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1 Introduction

Leptoquarks are predicted by various extensions of the Standard Model (SM), such as
Technicolour [1, 2], models of quark-lepton unification [3–7], and grand unification theories
(GUTs) based on SU(5), SO(10), E6 [8–13], and etc. They are rather unique amongst
the many new particles predicted in new physics frameworks beyond the SM for being
colour-triplet bosons that carry both lepton and baryon numbers. Their other quantum
numbers (i.e., spin, (fractional) electric charge, and weak isospin) can be different in dif-
ferent theories.

Naturally, they were extensively searched for at the ep colliders. In fact, at HERA,
DESY, an excess was found in 1997 [14] which would have been compatible with the so-
called first-generation LQs (i.e., those coupling to first-generation leptons and quarks).
However, further searches at HERA (and also at Tevatron, where most of the partonic
processes were initiated by quarks inside the (anti-)proton) failed to confirm the anomaly.
As a result, mass limits near 300GeV [15, 16] were set on first-generation LQs. Even weaker
limits were placed on second-generation LQs. These (relatively) weak limits were owing
to the fact that the partonic energy accessible at HERA and Tevatron was limited to the
sub-TeV range. However, as colour triplets, LQs also interact with gluons. At the Large
Hadron Collider (LHC), since the amount of gluons inside the proton can well exceed that
of (both valence and sea) quarks, the availability of much higher centre-of-mass energy may
enable the pair-production of third-generation LQs.

The ATLAS and CMS experiments have both, therefore, analysed the datasets from
the LHC Runs 1 and 2 to put exclusion limits on the mass of the third-generation LQs,
based on their tt̄ττ , tb̄τν, and tb̄µν decay channels, in the TeV range [17–20]. In this paper,
we revisit the tt̄ττ search channel for LQs of the S1 type (i.e., LQs with charge −1/3 and
spin zero) having couplings solely with the third generation fermions. However, unlike
the existing searches for this channel, which have relied on leptons in the final state, we
investigate the scope of the fully hadronic final state. Following a sophisticated detector-
level analysis tensioning the signal to the most relevant backgrounds, we show that such
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a complementary channel can offer sensitivities to this specific type of LQ comparable
to, if not better than, what has so far been achieved in their probes exploiting leptons.
We then interpret the results of our analysis in the Exceptional Supersymmetric Standard
Model (E6SSM) [21, 22] (for a recent review, see ref. [23]), as a theoretically well-motivated
prototypical framework that naturally accommodates the S1-type LQs.

The plan of the paper is as follows. In the next section, we will describe our phenomeno-
logical setup in a model-independent way, which will then be subjected to a Monte-Carlo
analysis in the following section. In section 4 we will discuss the E6SSM and its possible
scenarios that are amenable to experimental investigation by ATLAS and CMS, before
concluding in section 5.

2 Third-generation scalar LQs

We consider a simple extension of the SM by adding one scalar S1-type LQ, which is
charged as (3, 1,−1/3) under its gauge group, SU(3)C × SU(2)L × U(1)Y . We limit our
discussion to LQs with the same quantum numbers as the coloured triplet of scalars, which,
along with the Higgs doublet, constitutes the fundamental representation of SU(5) [24, 25].
LQs with such quantum numbers have been proposed as a solution to the aµ and B-flavour
anomalies (see, e.g., [26–28]).

We assume that our LQ, denoted by D henceforth, couples only to the third-generation
fermions, with the corresponding Lagrangian being

L = λQ̄LD ¯̀
L + λ′t̄RDτ̄R , (2.1)

where QL = (t, b)TL, and `L = (ντ , τ)TL. This implies that the left-handed t quark couples
to the left-handed τ lepton, while the right-handed t couples to the right-handed τ . The
mass of the t quark at the one-loop level can thus cause the τ chirality to flip. Based on
the above interaction terms, the D can decay into tτ and bντ pairs. However, we assume
λ′ � λ, so that the decay to tτ is significantly enhanced. This LQ can be produced in
pairs at the LHC through the processes shown in figure 1.

Given that the D couples only to the third-generation fermions, the diagram (e) in
figure 1 is negligible (unless the corresponding λ and λ′ couplings are extremely large,
which is never the case here). The cross section for the D pair production is therefore
almost completely determined by QCD, and can be considered to be model-independent.1
We can write this in the form

σ(pp→ tt̄ττ) = σ(pp→ DD)× BR(D → tτ−)× BR(D → t̄τ+) , (2.2)

where BR stands for branching ratio. In our setup, we have BR(D → tτ−) = BR(D →
t̄τ+) ' 1, and the leading order (LO) partonic cross sections σ(gg → DD) and σ(qq̄ → DD)

1The contribution from the model-dependent diagram (e) can, in fact, be distinguished from the others
as one expects two b-tagged jets close to the beam direction.
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Figure 1. Pair-production of scalar LQs at the LHC.

are given by [29]

σ(gg → DD) = α2
sπ

96ŝ

[
β(41− 31β2) + (18β2 − β4 − 17) log 1 + β

1− β

]
, and (2.3)

σ(qq̄ → DD) = 2α2
sπ

27ŝ β
3, (2.4)

where β = (1− 4M2
D/ŝ)1/2, and

√
ŝ is the partonic center-of-mass energy.

In table 1 we show the LO and next-to-LO (NLO) pair-production cross sections,
computed with MadGraph5 v3.2.0 [30] and Prospino v2.1[31], using the NNPDF 3.1
parton distribution functions (PDFs) at LO [32]. Note that our cross section values are
somewhat smaller than those in [19], mainly due to the different PDF sets used, but they
agree well with those in ref. [33], which also uses NNPDF 3.1.

Our simplified extension of the SM with a S1-type LQ can be considered an effective
low-energy limit of some GUT framework. In the simplest GUTs, however, our D would
have non-zero quark-lepton as well as quark-quark couplings, which can lead to rapid
proton decay. To ensure the model’s phenomenological viability, all the couplings of the D
to quark pairs can be set to zero, implying the conservation of baryon and lepton numbers.

Furthermore, GUT models have a large separation of scales, and to stabilise the en-
suing hierarchy, supersymmetry is often preferred. If we supersymmetrise our model, we
need to introduce two chiral superfields, one of which has λ-type and the other λ′-type
superpotential couplings. The ‘exotic’ particle spectrum then consists of two scalars and
one fermion. The scalar states may have non-zero mixing, and one of the resulting physical
states decays dominantly to tτ , while the other has nearly equal BRs in the tτ and bν decay
channels. The decay of their superpartner fermion LQ leads to third-generation fermions
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mD (GeV) σLO (fb) σNLO (fb)
1000 3.22 5.73
1100 1.57 2.86
1200 0.79 1.50
1300 0.42 0.79
1400 0.22 0.44
1500 0.12 0.25
1600 0.070 0.146

Table 1. The LO and NLO production cross sections for the pp→ DD process for a range of the
D mass at the

√
s = 13TeV LHC. The uncertainty related to the variation of the renormalisation

and factorisation scales is ±20%.

Decay Mode Mass Limit [GeV] Experiment

tt̄ττ
900 CMS [17]
1400 ATLAS [19]

tbτν

950 CMS [18]
1250 ATLAS [20]
1220 ATLAS [19]

Table 2. 95% CL lower mass limits by the ATLAS and CMS collaborations from pair-produced
third-generation scalar LQs.

and missing transverse momentum. Such a low-energy effective model can be embedded
in a supersymmetric (SUSY) GUT framework such as the E6SSM, which is free from the
severe constraints from proton stability noted above.

3 The fully hadronic tt̄ττ final state at the LHC Run 2

The S1-type LQ under consideration here is subject to stringent limits from the ATLAS and
CMS collaborations, most recent ones of which are given in table 2. These limits correspond
to the BR(tτ) at the 95% confidence level (CL), and are obtained either directly when tτ
is the exclusive decay channel of the LQ, or translated from the measurements in the bν
decay channel, when it is additionally open, as 1− BR(bν). For the tτ decays of the pair-
produced scalar LQs, these searches have so far employed final states with e and µ leptons
as well as hadrons from the τ decays [19, 34]. For collider analyses of some other possible
LQ decay channels, see [35, 36] and references therein.

In this study, we propose to complement the ATLAS and CMS probes of the tt̄ττ
intermediate state with the fully hadronic topology emerging when the decays of both the
τ leptons and both the t quarks result in only jets in the final state. The analysis should
select events with two τh (i.e., τ decaying hadronically) and at least six jets, with two of
them being b-tagged. The fully hadronic final state has two advantages compared with the
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Figure 2. pT of the τh (left) and the di-tau effective mass (right) for the DD signal.

semi-leptonic final state. First, it allows one to fully reconstruct the D mass. Second, it
increases the number of the signal events. We will show that the level of the background
can be reduced to that of the expected signal using τ - and b-tagging techniques, and by
exploiting the large mass of the τh pair.

To investigate the scope of the fully hadronic final state, we performed a signal-to-
background analysis for the pair-production of LQs with a mass of 1TeV each. The signal
and the dominant tt̄jj background cross sections were calculated with Madgraph_aMC@NLO
at the LO, with selections ∆R(jj) > 0.4, pjT > 20GeV, and |ηj | < 2.4 for the jet transverse
momentum and pseudorapidity, respectively, at the parton level. τ leptons in the signal
sample were forced to decay hadronically, τ± → π±π0ντ . We used the efficiencies and fake
rates for τ - and b-tagging, and the ττ mass resolution for the Z and Higgs bosons from the
CMS publications (cited in the following), implying

• pτ1(2) = 0.7 (0.5) efficiency of τ -tagging for real τ , with pτh
T > 100GeV (< 100GeV),

and pτ−fake = 3×10−3 mistagging rate for the jets (using the DeepTau algorithm [37]);

• pb = 0.8 efficiency of b-tagging for real b-jets, and pb-fake = 10−2 mistagging rate for
non-b-jets (using the DeepJet algorithm [38]);

• 15% di-τ mass resolution for the Z and Higgs bosons, i.e., 14GeV and 19GeV, re-
spectively (using the SVFit algorithm [39]).

Figure 2 shows the distribution of pτh
T (left), and the ττ effective mass, mττ , (right)

for the signal. For the tt̄jj events, we show in the left panel of figure 3 the distribution of
the pT of the parton jets, i.e., the two partons in addition to tt̄, and in the right panel the
di-jet effective mass, mjj , reconstructed from these parton jets.

We exploit the difference between the mττ and mjj distributions to suppress the dom-
inant tt̄jj background while preserving a high efficiency for the signal. The event selection
strategy we propose is the following. Events must contain eight jets with two of them
b-tagged. Six jets in the event, including the two b-tagged jets, must be associated with the
two t quarks. The remaining two jets have to be τ -tagged, and their effective mass should
be greater than 200GeV. In our estimate of the efficiency of the di-jet mass selection for

– 5 –



J
H
E
P
0
3
(
2
0
2
3
)
1
1
7

0 100 200 300 400 500 600 700 800 900 1000

 [GeV]
j

T
p

0

10

20

30

40

50

60

70

80

90

 [
p
b
]/
 2

0
 G

e
V

σ
simulation with aMC@NLO (LO) at 13 TeV LHC

0 200 400 600 800 1000 1200 1400 1600 1800 2000

 [GeV]jjm

0

5

10

15

20

25

30

 [
p
b
]/
 2

0
 G

e
V

σ

simulation with aMC@NLO (LO) at 13 TeV LHC

jjtt→pp

Figure 3. pT of the parton jet (left) and the di-jet effective mass (right) for the tt̄jj background.

the tt̄jj background we assume correct association of the jets with the t quarks for 100% of
the events. It was shown, however, in [40] that the fraction of the tt̄jj events with correct
j-to-t association is 60%. It could thus potentially make the suppression factor of the di-jet
mass selection used in our estimates weaker.

For the estimation of the efficiency of the di-jet mass selection we used the generator-
level τh for the signal, and parton jets with pT > 40GeV and |η| < 2.4 for the tt̄jj

background. This corresponds to the CMS di-τ high-level trigger selections used for the
Run 2 [41]. Table 3 shows the cut-flow for the signal and background cross sections before
and after the selections, along with the selection efficiencies. The selections considered here
are the double-b- and double-τ -tagging, and the constraint on the di-τ mass.

For the signal cross section we have used two values. The cross section corresponding
to the upper limit obtained in the ATLAS analysis [19] atmD = 1TeV, and (in parenthesis)
the cross section of the pp → DD process in the E6SSM at the 13TeV LHC. The latter
includes the NLO corrections calculated with Prospino [31]. For the background, we have
used the CMS measurements of the inclusive tt̄jj and tt̄bb̄ cross sections [40, 42], the
inclusive cross sections for the tt̄Z(→ ττ) [43] and tt̄W (→ jj) [44] processes, and the
Z(→ ττ)+6j [45] andW (→ jj)+6j [46] cross sections, as functions of the jet multiplicity.
The cross section for the Higgs boson production, in association with two t quarks, followed
by its ττ decay was taken from ref. [47].

For two background processes, tt̄W and W + 6j, we did not evaluate the efficiency
of the di-τ mass selection, and therefore give the upper limit on the corresponding cross
sections after the selections. Note that the di-τ mass selection cuts eliminates the tt̄Z and
Z + 6j backgrounds due to more than 5σ difference between the di-jet threshold and mZ .
It likewise eliminates the tt̄H background, since the jj threshold is also about 4σ above
the mH .

As one can see from table 3, the selection cuts used eliminate all the backgrounds except
the dominant tt̄jj. Further suppression of this background can be done by exploiting the
possibility of the full reconstruction of the D mass as the effective mass of the tτ pair. The
association of the two τ ’s and the two t quarks to the DD pair can be done as follows.
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Process σ [fb] bb-tagging ττ -tagging mττ > 200GeV σsel[fb]

Signal 0.5 (5.73) p2
b (pτ1)2 0.97 0.15 (1.74)

tt̄jj 275× 103 p2
b (pτ -fake)2 0.45 0.71

tt̄Z 950× BR(Z → ττ) p2
b (pτ2)2 < 5.7× 10−7 < 2.6× 10−6

tt̄W 770× BR(W → qq′) p2
b (pτ -fake)2 < 3.1× 10−3

tt̄H 32 p2
b (pτ2)2 6.3× 10−5 3.2× 10−4

Z + 6j 50 C2
6p

2
b-fake(1− pb-fake)4 (pτ2)2 < 5.7× 10−7 < 1.0× 10−8

W + 6j 600×Rqq′
µν C2

8p
2
b-fake(1− pb-fake)6 (pτ -fake)2 < 1.0× 10−4

Table 3. The signal and background cross sections before and after the selections, and the selection
efficiencies. The Ckn are the binomial coefficients

(
n
k

)
. See text for details.

Out of the two τh objects, we take the one which gives the tτ mass, mtτ
1 , closest to the

D mass (1TeV here). At this step, the t quark out of the two is taken randomly. The
other τh and the other t quark then give the mass of the second LQ, mtτ

2 . Figure 4 shows
the distribution of the mtτ

1 (left) and mtτ
2 (right) for the tt̄jj events after the selections

pjT > 40GeV, |ηj | < 2.4, and mjj > 200GeV.
One can see that selecting a large mtτ

2 can sufficiently suppress the tt̄jj background.
The detector mass resolution of the t quark in a fully hadronic decay mode is 14GeV (8%
of the mt) at the CMS [48]. We assume conservatively a detector resolution of 10% for
the tτ mass, so that σexp

D = 100GeV for mD = 1TeV, and the natural width of D to be
negligible compared to it. The efficiency of the selection mtτ

2 > mD − 2σexp
D = 800GeV

is 0.06 for the tt̄jj background, and 0.95 for the signal. It leads to cross sections of 0.14
(1.65) fb for the signal and 0.04 fb for the tt̄jj background after all the selections imposed
so far. It corresponds to 20 (231) expected signal events and 6 background events for an
integrated luminosity of 140 fb−1, resulting in a signal significance, 2(

√
S +B −

√
B) [49],

of 5.2 (> 5). Moreover, the expected upper limit on the number of the signal events is
6.2 corresponding to the cross section of 0.16 fb, which is better than the 0.5 fb limit at
mS1 = 1TeV from the ATLAS analysis [19].

Two factors related to the detector reconstruction effects can potentially weaken the
performance of our analysed channel. First, as mentioned already, the association of the
jets and b-jets to the t quarks is not expected to be 100% correct. And second, the jet
energy smearing can reduce the impact of the mjj > 200GeV selection cut. Such effects
can be estimated with a full detector simulation and reconstruction. We, however, do not
expect our reported results to change drastically, and emphasise that the fully hadronic
tt̄ττ final state can nicely complement the current Run 2 analyses employing final states
with leptons.

4 Interpretation in the E6SSM

As an application of our analysis to a top-down framework, we look at how it constrains
the parameter space of the E6SSM, which is one of the best-motivated E6-inspired SUSY
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Figure 4. Distribution of the mtτ
1 (left) and mtτ

2 (right) for the tt̄jj events after the selections
pjT > 40GeV, |ηj | < 2.4, and mjj > 200GeV.

models. The simple extension of the SM discussed in section 2 may be embedded in this
model, with the sparticle mass scale lying in the few TeV range.

In the E6SSM, the E6 group is broken down to the SM gauge group plus an extra
U(1)N symmetry around the GUT scale MX , where

U(1)N = 1
4U(1)χ +

√
15
4 U(1)ψ . (4.1)

The U(1)ψ and U(1)χ symmetries are associated with the subgroups E6 ⊃ SO(10)×U(1)ψ ⊃
SU(5)×U(1)χ×U(1)ψ. It is assumed that in the E6SSM the matter parity ZM2 = (−1)3(B−L)

is also preserved.
In this SUSY model the anomalies are automatically cancelled if the low-energy par-

ticle spectrum includes three complete 27-dimensional representations of E6 (27i with
i = 1, 2, 3). Each 27-plet contains one generation of ordinary matter, a SM singlet field Φi

carrying non-zero U(1)N charge, up- and down-type Higgs doublets Hu
i and Hd

i , as well
as exotic scalar quarks (squarks) Di and Di with electric charge ±1/3. In order to avoid
rapid proton decay via these exotic states, one must impose some additional symmetry.
The simplest options are a ZL2 symmetry, which implies that all supermultiplets except the
lepton ones are even, or a ZB2 symmetry, under which exotic quark and lepton supermulti-
ples are odd, whereas the others remain even [21, 22]. In the first case the Di and Di are
diquarks (Model I). In the second scenario the exotic squarks carry baryon (BD = 1/3 and
BD = −1/3) and lepton (LD = 1 and LD = −1) numbers simultaneously so that they are
LQs (Model II).

The exotic states in the E6SSM may also give rise to flavour changing processes. In
particular, the scalar components of the supermultiplets Hu

i and Hd
i can interact with

the SM fermions of different generations, thus contributing to the amplitude of K0–K0

oscillations, and resulting in new channels of muon decay, such as µ→ e−e+e−. The non-
diagonal flavour transitions can be suppressed by imposing ZH2 symmetry, under which all
the matter supermultiplets except one SM singlet superfield (Φ ≡ Φ3) and one pair of Hu

i

and Hd
i (say Hd ≡ Hd

3 and Hu ≡ Hu
3 ) are odd [21, 22]. The discrete ZH2 symmetry can

– 8 –
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only be an approximate one because it forbids all operators that allow the lightest exotic
quark or squark to decay.

The appropriate suppression of the flavour-changing processes can be achieved when
all ZH2 symmetry-violating couplings are less than 10−4. Within this original E6SSM, only
Hu, Hd, and Φ form the Higgs sector, whereas the Higgs-like doublets Hd

α and Hu
α as well

as the SM singlets Φα (α = 1, 2) do not acquire vacuum expectation values (VEVs). The
VEV of Φ = ϕ/

√
2 breaks U(1)N gauge symmetry, generating the mass of the Z ′ boson,

mZ′ ≈ g′1Q̃Φ ϕ , (4.2)

and the effective µ-term. In eq. (4.2) g′1 and Q̃Φ = 5√
40 are the U(1)N gauge coupling and

the U(1)N charge of the superfield Φ, respectively. The LHC constraints require the extra
U(1)N gauge boson to be heavier than 4.5TeV [50, 51]. To satisfy this constraint ϕ should
be larger than 12TeV.

The conservation of the ZM2 symmetry and R-parity in the E6SSM ensures that the
lightest SUSY particle (LSP) is stable. In this case the LSP and the next-to-LSP (NLSP)
are mostly composed of the fermion components of the superfields Φα. Using the approach
discussed in [52–54], it was shown that the masses of the LSP and NLSP (H̃0

1 and H̃0
2 )

are smaller than 60–65GeV [55]. The couplings of these fermions to the SM particles tend
to be rather small. Nevertheless if the LSP had a mass close to mZ/2, it could account
for some of the observed cold dark matter (DM) relic density [55]. In these scenarios, the
lightest Higgs boson decays mainly into either H̃0

1 or H̃0
2 , while all other BRs are highly

suppressed. Such scenarios have been already excluded by the LHC experiments. When
the LSP and NLSP are considerably lighter than mZ , the annihilation cross section of
H̃0

1 H̃
0
1 → SM particles becomes too small, resulting in a DM density which is substantially

larger than its measured value.
Since 2006 several modifications of the E6SSM have been explored [21, 22, 56–68].

The implications of the U(1)N extensions of the MSSM have been studied for the Z–Z ′
mixing [69], the neutralino sector [69–71], leptogenesis [72–75] and electroweak symmetry
breaking [70, 76, 77], the renormalisation group (RG) flow of couplings [70, 78], the renor-
malisation of VEVs [79, 80], non-standard neutrino models [81], the DM [55, 67, 68, 82],
and the signatures associated with the inert neutralino states [83, 84]. Within the E6SSM
the upper bound on the lightest Higgs mass near the quasi-fixed point was examined
in [85, 86]. The corresponding quasi-fixed point is an intersection of the invariant and
quasi-fixed lines [87, 88]. The particle spectrum in the constrained E6SSM (cE6SSM) and
its modifications has been analysed in [89–95]. The degree of the fine tuning and the
threshold corrections were explored in [96, 97] and [98], respectively.

The exotic matter in the E6SSM may result in distinctive LHC signatures [21, 22, 59,
62, 91, 99–102], and can give rise to non-standard Higgs decays [55, 57, 86, 103–109]. In
the E6SSM with approximate ZH2 symmetry, one can also impose an exact ZS2 symmetry,
which implies that only components of the Φα superfields are odd [63]. In this case the LSP
and NLSP become massless and decouple. The presence of such massless fermions does not
affect the Big Bang Nucleosynthesis if the Z ′ boson is rather heavy [63]. In this variant of
the model, one of the lightest R-parity odd state is stable and may account for some of the
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observed DM matter relic abundance. Neglecting non-renormalisable interactions and all
the ZH2 symmetry-violating couplings, the superpotential of this model can be written as

WE6SSM = λΦ(HuHd) + λαΦ(Hd
αH

u
α) + κiΦ(DiDi)

+ 1
2MiN

c
iN

c
i + hijN

c
i (HuLj) +WMSSM(µ = 0) ,

(4.3)

where N c
i and Lj are supermultiplets of the right-handed neutrinos and left-handed leptons.

In the case of Model II, the ZH2 symmetry-violating terms, that permit the lightest
exotic quark or squark to decay, can be presented in the following form

W2 = gijke
c
iu
c
jDk + gijk(QiLj)Dk + g′ijkd

c
iN

c
jDk . (4.4)

Here eci , uck, dci , and Qi are supermultiplets of the right-handed charged leptons, the right-
handed up-type quarks, the right-handed down-type quarks, and the left-handed quark
doublets, respectively.

The VEV of the Φ induces the masses of the exotic fermions, which in the leading
approximation are given by

µDi = κi√
2
ϕ , µH̃α = λα√

2
ϕ , (4.5)

where µDi are the exotic quark masses, while µH̃α are the masses of the states composed of
the fermionic components of the Hd

α and Hu
α. These masses are determined by the values

of the Yukawa couplings κi and λα.
The breakdown of the gauge symmetry in the E6SSM may give rise to a substantial

mixing between the scalar components of the supermultiplets Di and Di. Since we choose
the field basis such that the Yukawa couplings of the Di and Di to Φ are flavour diagonal,
which leads to a mixing only between the exotic squarks from the same family. As a
consequence, the calculation of the exotic squark masses reduces to the diagonalisation of
three 2× 2 matrices

M2(i) =
(
M2

11(i) + ∆11(i) µDiXDi + ∆12(i)
µDiXDi + ∆12(i) M2

22(i) + ∆22(i)

)
,

with M2
11(i) = m2

Di + µ2
Di + ∆D , M2

22(i) = m2
Di

+ µ2
Di + ∆D ,

XDi = Aκi −
λ√
2ϕ
v1v2 , and ∆φ = g

′2
1
2

(
Q̃Dv

2
1 + Q̃Dv

2
2 + Q̃Φϕ

2
)
Q̃φ ,

(4.6)

where i = 1, 2, 3, v1 and v2 are the VEVs of the Higgs doublets Hd and Hu, Q̃D = − 2√
40

and Q̃D = − 3√
40 are the U(1)N charges of the Di and Di, while ∆lm(i) (l,m = 1, 2) are the

contributions of loop corrections. m2
Di

and m2
Di

in the above equation are the soft scalar
masses of the Di and Di, whereas Aκi are the trilinear scalar couplings associated with the
Yukawa couplings κi. The parameters m2

Di
, m2

Di
, and Aκi break global SUSY.

The U(1)N D-term contributions to the masses of the exotic squarks are set bym2
Z′ , i.e.,

∆D ≈ −
1
5m

2
Z′ , ∆D ≈ −

3
10m

2
Z′ . (4.7)
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These contributions are negative because the U(1)N charge of the Φ and the U(1)N charges
of the Di and Di are opposite. On the other hand, the U(1)N D-term contributions to
the masses of the ordinary squarks and sleptons are positive. As a result, in some parts of
the E6SSM parameter space the exotic squarks tend to be substantially lighter than the
superpartners of the SM fermions.

The magnitude of mixing in the exotic squark sector is governed by the mixing param-
eters XDi as well as the masses µDi . If µDi are sufficiently large, the mixing effects can
be so substantial that the corresponding lightest exotic squarks may be among the lightest
SUSY particles in the E6SSM. In the Model II, the lightest scalar LQ, which we denote by
D in order to identify it with the S1-type LQ in our low-energy SM extension discussed
earlier, is a linear superposition of the scalar components of the D1 and D1 supermultiplets.
Its mass is given by

m2
S1 = 1

2

[
M2

11(1) + ∆11(1) +M2
22(1) + ∆22(1)

−
√(

M2
11(1) + ∆11(1)−M2

22(1)−∆22(1)
)2 + 4 (µD1XD1 + ∆12(1))2

]
.

(4.8)

To simplify our analysis of the D in the E6SSM, we set Aκ1 = 0. Because of this the
mixing between the scalar components of the D1 and D1 is almost always small unless
M2

11(1) ≈ M2
22(1). In this case, D is almost entirely the scalar component of either D1 or

D1, and m2
D is defined by the smallest diagonal element of the mass matrix in eq. (4.6),

i.e., either by M2
11(1) or M2

22(1). Moreover, we focus on the part of the E6SSM parameter
space where mD is smaller than the mass of the lightest fermion LQ. Therefore, the decay
modes of the D are entirely determined by the Yukawa interactions in eq. (4.4).

We examine the BRs of the decays of the D assuming that ZH2 is mainly broken by
the operators involving quarks and leptons of the third generation. In other words, we
ignore all the Yukawa couplings gij1 and gij1, except g331 and g331, so that the D decays
only into tτ and bν, and as a result BR(D → bν) = 1 − BR(D → tτ). To compute these
BRs we incorporated the model in the Mathematica package SARAH v4.14.4 [110–116],
which evaluates the interaction vertices, and writes down model files for the FORTRAN
code SPheno v4.0.5 [117, 118] for performing phenomenological studies.

In figure 5, we show the expected exclusion contour (blue) from our signal-to-back-
ground analysis in the {mS1 ,BR(D → tτ)} plane, together with those from two recent
ATLAS results (black and green). Also plotted are a number of E6SSM parameter space
points, obtained for different values of m2

D1
, m2

D1
, and κ1. When the D is predominantly

the scalar component of the D1, it couples to the doublets and thus has BR(D → tτ) close
to 50%. When it is mostly the D1 it couples to singlets and decays solely to tτ if the right-
handed neutrino is heavier than the D. Hence a lot of the points have the BR(D → tτ)
close to either 50% or 100%. In the intermediate cases M2

11(1) ≈M2
22(1), and there can be

sizeable mixing between the scalar components of the D1 and D1.
We see in the figure that, when the D is D1-like, our proposed analysis of the fully

hadronic final state resulting from its pair-production can exclude its mass up to about
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Figure 5. The exclusion bound (blue) in the {mS1 ,BR(D → tτ)} plane. The area on the left
hand side of the curves is excluded. The black and green lines are from the ATLAS analyses [19]
and [20], respectively. The red points correspond to some particular configurations of the E6SSM
parameter space, explained in the text.

1340GeV. The exclusion bound is even stronger, close to 1580GeV, if the D is predomi-
nantly the D1 instead.

5 Summary and conclusions

LQs, being coloured, can be produced efficiently at the LHC, and are thus among the
potential signatures of BSM physics. We have studied the possibility of searching third-
generation LQs decaying to tτ in the fully hadronic channel. This analysis would comple-
ment the existing searches relying on the semi-leptonic channel, and has the advantage of
larger statistics, as well as the possibility of reconstructing the mass of the LQ.

In the fully hadronic channel, we expect larger backgrounds from QCD processes. But
we have shown that, with suitable event selection, the noise from the tt̄jj background gets
under control, while the other backgrounds are negligible. We have found that this channel
has a large estimated sensitivity for the Run 2 data, leading to an expected exclusion limit
of up to 1580GeV (assuming BR(S1 → tτ) = 1) on the LQ mass, thereby besting the
ATLAS result based on the semi-leptonic channel by about 150GeV.

– 12 –



J
H
E
P
0
3
(
2
0
2
3
)
1
1
7

As an example of a model with such a signature, we have discussed a variant of the
E6SSM in which the fundamental representation contains scalar (and fermion) LQs. The D-
term contributions to the scalar LQ masses are negative, unlike those to other sfermions,
and they can hence be among the lightest BSM states of this SUSY scenario. If their
couplings to the fermions of the first two generations are vanishing, one of the two lightest
scalar LQs can decay dominantly to tτ and the other to tτ and bν, with nearly equal BR
in each of these channels. We have then demonstrated how the fully hadronic channel
is expected to improve the sensitivity of the LHC searches to the pair-production of the
lightest LQ in this model.
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