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Abstract 

Background  Vascular endothelial growth factor A (VEGFA) is a major angiogenic factor that plays an important role 
in the formation of blood vessels during embryonic development. VEGFA has been implicated in the pathophysiol‑
ogy of pre-eclampsia (PE), since pre-eclamptic women present with reduced levels of free circulating VEGFA. The 
3’ untranslated region (3’-UTR) of the VEGFA gene consists of elements that regulate the transcription and hence 
expression of the VEGFA protein in circulation. Hence it is suggested that variations thereof could underlie the 
reduced VEGFA levels observed in pre-eclamptic women. The purpose of this study was to investigate presence of 
the + 936C/T polymorphism, a common single nucleotide polymorphism (SNP) in the 3’-UTR of the VEGFA gene, and 
determine its association with PE among pregnant women in Uganda.

Results  There was no significant difference observed in the allele and genotype frequencies of the + 936C/T 3’ 
UTR-VEGFA polymorphism between pre-eclamptic and normotensive pregnant women (P > 0.05). Additionally, there 
was no significant difference in the median plasma levels of free VEGFA among women with the wild type, CT and TT 
genotypes of the + 936C/T VEGFA polymorphism (median = 0.84 pg/mL (IQR = 0.39–1.41) Vs 1.05 (0.61–1.18) Vs 1.05 
(1.05–1.05) respectively, p-value = 0.7161).

Conclusions  These study findings indicate that the + 936C/T 3’ UTR-VEGFA polymorphism had no significant asso‑
ciation with increased susceptibility to PE among women in Uganda. Further studies with a larger sample size are 
recommended.
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Background
Pre-eclampsia (PE) is a pregnancy complication that is 
diagnosed after 20  weeks of gestation in a previously 
normotensive woman, and is characterised by new 
onset of hypertension, and proteinuria [1]. PE is a major 
cause of fetal, new-born and maternal morbidity and 
mortality, affecting 5–7% of pregnant women world-
wide [2]. The burden of PE is higher among women 
of African ancestry as evident by the high attribut-
able maternal mortality rate in sub-Saharan Africa and 
among women of African ancestry elsewhere in the 
world [3, 4].

The pathogenesis of PE remains unclear, although vas-
cular endothelial cell injury and dysfunction, and placen-
tal ischemia remain core features of the syndrome [5]. 
Vascular endothelial growth factor A (VEGFA) is a major 
angiogenic factor that facilitates endothelial cell differen-
tiation, proliferation, migration and invasion, as well as 
regulates formation and development of blood vessels. 
VEGFA also plays a key role in trophoblast cell develop-
ment and function, and is required during placental vas-
cularization to enable sufficient supply of blood to the 
growing fetus [6]. In fact, reduced expression of VEGFA 
during placental and embryonic development can lead 
to embryonic deformities and death [7]. PE is accompa-
nied with an aberrant balance of circulating angiogenic 
factors, including reduced bioavailability of free VEGFA 
which is linked to the vascular damage [8, 9]. Low 
VEGFA levels in pre-eclamptic women are partly attrib-
uted to excess release of soluble fms-like tyrosine kinase 
1 (sFlt-1) from the placenta, which acts as a decoy recep-
tor, binding free VEGFA in the maternal circulation [10].

Human VEGFA is encoded by the VEGFA gene located 
on the chromosome 6 p21.3, and consists of 8 exons and 
7 introns within a coding region of 14  kb. The VEGFA 
gene is highly polymorphic with several single nucleo-
tide polymorphisms (SNPs) detected in the untranslated 
and promoter regions [11, 12]. The 3’ untranslated region 
(3’-UTR) of the VEGFA gene consists of regulatory ele-
ments where binding of transcriptional factors (such as 
hypoxia induced proteins) effects changes in expression 
of VEGFA. It is hypothesized that variations within the 
3’UTR of the VEGFA gene may result into individual dif-
ferences in the expression and hence circulating levels 
of VEGFA [13]. A study by Renner et  al. [13] identified 
a + 936C/T 3’ UTR-VEGFA polymorphism (rs3025039), 
a common SNP in the 3’UTR of the VEGFA gene, as 
associated with reduced circulating VEGFA levels. 
Indeed, in some studies, polymorphisms in the VEGFA 
gene were associated with dysregulated expression of 
VEGFA, leading to increased susceptibility to PE [13–
15]. The + 936C/T polymorphism was later identified to 
increase susceptibility to PE among Korean women [16].

Currently in Uganda and the rest of sub-Saharan 
Africa, less is known about the + 936C/T 3’ UTR-VEGFA 
polymorphism and its association with PE. Uganda is 
faced with a high burden of PE, leading to about 6% of 
the 336 estimated maternal deaths per 100,000 live births 
per year [17]. Knowledge of genetic biomarkers could 
improve quality of antenatal care through better risk 
stratification and early screening of pregnancy compli-
cations including PE, hence reducing its burden [18, 19]. 
In this study therefore, we investigated the association 
between the + 936C/T 3’ UTR-VEGFA polymorphism 
and PE among women in Uganda.

Results
Baseline characteristics of study participants
The socio-demographic and clinical characteristics of 
the study participants are summarized in Tables  1 and 
2 respectively. There was no significant difference in the 
maternal and gestational between cases and controls. All 
study participants were Black Africans by self-report, 
most of whom were married, and majority in the con-
trol group having attained up to secondary level educa-
tion. The number of participants with a family history of 
PE, family history of hypertension, and diagnosis with 
hypertension in the previous pregnancy, was significantly 
higher among cases as compared to the control group 
(p-values; ˂0.0255, < 0.0034 and 0.0005 respectively).

Association of the + 936C/T 3’ UTR‑VEGFA gene 
polymorphism with susceptibility to PE
Among all study participants, 225 had the homozy-
gous wild type variant of the + 936C/T SNP, whereas 24 
were identified to be heterozygous (CT genotype), and 
one homozygous (TT genotype) (Fig.  1). To determine 
whether the + 936C/T 3’ UTR-VEGFA polymorphism 
is associated with susceptibility to PE, univariate and 
multivariate conditional logistic regression analysis was 
performed (Table  3). Clinical and demographic vari-
ables with a biological plausibility to PE, and those with 
p-value ≤ 0.2 in the univariate analysis were considered 
for multivariate analysis. These included; Alcohol con-
sumption, family history of Diabetes mellitus, family his-
tory of PE, family history of hypertension, HIV status, 
diagnosis with hypertension in previous pregnancy, type 
of pregnancy and Marital status. Findings indicate that 
presence of the 936 T allele in the 3’UTR of the VEGFA 
gene is associated with about 2 times increased likelihood 
of developing PE, however this was not statistically signif-
icant (aOR, 1.78 (95% CI, 0.65–4.91), p-value = 0.2640). 
The number of participants with family history of hyper-
tension was higher among cases as compared to con-
trols across all genotypes of the + 936C/T polymorphism 
(Supplementary Figure S1). However, after Bonferroni 
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correction, family history of hypertension was not signifi-
cantly associated with PE (aP-value = 0.1109).

Genotypes and allele frequencies of the + 936C/T 3’ 
UTR‑VEGFA gene polymorphism between women with 
pre‑eclampsia and the controls, and susceptibility to PE
We further investigated the genotype and allele frequen-
cies of the + 936C/T 3’ UTR-VEGFA polymorphism, 
and their association to PE susceptibility (Table  4). All 
loci were in Hardy–Weinberg equilibrium in both the 
cases and the control group (P > 0.05). We observed a 
higher frequency of the T allele and the CT genotype 
of the + 936C/T polymorphism among cases compared 
to controls, however this was not statistically significant 
(p-values; 0.5465 and 0.2829 respectively). Only one 
individual among all study participants was identified as 
homozygous genotype TT for the 936C/T polymorphism.

Plasma VEGFA levels and the + 936C/T 3’ UTR‑VEGFA SNP 
genotypes
Secondarily, we investigated the difference in the 
plasma levels of free circulating VEGFA by each of 
the + 936C/T SNP genotypes among the cases and 

controls (Table  5). The concentration of VEGFA was 
log transformed to the base of two prior to this anal-
ysis. A total of 180 samples were assayed for the con-
centration of free plasma VEGFA (including 122 cases 
and 58 controls), among which only 18 were found to 
have the + 936C/T SNP, 17 of which were heterozy-
gous (CT genotype) and one homozygous (TT geno-
type). The concentration of plasma free VEGFA was 
significantly lower among the cases as compared to 
controls (median = 0.76  pg/mL (IQR = 0.39–1.18) Vs 
1.02  pg/mL (0.44–1.62) respectively, p-value = 0.0616) 
(Fig.  2). Cases with the CC wild genotype had sig-
nificantly lower VEGFA plasma levels as compared to 
controls with the same genotype (median = 0.8  pg/mL 
(IQR = 0.38–1.18) Vs 1.0  pg/mL (0.44–1.65) respec-
tively, p-value = 0.0437). Among only samples with the 
CT genotype, the plasma levels of free VEGFA were 
higher among cases compared to controls. Median con-
centration of free plasma VEGFA was higher among 
individuals with the heterozygous and homozygous 
genotypes, as compared to those with the wild type 
+936C/T polymorphism. These findings however 
lacked statistical significance.

Table 1  Socio-demographic characteristics of study participants

n number

Variable Cases (N = 125) Controls (N = 125) P-values

Maternal age (years)
  18–22 43 (34.4) 43 (34.4) 0.9996

  23–27 39 (31.2) 39 (31.2)

  28–32 30 (24.0) 30 (24.0)

  33–37 11 (8.8) 11 (8.8)

  38–42 2 (1.6) 2 (1.6)

Marital status
  Married 107 (85.6) 111 (88.8) 0.5701

  Single 18 (14.4) 14 (11.2)

Level of Education
  None 0 (0.0) 1 (0.8) 0.2246

  Lower primary (1–4) 5 (4.0) 4 (3.2)

  Upper primary (5–7) 37 (29.6) 31 (24.8)

  Lower secondary (1–4) 43 (34.4) 61 (48.8)

  Upper secondary (5–6) 13 (10.4) 10 (8.0)

  Tertiary/university 27 (21.6) 18 (14.4)

Smoking
  Has never smoked 123 (98.4) 125 (100) 0.3649

  Stopped during index pregnancy 1 (0.8) 0 (0.0)

  Smoked during index pregnancy 1 (0.8) 0 (0.0)

Alcohol consumption during current pregnancy
  No 114 (91.2) 117 (93.6) 0.7930

  Yes 10 (8.0) 8 (6.4)

  Missing data 1 (0.8) 0 (0.0)
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Discussion
Pre-eclampsia (PE) is a complex pregnancy complica-
tion with multiple genetic links [20]. VEGFA, a major 
angiogenic factor that regulates vascular formation and 
function, as well as placental development, plays a cru-
cial role in the pathophysiology of PE [21]. Previously, 
various studies among pregnant women have indicated a 
decrease in plasma VEGFA levels as one of the features 
for PE [8, 22, 23]. Genetic mechanisms are suggested to 
underlie reduced expression of circulating VEGFA, impli-
cating variations/mutations in the VEGFA gene [24]. In 
this study we describe the detection of the +936C/T pol-
ymorphism; a common SNP variation in the 3’ UTR of 
the VEGFA gene, and its association with susceptibility 
to PE. We further describe the plasma levels of free circu-
lating VEGFA by each of the genotypes of the +936C/T 
polymorphism among both pre-eclamptic and normal 
pregnant women.

Our findings indicate that the + 936C/T 3’ UTR-
VEGFA polymorphism was associated with about 2 times 
increased likelihood of developing, however this was not 
statistically significant. Hence, no significant association 
was found between the + 936C/T polymorphism and 
increased susceptibility to PE among the women attend-
ing Mulago National Referral Hospital in Uganda. We 
further observed no significant difference in the genotype 
and allele frequencies of the + 936C/T 3’ polymorphism 
between the cases and controls. Our findings are similar 
to a study done among Sinhalese women that indicated 
no significant difference in the genotype frequencies of 
the + 936C/T polymorphism among cases with PE and 
normotensive pregnant women. That is, there was no 
significant association between the + 936C/T 3’ UTR-
VEGFA polymorphism and risk of developing PE [25]. 
However, contrary to our findings, a study by Shim et al. 
[16] found that carriage of the + 936  T allele was inde-
pendently associated with increased susceptibility to PE 
among Korean women. The frequency of the + 936C/T 3’ 
UTR-VEGFA polymorphism among the Korean women 
was significantly higher among cases as compared to con-
trols. In another study, the CT, CT + TT genotypes, and 
T allele of the + 936C/T were risk factors for pre-eclamp-
sia in Sudanese women [26]. This inconsistency could be 
attributed to ethnic differences between the study popu-
lations, and environmental, immunological and lifestyle 
factors that interactively contribute to the multifactorial 
complex of the PE syndrome [27]. Other previous studies 
have similarly indicated a link between the + 936C/T 3’ 
UTR-VEGFA polymorphism and increased risk of devel-
oping PE in other populations such as Asians, Caucasians 
and Latinos [16, 28–30].

We further investigated the difference in the concen-
tration of plasma free circulating VEGFA by each of 
the + 936C/T genotypes among the cases and controls. 
Overall, the pre-eclamptic women had significantly 
lower plasma free VEGFA levels compared to the control 
group. This is similar to findings from previous studies [8, 
22, 31]. In this study, we found that participants with the 
CT and TT genotypes of the + 936C/T polymorphism 
had higher VGEF levels compared to participants with 
the wild type CC genotype, however, this difference was 
not statistically significant. Contrary to these findings, a 
study by Procopciuc LM et al., [32] indicated that carriers 
of the 936 T allele among mothers affected by PE had sig-
nificantly reduced levels of circulating VEGFA. Presence 
of the 936  T allele is associated with reduced ability to 
upregulate VEGFA production hence enhancing develop-
ment of PE [33].

Among other risk factors linked with susceptibil-
ity to PE in this study, multivariate analysis indicated 
that women with a family history of hypertension 

Table 2  Clinical characteristic of study participants

n number

Variable Cases (N = 125) Controls (N = 125) P-values

Gestational age (weeks)
  20–28 11 (8.8) 11 (8.8) 0.9986

  29–33 30 (24.0) 30 (24.0)

  34–37 36 (28.8) 36 (28.8)

  38–42 48 (38.4) 48 (38.4)

Family history of Diabetes Mellitus
  No 105 (84.0) 112 (89.6) 0.2623

  Yes 20 (16.0) 13 (10.4)

Family history of Pre-eclampsia
  No 116 (92.8) 122 (97.6) 0.0255
  Yes 9 (7.2) 1 (0.8)

  Missing data 0 (0.0) 2 (1.6)

Family history of Hypertension
  No 78 (62.4) 100 (80.0) 0.0034
  Yes 47 (37.6) 25 (20.0)

HIV status
  Positive 3 (2.4) 9 (7.2) 0.1391

  Negative 122 (97.6) 116 (92.8)

First Pregnancy
  No 71 (56.8) 79 (63.2) 0.3662

  Yes 54 (43.2) 46 (36.8)

Diagnosis with Hypertension in previous pregnancy
  No 56 (44.8) 77 (61.6) 0.0005
  Yes 14 (11.2) 1 (0.8)

  Not applicable 55 (44.0) 47 (37.6)

Type of Pregnancy
  Singleton 115 (92.0) 120 (96.0) 0.1250

  Multiple 6 (4.8) 1 (0.8)

  Missing data 4 (3.2) 4 (3.2)
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were more likely to develop PE in the current preg-
nancy. However, after correcting for multiple testing 
using Bonferroni correction, these findings were not 
statistically significant. Our findings then differ from 
previous literature that shows a strong link between 
family history of hypertension and PE. In a study by 
Bezerra et  al. [34], the risk of developing PE was two 
times higher in a pregnant woman whose sister had an 
account of hypertension (OR 2.60, 95% CI 1.60–4.21, 
p < 0.001). The risk of developing PE was even higher 
(3 times) among pregnant women who had both a 
mother and sister with hypertension (OR 3.65, 95% CI 
1.65–8.09, p = 0.001).

Still at multivariate analysis, we further observed a 
borderline association between family history of PE 
and susceptibility to PE, which was non-significant 
after correction for multiple testing. However, previ-
ously, it is well recognised that family history of PE is 
associated with increased likelihood of developing the 
syndrome in a current pregnancy [35, 36]. In a study 
done among women in Taiwan, mothers with a soro-
ral history of PE similarly had a higher risk for pre-
eclampsia compared to those without (relative risk; 
2.6, CI; 2.41–2.80) [36].

Conclusions and recommendations
This is one of the few studies investigating genetic factors 
associated with PE among women in the Ugandan popu-
lation. A previous study in this population revealed that 
a KIR 2DS5 gene locus was associated with protection 
against PE [37]. Identification of key genetic markers of 
PE is crucial especially among the highly burdened Afri-
can populations which double with high genetic diversity.

In conclusion, there was no significant association 
between the + 936C/T 3’ UTR-VEGFA polymorphism 
and increased likelihood of developing PE, and no sig-
nificant difference in the circulating free VEGFA levels 
by each of the genotypes of the + 936C/T polymorphism. 
Despite the fact that our sample size estimation was 
deliberate to afford 80% power of the study, we recom-
mend a bigger sample sized study to ensure accuracy of 
these results. Nonetheless, we believe that our results 
increase the body of knowledge on factors associated 
with pre-eclampsia among women in Uganda.

Furthermore, the VEGFA gene has multiple varia-
tions, which warrants further studies targeting other 
SNP variations and their haplotype effect towards sus-
ceptibility to PE. And given the fact that PE is a hetero-
geneous syndrome with several genes implicated in its 

Fig. 1  Distribution of the rs3025039 SNP variations among cases and controls. The number of participants with a + 936C/T (rs3025039) 
variation was higher among cases compared to controls. The wild group indicates participants with the wild type genotype of the rs3025039 SNP
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pathophysiology, investigations on how these multiple 
genes interact are much required towards defining the 
complex mechanism of PE and identification of genetic 
markers of susceptibility.

Methods
Study population and procedures
In this study, a matched case–control design was uti-
lized to enroll pregnant women aged 18–42  years, at 
20 or more weeks of gestation, from Mulago National 
referral hospital, Kampala, Uganda. Cases were defined 

as pregnant women presenting with new onset hyper-
tension; including increased systolic blood pressure 
(BP) ≥ 140 mmHg and diastolic BP ≥ 90 mmHg measured 
on 2 occasions at least 4 h apart, and proteinuria ≥ + 1 on 
urine dipstick test [17]. Controls were defined as healthy 
pregnant women presenting with normal systolic BP ˂ 
140 mmHg and diastolic BP˂ 90 mmHg on two occasions 
at least 4  h apart, with trace or negative urine protein. 
Controls were matched to identified cases by maternal 
and gestational ages at a ratio of 1:1 using the follow-
ing categories; 18–22, 23–27, 28–32, 32–42  years, and 

Table 3  Bivariate and multivariate analysis for association of the + 936C/T 3’ UTR VEGF gene polymorphism with PE

n number. Missing data was regarded as missing completely at random due to unavailability of required values on patient files. Adjusted P-value, Bonferroni 
correction

Variable Cases N = 125 n(%) Controls 
N = 125 
n(%)

Crude OR (95% CI) P-value Adjusted OR (95% CI) P-value Adjusted P-value

 + 936C/T polymorphism
  Present 15 (12.0) 10 (8.0) 1.56 (0.67–3.59) 0.3010 1.78 (0.65–4.91) 0.2640 1.0000

  Absent 110 (88.0) 115 (92.0) 1 1

HIV status
  Positive 3 (2.4) 9 (7.2) 0.33 (0.09–1.231) 0.0994 0.38 (0.09–1.52) 0.1699 1.0000

  Negative 122 (97.6) 116 (92.8) 1 1

Alcohol consumption
  Yes 10 (8.0) 8 (6.4) 1.29 (0.48–3.45) 0.6180 –

  No 114 (91.2) 117 (93.6) 1

  Missing data 1 (0.8) 0 (0.0)

Family history of PE
  Yes 9 (7.2) 1 (0.8) 9.00 (1.14–71.04) 0.0371 8.49 (1.00–71.76) 0.0520 0.3120

  No 116 (92.8) 122 (97.6) 1 1

  Missing data 0 (0.0) 2 (1.6)

Family history of hypertension
  Yes 47 (37.6) 25 (20.0) 2.57 (1.39–4.77) 0.0027 2.37 (1.12–5.01) 0.0185 0.1109

  No 78 (62.4) 100 (80.0) 1 1

Diagnosis with hypertension in previous pregnancy
  Yes 14 (11.2) 1 (0.8) 11.00 (1.42–85.2) 0.0217 –

  No 56 (44.8) 77 (61.6) 1

  Missing data 55 (44.0) 47 (37.6)

First pregnancy
  Yes 54 46 1.53 (0.80–2.94) 0.2000 –

  No 71 79 1

Type of pregnancy
  Multiple 6 (4.8) 1 (0.8) 6.00 (0.72–49.84) 0.0971 7.25 (0.84–62.94) 0.0722 0.4334

  Singleton 115 (92.0) 120 (96.0) 1 1

  Missing data 4 (3.2) 4 (3.2)

Family history of diabetes mellitus
  Yes 20 (16.0) 12 (9.6) 1.64 (0.77–3.47) 0.1980 0.99 (0.36–2.76) 0.9910

  No 105 (84.0) 113 (90.4) 1 1

Marital status
  Married 107 (85.6) 111 (88.8) 1.33 (0.63–2.82) 0.4510 –

  Single 18 (14.4) 14 (11.2) 1
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Table 4  Comparison of genotypic and allelic frequencies of the + 936C/T 3’ UTR-VEGFA polymorphism among cases and controls

HWE Hardy–Weinberg equilibrium, n number

Cases N = 125 Controls N = 125 HWE OR (95%CI) P-value

 + 936C/T polymorphism
Genotypes
  CC n(%) 110 (88.0) 115 (92.0) 1 ref

  CT n(%) 15 (12.0) 9 (7.2) 0.57 (0.21–1.47) 0.2829

  TT n(%) 0 (0.0) 1 (0.8) 1 NA NA

Alleles
  C n(%) 235 (94.0) 239 (95.6) 1 ref

  T n(%) 15 (6.0) 11 (4.4) 0.72 (0.29–1.72) 0.5465

Table 5  Comparison of plasma VEGFA levels between genotypes of the + 936C/T 3’ UTR-VEGFA polymorphism

Wild; study participants without of the + 936C/T polymorphism (CC genotype), het heterozygous (CT genotype), hom homozygous (TT genotype)

Status Genotype Median in pg/mL (IQR) Total samples P-value

Cases Wild CC 0.71 (0.38–1.18) 108 0.0437

Controls Wild CC 1.00 (0.44–1.65) 54

Cases  + 936C/T _het 1.07 (0.70–1.18) 14 0.8499

Controls  + 936C/T _het 1.03 (0.64–1.18) 3

Combined cases and controls Wild 0.84 (0.39–1.41) 162 0.7161

Combined cases and controls  + 936C/T _het 1.05 (0.61–1.18) 17

Combined cases and controls  + 936C/T _hom 1.05 (1.05–1.05) 01

Fig. 2  Distribution of free circulating VEGFA plasma levels among genotypes of the + 936C/T polymorphism. A Logarithm of the median plasma 
levels of VEGFA in cases versus controls (All genotypes). B Logarithm of the median plasma levels of VEGFA among cases and controls with only the 
wild type CC genotype. C Logarithm of the median plasma levels of VEGFA among cases and controls with the CT and TT genotypes
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20–28, 29–33, 34–37, 38–43  weeks of gestation. These 
included a total of 125 women with PE as cases and 125 
pregnant women without PE as controls, enrolled from 
the maternity ward and the outpatient antenatal clinics 
respectively, from March to October 2019. Women with 
confirmed fetal abnormalities and pre-existing patholo-
gies (including; diabetes mellitus, cardiovascular disease, 
chronic renal disease), and those who had received blood 
transfusion in the previous 3 months were excluded from 
study participation.

Participant Interviews were conducted using a study 
designed data tool to obtain socio-demographic and clin-
ical characteristics of study participants; including mater-
nal and gestational age, marital status, level of education, 
social history (smoking and alcohol consumption), family 
medical history (diabetes mellitus, PE and hypertension) 
and personal medical history (HIV status, parity, type of 
pregnancy and diagnosis with hypertension in a previ-
ous pregnancy). Six milliliters (6  mL) of ethylenediami-
netetraacetic acid (EDTA) anti-coagulated blood were 
collected from each study participant via the antecubital 
vein by a trained study midwife/nurse. Four milliliters 
(4 mL) of the blood sample were used to extract deoxyri-
bonucleic acid (DNA). Platelet poor plasma was obtained 
from the rest 2 mL of blood sample using methods previ-
ously described [8].

Extraction of DNA
DNA extraction was done using the Qiagen whole blood 
DNA extraction kit (QIAamp DNA Blood Midi Kit), fol-
lowing the manufacturer’s instructions. Briefly, for each 
participant sample, designated kit buffers were mixed 
with the sample to lyse the blood cells, stabilize nucleic 
acids, and enhance selective DNA adsorption to the 
QIAamp membrane. Alcohol was added to the lysates 
which were thereafter loaded onto the QIAamp spin col-
umn. Wash buffers were used to remove impurities from 
the spin column QIAamp membrane, and pure ready-
to-use DNA eluted in low-salt AE buffer. Extracted DNA 
was quantified using a nanodrop spectrophotometer 
(Thermo Scientific™ NanoDrop 2000c) and stored tem-
porarily at -20 °C.

Polymerase chain reaction amplification, Gel 
electrophoresis and SNP Genotyping
DNA amplification was achieved using conventional 
polymerase chain reaction (PCR) assay, targeting a 
specific region within the 3’UTR of the VEGFA gene. 
Specific PCR primers were designed using the NCBI 
web-based  primer BLAST tool as described by Jian Ye 
et  al., [38]. The designed PCR primer sequences were 
synthesized by the Eurofins Genomics company (Euro-
fins Genomics AT GmbH, Viehmarktgasse 1B/Büro 2, 

1030, Vienna, Austria), and these comprised the follow-
ing sequences;

Forward, 5ˈ- TTT​GTT​TTC​CAT​TTC​CCT​CAGAT​ -3ˈ.
Reverse,  5ˈ- CCA​ACT​CAA​GTC​CAC​AGC​AGTC​ 

-3ˈ—targeting a 545 bp product within the 3’ UTR of the 
VEGFA gene. Each PCR assay was performed in a 50 μL 
reaction volume containing 5 μL of genomic DNA (50-
100  ng/μL), 1 μL of 10  mM Deoxynucleotide (dNTP) 
solution Mix (NEW ENGLAND BioLabs), 1.5 μL of each 
primer (10  pmol/μL), 0.125 μL of DreamTaq Hot Start 
DNA polymerase (5 U/μL, Thermo Scientific, Lithu-
ania), 5 μL of 10X DreamTaq buffer (Thermo Scientific, 
Lithuania), and 35.875 μL of Nuclease free water. The 
PCR reactions were run on a conventional thermal cycler 
(BIO-RAD, T100 Thermal Cycler) using the following 
program; Initial denaturation at 95 °C for 3 min followed 
by 35 cycles of denaturation at 95 °C for 30 s, annealing at 
62.2 °C for 1 min and extension at 72 °C for 1 min, then 
a final extension at 72 °C for 10 min and the holding step 
at 4 °C.

Detection of PCR products was achieved using gel 
electrophoresis on a 1.5% agarose gel (Fig. 3). Gel viewing 
was done using ultraviolet light in a UV transilluminator 
(UVP Biodoc-It Uv Transilluminator Imaging System).

The PCR amplicons were purified, and sequenced at 
ACTG Inc. (Wheeling II, USA). Sanger sequencing was 
employed to sequence the purified amplicons, using an 
ABI Prism 3100 Sequencer (Applied Biosystems, Foster 
City, CA, USA). All quality control samples had a 100% 
rate of agreement.

Plasma VEGFA assay
Assessment of plasma free VEGFA levels was done using 
Magnetic luminex performance assay (Human Angiogen-
esis Premixed Kit A; R&D Systems, a bio-techne brand), 
following by the manufacturer’s instructions. Analysis 
of Luminex data was done using Milliplex analyst soft-
ware. Due to their unreliability, VEGF concentrations 
below 0.2 pg/mL (the border of reliability as suggested by 
the = Milliplex analyst software) were divided by the fac-
tor 2 in order to prevent spurious positive associations.

Inter-assay coefficient of variation was 10.03%. Part of 
the VEGFA results presented in this article have been 
published (8).

Data analysis
Sample size estimation
In reference to a study by Shim et al. [16], we assumed a 
probability of exposure of 15.1% to the + 936C/T 3’ UTR-
VEGFA polymorphism among normotensive pregnant 
women in the control group, an odds ratio of exposure 
among the pre-eclamptic relative to the normotensive of 
2.45 and 2% loss of samples, for a one control per case, at 
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least 125 cases hence 125 controls are required to test the 
hypothesis that the odds ratio is equal to 1 considering 
power of 80% and 5% type 1 error probability associated 
with the test of the hypothesis. Sample size calculation 
was done using the epiR package [39].

Bioinformatics analysis
Using a sanger sequencing data analysis tool; tracy 
v0.5.9 [40], the reference human genome (GRCh37) 
was indexed. The obtained sample sequences were then 
aligned to the reference, variants called and annotated 
based on the GRCh37 human genome build. The result-
ant Binary Call Format (BCF) files were converted to 

Variant Call Format (VCF) files using bcftools v1.8 
[41]. The variants were screened for the presence of 
the + 936C/T (rs3025039) variant using VCFtools v0.1.16 
[42]. All this was done using customized bash scripts. 
Figure  4 indicates sequencing chromatographs showing 
the rs3025039 SNP mapped in the 3’ UTR of the VEGFA 
gene.

Statistical analysis
Categorical variables were summarized as absolute 
numbers and proportions. Continuous variables were 
summarized as medians and corresponding inter-
quartile ranges. Mann–Whitney U-test was used to 

Fig. 3  PCR amplification of 3’UTR- VEGFA. Agarose gel electrophoretogram of a 545 bp sequence within the 3’UTR of the VEGFA gene amplified by 
PCR from different human samples

Fig. 4  Chromatogram. Showing + 936C/T SNP mapped in the 3’UTR of the human VEGFA gene
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compare continuous variables and Fisher’s exact test 
or Chi-square test for comparing categorical variables. 
The association of the + 936C/T polymorphism with PE 
was explored using conditional logistic regression. All 
analyses were performed in R statistical programming 
environment version 4.0.5. Packages used for analysis 
include; survival for conditional logistic regression and 
ggplot2 for visualizing analysis results [43].
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