≡− e(d−2)
m2(d−3)

. As before, we have neglected terms with more than two

massive fields. In addition, we only have (δ0 + δ1)(L0 +L1) = 0+O(e2).
To restore gauge invariance at O(e2) and beyond, we need to add higher-point

contributions to the Lagrangian and the gauge transformations. Since these

terms are complicated, we will not discuss them explicitly. However, we will

show how to solve this problem from a simpler on-shell viewpoint in part III.

We can also use the Lagrangian above to compute the three-point amplitude

A (H1H2 A3), obtaining

4

m2
(ε1 p2ε1ε3(ε2·p1)

2 − ε2 p1ε2ε3(ε1·p2)
2 − ε1 p2ε2 p1ε1ε2ε3 p1)

4ε1ε2ε1ε3ε2 p1 −4ε1 p2ε1ε2ε2ε3 −2(ε1·ε2)
2ε3 p1 =

1

x
[111222]4

m3
, (4.27)
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where the right-hand side is written in terms of the spinor-helicity variables of

part II. This amplitude matches eq. (7.20) for s = 2 and we will discuss the

significance of this in part III.

In the gravitational case, the lowest-derivative gauge-invariant theory is

simply the minimally-coupled one, eq. (4.22) and eq. (4.23), with Dμ → ∇μ .

This can be checked explicitly, or derived from a Kaluza-Klein reduction of

massless gravity in five dimensions [82]. We refer the reader to paper I for

more details.

It is important to note that for s > 2 there is no consistent interacting mass-

less theory in flat spacetime for a single massless field. Therefore, we can-

not find massive higher-spin theories from a naive Kaluza-Klein reduction.

Nevertheless, there are still strong ties between the massive theories we are

studying and massless higher-spin fields in curved background, as discussed

by ref. [119, 154].

4.3 Higher Spin

The approach outlined above can be applied to fields of arbitrary spin [117].

To describe a spin-s particle, we introduce a tower of symmetric tensor fields

Φk ≡ Φμ1...μk , where k = 0,1, . . . ,s− 1,s. We can choose these fields to be

double-traceless, ημ1μ2
ημ3μ4

Φμ1...μk = 0, and we denote a single trace by Φ̃k ≡
ημk−1μk Φμ1...μk . We introduce the gauge transformation

δΦk = ∂ (1ξ k−1) +mαkξ k +mβkη(2ξ k−2) , (4.28)

in terms of traceless symmetric gauge parameters ξ k ≡ ξ μ1...μk , where k =
0,1, . . . ,s− 1. We use the notation ∂ (1ξ k−1) = ∂ (μ1ξ μ2...μk) and η(2ξ k−2) =
η(μ1μ2ξ μ3...μk). The coefficients αk and βk are given by

αk =
1

k+1

√
(s−k)(s+k+1)

2
, βk =

1

2

k
k−1

αk−1. (4.29)

The free Lagrangian invariant under eq. (4.28) can be written as

L0 = LF −Lgf, (4.30)

where

LF =
s

∑
k=0

(−1)k

2

[
Φk(�+m2)Φk − k(k−1)

4
Φ̃k(�+m2)Φ̃k

]
(4.31)

and

Lgf =−1

2

s−1

∑
k=0

(−1)k(k+1)GkGk , (4.32)
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with

Gk=∂ ·Φk+1−k
2

∂ (1Φ̃k+1)+m
(
αkΦk−γkΦ̃k+2−δkη(2Φ̃k)). (4.33)

We use γk =
1
2(k+2)αk+1 and δk =

1
4(k−1)αk. This provides a gauge invari-

ant description of a free massive spin-s field. Using eq. (4.28) the traceless

part of Φk<s can be set to zero, providing a higher-spin generalisation of the

unitary gauge encountered in the spin-1 case. This choice reproduces the La-

grangian (3.9), up to field redefinitions. Alternatively, we can set L0 =LF by

adding the gauge-fixing term Lgf to the Lagrangian, generalising the spin-1

Feynman gauge.

The next step is to introduce interactions to the massless force carriers and

restore gauge invariance by adding non-minimal terms, as discussed in the

spin-1 and spin-2 cases. This is a cumbersome process and it is in general

challenging to obtain closed-form expressions for any spin, so this will not be

the goal of this thesis. However, in section III we will show how to circumvent

this and make progress by using Ward identities.

4.4 High-Energy Limit
At the end of section I, we argued that the highest-derivative part of a free mas-

sive higher-spin Lagrangian must be invariant under the gauge transformations

δΦμ1...μs = ∂ (μ1ξ μ2...μs), where ξ μ1...μs−1 is a symmetric traceless gauge pa-

rameter. We refer to this part of the theory as the high-energy limit. A similar

statement can be made about interacting theories. For example, we consider

the s = 2 theory described by eq. (4.22) and eq. (4.25). The gauge variation

(δ0 +δ1)(L0 +L1) has at most four derivatives, where the highest-derivative

cubic term is proportional to 1/m2 and gives

δ0L13 +δ1

(
L02 − 1

4
FμνFμν

)
= 0+O(m−1). (4.34)

The above equation only depends on the fields Hμν and Aμ and the gauge

parameter ξμ , up to O(m−1) terms. This is connected to the existence of

cubic interaction vertices with massless higher-spin fields in (anti)-de Sitter

spacetime, as discussed in ref. [117]. Cubic interactions for massless fields

have been studied for an arbitrary spin-s particle, coupled to electromagnetism

(h= 1) or gravity (h= 2), and the lowest-derivative solution for the three-point

vertex is known to have 2s−h derivatives [155]. Hence, a massive higher-spin

theory can be constructed starting from the (2s−h)-derivative massless vertex

and adding lower-derivative terms to restore massive gauge invariance. This is

consistent with the s = 1 and s = 2 examples discussed above. Note that there

can be massive theories with even less derivatives, such as the two-derivative

s = 2 theory mentioned previously. However, these theories can be excluded

by imposing additional constraints, such as eq. (9.2).
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5. String Theory

The most notable example of consistent theory with massive higher-spin par-

ticles is string theory [156–158]. The bosonic string can be described by the

Polyakov action

S =
1

4πα ′

∫
d2σ∂aX μ∂ aXμ , (5.1)

in terms of the worldsheet coordinates σ and τ and the spacetime coordinates

X μ(σ ,τ). The Latin indices a = τ,σ are worldsheet indices, whereas the

Greek indices μ = 0, . . . ,d − 1 belong to spacetime. The parameter α ′ is the

inverse tension of the string.

In the case of closed strings, the spacetime coordinates X μ are periodic

functions of the spatial worldsheet coordinate σ ∈ [0,2π] and their spectrum

contains a massless graviton. If no periodicity is assumed, for instance by

restricting σ ∈ [0,π], we have an open string and the spectrum contains a

massless vector boson (a photon or gluon). In addition, both open and closed

strings give rise to an infinite tower of massive higher-spin particles. In both

cases, however, the spectrum contains a tachyon, an unphysical particle with

negative squared mass, m2 < 0. To get around this problem, a new action

was found by adding fermionic degrees of freedom to the Polyakov action

and imposing worldsheet supersymmetry. The resulting theory is known as

superstring theory and it is tachyon-free [159]. Paper II studies a special class

of states in superstring theory, known as leading Regge trajectory states. In

the open string case, they are defined by the relation

m2 =
s−1

α ′ (5.2)

where m is the mass of the state and s its spin.

Scattering amplitudes with leading Regge superstring states can be com-

puted following the approach in ref. [143]. Each string state is associated to a

vertex operator Vs(ε, p;z), where z = eτ+iσ is a complexified worldsheet co-

ordinate, p is the momentum of the particle, ε its polarisation tensor and s its

spin. String amplitudes are correlators of such operators in the path integral

defined by the action (5.1) or its supersymmetric extension. In the case of

massive leading Regge states, the vertex operators are

V
(−1)

s (ε, p;z) =
1√

2α ′s−1
εμ1...μs : i∂X μ1 . . . i∂X μs−1ψμse−φ eip·X :, (5.3)

29



where ∂ = ∂/∂ z, ψμ is the worldsheet fermion field and φ is a superghost field

needed to fix certain fermionic gauge symmetries. The polarisation tensor ε
is symmetric, traceless and transverse. The colons : (. . .) : denote the normal-

ordering prescription, and the superscript (−1) on the vertex operator denotes

the ghost picture (we refer the reader to ref. [156, 159] for details).

Already the simplest string amplitudes necessitate vertex operators in alter-

native ghost pictures. For the massless vector bosons, the analogue of eq. (5.3)

in the zero ghost picture is

V
(0)

1 (ε, p;z) =
1√
2α ′ εμ :

(
2α ′p ·ψ ψμ + i∂X μ)eip·X :, (5.4)

where p2 = 0 is the massless momentum and ε2 = ε · p = 0 is the polarisation

vector.

The tree-level three-point amplitude A (Φs
1Φs

2 A3) between two massive

spin-s states and one massless vector is given by the following correlator,〈
c(z1)V

(−1)
s (ε1, p1;z1)c(z2)V

(−1)
s (ε2, p2;z2)c(z3)V

(0)
1 (ε3, p3;z3)

〉
, (5.5)

where the ghost fields c(z) are needed to fix the conformal invariance of the

Polyakov action and render eq. (5.5) independent of z1,z2,z3. This yields the

amplitude

A (Φs
1Φs

2A3) =−g(2α ′)s(s−1)!
s

∑
n=0

(−ε1 · ε2)
n

(2α ′)nn![(s−n)!]2
×(

n(ε3 · p1)(−ε1 · p3 ε2 · p3)
s−n − s(s−n)

2α ′ ε2 · f3 · ε1(−ε1 · p3 ε2 · p3)
s−n−1

)
(5.6)

where the overall normalisation differs from ref. [143] and it is discussed in

more detail in paper II.

In spacetime dimensions d = 4, we can rewrite this amplitude in the massive

spinor variables discussed in part II, obtaining

A (Φs
1Φs

2A−
3 ) =−g(s−1)!

m2s (ε−3 · p1)×
s

∑
n=0

(s−1)s−n−1(〈111222〉[111222])n(〈111222〉−[111222])2s−2n−1(n(s−1)〈111222〉−(s2−n)[111222])

n![(s−n)!]2

(5.7)

in the case of a negative-helicity massless vector. Note that the amplitudes (5.7)

can be thought of as a dimensional reduction of superstrings in d = 10.

In the closed superstring case, leading Regge trajectory states obey the re-

lation

m2 =
2s−4

α ′ . (5.8)
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The amplitudes M (Φs
1Φs

2h3) between two leading Regge states Φs and the

graviton h can be found via the Kawai-Lewellen-Tye (KLT) relation [160]

M (Φs
1Φs

2h3) =

(
1

g
A (Φs/2

1 Φs/2
2 A3)

∣∣
α ′→α ′/4

)2

(5.9)

where A (Φs
1Φs

2A3) is the open superstring amplitude given in eq. (5.6) and the

transverse-traceless graviton polarisation tensor can be written as εμν
3 = εμ

3 εν
3 ,

since ε2
3 = ε3 · p3 = 0.
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Part II:
Massive Higher-Spin Amplitudes

From here on we assume d = 4.





6. Massless Spinor-Helicity

In part I, we studied how to construct higher-spin Lagrangians that can de-

scribe states that are irreducible representations of the Poincaré group. In

particular, we saw how requiring the correct number of degrees of freedom,

for instance via the transversality condition ∂ ·φ = 0, leads to a massive gauge

symmetry and a tower of auxiliary fields. However, if we are interested in

on-shell observables, it is natural to wonder if one can find some variables that

automatically encode the right degrees of freedom.

Massless theories give us reason to be optimistic. For instance, let us con-

sider massless Yang-Mills theory

L =−1

4
FaμνFa

μν , (6.1)

where Fa
μν = 2∂[μAa

ν ] + g/
√

2 f abcAb
μAc

ν , g is the coupling constant and f abc

are the structure constants for SU(N). This Lagrangian is invariant under the

gauge transformation δAa
μ = ∂μλ a+g/

√
2 f abcAbλ c. The color-ordered three-

gluon amplitude A (A1A2A3) is given by

A (A1A2A3) = ε1·ε2 ε3·p1 + ε2·ε3 ε1·p2 + ε3·ε1 ε2·p3, (6.2)

up to normalisation factors. The subscript i on the field Ai denotes the label of

the associated momentum and polarisation vector. The momenta obey the on-

shell condition p2
i = 0 and the polarisation vectors εi obey ε2

i = εi · pi = 0. All

momenta are assumed to be outgoing. All contractions are with respect to the

flat Minkowski metric in mostly-minus signature, ημν = diag(1,−1,−1,−1).
The amplitude (6.2) obeys the Ward identity

p1 · ∂
∂ε1

A (A1A2A3) = 0, (6.3)

and similar identities for legs 2 and 3. The operator p1 · ∂/∂ε1 implements

the replacement ε1 → p1. This type of identity arises because the vector εμ
1

contains four components, but on-shell gluons in d = 4 only have two physical

degrees of freedom, so there must be two constraints. One is the transversal-

ity condition ε1 · p1 = 0, the other is the equivalence relation ε1 ∼ ε1 +α p1

responsible for the Ward identity, where α is an arbitrary coefficient.

Alternatively, we can describe a gluon as the tensor product of two mass-

less spin-1/2 fermions, as shown in eq. (6.6) [161]. We consider the two-

component Weyl spinors |p]α̇ and |p〉α , with positive and negative chirality
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respectively, obeying the Weyl equations

(p · σ̄)α̇β |p〉β = (p ·σ)αβ̇ |p]β̇ = 0, (6.4)

in terms of the Pauli Matrices σ μ = (σ0,σ1,σ2,σ3) in the Weyl representa-

tion, and their conjugates σ̄ μ = (σ0,−σ1,−σ2,−σ3). The indices α, α̇ = 1,2
are left-handed and right-handed spinor indices. Since we have det p ·σ =
det p · σ̄ = 0, we can decompose the momentum in terms of the spinors,

(p ·σ)αβ̇ = |p〉α [p|β̇ ,
(p · σ̄)α̇β = |p]α̇ 〈p|β , (6.5)

where [p|α̇ = εα̇β̇ |p]β̇ , 〈p|α = εαβ |p〉β and εαβ ,εα̇β̇ are two-dimensional

Levi-Civita tensors, normalised such that ε12 = 1. Note that eq. (6.5) is invari-

ant under the transformation |p] → t|p], |p〉 → t−1 |p〉, where t is a complex

parameter. This is the action of the U(1) little group for massless particles, i.e.

the Lorentz transformations that leave the momentum invariant.

The polarisation vectors can also be expressed in terms of spinors, via the

relations

εμ
+(p) =

〈q|σ μ |p]√
2〈qp〉 ,

εμ
−(p) =

〈p|σ μ |q]√
2[pq]

, (6.6)

describing a positive-helicity and negative-helicity gluon respectively. Note

that |q] and |q〉 are arbitrary reference spinors, parametrising the redundancy

due to gauge invariance. Any gauge invariant observables, such as amplitudes,

will not depend on the reference spinors and can hence be written only in terms

of the Weyl spinors |p] and |p〉. For instance, we can rewrite eq. (6.2) as

A (A−
1 A−

2 A+
3 ) =

〈12〉3

〈23〉〈31〉 , (6.7)

where we assumed helicities h1 = h2 = −1 and h3 = +1. This is known as

the three-point Parke-Taylor formula and it can be extended to higher-point

amplitudes.

Note that the amplitude behaves correctly under little group transforma-

tions, namely

A (Ah1
1 . . .)

|1]→t|1]−−−−−→
|1〉→ 1

t |1〉
t2h1A (Ah1

1 . . .), (6.8)

and similarly for the other particles Ahi
i . Moreover, since the spinors |p] and |p〉

only contain two on-shell degrees of freedom, there is no gauge redundancy

and no need for identities similar to eq. (6.3).
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7. Massive Spinor-Helicity

7.1 On-shell Construction of Amplitudes
In the previous section, we learned that massless particles can be described by

on-shell spinors. These automatically encode the correct number of degrees

of freedom, hence they are not sensitive to any gauge redundancy. Below we

will see that the same can be done for massive particles. An on-shell massive

spin-s particle can be thought of as a tensor product of 2s spin-1/2 particles.

The latter can be described by Weyl spinors |pa]α̇ and |pa〉α for any given

momentum p2 =m2, where a= 1,2 is the index associated to the massive little

group SU(2) [108]. The little group indices encode the SU(2) spin degrees of

freedom of the particles: a = 1 corresponds to spin up and a = 2 to spin down,

for an appropriate choice of basis. We can define little-group polarisation

variables za and bolded spinors as follows

|ppp] = za|pa] , |ppp〉= za|pa〉. (7.1)

The Dirac spinors ū(p) and v(p), describing an outgoing particle and outgoing

antiparticle respectively, can be written in terms of Weyl spinors as

ū(p) =
(〈ppp|,−[ppp|) , v(p) =

(|ppp〉
|ppp]
)
, (7.2)

where [ppp|α̇ = εα̇β̇ |ppp]β̇ and 〈ppp|α = εαβ |ppp〉β . The spinors can be related to

standard on-shell polarisation vectors and momenta as follows

εμ(p) =
〈ppp|σ μ |ppp]√

2m
, pμ =

1

2
〈pa|σ μ |pa], (7.3)

where little group indices are lowered with the Levi-Civita tensor εab. There-

fore, any scattering amplitude can be written entirely in terms of spinors, or

alternatively in terms of bold spinors and momenta. We will use the latter

approach below.

Note that angle and square spinors are not independent, since they are re-

lated by the Dirac equation

p ·σ |ppp] = m|ppp〉 , p · σ̄ |ppp〉= m|ppp], (7.4)

where as before σ μ are Pauli matrices. Therefore, we can work with only

square (or angle) spinors without loss of generality. A spin-s particle is de-

scribed by the tensor product

|p(a1 ] · · · |pa2s)]. (7.5)

37



The product of 2s spin-1/2 states produces states with spins {s,s− 1, . . . ,0}
and the symmetrisation in eq. (7.5) ensures only the spin-s state survives. The

number of degrees of freedom is 2s+ 1, as expected. Using bold spinors we

write this simply as |ppp]2s, since the za variables guarantee symmetrisation.

Any scattering amplitude A (Φs(p) . . .) involving a spin-s particle Φs must

hence satisfy

A (Φs(p) . . .) ∝ |ppp]2s, (7.6)

in order to transform correctly under the action of the little group. We can

use this property to find the most general scattering amplitudes with massive

spinning particles without the need for explicit Lagrangians.

As an example, we consider the construction of the most general tree-level

amplitude A (Φs
1Φ̄s

2A−
3 ) between two equal-mass spin-s particles Φs and a

negative-helicity massless vector A. Since the amplitude is a polynomial in

polarisation vectors and momenta, it is also polynomial in bold spinors and

momenta. Hence, all we need to do is identify a basis of monomials.

The dependence on the massless polarisation ε3 can be factored out in terms

of the structure

x± =

√
2

m
ε±3 · p1, (7.7)

we refer the reader to ref. [108] for details. The minus (plus) sign corresponds

to a vector of helicity −1 (+1). The only other independent objects that can

appear the amplitude are the spinors {|111], |222]} and two independent momenta,

which we pick to be {p1, p3}. Contractions between momenta reduce to fac-

tors of the mass, since p2
1 = m2 and p2

3 = p1 · p3 = 0. The only nonzero con-

traction between spinors is [111222], since [111111] = [222222] = 0. The last class of terms

we need to consider are contractions involving both spinors and momenta. We

only need the following set of building blocks,

{[111|p1 p3|222], [111|p1 p3|111], [222|p1 p3|222]}, (7.8)

where the momenta are assumed to be contracted into the appropriate Pauli

matrices. This is because only an even number of momenta can be placed in-

between two square spinors, and if one momentum appears twice we can get

rid of it via Clifford algebra identities. Moreover, [111|p1 p3|111] and [222|p1 p3|222]
can only appear together, since there must be an equal number of spinors for

particles 1 and 2. Since [111|p1 p3|111][222|p1 p3|222] = [111|p1 p3|222]2, the only structure

needed is the product [111|p1 p3|222].
In short, we can write any amplitude as

A (Φs
1Φ̄s

2A−
3 ) =

m
x

2s

∑
k=0

ck

m2s+2k [111222]2s−k[111|p1 p3|222]k, (7.9)

where ck are free coefficients and the factors of mass can be fixed by dimen-

sional analysis. Using the relation [111|p1 p3|222] = m(〈111222〉+ [111222]) we can also
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write a formula democratic in left- and right-handed spinors,

A (Φs
1Φ̄s

2A−
3 ) =

m
x

2s

∑
k=0

c̃k

m2s [111222]2s−k〈111222〉k, (7.10)

where c̃k are new free coefficients.

The same procedure outlined above can be repeated for the amplitude M (Φs
1Φ̄s

2h−3 )
between two massive spin-s particles and one negative-helicity graviton h. The

only difference is that the helicity of the massless particle is −2 instead of −1,

which leads to the following expression,

M (Φs
1Φ̄s

2h−3 ) =
m2

x2

2s

∑
k=0

c̃k

m2s [111222]2s−k〈111222〉k. (7.11)

7.2 AHH Amplitudes
We can compare eq. (7.10) to three-point amplitudes in a few known theories

[82]. The first example is a spin-1/2 fermion minimally-coupled to a massless

vector, such as electrons in QED. The Lagrangian is

L s=0 = ψ̄(i /D−m)ψ, (7.12)

where Dμ = ∂μ − ieAμ . The amplitude is

A (ψ1ψ̄s
2 A−

3 ) =
1

x
[111222]. (7.13)

Another example is a spin-1 massive particle, realised in nature by the W -

boson coupling to the photon in the Standard Model. The Lagrangian is

L s=1 = 2D[μWν ]D
[μW ν ]−m2W μW μ + ieFμνW μW ν . (7.14)

The amplitude is

A (W1W s
2 A−

3 ) =
1

mx
[111222]2. (7.15)

In the gravity case, we can consider minimally-coupled fields of spin s =
1/2,1,3/2, described by the Lagrangians

L s=1/2 =
√−gψ̄(i/∇−m)ψ,

L s=1 =
√−g

(
2∇[μW ν ]∇[μW ν ]−m2W μW μ

)
,

L s=3/2 =
√−gψ̄μγμνρ

(
i∇ν − m

2
γν

)
ψρ , (7.16)

where ∇μ is the covariant derivative with respect to the Levi-Civita connec-

tion. All such theories result in a three-point amplitude of form

M (Φs
1Φ̄s

2h−3 ) =
m2

x2

[111222]2s

m2s . (7.17)
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Note that the positive-helicity amplitude M (Φs
1Φ̄s

2h+3 ) is obtained by the

replacements x → x−1 and [111222]→〈111222〉. The results above suggest that there is

something special about the choice c̃k>0 = 0 in eq. (7.10) and (7.11). What all

the theories discussed above have in common is that they can be obtained from

a Kaluza-Klein reduction of the corresponding massless theories in higher di-

mensions, by truncating the tower of Kaluza-Klein states to the first massive

state. As such, the amplitudes in these theories have a finite massless limit.

This intuition is confirmed by studying the case of massive spin-2 particles

Hμν coupled to the graviton, where the amplitude

M (H1H2h−3 ) =
1

m2x2
[111222]4 (7.18)

comes from a Kaluza-Klein reduction of the Einstein-Hilbert Lagrangian, where

as shown in paper I the coupling of the massive particle to the graviton is given

by [82]

L s=2 =
√−g

(
∇μHνρ∇μHνρ −2∇νHν

μ∇ρHμ
ρ −Hρ

ρ∇μ∇νHμν

−Hρ
ρ ∇μ∇νHμν −∇μHν

ν∇μHρ
ρ −m2HμνHμν +m2Hμ

μHν
ν

−2Rμνρσ HμρHνσ
)
. (7.19)

For s > 2 states coupled to gravitons, or s > 1 states coupled to massless

vectors, there is no consistent massless theory in flat space, hence we can-

not rely on Kaluza-Klein reduction. However, the amplitudes (7.17) naturally

extend to all s, and so do their gauge-theory counterparts,

A (Φs
1Φ̄s

2 A−
3 ) =

m
x
[111222]2s

m2s . (7.20)

We will refer to the amplitudes (7.20) and (7.17) as AHH amplitudes, since

they were first discussed by the authors in ref. [108]. This brings us to one of

the main questions discussed in this thesis: what are the higher-spin theories

that produce these amplitudes, and what makes them special? This question

became even more compelling after the work of ref. [58, 59], showing that

eq. (7.17) is the amplitude for a Kerr black hole in the s → ∞ limit, as we

will show in more detail in part IV. Similarly, the s → ∞ limit of eq. (7.20)

reproduces the electromagnetic analog of the Kerr solution, known as root-
Kerr [68, 162]1.

A first hint to the answer comes from the spin-2 electromagnetic theory in

eq. (4.25), since its three-point amplitude A (H1H2 A−
3 ) also matches eq. (7.20),

for s= 2. This suggests that the AHH amplitudes may be the lowest-derivative

solution to massive gauge invariance, even for values of s that are not compat-

ible with naive Kaluza-Klein reduction. This idea is the main focus of paper

III and it will be discussed in more detail in part III.

1The root-Kerr solution is the electromagnetic field sourced by a Kerr-Newman black hole, as

discussed in ref. [67].
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Before moving on, it is useful to rewrite the amplitudes (7.20) and (7.17)

in covariant form, using polarisation vectors and momenta. We follow the

discussion in paper I and present the result as a generating function. Let us

use the shorthand AφφA = ε3 · p1 for the s = 0 amplitude and AWWA =
ε1·ε2 ε3·p1+ε2·ε3 ε1·p2+ε3·ε1 ε2·p3 for the s = 1 amplitude. Then we have,

up to overall normalisation,

∞

∑
s=0

m
x
[111222]2s

m2s = AφφA +
AWWA − (ε1 · ε2)

2AφφA

(1+ ε1 · ε2)2 + 2
m2 ε1 · p2 ε2 · p1

, (7.21)

where the spin-s amplitude can be obtained by expanding the denominator and

identifying the terms proportional to εs
1εs

2. In the gravity case, we have, up to

overall normalisation,

∞

∑
s=0

m2

x2

[111222]2s

m2s = (AφφA)
2 +AφφAAWWA +

(AWWA)
2 − (ε1 · ε2)

2AφφAAWWA

(1+ ε1 · ε2)2 + 2
m2 ε1 · p2 ε2 · p1

.

(7.22)

Note that the sum runs over integer values of s, but these formulae can be

generalised to half-integer spins, as discussed in paper I.

7.3 Compton Amplitude

In part IV we will see that eq. (7.17) can be used to compute observables for a

binary system of two spinning black holes, at leading order in the gravitational

constant G. Going beyond leading order is essential to accurately predict grav-

itational waveforms, and in principle it requires knowledge of all amplitudes

of form [19, 163, 164]

M (Φs
1Φ̄s

2 h3 . . .hn). (7.23)

To compute O(G2) observables, we only need the n = 4 case, the gravita-

tional Compton amplitude M (Φs
1Φ̄s

2 h3h4) between two massive higher-spin

particles and two gravitons. The gravitational Lagrangians discussed above

produce the following results for 0 ≤ s ≤ 2,

M (Φs
1Φ̄s

2 h+3 h+4 ) =
〈111222〉2s[34]4

m2s−4s12t13t14
, (7.24a)

M (Φs
1Φ̄s

2 h−3 h+4 ) =
[4|p1|3〉4−2s([4111]〈3222〉+[4222]〈3111〉)2s

s12t13t14
, (7.24b)

where s12 = (p1 + p2)
2, t13 = (p1 + p3)

2 − m2 and t14 = (p1 + p4)
2 − m2.

The other two helicity configurations can be obtained by conjugation. These

amplitudes can also be obtained without any knowledge of the Lagrangians, by

applying BCFW on-shell recursion to eq. (7.17) [62, 113]. Remarkably, they

correctly reproduce Kerr observables at O(G2) up to O(a4) in the angular
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momentum a of the black hole, as we will discuss in part IV. In the gauge

theory case, the story is similar. The Lagrangians discussed above produce the

amplitudes for 0 ≤ s ≤ 1,

A (Φs
1Φ̄s

2 A+
3 A+

4 ) =
〈111222〉2s[34]2

m2s−2t13t14
, (7.25a)

A (Φs
1Φ̄s

2 A−
3 A+

4 ) =
[4|p1|3〉2−2s([4111]〈3222〉+[4222]〈3111〉)2s

t13t14
, (7.25b)

assuming the massless vector is a U(1) photon. These can also be obtained by

applying BCFW recursion to eq. (7.20).

However, when attempting to extend eq. (7.24) beyond s = 2, or eq. (7.25)

beyond s = 1, one runs into trouble: the opposite-helicity amplitudes contain

negative powers of the term [4|p1|3〉. These are called spurious poles, since

they do not correspond to particle exchange, nor can any local Lagrangian give

rise to them. We interpret this as follows. Given helicities h3 and h4 for the

massless particles, BCFW on-shell recursion relations rely on the assumption

lim
z→∞

zA (Φs(p1),Φ̄s(p2),Ah3(p3 + zr),Ah4(p4 − zr))< ∞ , (7.26)

where z is a complex coordinate and rμ a four-vector such that r2 = r · p3 =
r · p4 = 0. This means the amplitude must go to zero in the special high-energy

limit defined by eq. (7.26). However, for s > 1 particles coupling to photons or

s > 2 particles coupling to gravitons, one expects the amplitude to diverge in

the high-energy limit, since there are no consistent interacting massless higher-

spin states in flat space. Hence it is not too surprising that BCFW recursion

fails to produce valid amplitudes for massive higher-spin particles.

Since one cannot rely on on-shell recursion relations, we can write down

Lagrangians that reproduce the amplitudes (7.17) and (7.20). However, we

are free to add four-point (and higher-point) contact interactions without mod-

ifying the three-point amplitudes. The papers presented in this thesis show

how to significantly reduce this freedom by imposing constraints from mas-

sive gauge invariance and requiring an improved high-energy behaviour.
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Part III:
Higher-Spin Ward Identities





8. Overview

In section I we have seen how to construct massive higher-spin theories, high-

lighting the role of massive gauge invariance in ensuring the theory is healthy.

This provides a framework to construct Lagrangians for any spin and any mul-

tiplicity, and easily identify interesting solutions, such as eq. (4.25). However,

Lagrangians are highly redundant objects and computations quickly become

intractable.

In section II we have seen a very different approach to constructing higher-

spin theories. We have focussed directly on on-shell amplitudes, thus avoiding

unphysical ambiguities, and introduced a set of variables that automatically

encode the correct degrees of freedom. This allowed us to identify a special

class of three-point amplitudes, shown in eq. (7.17) and eq. (7.20), and use it to

derive the four-point Compton amplitudes (7.24) and (7.25). However, for s >
2 (or s > 1 in the electromagnetic case), the on-shell techniques used to derive

the Compton amplitudes are no longer complete and a proper understanding

of the theories underlying the AHH amplitudes is missing.

Papers I and III aim to find a common ground between the two approaches,

using on-shell techniques that greatly simplify calculations without losing the

connection to Lagrangians and massive gauge invariance. The main result

is an all-spin understanding of the theories that give rise to eq. (7.17) and

eq. (7.20), together with new results for higher-spin Compton amplitudes.

This provides a new framework to study Kerr observables, as discussed in

section IV, as well as a powerful way to construct higher-spin theories beyond

what has been done via standard methods. There are two main tools that make

all this possible. The first is a high-energy unitarity constraint, which we refer

to as the current constraint. The second is an on-shell realisation of massive

gauge invariance, in terms of higher-spin massive Ward identities. We will

present both in more detail below.
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9. Current Constraint

A first attempt to pin down the higher-spin theories that give rise to the AHH

amplitudes is outlined in paper I. As we discussed earlier, for s ≤ 2 in gravity

and s ≤ 1 in gauge theory the AHH amplitudes come from simple Kaluza-

Klein reduction of massless theories in five dimensions. Let us consider one

such theory, with a massless field φ s≤2 coupled to the graviton hμν , or a mass-

less field φ s≤1 coupled to a photon or gluon Aμ . We call V (φ s
1 φ̄ s

2 Ah
3) the off-

shell three-point vertex of this theory, where h= 1,2 denotes the helicity of the

massless particle, A1 ≡ Aμ is the massless vector and A2 ≡ hμν the graviton.

Since the underlying Lagrangian is gauge-invariant, the vertex will obey the

Ward identity

p1 · ∂
∂ε1

V (φ s
1 φ̄ s

2 Ah
3)
∣∣
(2,3)

= 0, (9.1)

where the subscript (i, j, . . .) means that legs i, j, . . . are subject to on-shell

conditions, meaning p2
i = ε2

i = εi · pi = 0. The polarisation vector ε1 is simply

a placeholder, since leg 1 is off-shell, and the operator p1 ·(∂/∂ε1) implements

the replacement εμ1
1 . . .εμs

1 → p(μ1
1 εμ1

1 . . .εμs)
1 . Upon dimensional reduction,

the field φ s contains a massive four-dimensional spin-s field Φs and eq. (9.1)

becomes

p1 · ∂
∂ε1

V (Φs
1 Φ̄s

2 Ah
3)
∣∣
(2,3)

= O(m), (9.2)

meaning that violations to the Ward identity must be proportional to the mass,

so that it is still valid in the m → 0 limit. Note that in this case p2
2 = m2 on-

shell. We call eq. (9.2) the current constraint. Let us see it in action in the

example of a massive charged spin-1 field. We consider the Lagrangian

L = 2D[μWν ]D
[μW ν ]−m2W μW μ + ieαFμνW μW ν , (9.3)

where α is a free parameter. We know α = 1 is the value that follows from

Kaluza-Klein reduction. Indeed, the three-point vertex is

V (W1W 2 A3)
∣∣
(2,3)

= ε1 · ε2 ε3 · (p2 − p1)− ε2 · ε3 ε1 · p2 + ε3 · ε1 ε2 · p1

−α f μν
3 ε2με1ν , (9.4)

where p1 is off-shell and hence ε1 is arbitrary. Here f μν
3 = 2p[μ3 εν ]

3 . It is

easy to check that p1 · (∂/∂ε1)V (W1W 2 A3)
∣∣
(2,3)

= O(m) requires α = 1, as

expected.
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Figure 9.1. Feynman diagram contributing to the Compton amplitude A (Φs Φ̄s AA),
with an exchange of the massive field.

To get some more intuition on the consequences of the current constraint,

let us consider the diagram in figure 9.1, contributing to the Compton am-

plitude A (W1W 2 A3 A4). The ingredients to compute this diagram are two

vertices (9.4), relabelled appropriately, and the massive propagator

Δμν(P) =
1

P2 −m2

(
ημν − PμPν

m2

)
, (9.5)

where P is the off-shell exchanged momentum. Due to the m2 factor at the

denominator, the Compton amplitude is in general divergent in the m → 0

limit. However, if the current constraint is satisfied, the mass divergence will

disappear due to the factor PμPν contracted into the vertices. This confirms

that the value α = 1 leads to a well-defined massless limit, for s < 2.

In the case of s > 1 charged particles, or s > 2 particles coupled to gravity,

we do not expect the theory to have a well-defined massless limit. Nonethe-

less, the constraint (9.2) has been applied to higher-spin theories in the litera-

ture [120–122]. As an example, we consider a charged spin-3/2 particle [165].

The most general one-derivative Lagrangian is

L =ψ̄μγμνρ

(
iDν − 1

2
mγν
)

ψρ − ie
m

(
l1ψ̄μFμνψν + l2ψ̄μFρσ γργσ ψμ

+ l3Fμν(ψ̄μγνγ ·ψ + ψ̄ · γ γμψν)+ l4ψ̄ · γFρσ γργσ γ ·ψ
+ il5Fμν(ψ̄μγνγ ·ψ − ψ̄ · γ γμψν)

)
, (9.6)

where li are free parameters. The current constraint (9.2) fixes their value to

be

l1 =−2, l2 = 1/2, l3 = 1, l5 = 0. (9.7)

Note that l4 does not appear since ψ̄ ·γ = 0 on-shell, but we can neglect it since

it does not contribute to the three-point and four-point amplitudes studied in
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this thesis 1. The Lagrangian following from eq. (9.7) can be rewritten as

L = Lmin + ψ̄μ

(
Fμν − i

2
γ5εμναβ Fαβ

)
ψν , (9.8)

where γ5 = iγ0γ1γ2γ3 and Lmin is the minimally-coupled Lagrangian. This

reproduces a truncation of N = 2 gauged supergravity [166]. Moreover, the

three-point amplitude is

A (ψ1 ψ̄2 A−
3 ) =

1

x
[111222]3

m2
, (9.9)

matching eq. (7.20) for s = 3/2.

Hence, the current constraint provides a promising avenue to understand

the AHH amplitudes for higher-spin particles, and we can take this further by

studying the Compton amplitude. The diagram in figure 9.1 now contains the

massive propagator

Δμν(P)∼
(

ημν − PμPν

m2

)(
/P+m

)
+

1

3

(Pμ

m
+ γμ

)(
/P−m

)(Pν

m
+ γν

)
.

(9.10)

Similarly to the spin-1 case, this introduces mass divergences in the amplitude,

but the current constraint removes them. However, the Compton amplitude

does not have a finite massless limit, due to additional mass divergences in the

Lagrangian (9.8). Nonetheless, we expect it to have an improved high-energy

behaviour. The Compton amplitudes obtained are

A ++
4 =

〈111222〉3[34]2

mt13t14
,

A −+
4 =

[4111]〈3222〉+[4222]〈3111〉
[4|p1|3〉

(
([4111]〈3222〉+[4222]〈3111〉)2

t13t14
− [1114][2224]〈1113〉〈2223〉

m4

)
,

(9.11)

where A h3h4
4 ≡ A (ψ1 ψ̄2 Ah3

3 Ah4
4 ). Remarkably, the same-helicity amplitude

A ++
4 matches eq. (7.25), meaning that eq. (7.26) is satisfied for this helic-

ity configuration. In the opposite-helicity case, the amplitude A −+
4 differs

from eq. (7.25) by an O(m−4) correction term. Although this is not mani-

fest in eq. (9.11), there is no spurious pole [4|p1|3〉 and the amplitude can

be rewritten so that only physical poles appear, as presented in paper I. This

amplitude is special since it has the smallest possible mass divergence com-

patible with the AHH amplitudes. Indeed, any other Compton amplitude that

1A massive spin-(n+ 1
2 ) on-shell particle can be described by a tensor-spinor ψα

μ1...μn
, where

α is a Dirac spinor index, μi are Lorentz indices and n is an integer. The tensor-spinor is

transverse, symmetric and traceless in the Lorentz indices. Moreover, it obeys the condition

γμ1

αβ ψβ
μ1...μn = 0, known as gamma-tracelessness.
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matches eq. (7.20) on the factorisation channel must differ from eq. (9.11) by

a contact term. Such contact term must contain three spinors for each massive

particle and two for each massless particle, by representation theory. Since

each spinor has mass dimension 1/2 and the amplitude must have zero mass

dimension, we conclude any contact term will be at least O(m−5). This shows

that the current constraint singles out higher-spin effective field theories with

an improved cutoff, since the resulting amplitudes have the tamest possible

divergence in the high-energy limit [122].

A similar analysis can be carried out in the case of a massive spin-5/2 field

coupled to gravity. The lowest-derivative solution of the current constraint is

the Lagrangian

L = Lmin + ψ̄μρ

(
Rμνρσ − i

2
γ5ερσαβ Rμν

αβ

)
ψνσ . (9.12)

The three-point amplitude is

A (ψ1 ψ̄2 h−3 ) =
1

x2

[111222]5

m3
, (9.13)

matching eq. (7.17) for s = 5/2. The Compton amplitudes obtained are

M++
4 =

〈111222〉5[34]4

ms12t13t14
,

M−+
4 =

[4111]〈3222〉+[4222]〈3111〉
[4|p1|3〉

(
([4111]〈3222〉+[4222]〈3111〉)4

s12t13t14
− ([1114][2224]〈1113〉〈2223〉)2

m6

)
,

(9.14)

where M h3h4
4 ≡ M (ψ1 ψ̄2 hh3

3 hh4
4 ). Similarly to the spin-3/2 case above, this

matches the same-helicity Compton amplitude (7.24) and it produces a new

spurious-pole-free opposite-helicity Compton amplitude. Once again, the lat-

ter has the smallest possible mass divergence compatible with eq. (7.17), since

any contact term is at least O(m−7).
Now we turn our attention to s ≥ 2 in gauge theory and s ≥ 3 in gravity. A

consequence of eq. (9.2) is that the high-energy limit pi � m of V (Φs
1Φ̄s

2Ah
3)

satisfies a massless Ward identity similar to eq. (9.1). Namely,

p1 · ∂
∂ε1

V (Φs
1Φ̄s

2Ah
3)
∣∣
(2,3)

= 0+ . . . (9.15)

where the dots denote subleading terms. The lowest-derivative solution to

eq. (9.15) has 2s− h derivatives, and the corresponding on-shell amplitude

A (Φs
1Φ̄s

2Ah
3) =V (Φs

1Φ̄s
2Ah

3)
∣∣
(1,2,3)

is given by

A (Φs
1Φ̄s

2Ah
3) =

(ε1·p2 ε2·p1)
s−h

m2s−2h (ε1·ε2 ε3·p1+ ε2·ε3 ε1·p2 + ε3·ε1 ε2·p3)
h

+O(m−2s+2h+1), (9.16)
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where we assumed all particles are on-shell for simplicity. This implies that

the highest-derivative vertex originates from a massless higher-spin theory, as

discussed at the end of section I. Also, eq. (9.16) correctly reproduces the

highest-derivative part of the AHH amplitudes for any spin, which can be

checked by comparing to eq. (7.21) and eq. (7.22). Although this is promis-

ing, the same highest-derivative term appears in the superstring amplitudes in

eq. (5.6). Since the latter is not equal to the AHH amplitudes for generic spin

s, we may expect the current constraint to not give a unique solution.

We can check this explicitly by constructing an ansatz with 2s− h deriva-

tives and imposing eq. (9.2). For instance, the gauge theory case the solution

yields

A (Φs
1 Φ̄s

2 A−
3 ) =

1

x
[111222]3

m2s−1

2s−3

∑
k=0

ck[111222]2s−3−k〈111222〉k, (9.17)

where ck are free parameters. As anticipated, something is still missing to

understand the AHH amplitudes for any spin. The same observation applies

to the gravity case. In the next section we show this is related to the massive

gauge invariance discussed in part I.
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10. Massive Ward Identities

From eq. (9.17) we see that the current constraint is compatible with the AHH

amplitude for a charged massive particle with spin s ≥ 2, but it does not pre-

dict it uniquely. However, in eq. (4.27) we see that the s = 2 amplitude fol-

lows from imposing massive gauge invariance. Therefore, we are motivated to

study gauge invariant Lagrangians for massive particles of higher spins. How-

ever, as we learned in section I this is not an easy task. In particular, it requires

not only introducing non-minimal terms in the Lagrangian but also adding

non-linear corrections to the gauge transformations. On the other hand, in

massless theories gauge invariance can be imposed directly on scattering am-

plitudes in the form of the Ward identity (9.1), which only requires knowledge

of the linear gauge transformation. This motivates the work of paper III, where

analogous identities are derived to simplify the problem.

10.1 Low-Spin Examples

We can start from the charged massive spin-1 field described by the Lagrangian

in eq. (4.11) and eq. (4.13). The three-point vertices obey the identity

ipμ
1

∂
∂εμ

1

V (W1W 2A3)−mV (ϕ1W 2A3)

∣∣∣∣
(2,3)

= 0. (10.1)

In the m → 0 limit this reduces to eq. (9.1), hence we refer to it as a massive
Ward identity. Note that it follows directly from the linearised gauge transfor-

mations (4.9), meaning its form only depends on the free theory. This allows

us to bypass the explicit construction of the interaction Lagrangian: once the

free theory is known, we compute the minimally-coupled part of V (W1W̄2A3)
and V (ϕ1W̄2A3), we make an ansatz for the non-minimal part and we fix it via

the identity (10.1). The lowest-derivative solution to eq. (10.1) is

V (W1W̄2A3) = ε1· ε2 ε3·(p1 − p2)+ ε2· ε3 ε1·(p2 − p3)+ ε3· ε1 ε2·(p3 − p1),

V (ϕ1W̄2A3) = imε2 · ε3. (10.2)

This reproduces the three-point amplitude (4.15) previously derived from the

full Lagrangian.

We can apply the same method to a charged massive spin-2 particle. We

start with the minimally-coupled Lagrangian (4.22), we make an ansatz for
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the non-minimal terms and impose the identities

ip1· ∂
∂ε1

V (H1,H2,A3)+mV (B1,H2,A3)
∣∣
(2,3)

= 0,

m
∂

∂ε1
· ∂
∂ε1

V (H1,H2,A3)+ ip1· ∂
∂ε1

V (B1,H2,A3)+mV (φ1,H2,A3)
∣∣
(2,3)

= 0,

(10.3)

following the gauge transformations (4.23). The operator (∂/∂ε1) ·(∂/∂ε1) is

equivalent to the replacement ε1με1ν → 2ημν . We expect the lowest-derivative

solution to agree with the Lagrangian (4.25), which contains vertices with at

most three derivatives, so we construct an ansatz with up to three powers of

momenta. The general solution gives the following on-shell three-point am-

plitude,

A (H1,H2,A3) =−
(

α
m2

ε1 · p2 ε2 · p1 +
4+α

2
ε1 · ε2

)
(ε1 · ε2 ε3 · p1

+ ε2 · ε3 ε1 · p2 + ε3 · ε1 ε2 · p3)+
α
2
(ε1 · ε2)

2 ε3 · p1,

(10.4)

up to overall normalisation, where α is a free parameter. Further imposing the

current constraint (9.2) fixes α = 4, recovering eq. (4.27) and hence the AHH

amplitude. Note that the choice α = 0 recovers the lower-derivative solution

mentioned in section I and ref. [119], which was discarded as less interesting.

Now we can make this statement more precise, since that solution is ruled out

by the current constraint.

10.2 Arbitrary Spin
As shown above, for charged massive higher-spin particles, if we combine the

massive Ward identities and the current constraint, the AHH amplitudes (7.20)

are the unique lowest-derivative solution up to s = 2. This is an improvement

on eq. (9.17). Now we want to see if the same methods can be used to fix the

amplitudes for s > 2.

As discussed, we expect the lowest-derivative cubic vertex to have 2s− h
derivatives, where s is the spin of the massive particle and h = 1,2 the helicity

of the massless one. We can improve on this by examining eq. (4.11) and

eq. (4.25). There the vertices V (Φs1
1 Φs2

2 A3) have at most s1+s2−1 derivatives,

where si is the rank of the tensor Φi. Moreover, V (Φs1
1 Φs2

2 A3) is zero if |s1 −
s2|> 1. We can generalise this via the conditions

V (Φs1
1 Φs2

2 Ah
3)∼ ∂ s1+s2−h, (10.5a)

V (Φs1
1 Φs1−k

2 Ah
3)
∣∣
k>h = 0, (10.5b)
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where h is the helicity of the massless particle, such that A±1 is a massless

vector Aμ and A±2 is a graviton hμν .

The Ward identities for arbitrary spin can be extracted from the free La-

grangian (4.30) and the transformations (4.28). We define the gauge-transformed

vertex V (ξ k
1 Φs

2Ah
3) as

V (ξ k
1 Φs

2Ah
3)≡mαkV (Φk

1Φs
2Ah

3)−
ip1

k+1
· ∂

∂ε1
V (Φk+1

1 Φs
2Ah

3)

+
m
2

βk+2

(
∂

∂ε1

)2

V (Φk+2
1 Φs

2Ah
3), (10.6)

obtained from the gauge variation of the three-point vertex with respect to the

gauge parameter ξ k
1 and proportional to the field Φ2. Then the massive Ward

identity reads

V (ξ k
1 Φs

2Ah
3)
∣∣
(2,3)

= 0. (10.7)

In order to solve eq. (10.7), we begin by computing the three-point vertices

that follow from the minimal coupling of the Lagrangian (4.30). Then, we

make an ansatz for the non-minimal vertices, which must be proportional to

the massless field strength Fμν (or the Riemann tensor Rμνρσ in the grav-

ity case) due to gauge invariance. In constructing the ansatz, we assume

eq. (10.5a). Combining minimal and non-minimal contributions, we obtain

the vertices V (Φk
1Φs

2Ah
3) and compute the gauge transformations V (ξ k

1 Φs
2Ah

3)
via eq. (10.6). Finally, we impose eq. (10.7). Assuming {s ≤ 1,h = 1} or

{s ≤ 2,h = 2}, this procedure yields a unique solution matching the ampli-

tudes (7.20) and (7.17). If we have h = 1 and general spin s, we get

A (Φs
1 Φ̄s

2 A−
3 ) = A0

[111222]2s

m2s

{
1+

s−1

∑
k=1

ck

(〈111222〉k

[111222]k
−1

)}
, (10.8)

where ck are free parameters and A0 = A (Φ0
1 Φ̄0

2 A−
3 ) is the scalar amplitude.

Imposing eq. (9.2) fixes ∑k ck = 0. Imposing both eq. (9.2) and eq. (10.5b)

fixes ck = 0. In the h = 2 case, the Ward identity (10.7) and eq. (10.5a) give

M (Φs
1 Φ̄s

2 h−3 )=M0
[111222]2s

m2s

{
1+

(
1−〈111222〉

[111222]

)2 s−4

∑
k=0

c′k
〈111222〉k

[111222]k

}
, (10.9)

where c′k are free parameters and M0 = M (Φ0
1 Φ̄0

2 h−3 ) is the scalar ampli-

tude. In this case, eq. (9.2) alone is sufficient to yield c′k = 0. The condi-

tion (10.5b) is compatible with this solution. Note that eq. (10.8) and eq. (10.9)

were checked explicitly up to s = 6, since the size of the ansatz increases very

rapidly with spin. Nonetheless, we believe this pattern to be valid for any spin,

since we are not aware of any new features starting from s > 6.

In short, the AHH amplitudes eq. (7.20) and eq. (7.17) are the unique solu-

tions to the massive Ward identities and the current constraint, assuming the
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lowest-derivative prescriptions eq. (10.5b) and eq. (10.5a). This is remarkable

since it provides a complete Lagrangian understanding of the AHH ampli-

tudes and it highlights the physical properties that underlie them. Moreover,

the methods outlined above can be extended to higher-point amplitudes. Be-

low we will apply them to the four-point Compton amplitudes and see how

they improve on the BCFW results of eq. (7.25) and eq. (7.24).

10.3 Compton Amplitudes

In order to use a gauge-invariant Lagrangian to compute the four-point am-

plitude in figure 12.2, we need to fix the gauge. The first gauge choice we

encountered in part I is the unitary-like gauge, where the traceless part of the

Stückelberg fields Φk<s is set to zero. The second gauge choice we encoun-

tered is the Feynman gauge, in which all the fields Φk<s are still present. Since

the explicit dependence on the Stückelberg fields was important in deriving the

Ward identities (10.7), we choose to work in Feynman gauge.

The propagators (Δ(k))
μ1...μk
ν1...νk for a rank-k field Φk can be computed from the

gauge-fixed Lagrangian (4.31), which can be written schematically as

LF =
s

∑
k=0

Φk ·K(k) ·Φk, (10.10)

where (K(k))
μ1...μk
ν1...νk is the two-derivative kinetic operator. Since the fields Φk

are double-traceless, we can impose ημ1μ2
ημ3μ4

(K(k))
μ1...μk
ν1...νk = 0 and similarly

ην1ν2ην3ν4(K(k))
μ1...μk
ν1...νk = 0. Therefore, the propagator Δ(k) is defined as the

inverse of K(k) within the subspace of double-traceless symmetric tensors.

In the s = 0 and s = 1 case, we have K(0) = (�+ m2) and (K(1))
μ
ν =

−δ μ
ν (�+m2), yielding Δ(0) = 1/(p2 −m2) and (Δ(1))

μ
ν = −δ μ

ν /(p2 −m2)
in momentum space. For s = 2 we have

(K(2))
μ1μ2
ν1ν2

=

(
δ (μ1

(ν1
δ μ2)

ν2)
− 1

2
ημ1μ2ην1ν2

)
(�+m2), (10.11)

resulting in

(Δ(2))
μ1μ2
ν1ν2

=
δ (μ1

(ν1
δ μ2)

ν2)
− 1

2 ημ1μ2ην1ν2

p2 −m2
. (10.12)

To solve the general case, we write an ansatz for the tensor Δ(k) and impose

the following equation,

K(k) ·Δ(k) ·K(k) = K(k). (10.13)

Note that we cannot write Δ(k) = (K(k))−1, because the operator K(k) is only

invertible when acting on double-traceless tensors. In addition, we impose
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p4

p1 p2

p3

Figure 10.1. Four-point contact interaction vertex between two massive particles 1

and 2 and two massless bosons 3 and 4. All momenta are assumed to be outgoing.

ημ1μ2
ημ3μ4

(Δ(k))
μ1...μk
ν1...νk = 0 and ην1ν2ην3ν4(Δ(k))

μ1...μk
ν1...νk = 0 to ensure the prop-

agator is restricted to the correct subspace. This yields a unique solution that

can be written as a generating function,

∞

∑
k=0

(ε)s·Δ(k)·(ε̄)s =
1

p2−m2

1− 1
4 ε2ε̄2

1+ ε · ε̄ + 1
4 ε2ε̄2

, (10.14)

where ε and ε̄ are arbitrary reference vectors and eq. (10.14) was checked

explicitly up to k = 10.

The propagators can be used, together with the three-point vertices, to com-

pute the massive exchange diagrams shown in figure 9.1. Then we need

the four-point contact terms V (Φk
1Φs

2Ah
3Ah

4) in figure 10.1. One contribution

comes from the expansion of the covariant derivatives in the quadratic and

cubic Lagrangians, for instance in eq. (4.22) and eq. (4.25). Another contri-

bution comes from new quartic vertices quadratic in the field strength Fμν ,

or the Riemann tensor Rμνρσ in the gravity case, and it is accounted for by

an ansatz. All the above ingredients can be used to compute the off-shell
Compton amplitude Aoff(Φk

1Φs
2Ah

3Ah
4), such that the physical on-shell ampli-

tude is A (Φs
1Φs

2Ah
3Ah

4) = Aoff(Φs
1Φs

2Ah
3Ah

4)
∣∣
(1,2,3,4)

1. We define the gauge-

transformed amplitude Aoff(ξ k
1 Φs

2Ah
3Ah

4) in the same fashion as eq. (10.6) and

impose the Ward identities

Aoff(ξ k
1 Φs

2Ah
3Ah

4)
∣∣
(2,3,4)

= 0, (10.15)

for all the gauge parameters ξ k.

For s ≤ 1 with h = 1, and s ≤ 2 with h = 2, the lowest-derivative solution to

eq. (10.15) yields a unique on-shell amplitude A (Φs
1Φs

2Ah
3Ah

4) and it matches

1The off-shell amplitude is to be understood as a four-point correlator stripped of the propaga-

tors for the external legs.
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eq. (7.25) and eq. (7.24). In the h = 1 case, the opposite-helicity amplitudes

A (Φs
1Φs

2A−
3 A+

4 ) can be rewritten in a convenient form,

A (Φs
1 Φs

2 A−
3 A+

4 )=
〈3|1|4]2(U +V )2s

m4st13t14
+
〈3|1|4]〈13〉[24]P2s

m4st13

+ 〈13〉〈32〉[14][42]
P2s−1

m4s +Cs, (10.16)

where Cs is a contact term, obeying Cs≤3/2 = 0. For integer k, Pk ≡ (2V )−1{(U+

V )k − (U −V )k} is a polynomial in the variables V = 1
2

(〈1|4|2]+ 〈2|4|1]) and

U = 1
2

(〈1|4|2]−〈2|4|1])− m[12]. We use the shorthand 〈a| i|b] ≡ 〈a| pi|b].
Note that, in the s = 3/2 case, eq. (10.16) reproduces the amplitude A −+

4 in

eq. (9.11).

For s = 2 and h = 1, we get a new opposite-helicity Compton amplitude,

given by eq. (10.16) with the contact term

C2 =
a

m8

{
〈3|1|4]〈12〉(〈12〉+[12])(〈1|3|2]〈23〉[14]+ 〈2|3|1]〈13〉[42])

+ 〈3|1|4]2[12]〈12〉3 + s12〈12〉[12]〈13〉〈32〉[14][42]
}

+
b

m6
(〈12〉2 +[12]2)〈13〉〈32〉[14][42]+

c
m6

〈12〉[12]〈13〉〈32〉[14][42],
(10.17)

where a,b and c are free parameters. Paper III discusses the classical limit of

eq. (10.16) via the techniques in section IV.

This result leaves a number of open questions. First, as mentioned in part II,

the amplitudes (7.20) reproduce the electromagnetic counterpart of the Kerr

solution, known as root-Kerr, at the linearised level. Hence, it would be inter-

esting to check if any choice of free parameters in eq. (10.17) can reproduce

root-Kerr observables at the next order in perturbation theory, as discussed in

part IV. However, there is currently no classical computation that this result

can be compared to. Another option is to repeat the analysis in the case of

a spin-3 particle in gravity, which can be directly compared to the classical

results for Kerr black holes in ref. [103]. Last but not least, in the three-

point case the current constraint (9.2) was crucial to fix the AHH amplitudes

uniquely. Its generalisation to the four-point case is not yet known, but it may

help further constrain the amplitude (10.17). We leave these questions to fu-

ture work.
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11. On-Shell Massive Ward Identities

The massive Ward identities defined above have made it possible to study

cubic vertices for particles of arbitrary spin, and find the theories that underlie

the AHH amplitudes. This is a major improvement on the methods in section I,

where even the cubic Lagrangian (4.25) for a spin-2 charged particle required

significant computational effort. Moreover, we were able to study four-point

vertices, a notoriously hard problem in the higher-spin literature, and obtain

explicit formulae for higher-spin Compton amplitudes.

The Ward identities are simpler than off-shell Lagrangians because they are

not sensitive to non-linear gauge transformations and because, since all but

one of the external legs are on-shell, they are less sensitive to redundancies

due to field redefinitions. Nonetheless, they still require knowledge of the

free higher-spin Lagrangians (4.30) and they depend on the definition of the

Stückelberg fields. For example, the normalisation of the fields is responsible

for the cumbersome factors αk and βk appearing in eq. (10.7). Such factors

are unphysical and do not affect on-shell scattering amplitudes, therefore there

should be a simpler on-shell framework that is independent of them.

In this section, we propose a candidate framework that reproduces the re-

sults obtained via eq. (10.7) but it requires no knowledge of explicit higher-

spin Lagrangians. More details will be given in upcoming work.

11.1 Free Theory

Let us start again from the free theory for a massive particle of spin s. In this

setting, the only non-trivial correlator is the two-point function, i.e. the propa-

gator (Δ(s)(p))μ1...μs
ν1...νs . For an on-shell momentum p2 = m2, this is proportional

to the state sum

(Δ(s)(p))μ1...μs
ν1...νs

∣∣∣
p2=m2

∝
2s+1

∑
I=1

ε̄ I(p)μ1...μsε I(p)ν1...νs ≡ (P(s)(p))μ1...μs
ν1...νs , (11.1)

where ε I(p) is a spin-s on-shell polarisation tensor, ε̄ I(p) is its complex con-

jugate and I is the little-group index in the spin-s representation. The tensor

P(s)(p) is known as the spin-s projector and it is traceless and transverse. This

simple property can be used to bootstrap P(s) to any spin. We can write an

ansatz for P(s)(E ,E )≡ E ·P(s) ·E , where E μ1...μs = E μ1 . . .E μs and E
μ1...μs

=

E
μ1 . . .E

μs
are arbitrary symmetric reference tensors. Note that, in previous
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sections, we used the symbol ε to denote on-shell polarisations, as well as ar-

bitrary tensors associated to off-shell momenta. In this section, we consider

arbitrary tensors associated to on-shell momenta, hence we use the new nota-

tion E . We impose the conditions

p · ∂
∂E

P(s)(E ,E ) = 0,

∂
∂E

· ∂
∂E

P(s)(E ,E ) = 0, (11.2)

and we find the unique solution

P(s)(E ,E ) =
s!

(2s)!

(
∂

∂P(1)(E ,E )

)s (
P(1)(E ,E )2 −P(1)(E ,E )P(1)(E ,E )

)s
,

(11.3)

where Pμν
(1)

= ημν − pμ pν/m2 is the spin-1 projector. Different representa-

tions of eq. (11.3) are discussed in paper I. Note that we assumed p2 = m2

throughout the calculation.

The conditions (11.2) imply that the longitudinal and trace polarisations

are projected out by the free higher-spin theory. This is exactly what gauge

invariance achieves in the Lagrangian (4.30). The correspondence between

off-shell gauge invariance and on-shell decoupling of unphysical states can be

extended to the interacting theory, as we will show below.

11.2 Interactions
Consider a scattering amplitude A (Φ̂s1

1 Φs2
2 . . .Φsn

n ) between n particles with

spin si and momenta p2
i =m2

i . Let the particles Φi≥2 be described by transverse-

traceless polarisation tensors εμ1...μsi
i = εμ1

i . . .εμsi
i , where ε2

i = ε i · pi = 0 as

usual. On the other hand, we want the particle Φ1 to be described by an ar-

bitrary polarisation tensor E
μ1...μs1
i , and we keep track of this via the hatted

notation Φ̂s1
1 . We propose that if the amplitude comes from a theory that satis-

fies massive gauge invariance, it will obey the relations

p1 · ∂
∂E 1

A (Φ̂s1
1 Φs2

2 . . .Φsn
n ) = 0,

∂
∂E 1

· ∂
∂E 1

A (Φ̂s1
1 Φs2

2 . . .Φsn
n ) = 0. (11.4)

We refer to eq. (11.4) as on-shell massive Ward identities. They are simply the

generalisation of eq. (11.2) to the interacting theory and they suggest that mas-

sive gauge invariance is equivalent to the decoupling of unphysical states from

scattering amplitudes 1. Note that each particle is described by a single field

1In this context, we call “unphysical states” anything outside the 2s+ 1 transverse-traceless

polarisations that describe a physical spin-s particle.
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Φsi
i , and there are no auxiliary Stückelberg fields. Once A (Φ̂s1

1 Φs2
2 . . .Φsn

n ) is

fixed, the physical scattering amplitude can be recovered via

A (Φs1
1 Φs2

2 . . .Φsn
n ) = A (Φ̂s1

1 Φs2
2 . . .Φsn

n )
∣∣
E 1=ε1

, (11.5)

where ε1 is the usual spin-s transverse-traceless polarisation tensor. There is

currently no proof for eq. (11.4), but we will present extensive evidence for its

validity below.

Let us apply the methods above to a few simple examples. We start with the

amplitude A (W1W 2A3) between two massive spin-1 particles and a photon.

There is one unphysical polarisation, given by

E μ =
pμ

m
. (11.6)

We construct an ansatz for A (Ŵ1W 2A3) and impose eq. (11.4), to ensure the

unphysical state decouples. The lowest-derivative solution to eq. (11.4) yields

A (W1W 2A3) = 2ε1· ε2 ε3·p1 +2ε2· ε3 ε1·p2 +2ε3· ε1 ε2·p3, (11.7)

matching eq. (4.15). We can repeat the analysis for the amplitude A (H1H2A3),
now in terms of two massive spin-2 particles Hμν . The unphysical states are

E μν =

{
p(μεν)

m
,

pμ pν

m2
,ημν

}
. (11.8)

The lowest-derivative solution to eq. (11.4) recovers eq. (10.4), previously

obtained from Ward identities.

In general, if we consider the amplitudes A (Φs
1Φs

2Ah
3), the lowest-derivative

solution matches eq. (10.8) and eq. (10.9), previously obtained by imposing

eq. (10.7) and eq. (10.5a). This is remarkable, since eq. (10.5a) was first intro-

duced as an assumption on the Stückelberg fields, and now we have derived it

from a framework where such fields are not present.

Furthermore, we can apply eq. (11.4) to the Compton amplitude. We study

the amplitudes A (Φ̂s
1Φs

2A3A4) with two massive spin-s fields and two pho-

tons. As before, the polarisation of the field Φ̂s
1 is left arbitrary. In the s = 1

case, we find a unique solution reproducing the amplitudes in eq. (7.25). In

the s = 2 case, we assume α = 4 in eq. (10.4) and construct the diagrams in

figure 9.1 by sewing together two on-shell three-point amplitudes. Explicitly,

assuming an exchanged momentum P = p2 + p3, we have a first diagram

1

P2 −m2 ∑
HP

A (Ĥ1HPA4)A (H−PH2A3), (11.9)

where the sum runs over all polarisations of the exchanged particle HP. Note

that, in principle, we should only sum over the physical transverse-traceless
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tensors εP. However, since the amplitudes satisfy eq. (11.4), we can include

arbitrary tensors E P and the unphysical ones will automatically decouple. This

amounts to contracting the Lorentz indices of HP and H−P between the two

amplitudes, without using any intermediate projector. The second diagram

is obtained from eq. (11.9) via the operation 3 ↔ 4. Once the diagrams are

computed, we make an ansatz for the contact term in figure 10.1 and sum up

all contributions into the amplitude A (Ĥ1H2A3A4). Remarkably, imposing

eq. (11.4) recovers exactly eq. (10.17).

Previously the amplitude (10.17) was obtained from eq. (10.7) after fix-

ing the gauge in the Lagrangian, deriving the propagators (10.14), extracting

contributions to the vertices due to covariant derivatives, assuming a rank-

dependent derivative counting for the Stückelberg fields. Now this result was

reproduced only using on-shell ansätze, without any need for auxiliary fields.

11.3 Open Questions

The on-shell Ward identities (11.4) provide a considerable simplification com-

pared to eq. (10.7). Moreover, it is remarkable that the intricate structure of

gauge-invariant higher-spin Lagrangians can be condensed into such simple

formulae. However, there are still some open questions. For instance, in the

s= 1 case the Feynman rules from eq. (4.14) produce the following amplitude,

A (Ŵ1W 2A3) =−2ε3·p1 E 1·ε2+2E 1·ε3 ε2·p1+ε2·ε3 E 1·(p3− p2). (11.10)

The unphysical polarisation E 1 = p1/m then yields

A (Ŵ1W 2A3)
∣∣
E 1=p1/m = m2ε2 · ε3, (11.11)

violating eq. (11.4). However, we can add to eq. (11.10) the term

−ε2·ε3 E 1·p1, (11.12)

without changing the physical scattering amplitude A (W1W 2A3). This will

cancel the right-hand side of eq. (11.11) and thus satisfy the on-shell Ward

identity. This suggests some degree of incompatibility between the gauge-

invariant off-shell Lagrangians and the idenitities (11.4), resolved only at the

level of physical on-shell observables. Although this may just be a healthy

feature of the formalism, it is worth trying to understand it further.

A related issue is the current constraint (9.2). As we have discussed above,

this constraint is important to fix the AHH amplitudes uniquely, for instance

by setting α = 4 in eq. (10.4). However, the vertices that satisfy it are obtained

from a higher-spin Lagrangian, such as in eq. (11.10), and hence they may be

incompatible with eq. (11.4). If we cannot rely on eq. (9.2), we have to find

an equivalent constraint that is compatible with the on-shell Ward identities.
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This may be related to requiring the tamest possible high-energy divergence in

the Compton amplitude, as discussed previously. This problem will be studied

more in detail in upcoming work.
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Part IV:
Classical Limits

In this section, we review the formalism required to extract classical observ-

ables from scattering amplitudes, focusing on the treatment of spin. We will

see how the three-point amplitudes discussed in previous parts can be matched

to the energy-momentum tensor for a black-hole, and can be used to compute

binary observables at leading order in the post-Minkowskian expansion. We

will also discuss how the Compton amplitude reproduces the classical cross-

section for gravitational-wave scattering on a black-hole background.





12. Schwarzschild Black Holes

We begin by reviewing the non-spinning case. From a distance, Schwarzschild

black holes can be described by the point-particle action Spp,

Spp = m
∫

d4xdλδ 4(x− z(λ ))
√
−gμν(x)żμ żν , (12.1)

where z(λ ) is the worldline of the black-hole, ż = dz/dλ [3, 8] and λ is a

worldline parameter. Using this as a source in Einstein’s equations, we can

study binary systems of two non-spinning black holes and extract observables

such as the gravitational potential and waveform. It has been shown that the

same observables can be obtained from the action S for a massive scalar field

minimally-coupled to gravity [167, 168],

S =

∫
d4x

√−g
(

1

2
gμν∇μφ∇νφ − m2

2
φ 2

)
. (12.2)

This is true in an appropriate kinematic limit, known as the classical limit,
where the momenta of the gravitons are much smaller than the momenta of

the massive scalars [10]. To see how this works, we consider a few simple

examples.

12.1 Energy-Momentum Tensor

Consider gμν = ημν +κhμν , where ημν is the flat Minkowski metric, hμν is

a small perturbation and κ =
√

32πG is the gravitational coupling. Then the

above action can be expanded as

S =
∫

d4x
(

1

2
∂μφ∂ μφ − m2

2
φ 2 +

κ
2

hμνT μν +O(h2
μν)

)
, (12.3)

where

T μν = ∂ μφ∂ νφ −ημν
(

1

2
∂ρφ∂ ρφ − m2

2
φ 2

)
(12.4)

is the linearised energy-momentum tensor. We can use it to compute the three-

point amplitude between two massive scalars and a graviton, given by

M (φ1φ2h3) = κ(ε3 · p1)
2 (12.5)
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up to overall normalisation. Note that we have p2
1 = p2

2 = m2, p2
3 = 0, εμν

3 =

εμ
3 εν

3 is the graviton polarisation tensor and ε3 · p3 = ε2
3 = 0.

On the other hand, the energy-momentum tensor of a Schwarzschild black

hole is, in momentum space [58],

T μν
Schw(−k) = 2πδ (p · k)pμ pν (12.6)

where p2 = m2 is the black-hole four-momentum. We can contract it with an

on-shell graviton hμν(k) = 2πδ (k2)εkμεkν to get

κhμν(k)T
μν

Schw(−k) = κ(2π)2δ (k2)δ (p · k)(εk · p)2. (12.7)

We see that, up to normalisation and delta functions, eq. (12.7) and eq. (12.5)

match upon identifying p ≡ p1 and k ≡ p3.

12.2 Scattering Angle

Consider the scattering problem between two non-spinning black holes, with

momenta p1 and p2 and masses m1 and m2, following the approach of ref. [169].

We assume that their Schwarzschild radii r(i)s = Gmi are much smaller than the

impact parameter b. This leads to a perturbative expansion in Gmi
b known as the

post-Minkowskian expansion. At leading order, the scattering angle is known

to be

θ =
4GE

b
Ê4 −2m2

1m2
2

Ê4 −4m2
1m2

2

+O(G2) (12.8)

where E2 = (p1+ p2)
2, Ê2 = E2−m2

1−m2
2 and we work in the centre-of-mass

frame p1 + p2 = (E,0,0,0). Below we will show how to reproduce this result

from the action (12.2).

We consider the 2 → 2 scattering amplitude M (q) ≡ M (φ1φ1′ϕ2ϕ2′) be-

tween two distinct scalar particles φ and ϕ , shown in figure 12.1. The incom-

ing momenta are −p1 and −p2 and the outgoing ones are p′1 and p′2. This

yields

M (q) =
−16πG

q2

(
m2

1m2
2 −2(p1 · p2)

2 − (p1 · p2)q2
)

(12.9)

where q = −p1 − p′1 is the momentum of the exchanged graviton. Classical

physics is reproduced in the limit q � pi,mi, so the last term in the brackets

can be neglected. A way to understand this intuitively is that classical physics

corresponds to the h̄ → 0 limit of quantum observables. However, the graviton

is classically a wave with macroscopic wavenumber q̄ = q/h̄. Therefore, we

need q → 0 to ensure q̄ remains finite. On the other hand, the masses mi and

momenta pi describe black holes, so we expect them to be finite macroscopic

quantities.
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p1 p′1

p2 p′2
Figure 12.1. Tree-level 2 → 2 scattering of two scalar particles, mediated by graviton

exchange.

In the limit described above, the G-expansion of the amplitude can be re-

summed in impact parameter space [170],

M (b)≡
∫

d2qe−iq·bM (q) = 2

√
Ê4 −4m2

1m2
2(e

χ(b)−1), (12.10)

where χ(b) is known as the eikonal phase. The vectors b and q lie in the scat-

tering plane, orthogonal to p1 and p2, and hence belong to a two-dimensional

subspace. At leading order in G, we have

χ(b)=
1

2

√
Ê4−4m2

1m2
2

∫ d2q
(2π)2

e−iq·bM (q)=−2G
Ê4 −2m2

1m2
2√

Ê4 −4m2
1m2

2

logb+ . . .

(12.11)

where the terms omitted are independent of b. The scattering angle can be

obtained from the eikonal, as explained in ref. [171], via

θ =
−2E

2

√
Ê4 −4m2

1m2
2

∂ χ
∂b

(12.12)

which recovers eq. (12.8).

If we had included the last term in eq. (12.9), we would have an additional

contribution to χ(b) proportional to δ 2(b). The delta function makes it obvi-

ous that this is a short-range effect, irrelevant to long-range classical compu-

tations [172].

12.3 Wave Scattering
Another interesting application is the case of a gravitational wave scattering

onto a black hole, as discussed in ref. [85, 103]. This process is described
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p4

p1 p2

p3

Figure 12.2. Compton amplitude describing the scattering of a graviton and a massive

particle or black hole. Legs 1 and 2 are massive states, legs 3 and 4 are massless

gravitons. All momenta are assumed to be outgoing.

by the Compton amplitude in figure 12.2 and it is important to compute next-

to-leading order post-Minkowskian binary observables in the amplitude-based

approach (see for instance ref. [11, 12, 18, 173]). Using the methods of black

hole perturbation theory, we consider an incoming plane wave ψin(x) = e−ik·x

and find the scattered wave ψout(x) ∝ eik′·x. We can then compute the differ-

ential cross-section dσ/dΩ for the scattered wave. For a Schwarzschild black

hole, this is known to be [174–177]

dσ
dΩ

=
G2m2

sin4 θ
2

(
cos8 θ

2
+ sin8 θ

2

)
(12.13)

where we work in the rest frame of the black hole and θ is the angle between

the incoming and outgoing wave momenta k and k′.
In quantum field theory, this process is described by the Compton amplitude

in figure 12.2. From the Lagrangian (12.2) one can work out the compact

formulae

M (φ1φ̄2h+3 h+4 ) = κ2 m4[34]4

s12t13t14
, (12.14a)

M (φ1φ̄2h−3 h+4 ) = κ2 [4|p1|3〉4

s12t13t14
, (12.14b)

in terms of the spinor-helicity variables discussed in part II, matching eq. (7.24)

for s = 0. As before we have s12 = (p1 + p2)
2, t13 = (p1 + p3)

2 − m and

t14 = (p1 + p4)
2 −m2. The other two helicity configurations can be obtained

from complex conjugation. Using the shorthand Ml3l4 ≡ M (φ1φ̄2hl3
3 hl4

4 ), the

differential cross-section is given by

dσ
dΩ

=
1

64π2m2
(M++M−−+M+−M−+) . (12.15)

68



To compare to the black-hole case, we identify p = −p1, k = −p4 and

k′ = p3 and use the parametrisation

pμ = (m,0,0,0),

k = ω(1,0,0,1),

k′ = ω(1,sinθ ,0,cosθ)+O
(ω

m

)
(12.16)

where we take ω � p,m, required for the classical limit. Then we have

M++M−− =
κ4m8s4

12

s2
12t2

13t2
14

=
κ4m4 sin8 θ

2

sin4 θ
2

,

M+−M−+ =
κ4(t13t14 −m2s12)

4

s2
12t2

13t2
14

=
κ4m4 cos8 θ

2

sin4 θ
2

, (12.17)

using [34]〈34〉=−s12 and [4|p1 |3〉 [3|p1 |4〉= t13t14−m2s2
12. Using the above,

it is easy to see that eq. (12.15) and eq. (12.13) are equal.
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13. Kerr Black Holes

A Kerr black hole can be described by its worldline position z(λ ) and its an-

gular momentum aμ(λ ), where λ is a worldline parameter such as the proper

time. We choose aμ(λ ) to have dimensions of length, such that its magnitude

is equal to the Kerr ring radius. The Kerr worldline action, a spinning gen-

eralisation of eq. (12.1), is known up to linear order in the Riemann tensor

Rμνρσ and it can be fixed by matching to the known Kerr energy-momentum

tensor T μν
Kerr [6, 109]. Similarly to the non-spinning case, we will show how to

reproduce T μν
Kerr from three-point scattering amplitudes of form M (Φs

1Φ̄s
2h3),

where Φs is a massive spin-s field. In particular, we will see that amplitudes

involving a spin-s particle can be used to extract Kerr observables up to O(a2s)
in the spin-multipole expansion.

However, starting from O(R2
μνρσ ) there are additional worldline operators

that can be added to the action. Their Wilson coefficients have been fixed up to

O(a4), but they are still unknown at higher spin order [103]. In the language of

scattering amplitudes, the four-point Compton amplitude M (Φs
1Φ̄s

2h3h4) that

reproduces Kerr observables is known up to s ≤ 2, but for higher spin fields

there is a contact term ambiguity [58, 59, 82, 102, 108].

Possible solutions to this issue are discussed in more detail in parts II and III.

In this section, we focus on the three-point and low-spin four-point cases and

review how to extract classical observables from scattering amplitudes with

spin.

13.1 Spin Vector in Quantum Field Theory

Classical spin degrees of freedom are encoded in the angular momentum four-

vector aμ . On the other hand, spin degrees of freedom of massive quantum

particles are described by polarisation tensors εμ1...μs = εμ1 . . .εμs . In order to

compare the two pictures, we need a more suitable choice of variables. In a

quantum theory, classical quantities can be reproduced from expectation val-

ues of the corresponding operator. The covariant form of the angular momen-

tum operator is the Pauli-Lubanski pseudovector, given in eq. (2.1). In order

to match the dimensions of the classical vector aμ , we define the ring-radius
operator aμ

(s),

aμ
(s) =

1

2m2
εμνρσ pνM(s)ρσ , (13.1)
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given in the spin-s representation. The spin-s Lorentz generators are

(M(s)ρσ )
μ(s)

ν(s) = 2isδ (μ1
[ρησ ](ν1

δ μ2
ν2

. . .δ μs)
νs)

, (13.2)

where we use a multi-index notation μ(s)≡ (μ1 . . .μs) with fully-symmetrised

Lorentz indices.

Given a particle described by the polarisation tensor ε(p)μ1...μs , we can

write down symmetrised expectation values of the operator (13.1),

〈a(μ1

(s) . . .a
μn)
(s) 〉=

1

(ε̄ · ε)s ε̄ρ(s)(a
(μ1

(s) aμ2

(s) . . .a
μn)
(s) )

ρ(s)
ν(s)ε

ν(s) (13.3)

where ε̄ is the complex-conjugate polarisation. As we are about to show, we

can rewrite any scattering amplitude in terms of the variables in eq. (13.3) and

the simple replacement 〈a(μ1

(s) . . .a
μn)
(s) 〉 → aμ1 . . .aμs will reproduce the correct

classical observables [178]. Note that we consider symmetrised products in

eq. (13.3), since by the Lorentz algebra we have [aμ
(s),a

ν
(s)]∼ εμνρσ pρa(s)σ and

hence antisymmetric contributions reduce to lower-spin effects. As discussed

in paper II, we can also write eq. (13.3) in terms of the massive spinor variables

in part II,

〈a(μ1

(s) . . .a
μn)
(s) 〉=

1

〈1̄1〉2s 〈1̄|α(2s)(a(μ1

(s) aμ2

(s) . . .a
μn)
(s) )

α(s)
β (s)|1〉β (2s) (13.4)

where α(2s) = (α1 . . .α2s) is a symmetrised spinor multi-index. This expres-

sion is also valid for half-integer spins.

13.2 Energy-Momentum Tensor

The linearised energy-momentum tensor of a Kerr black hole is, in momentum

space [58],

T μν(−k) = 2πδ (p · k)p(μ exp(ia∗ k)ν)
ρ pρ (13.5)

where p2 = m2 is the black-hole momentum, a = S/m the (rescaled) angular

momentum vector and (a∗ k)μ
ν = εμ

νρσ aρkσ . We can contract it with an on-

shell graviton hμν(k) = 2πδ (k2)εkμεkν to obtain a spinning generalisation of

eq. (12.7),

κhμν(k)T
μν

Kerr(−k) = κ(2π)2δ (k2)δ (p · k)(εk · p)2 exp(∓k ·a) (13.6)

where we used the identity iεμνρσ kμε±kν pρaσ =∓k ·aε±k · p for a graviton ε±k
with helicity ±2 [82]. If we want to describe Kerr physics from scattering

amplitudes, we need to find a quantum field theory that reproduces the above

result.
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A puzzle, in trying to match a quantum-field-theory amplitude M (Φs
1Φ̄s

2h3)
to eq. (13.6), is that the classical black hole has a definite momentum p,

whereas the three-point amplitude contains two massive momenta p1 and p2.

However, the classical limit implies p3 � p1, p2, meaning that the two mo-

menta only differ by an infinitesimally small amount. Hence we make the

identification p ≡−p1 and p2 = p+O(h̄). We can then write the polarisation

vector ε2 as a boost of ε1 as follows,

εμ
2 = ε̄ μ

1 − p3 · ε̄1

m2
1

(
pμ

1 +
1

2
pμ

3

)
, (13.7)

preserving the on-shell conditions ε2
2 = ε2 · p2 = 0. This formula is valid in the

case of p2
3 = 0, satisfied by the three-point on-shell kinematics. This allows us

to identify a unique polarisation vector ε ≡ ε1 to describe the black hole.

Alternatively, we can rewrite the amplitude in terms of massive spinor-

helicity variables via eq. (7.3), and use

|222〉= |1̄11〉+ 1

2m
(p3 ·σ) |1̄11],

|222] =−|1̄11]− 1

2m
(p3 · σ̄) |1̄11〉 , (13.8)

where |1̄11] = z̄a|1a], |1̄11〉 = z̄a |1a〉 and z̄a is the complex-conjugate of the little-

group polarisation variables za, discussed in part II.

Let us see how this works in a simple example. We consider two massive

spin-1 fields Wμ minimally coupled to a negative-helicity graviton hμν , to see

if they bear any connection to Kerr. The Lagrangian is given in eq. (7.16). The

three-point amplitude is

M (W1W 2h−3 ) = ε3·p1 (ε1·ε2 ε3·p1 + ε2·ε3 ε1·p2 + ε3·ε1 ε2·p3) =
1

x2
[111222]2.

(13.9)

Using eq. (13.7) and the following relation,

ε̄ μ
1 εν

1 =−m2〈a(μ
(1)

aν)
(1)
〉+ i

2
εμνρσ p1ρ〈a(1)σ 〉−

(
ημν − pμ

1 pν
1

m2

)
, (13.10)

we find

M (W1W 2h−3 ) = (ε3 · p1)
2

(
1+ p3 ·a+ (p3 ·a)2

2

)
. (13.11)

Remarkably, the amplitude (13.11) matches the spin-multipole expansion of

eq. (13.6) up to O(a2), upon identifying k ≡ p3. Higher-order terms do not

appear because (Mμν
(s) )

2s+1 can always be rewritten in terms of (Mμν
(s) )

k≤2s, by

the properties of finite-spin Lorentz generators. Therefore, to describe Kerr

we need to study the infinite-spin limit.
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In part II we discussed three-point amplitudes of form M (Φs
1Φ̄s

2h3) for any

spin, and identified the AHH amplitudes (7.17) as a special choice. Using

eq. (13.4) and eq. (13.8) we can rewrite them in terms of spin vectors as

m2

x2

[111222]2s

m2s = (ε3 · p1)
2

2s

∑
n=0

1

n!
(p3 ·a)n s→∞−−−→ (ε3 · p1)

2 exp(p3 ·a), (13.12)

reproducing eq. (13.6). We know from part III that the AHH amplitudes are

the lowest-derivative solution to constraints from gauge invariance and high-

energy unitarity. The fact that they also describe Kerr is remarkable and it

points to a deep connection between black-holes and fundamental particles.

Note that, as mentioned in part II, the Kerr solution has an electromagnetic

analog known as root-Kerr. The root-Kerr three-point amplitude is propor-

tional to (ε3 · p1)exp(p3 ·a) and this is reproduced by the amplitudes (7.20) in

the s → ∞ limit.

13.3 Classical Observables

In this section we briefly discuss how to compute classical observables in the

case of non-zero spin. The first observable we consider is the leading-order

scattering angle. The method is the same as the non-spinning case, so we

need to compute the amplitude in fig. 12.1, where this time the external states

have masses m1,m2 and spins s1,s2 → ∞. In the classical limit, q � p1, p2

and hence q2 = 0+O(h̄2). This implies the exchanged graviton is effectively

on-shell and the answer can be written as a product of three-point amplitudes,

M (q) h̄→0−−→ 1

q2 ∑
±

M (Φ∞
1 Φ̄∞

1′h
∓
q )M (Φ∞

2 Φ̄∞
2′h

±
−q). (13.13)

Using the amplitudes in eq. (13.12) we obtain [63, 69, 81, 106]

M (q) =
κ2

4

m2
1m2

2σ2

q2 ∑
±
(1± v)2 exp

(
±i

ε(p1, p2,q,a)
m1m2σv

)
, (13.14)

where σ = 1/
√

1− v2 = (p1 · p2)/(m1m2) is the relativistic Lorentz factor,

and aμ = aμ
1 +aμ

2 . We used the relation m1m2σ vq ·a = iε(p1, p2,q,a), where

ε(p1, p2,q,a) denotes a contraction with the Levi-Civita tensor, to obtain a

parity-even expression, since aμ is parity-odd. Following the same steps as in

the non-spinning case, we reproduce the known scattering angle [58, 109],

θ =
GE
v2 ∑

±

(1± v)2

b± (a1 +a2)
+O(G2), (13.15)

where we assumed the spins a1 and a2 are aligned and E2 = (p1 + p2)
2 as be-

fore. If they are not aligned, the motion of the two black holes is not confined
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to a plane and hence the angle θ is ill-defined. In that case, we can compute

covariant observables such as the total change in momentum Δpμ (see ref. [63]

for details).

Next, we consider wave scattering on a Kerr black hole background. We

use the shorthand M l3l4
4 = M (Φ∞Φ̄∞hl3

3 hl4
4 ) for the amplitudes (7.24). In the

classical limit, each helicity sector simplifies to

M−+
4 = M 0,−+

4 e(2w−p4+p3)·a,

M++
4 = M 0,++

4 e(−p4−p3)·a, (13.16)

where wμ = [4|σ̄ μ |3〉(t13 − t14)/(4[4|p1|3〉) [69, 91, 92, 103]. This has been

explicitly compared against solutions to the Teukolsky equations, governing

wave scattering on Kerr background, up to O(a6) in ref. [103]. Perfect match-

ing was found up to O(a4), where the amplitudes (13.16) are free of spurious

poles. However, at O(a5) and O(a6), there are additional terms in the Teukol-

sky result for M−+
4 , which are not yet understood from the quantum field

theory side. This is a compelling motivation to study the structure of mas-

sive higher-spin theories and find new higher-spin Compton amplitudes, as

discussed in part III.
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14. Classical Strings

The methods outlined so far to compute classical observables with spin have

been almost exclusively applied to the case of black holes and the ampli-

tudes (7.17). Paper II discusses another example that is instructive to better

understand the formalism: relativistic strings. As discussed in the context

of eq. (13.16), the Compton (and higher-point) amplitudes that describe Kerr

black holes are not known to all orders in spin. String theory could hold the

key to resolving this problem. If one found a string state (or superposition of

string states) that reproduces the Kerr three-point amplitude (13.6), all higher-

point amplitudes involving such a state could be computed unambiguously via

the string path integral. This provides a strong motivation to study the classical

limit of string amplitudes.

We start from the three-point amplitude between a photon and two leading

Regge trajectory states of the open superstring, given by eq. (5.6). Rewriting

it in terms of spin vectors, we obtain

A (Φs
1Φs

2 A−
3 ) = gε−3 · p1

2s

∑
n=0

c(s)n (p3 ·a)n (14.1)

where

c(s)0 = c(s)1 = 1, c(s)2 =
4s2 −7s+4

2s(2s−1)
, c(s)3 =

2s−3

2(2s−1)
, . . . (14.2)

and we omit c(s)n>3 for simplicity (more details provided in paper II). To extract

classical observables, we consider the s → ∞ limit, yielding

lim
s→∞

A (Φs
1Φs

2 A−
3 ) = gε−3 · p1 (I0(2p3 ·a)+ I1(2p3 ·a)) (14.3)

where I0(x) and I1(x) are modified Bessel functions of the first kind 1. Now all

that is left is to find a classical system that reproduces this result. We expect

it to be a classical solution of the string theory equations of motion, which

follow from the action (5.1). A well-known solution is that of a rigid string

1The Bessel functions are defined by I0(2x) = ∑∞
k=0(1/(k!)2)x2k and

I1(2x) = ∑∞
k=0 1/(k!(k+1)!)x2k+1.
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Figure 14.1. Rigid open string rotating about its centre. Total length 2a and angular

velocity 1/a. Electromagnetic coupling realised by placing a charge g at one endpoint.

rotating about its centre, as shown in fig. 14.1, given by [179–181]

X0 = τ,

X1 = acos
τ
a

sin
σ
a
,

X2 = asin
τ
a

sin
σ
a
,

X3 = 0, (14.4)

where σ ∈ [−πa
2 , πa

2 ] and τ ∈ (−∞,∞) parametrise the string worldsheet. The

three-point amplitude (14.3) encodes the linear coupling of the massive string

to the photon, classically described by the electromagnetic current jμ(x). The

above solution can be coupled to the electromagnetic field by placing a charge

g at the endpoint, as discussed in ref. [182], such that

jμ(x) = (ρ(x), j(x))μ =
g
a

δ (r−a)δ (φ − t/a)δ (z)nμ , (14.5)

where nμ = (1,−sin(t/a),cos(t/a),0) in the coordinates (X0,X1,X2,X3). We

use r =
√

(X1)2 +(X2)2, φ = arctan(X2/X1) and z = X3. To find the three-

point amplitude, we Fourier transform jμ(x) and contract it with an on-shell
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photon state εk,

εk · j(−k) =
1

2πa

∫
d4x eik·x g

a
εk ·n δ (r−a)δ (φ − t/a)δ (z)

= g
εk · p

m
[I0(2k ·a)+ I1(2k ·a)] ,

(14.6)

where pμ = (m,0,0,0) is the total four-momentum of the string and aμ =
(0,0,0,a) its angular momentum. Identifying p ≡ p1 and k ≡ p3, we find

that the classical limit of leading Regge superstring amplitudes in eq. (14.3)

matches the string solution (14.4).

The gravitational case, also studied in paper II, is analogous to its electro-

magnetic counterpart. The closed string amplitude (5.9) can be rewritten in

terms of spin vectors as

M (Φs
1Φs

2h−3 ) = (ε−3 · p1)
2

2s

∑
n=0

c(s)n (p3 ·a)n, (14.7)

where

c(s)0 = c(s)1 = 1, c(s)2 =
3s2 −7s+8

2s(2s−1)
, c(s)3 =

3s2 −12s+14

2(2s−1)(2s−2)
, . . .

(14.8)

and we omit c(s)n>3 for simplicity. In the s → ∞ limit we have

lim
s→∞

M (Φs
1Φs

2h−3 ) = (ε−3 · p1)
2 (I0(p3 ·a)+ I1(p3 ·a))2 . (14.9)

The relevant string solution is identical to eq. (14.4), but now σ ∈ [−πa,πa]
describing a rigid folded closed string. The energy-momentum tensor of the

solution is

T μν =
1

πα ′
aγ(r)

r
nμν(r,φ)δ (z) [δ (t −aφ)+δ (t −aφ −aπ)]Θ(a− r),

(14.10)

where γ(r) =
(

1− r2

a2

)−1/2
, and

nμν(r,φ) =

⎛⎜⎜⎜⎝
1 − r

a sinφ r
a cosφ 0

− r
a sinφ r2

a2 − cos2 φ −1
2 sin2φ 0

r
a cosφ −1

2 sin2φ r2

a2 − sin2 φ 0

0 0 0 0

⎞⎟⎟⎟⎠ . (14.11)
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Contracting this with an on-shell graviton state εkμν = εkμεkν we get

εk ·T (−k) · εk =
1

2π2α ′

∫
d4x eik·x γ(r)

r
εk ·n·εk δ (z)

× (δ (t−aφ)+δ (t−aφ−aπ)
)
Θ(a−r)

=
(εk · p)2

m
[I0(k ·a)+ I1(k ·a)]2 (14.12)

reproducing eq. (14.9). The function Θ(x) is the Heaviside step function, equal

to 1 when x ≥ 0 and zero otherwise.

The classical limit of the string amplitudes discussed above has one impor-

tant difference to that of black holes and the AHH amplitudes. In eq. (14.2)

and eq. (14.8) we can see that the spin-multipole coefficients c(s)n depend on the

spin s, and the classical values can only be found after taking the s → ∞ limit.

On the other hand, the spin multipoles obtained from the amplitude (7.17) are

independent of s, namely we have c(s)n = 1/n!, for instance in eq. (13.11). As a

consequence, the classical result can be read off from a finite-spin amplitude,

up to O(a2s), without an explicit s → ∞ limit. This special property of the

black-hole amplitudes is referred to as spin universality. This also holds for

the Compton amplitudes (7.24) for s ≤ 2 and hence up to O(a4). Nonetheless,

as shown in the case of strings, it is not a general feature of the classical-limit

framework and there is no guarantee it will hold for the s > 2 Compton ampli-

tudes.
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16. Svensk Sammanfattning

Vi lever i en era av precisionsmätningar av gravitationsvågor. Det är nu vik-

tigare än någonsin att kunna producera precisa teoretiska förutsägelser för att

analysera den data som samlas in via gravitationsinterferometrar.

Binära svarta hålssystem är viktiga källor till gravitationsstrålning. Ett fa-

scinerande nytt sätt att modellera sådana system är att behandla de svarta hålen

som partiklar i en kvantfältsteori och studera deras växelverkan med hjälp av

spridningsamplituder.

Svarta hål av Schwarzschild-typ kan beskrivas av massiva skalarfält mi-

nimalt kopplade till gravitation. I synnerhet beskrivs gravitationspotentialen

mellan två svarta hål av fyrapunktsamplituder med externa skalärer. Fem-

punktsamplituder med fyra skalärer och en emitterad graviton beskriver gravi-

tationsstrålningen från ett binärt system. Comptonamplituder med två skalärer

och två gravitoner kan användas för att studera spridningen av gravitationsvå-

gor mot ett svart hål. Varje observabel extraheras från en speciell kinematisk

gräns av spridningsamplituderna, den så kallade klassiska gränsen. Amplitu-

derna beräknas perturbativt, i potenser av Newtons gravitationskonstant G.

Detta reproducerar den post-Minkowskiska expansionen av klassiska obser-

vabler. Detta tillvägagångssätt har redan gett ett flertal resultat av vikt, t.ex.

den konservativa gravitationspotentialen O(G4) eller vågformen O(G3).
Svarta hål av Kerr-typ beskrivs av massiva högre spinn kvantfältsteorier i

en klassisk gräns med oändligt spinn. För Kerr är endast trepunktsamplituden

känd i sin helhet och en fullständig förståelse av den underliggande lagrangi-

anen saknas fortfarande. Framförallt är lokala interaktioner mellan fyra eller

fler fält ej kända, men de är nödvändiga för att utföra beräkningar av högre

ordningar i den post-Minkowskiska expansionen. Denna avhandling innehål-

ler en djupgående studie av de högre spinn-lagrangianer som ligger till grund

för de kända Kerr-amplituderna, och den presenterar ett recept för att inskrän-

ka den form interaktioner kan ta.

Massiva Lagrangianer med högre spinn är begränsade av t.ex. unitaritet och

antalet tillgängliga frihetsgrader. Ett användbart verktyg för att bygga konsi-

stenta teorier är att införa massiv gaugesymmetri genom hjälpfält som kallas

Stückelbergfält. Explicita trepunktsinteraktioner har beräknats i litteraturen.

Mer komplicerade interaktioner har dock fått mindre uppmärksamhet då des-

sa leder till komplicerade system av kvadratiska ekvationer.

För att kringgå dessa problem visar den här avhandlingen att gaugeinvari-

ans kan införas direkt för amplituder genom en ny uppsättning massiva Ward-
identiteter. Detta innebär att endast linjära ekvationer behövs lösas, en bety-
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dande förenkling jämtemot andra metoder baserade på langrangianen. Dess-

utom är amplituder mindre känsliga för redundanser som kan uppkomma ge-

nom omdefinitioner av fält i lagrangianen. Vid tre punkter reproducerar Ward-

identiteterna, i kombination med ett känt unitaritetsvillkor, de amplituder som

används för att beskriva Kerr. Vid fyra punkter tillämpas samma metoder för

att beräkna nya Compton-amplituder för tillstånd med högre spinn och föreslås

som kandidater för högre ordningars observabler för svarta hål.

Parallellt med detta studeras amplituder i supersträngteori. Strängteorin är

ett exempel på en konsekvent teori med högre spinn, och därför är det lärorikt

att jämföra dess amplituder med de amplituder som beskriver Kerr. Genom att

tillämpa den klassiska gränsen, som tidigare endast har studerats i samband

med svarta hål, visas att supersträngamplituder reproducerar kända klassiska

stränglösningar. Detta ger viktiga insikter om formalismens egenskaper. Dess-

utom banar det väg för studier av mer allmänna strängtillstånd och försök att

reproducera Kerr-svarta hål från strängteori.
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