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2.3.1 5d SCFTs from massive E-string theories 10
2.4 Constrained E8 Kac labels 11
2.5 A holographic check 13

3 Higgs branch flows at fixed n0 15
3.1 Some examples for n0 = 1, . . . , 9 16

4 Higgs branch T-brane flows to different n0 16
4.1 Electric quivers with empty −1 curve 24
4.2 Electric quivers with usp on the −1 curve 26
4.3 Electric quivers with su on the −1 curve 27

5 Conclusions 29

A Rules for magnetic quivers 31
A.1 Empty −1 curve 32
A.2 usp on the −1 curve 33
A.3 su on the −1 curve 33

A.3.1 r = 2m 33
A.3.2 r = 2m+ 1 34
A.3.3 r = 6 34

1 Introduction

Understanding the structure of the renormalization group (RG) flows that connect conformal
field theories is an interesting dynamical question in any dimension. For six-dimensional
superconformal field theories (6d SCFTs) the situation is particularly favorable, as these
admit multiple string theory engineerings, allowing us to construct and describe these flows
rather explicitly.

Six-dimensional SCFTs allow for supersymmetry-preserving deformations triggering an
RG flow onto their moduli space [1], whose two main branches are known as tensor branch
and Higgs branch.1 The former is parameterized by vacuum expectation values (vev’s) for

1There exist also mixed branches, which will not be analyzed here.
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the scalar fields in the tensor multiplets; activating vev’s for tensor scalars triggers an RG
flow to an infrared (IR) quiver gauge theory (plus tensors) from the ultraviolet (UV) SCFT,
which breaks conformality. On the other hand the Higgs branch is parameterized by vev’s
for the hypermultiplet scalars (i.e. the matter fields), and these trigger flows to a new fixed
point in the IR, whose flavor symmetry is generically different from that of the parent UV
fixed point, i.e. the symmetry is Higgsed. The Higgsings can be analyzed from a multitude
of perspectives: from nilpotent orbits of Lie algebras (related to Nahm’s equations satisfied
by the moment maps of the flavor symmetry that rotates the hypermultiplets) [2, 3], to 3d
magnetic quivers [4, 5], to the 6d anomaly polynomial [6].

Notable examples of such constructions can be found in [3, 6–9]. In particular in [8, 9]
the authors of the present paper focused on Higgs branch RG flows for an infinite class of
6d SCFTs known as A-type orbi-instantons. These can be engineered in M-theory, and
are the datum of the number N of M5-branes, the order k of the orbifold C2/Zk they are
probing, and a boundary condition at infinity given by a representation ρ : Zk → E8, where
E8 is the gauge symmetry on an M9-wall that the M5’s are probing (on top of the orbifold
point) [2]. For each choice of (N, k, ρ) there exists an orbi-instanton. Then, fixing k one
can construct intricate hierarchies of RG flows (either fixing also N as in [9] or letting it
change as in [8]) that connect orbi-instantons defined by different boundary conditions ρi.
The latter are given by a concrete algorithm that takes as input a partition of k in terms of
the Coxeter labels 1, . . . , 6, 4′, 3′, 2′ of the affine E8 Dynkin diagram (known as a choice of
E8 Kac label), and produces as an output a (maximal regular) subalgebra of E8 which is
(a factor of) the flavor symmetry algebra of the given orbi-instanton. For instance for the
trivial choice of boundary condition that preserves the full E8 (the associated Kac label is
k = [1k], adopting standard notation for integer partitions), the full tensor branch of the
orbi-instanton is described, in the F-theory language of [10], by the following electric quiver:

[E8] 1
su(1)

2
su(2)

2 · · ·
su(k−1)

2︸ ︷︷ ︸
k

su(k)
2

[Nf=1]

su(k)
2 · · ·

su(k)
2︸ ︷︷ ︸

N

[SU(k)] . (1.1)

The flavor symmetry is thus E8 ⊕ su(k) (disregarding the su(2) R-symmetry).2 The right
SU(k) is treated as a “spectator”, and does not participate in the flows. (On the contrary,
in the present paper this factor will play a crucial role in one type of flows.) Moreover it was
conjectured in [9, 11] that this hierarchy closely mimics the Hasse diagram of E8-orbits of the
double affine Grassmannian of E8 introduced in [12], which is an appropriate generalization
of the E8 affine Grassmannian (based on the affine E8 Dynkin rather than the finite one,
as for the “singly” affine Grassmannian).3

Emboldened by these results, in this paper we will construct a hierarchy of Higgs
branch RG flows between 6d SCFTs which are close cousins of the orbi-instantons, but
have received relatively less attention in the literature. They are known as massive E-string

2In this paper we will only deal with the Lie algebra of the flavor symmetry, even when we write the
flavor summands as groups. (Therefore we will deliberately confuse summands with factors and vice versa.)

3See also [13] for another appearance of the affine Grassmannian related to moduli spaces of 3d N = 4
magnetic quivers from brane setups.
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theories [2, 14–17] (adopting nomenclature introduced in [17]),4 since they do not admit an
engineering in M-theory but do so both in massive Type IIA — Type IIA in presence of
D8-branes sourcing a nonzero Romans mass F0 — and in F-theory (thus falling into the
“atomic classification” of [10]). Focusing on their massive IIA engineering, these theories are
defined by a choice of the number 8− n0 of D8’s that are on top of an O8−-plane, which is
probed by N coincident NS5’s intersected by k D6’s. (For n0 = 0 we have 8 D8’s on top of
the O8− so that the total Romans mass vanishes and the whole system can be lifted to the
original M9-wall of the orbi-instantons [20], with the NS5’s lifting to M5’s and the k D6’s
to the C2/Zk orbifold.) The (at most) E8 flavor symmetry summand of the orbi-instantons
is here replaced by E1+(8−n0), which for n0 = 1, . . . , 8 is nothing but the list of exceptional
flavor symmetries from [21]. Moreover, if we swap the O8− with the so-called O8∗ [20],
which has −9 D8 charge rather than −8 (and is needed to describe the non-perturbative
completion of Type I’ [22–24]), we are also able to engineer the 6d version of the Ẽ1 = u(1)
(with n0 = 8) and E0 = ∅ (with n0 = 9) theories of [22].

After having introduced the massive E-strings in section 2, and explained how they are
actually related to standard orbi-instantons by a special choice of constrained E8 Kac labels,
we will construct two types of RG flows connecting them: Higgs branch flows between
massive E-strings at fixed n0 but different constrained Kac labels (section 3), mimicking
closely what done in [8, 9] for orbi-instantons; and Higgs branch flows from massive E-strings
at n0 to others at a different n′0 (section 4), which crucially involve the right SU(k) factor,
i.e. a “mixing” between left and right flavor symmetries, which is a novelty with respect to
previous literature. These latter flows are triggered by so-called T-brane vev’s for matter
hypermultiplets charged under SU(k). (Both flows are obtained via quiver subtraction [25]
of the 3d magnetic quivers [4] associated with the SCFTs.) We close in section 5 with some
open perspectives. Appendix A contains the rules to construct the magnetic quivers of the
massive E-strings.

2 Orbi-instantons and massive E-string theories

Let us briefly review the construction of orbi-instantons via Kac labels from [9]. This will al-
low us to introduce the massive E-string theories as “fission” products [26] of orbi-instantons.

An orbi-instanton of type ADE is the 6d (1, 0) SCFT that lives on the common
worldvolume of N coincident M5-branes probing the intersection between an M9-wall and
the orbifold C2/ΓADE. On top of N and the order of the orbifold, the SCFT is specified by
a choice of boundary condition at the spatial infinity S3/ΓADE surrounding the orbifold
point, which is a representation ρ : ΓADE → E8.

Let us restrict our attention to type A. For a trivial boundary condition (i.e. the full
E8 coming from the M9 is preserved), the partial tensor branch of the SCFT reads:

[E8]
su(k)

1
su(k)

2 · · ·
su(k)

2︸ ︷︷ ︸
N

[SU(k)] . (2.1)

4Some have been exploited very recently to construct new 4d IR dualities [18]. Other massive backgrounds
appear in [19], which also feature O6 and ON planes.
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Upon completely blowing up the base (i.e. going to the generic point on the tensor branch),
we have

[E8] 1
su(1)

2
su(2)

2 · · ·
su(k−1)

2︸ ︷︷ ︸
k

su(k)
2

[Nf=1]

su(k)
2 · · ·

su(k)
2︸ ︷︷ ︸

N

[SU(k)] . (2.2)

As stated, the chosen boundary condition is the one which preserves the full E8 from the
left, which can be nicely packaged in a choice of so-called Kac label of k, i.e. a partition of
the order k of the orbifold in terms of Coxeter labels in the affine E8 Dynkin diagram, with
multiplicity (see e.g. [9, section 2.1]). The generic Kac label thus reads

k = [1n1 , 2n2 , 3n3 , 4n4 , 5n5 , 6n6 , 4′n4′ , 2′n2′ , 3′n3′ ] , (2.3)

and preserves a (maximal regular) flavor subalgebra f of E8 obtained by deleting all nodes
in the affine E8 Dynkin diagram

◦
n1
− ◦
n2
− ◦
n3
− ◦
n4
− ◦
n5
−
◦ n3′
|
◦
n6
− ◦
n4′
− ◦
n2′

(2.4)

with nonzero multiplicity ni in (2.3) (including the ni′ by abuse of notation), plus potential
u(1) summands to make the total rank 8.5 E.g. k = [1k] preserves the full E8, which
is the implicit choice in (2.2). In fact, there exists [10, section 7] one distinct F-theory
configuration of decorated curves per boundary condition in M-theory.6 (The algorithm to
obtain the former was later given in [27]. Later [7] has explored at length this M/F-theory
one-to-one correspondence for all types of orbi-instantons.)

2.1 Magnetic quivers of orbi-instantons

Although the SCFTs are strongly coupled, their Higgs branch can be studied in detail via
the so-called magnetic quiver, an auxiliary 3d N = 4 quiver gauge theory whose Coulomb
branch coincides with the Higgs branch of the 6d theory, not only on the tensor branch but
also at its origin, i.e. at “infinite (gauge) coupling”, where the SCFT resides.

For orbi-instantons, these magnetic quivers have been worked out in [4], and can be read
off of the spectrum of D1-branes suspended between a system of NS5-D5 branes, obtained
by applying S-duality (i.e. mirror symmetry) to the triple T-duality of the O8-D8-D6-NS5
Type IIA reduction of the M-theory setup. They are given by star-shaped quivers of unitary
gauge groups with three tails, obtained by gluing an affine E8 Dynkin diagram to the
T (SU(k)) 3d theory of [28]:

1− 2− · · · − (k − 1)− k − r1 − r2 − r3 − r4 − r5 −
r3′
|
r6 − r4′ − r2′ , (2.5)

5See [9, section 3.3] for the correct physical interpretation of these u(1)’s, and how to make sense of their
“(de)localization” along the electric quiver.

6Actually, there exist cases where the 6d electric quiver, i.e. the (1, 0) quiver gauge theory describing the
full tensor branch, can be associated to two distinct SCFTs. The difference manifests itself in the 6d θ angle
of the gauge theory, which can take values 0, π. One SCFT has electric quiver with θ = 0, the other the
same electric quiver bu θ = π. See e.g. [9, section 4.3].
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Figure 1. Type IIA configuration dual to the F-theory one in (2.2). The SCFT corresponds to the
configuration where all NS5’s are brought on top of each other. Circles represent NS5’s; vertical
lines represent D8’s, with their total number written on top; a dashed vertical line represents the
O8−; horizontal lines represent D6’s, with their total number written on top.

where − or | denotes a hypermultiplet, n a U(n) gauge group, and the ranks ri, ri′ depend
nontrivially on N and the choice of Kac label. The gluing is done “along” the extending
node of affine E8.

2.2 Massive E-string theories for E8, . . . , E1

The F-theory configuration in (2.2) allows for an alternative engineering in Type IIA, given
by stacking 7 D8-branes on top of an O8− on the left, plus a lone D8 far away from it
(corresponding to the single fundamental hypermultiplet at the beginning of the plateau in
position k). See figure 1. In a sense, we are stripping off n0 = 1 D8 from a stack of 8 which,
together with the O8−, lifts to the M9-wall at strong string coupling (see the discussion
in [9, section 2.2]).

What happens if we instead strip off n0 > 1 D8’s, and clump them together? We land
on the electric quiver [27, eq. (5.71)]

[E1+(8−n0)] 1
su(n0)

2
su(2n0)

2
su(3n0)

2 · · ·
su((m−1)n0)

2
su(mn0)

2
[Nf=n0]

su(mn0)
2 · · ·

su(mn0)
2 [SU(mn0)] , (2.6)

where now k = mn0, and E1+(8−n0) on the left is the following list of flavor algebras:

E1+(8−n0) = {E8, E7, E6, so(10), su(5), su(3)⊕ su(2), su(2)⊕ u(1), su(2)}8n0=1 . (2.7)

Notice that in the above electric quiver we still have a total of 8− n0 + n0 = 8 D8’s, i.e. the
total Romans mass of the system vanishes (since the O8− contributes −8). Moreover N
and k are required to satisfy the “massless constraint”, namely that the total number of
compact curves 12 . . . 2 be larger than k. (In [9] that number was called N .)

The list in (2.7) is motivated by a similar analysis in 5d [21], where probe D4’s are
brought close to an O8− with 8 − n0 D8’s on top.7 This excludes the Ẽ1 = u(1) and
E0 = ∅ cases later discovered in [22], which we will comment on momentarily. Following the
algorithm in [27] we recognize that (2.6) is the right electric quiver only for n0 = 1, . . . , 6

7E1+(8−n0) is the enhanced exceptional flavor symmetry of a 5d SCFT which flows in the IR to 5d N = 1
SU(2) SYM with Nf = 8− n0 fundamentals.
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with Kac label k = mn0 = [nm0 ] and preserved flavor algebra f given by, respectively:

n0 = 1, . . . , 6 : f = E1+(8−n0) ⊕



“su(1)”
su(2)
su(3)
su(4)
su(5)
su(6)

: [E1+(8−n0)] 1
su(n0)

2 · · ·
su(mn0)

2
[Nf=n0]

· · · [SU(mn0)] .

(2.8)

Other Kac labels involving the primed Coxeter labels 2′, 3′, 4′ exist of course, and have
a preserved flavor algebra fprimed which contains a subalgebra of the E1+(8−n0) summand
in the funprimed = E1+(8−n0) ⊕ su(n0) of (2.8). For this reason they will lie lower on the
hierarchy of RG flows between massive strings, i.e. they are never the starting points of the
flows, as we will see in section 3.

For n0 = 7 we can have multiple electric quivers (or labels) which preserve the same
f = E2⊕ su(7) = su(2)⊕ u(1)⊕ su(7), depending on the value of k (which is not necessarily
given by 7m now). Adapting from [9, section 4.1] we obtain:

k = [4n4′ , 3n3′ , 2n2′ ] : [E2]
usp(2n2′ )

1
su(2n2′+7)

2 · · ·
su(k)

2
[Nf=7]

[SU(k)] , (2.9a)

k = [4n3′−1, 3n3′ , 2n2′ ] : [E2]
su(2n2′+3)

1
[N =1]

su(2n2′+3+7)
2 · · ·

su(k)
2

[Nf=7]
[SU(k)] , (2.9b)

k = [4n3′+1, 3n3′ , 2n2′ ] : [E2]
su(2n2′+4)

1
[N =1]

su(2n2′+4+7)
2 · · ·

su(k)
2

[Nf=7]
[SU(k)] . (2.9c)

Here and below N = 1 indicates a single two-index antisymmetric hypermultiplet of

su(r ≥ 3), whereas N
1
2

= 1 a half-hypermultiplet in the three-index antisymmetric of

su(6).
For n0 = 8 we have f = E1 ⊕ su(8) = su(2)⊕ su(8) and

k = [4n4′ , 2n2′ ] with n4′ even : [E1]
usp(2n2′ )

1
su(2n2′+8)

2 · · ·
su(k)

2
[Nf=8]

[SU(k)] , (2.10a)

k = [4n4′ , 2n2′ ] with n4′ odd : [E1]
su(2n2′+4)

1
[N =1]

su(2n2′+12)
2 · · ·

su(k)
2

[Nf=8]
[SU(k)] , (2.10b)

k = [3n3′ , 2n2′ ] with

n3′ even
n2′ ≥ n3′

2
: [E1]

usp(2n2′−n3′ )
1

su(2n2′−n3′+8)
2 · · ·

su(k)
2

[Nf=8]
[SU(k)] , (2.10c)

k = [3n3′ , 2n2′ ] with

n3′ odd
n2′ ≥ n3′−1

2
: [E1]

su(2n2′−n3′+4)
1

[N =1]

su(2n2′−n3′+8)
2 · · ·

su(k)
2

[Nf=8]
[SU(k)] .

(2.10d)
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After much work (albeit straightforward), we are finally ready to introduce the massive
E-string theories, which as the name suggests do not have an engineering in M-theory but do
so in massive Type IIA (and F-theory). In fact they are generalizations of (2.8), (2.9), (2.10)
obtained by “cutting” the electric quiver right at the beginning of the plateau (i.e. where
the Nf = n0 fundamental hypermultiplets are located). All cases with empty −1 curve
(which is the only possibility for n0 = 1, . . . , 6 but is only a limiting case of one electric
quiver for n0 = 7, 8) have already appeared in [17, section 5.2]. Here we will extend the
notion of massive theory to all electric quivers.

The cutting operation leaves behind only 8− n0 D8’s (rather than 8), and the total
Romans mass is no more vanishing. We can think of this “fission” [26] as the ungauging of
the first su(k) algebra (counting from the left), obtained in the IIA picture by semi-infinitely
stretching the k D6’s in that finite segment (see again figure 1) to the far right (thus pushing
away to infinity the Nf = n0 D8’s that used to cross them), a picture that will become
useful in what follows. (Equivalently, in the F-theory picture we are decompactifying the
−2 curve that supports su(k), becoming [SU(k)] in our notation.)

E.g. for n0 = 1, . . . , 6 we are left with the shortened electric quiver [17, eq. (5.11)]

[E1+(8−n0)] 1
su(n0)

2
su(2n0)

2 · · ·
su((N−1)n0)

2︸ ︷︷ ︸
N

[SU(Nn0)] , (2.11)

upon renaming m = N and k = Nn0. (We will sometimes refer to the above theory as
massive E1+(8−n0)-string or massive string at n0, if we want to stress the choice of n0.
Remember that for n0 = 7, 8 we have multiple electric quivers depending on the value of k
for the parent orbi-instanton.) This means the massless constraint is no longer satisfied in
the massive theories; rather, k (which has lost its meaning as order of the orbifold) is given
in terms of N and signifies the number of semi-infinite D6’s in the last segment to the right.
N is then the total number of compact curves 1 2 . . . 2 (as in the notation of [9]).

2.3 The O8∗-plane and the 6d massive Ẽ1, E0 theories

Studying the 5d SCFTs which come from D4 probes of an O8-D8 system in Type I’, [22]
discovered they could add two extra cases, Ẽ1 = u(1) and E0 = ∅, to the list in (2.7) if they
considered a type of orientifold 8-plane dubbed O8∗,8 which is necessary to understand the
non-perturbative completion of Type I’ [22–24]. The O8∗ has −9 D8 charge, and can be
thought of as the product of nucleating an extra D8 out of an O8− (which has charge −8),
that is (schematically) O8− → O8∗ + 1 D8 (which reminds of the well-established Type IIB
splitting O7− → [1, 1] + [1,−1] 7-branes [30]).

We propose the following picture in massive IIA, which extends naturally the definition
of [17] (only valid down to E1):

• E1 is given by an O8− with 8− n0 = 0 D8’s on top (i.e. we stripped off n0 = 8 D8’s
from it, and moved them inside the massless electric quiver (2.6), in position m);

8This notation was introduced later in [20]. This orientifold also plays a role in getting the SO(34) and
SU(18) gauge groups in Type I’ [29].
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• Ẽ1 is given by an O8∗ with 1 extra D8, the one nucleated by the O8−, i.e. 8− n0 = 0
or n0 = 8. This system obviously has the same charge as an O8− with 0 D8’s, i.e.
case E1 above. However there is a nonzero θ angle in massive IIA that distinguishes
the two (see below);

• E0 is given by the O8∗ alone, i.e. 8− n0 = −1 or n0 = 9, with nonzero θ angle.

To explain our reasoning, we take a short historical detour.9
It has been proposed in [32] that the 10d Type I string, i.e. the orientifold (O9) of

Type IIB (with 32 D9’s), comes in two flavors: the ordinary string with C0 = 0 and a “new”
one with C0 = 1

2 . This is because the orientifold imposes C0 → −C0, but C0 is periodic
in IIB (it is an axion), C0 ∼ C0 + 1,10 therefore both C0 = 0, 1

2 are allowed. C0 is then
interpreted as a Z2-valued θ angle in 10d. This possibility was explored long ago in [33,
footnote 8] (where the two 10d backgrounds are shown to be connected by a non-BPS
D8-brane coming from a D9-D9 pair [34]), though the connection to C0 was made only
in [32]. The correct interpretation of the new string was then given in [31], which showed
the two are actually completely equivalent. (The conclusion of [31] is that the orientifold
of Type IIB with C0 = 1

2 is Type I with the other chirality of the Spin(32) spinor.) Much
more recently [35] arrived at the same conclusion based on arguments due to [36]. (The
argument goes roughly as follows. The gauge group of Type I is actually Spin(32)/Z2
due to D(−1)-instantons. There are two possible Z2 projections which are exchanged by
an element in the disconnected component of O(32). However the two choices of gauge
symmetry are equivalent, since any sign weighting the instanton contribution in the 10d
action is identified with the other by the same element.)

In 9d Type I’, i.e. the orientifold (O8) of Type IIA on a circle (with 16 D8’s), which
is T-dual to Type I, the orientifold forces

∫
S1 C1 = 0, 1

2 , thus
∫
C1 plays the role of a 9d

Z2-valued θ angle [37]. (Moreover this 9d θ is naturally interpreted as the one distinguishing
5d SU(2)0 and SU(2)π pure SYM, to which the E1 and Ẽ1 5d SCFTs flow, respectively.)
Here we have two O8−-planes at the ends of the interval S1/Z2, plus 16 D8’s ensuring
D8 charge cancellation in this compact space. The domain wall that separates the two
backgrounds (at different θ) is a non-BPS D7-brane coming from a D8-D8 pair. If we
instead add in an extra D8 (i.e. an extra flavor in 5d) and bring it close to the O8, the
system is unstable and the non-BPS D7 (that used to be on top of the O8) is absorbed into
the D8, destroying the domain wall (see [37, figure 3]). In other words, extra D8’s make the
9d θ angle unphysical (as the 10d θ in Type I). On the other hand without extra D8’s the
angle is physical.

From this perspective, the 5d E1 theory has zero D8’s on the (say) left O8. Massless
D0’s are responsible for the enhancement of the global symmetry in the 5d D4 probe theory
to su(2). Taking now one of the D8’s from the other stack of 16 all the way around the circle
(i.e. across the left O8 and back to the right one) creates a fundamental string between a

9We would like to thank Oren Bergman for suggesting some of the arguments below and especially for
sharing with us the unpublished notes for [31].

10This is imposed by the SL(2,Z) gauge symmetry of IIB, acting on τ = C0 + i
gs

as τ → aτ+b
cτ+d . From this

perspective C0 → C0 + 1 is nothing but a T = ( 1 1
0 1 ) transformation.
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stuck D0 and the O8,11 so that the former is no more massless, and there is no enhancement
of global symmetry, only a u(1). That is, we landed on Ẽ1.

Recently [35] has linked the enhancement to the vanishing of the 9d θ angle
∫
S1 C1:

• when
∫
S1 C1 = 0, the O8− has massless D0-branes on top, and the flavor symmetry

algebra (engineered by the n0 = 1, . . . , 8 D8’s which are still on the O8) enhances to
an exceptional one [39–41] as in (2.7).12

• When
∫
S1 C1 = 1

2 instead, the O8− cannot host massless D0’s, but can emit non-
perturbatively an extra D8, i.e. becomes the O8∗, giving rise to the Ẽ1 (n0 = 8) and
E0 (n0 = 9) cases.

Our setup is in massive IIA rather than I’. This is equivalent to stretching the interval of I’
to infinite length, or simply to disregarding one of the two ends and some out of the 16
D8’s. It is possible that an analog 10d θ angle exists in massive IIA, and selects the O8∗
when it attains one of its two possible values. We will assume this is the case, since the
existence of orbi-instantons constructed with the O8∗ naturally suggests the existence of
massive E-strings with the same ingredient via fission.

Following once again the algorithm in [27] and adapting from [9, section 4.1], for n0 = 8
we have f = Ẽ1 ⊕ su(8) = u(1)⊕ su(8) and

k = [32n2′ , 2n2′ ] : [Ẽ1] 1
su(8)

2
su(16)

2 · · ·
su(k)

2
[Nf=8]

[SU(k)] , (2.12a)

k = [32n2′+1, 2n2′ ] : [Ẽ1]
su(3)

1
[N =1]

su(11)
2

su(19)
2 · · ·

su(k)
2

[Nf=8]
[SU(k)] , (2.12b)

k = [32n2′+2, 2n2′ ] : [Ẽ1]
su(6)

1
[N

1
2

=1]

su(14)
2

su(22)
2 · · ·

su(k)
2

[Nf=8]
[SU(k)] , (2.12c)

while for n0 = 9 we have f = E0 ⊕ su(9) = su(9) and

k = [32n3′ ] with n3′ = 0 mod 3 : [E0] 1
su(9)

2
su(18)

2 · · ·
su(k)

2
[Nf=9]

[SU(k)] , (2.13a)

k = [32n3′ ] with n3′ = 1 mod 3 : [E0]
su(3)

1
[N =1]

su(12)
2

su(21)
2 · · ·

su(k)
2

[Nf=9]
[SU(k)] , (2.13b)

k = [32n3′ ] with n3′ = 2 mod 3 : [E0]
su(6)

1
[N

1
2

=1]

su(15)
2

su(24)
2 · · ·

su(k)
2

[Nf=9]
[SU(k)] . (2.13c)

cutting at the beginning of the plateau (where the Nf = n0 fundamentals are located) we
obtain the corresponding E-strings. See figure 2 for a brane realization of the E0 case
for instance.

11D0’s in a massive background necessarily have strings attached. See e.g. [38, section 3.3.2].
12See the explanation e.g. on [9, p.9].
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9 k − 9 k

O8∗

3 12 k − 9 k

O8∗

1
2

6 15 k − 9 k

O8∗

Figure 2. Type IIA configurations with O8∗ engineering the E0 theory with n0 = 9 and k = [3n3′ ].
Top left: n3′ = 0 mod 3. Top right: n3′ = 1 mod 3. Bottom: n3′ = 2 mod 3.

2.3.1 5d SCFTs from massive E-string theories

We close this section with an observation which begs for further investigation. It is interesting
to ask whether the 6d massive E-strings give rise upon compactification to new (high-rank)
5d SCFTs according to the arguments in [42–44].13 One may also be tempted to consider
more than 8 D8’s on the O8− or even the O8+ to construct even more massive 6d SCFTs,
given the Romans mass can be progressively increased with these two ingredients. (That
both possibilities give rise to 6d SCFTs can be checked holographically [53].) The flavor
symmetry algebra is then of type D (O8− + n D8’s) and C (O8+ + n D8’s) respectively,
rather than E. (Type A corresponds to the case with only D8’s, and is the well-studied
NS5-D6-D8 setup of [54, 55].) However the arguments of [21] show that considering those
possibilities leads to UV free theories rather than CFTs in 5d (see e.g. [56, table 1]). One
last possibility is represented by the O80 and O8−1 planes of [57, 58], of D8 charge 0 and −1
respectively, the latter being the non-perturbative completion of the shift orientifold O80 in
Type I’ (i.e. O80 → O8−1 + 1 D8). Here the swampland arguments of [56] suggest the O8−1

should give rise to a 5d SCFT with empty flavor symmetry (as in the E0 case) which can be
reached via a relevant deformation from the SU(2)π gauge theory with an adjoint. In turn
this latter KK theory is the twisted compactification of the A1 (2, 0) [59, eq. (B.3)], i.e. is
UV-completed in 6d.14 When dealing with honest Type I’ setups, there are limitations to
the combinations of 8-planes one can place at the ends of the interval S1/Z2. However in
massive IIA we can consider only one of the two ends, and ask whether combinations of
8-planes and branes placed at the origin of the semi-infinite line give rise to new interesting
6d SCFTs (which at any rate must admit an F-theory engineering contemplated in [10]).

13E.g. the massless rank-1 E-string gives rise upon compactification to the Seiberg list of 5d SCFTs with
exceptional flavor symmetry given by E1+(8−n0), Ẽ1, E0; see e.g. the left column in [44, figure 10]. For
orbi-instantons, i.e. rank-N E-strings with decorated base curves, this question has received a partial answer
in [42, section 5.3.2]. The authors expect they will indeed give rise to 5d SCFTs. One possible way to
approach the problem is to use the combined fiber diagram (CFD) technology of [45–48] by gluing the CFD
for (E8, A) conformal matter provided in [48, section 4.10 & 4.11] to that for the (A,A) bifundamentals
in [49, table 5], since these are the two building blocks of any orbi-instanton. The same CFD technology
could also prove useful in the massive case. (Other ways of getting 5d SCFTs from 6d include [50–52].)

14At infinite gI’
s coupling, the O80 emits non-perturbatively a D8, i.e. splits as O8−1 + 1 D8. This system

lifts to M-theory on a Klein bottle, which can be thought of (in the appropriate region in moduli space) as a
long tube with two cross-caps at the ends [58]. It is reasonable then that a single M5, whose worldvolume
theory is the A1 (2, 0), yields upon twisted compactification on this long tube said KK theory. Given the
latter has a 5d θ = π, and that this is identified with the 9d θ of Type I’ [37, eq. (2)], we learn that a
background with the O8−1 has nonzero θ.
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n0 2n0 (N − 1)n0 Nn0

8− n0

HW←−→ n0 2n0 (N − 1)n0 (N − 1)n0

8− n0 n0

Figure 3. Left: massive Type IIA configuration dual to the F-theory electric quiver in (2.11).
Right: massless Type IIA configuration (orbi-instanton) with k − n0 semi-infinite D6’s obtained
from the massive setup at the top via n0 Hanany-Witten (HW) moves.

2.4 Constrained E8 Kac labels

At this point one may wonder what is left of the Kac labels used to classify different
orbi-instantons (and their magnetic quivers), whose distinct electric quivers15 give rise
to (2.11) and analogs with nonempty −1 curve, upon fission. After all, it seems that the
electric quiver (2.2) for [1k], which we know preserves the full E8, can give rise to a whole
host of different subalgebras of E8 depending on the value of n0, according to (2.6). This
expectation is indeed borne out, in a sense we now explain.

Consider the massive quiver (2.11) for simplicity. Its corresponding Type IIA setup is
drawn in figure 3. The rightmost NS5 has (N − 1)n0 = k − n0 D6’s ending on it from the
left and k = Nn0 from the right, due to D6 charge conservation in presence of a Romans
mass (or equivalently gauge anomaly cancellation in the electric quiver). We can trade a
semi-infinite D6 on the right for a D6 ending on a D8. Using standard Hanany-Witten
moves we can then bring the D8 across the rightmost NS5, removing the D6 that ends on it
altogether. Repeating this operation n0 times we end up with a massless brane system with
8− n0 + n0 = 8 D8’s (crossing the last finite segment of D6’s) but only k − n0 semi-infinite
D6’s, rather than the original k.

We have learned that a massive E1+(8−n0)-string theory (with empty or nonempty −1,
generalizing in the obvious way the above argument) is equivalent via n0 Hanany-Witten
moves to an orbi-instanton with order of the orbifold equal to k − n0 and length of the
plateau equal to one. That is,

massive: · · ·
su(k−n0)

2 [SU(k)] HW−−→ orbi-instanton: · · ·
su(k−n0)

2
[Nf=n0]

[SU(k − n0)] , (2.14)

to go from a massive theory to the corresponding orbi-instanton (with any electric quiver),
or vice versa. It is then clear that the massive E-string theories are a special subclass of
the orbi-instantons. It remains to understand how to constrain the E8 Kac labels in order
to identify only the massive E-strings among the labels for k − n0 (in fact some labels
will correspond to orbi-instantons that cannot be related via Hanany-Witten moves to a
massive E-string at n0). Moreover we observe the above trick is enough to fully determine
the magnetic quiver of the massive E-strings given what we said in section 2.1, a fact which
will be useful later on to construct Higgs branch RG flows.

To constrain Kac labels, we can proceed in two independent ways yielding, of course,
the same conclusion (summarized in table 1).

15Modulo 6d θ angle.
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flavor n0 orbifold constraints on E8 Kac labels of k − n0

E8 1 k − 1 none
E7 2 k − 2 n1 = 0
E6 3 k − 3 n1 = n2 = 0
E5 = D5 4 k − 4 n1 = n2 = n3 = 0
E4 = A4 5 k − 5 n1 = n2 = n3 = n4 = 0
E3 = A2 ⊕A1 6 k − 6 n1 = n2 = n3 = n4 = n5 = 0
E2 = A1 ⊕ u(1) 7 k − 7 n1 = n2 = n3 = n4 = n5 = n6 = 0
E1 = A1 (O8−) 8 k − 8 n1 = n2 = n3 = n4 = n5 = n6 = 0 andn4′ = 0 ∩ n2′ >

1
2n3′ or

n3′ = 0
Ẽ1 = u(1) (O8∗ + D8) 8 k − 8 n1 = n2 = n3 = n4 = n5 = n6 = n4′ = 0 and

n2′ <
1
2n3′

E0 = ∅ (O8∗) 9 k − 9 n1 = n2 = n3 = n4 = n5 = n6 = n4′ = n2′ = 0

Table 1. Constrained E8 Kac labels of k − n0 identifying massive E1+(8−n0)-string theories with k
semi-infinite D6’s. In the n0 = 1 case of the massive E8-string even though the labels themselves are
not constrained, k and N are, since k = Nn0 = N . Ẽ1 has an extra D8 on top of the O8∗; E0 does
not. Satisfactorily, the conditions for Ẽ1 contain those for E0 as a subcase, which is to be expected
since the former theory in 5d flows to the latter via mass deformation [22].

Looking at the electric quiver of the orbi-instanton with empty −1 and k−n0 = (N−1)n0
(obtained via (2.14)),

[E1+(8−n0)] 1
su(n0)

2
su(2n0)

2 · · ·
su((N−1)n0)

2
[Nf=n0]

[SU((N − 1)n0)] , (2.15)

we see that the ranks of the su gauge algebras increase along the ramp by at least n0.16 It
is then enough to use the algorithm in [27, section 3.2] to determine the constrained E8
labels associated to theories of the form (2.15). Using notation as in [27, eq. (3.3)] we define
as to be the number of times a difference equal to s appears in the electric quiver:17

as = #{i s.t. ri+1 − ri = s} . (2.16)

In [27, eq. (3.6)] it is also shown that ai = ni for i = 1, . . . , 6, with ni the multiplicities of
the unprimed Coxeter labels as in (2.4). That is, if all differences are at least equal to nj

16Because of D6 charge conservation, the difference between the numbers of D6’s ending from the left and
right on an NS5 must be equal to the Romans mass “felt” by the NS5, which by convention is given by the
total D8 charge to the immediate left. Clearly if in the finite interval immediately preceding the NS5 there
is one or more extra D8’s, this charge changes, and to compensate for it the rank of the su algebra must
jump by more than just n0.

17In massive quivers, this is the same as the Romans mass in the interval between the i-th and (i+ 1)-th
NS5; see e.g. [53, eq. (2.11)].
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for j = 1, . . . , 6 we simply impose that all multiplicities ni with i < j vanish in the Kac
label associated with the electric quiver for the orbi-instanton at k − n0, i.e. (2.15). Here
we see the differences are at least n0.

One may wonder what happens if we start splitting the stack of n0 D8’s and move them
around compatibly with D6 charge conservation, as this would generate different jumps.
However this is not always possible if we fix the length N of the massive quiver once and for
all, as to satisfy charge conservation sometimes we would need to lengthen the quiver and
allow for su algebras with even higher ranks than Nn0 (which is impossible if we fix N).

All in all, for n0 = 1, . . . , 6 the above procedure yields the first six rows of table 1.
When the difference is equal to 7, 8, 9 instead (the latter case being realized when the O8−
is replaced by a lone O8∗, see figure 2) we have to be more careful. Once again, following
the algorithm on [27, p.9] we arrive at the last three rows of the table.

Alternatively, another way to produce the constraints of table 1 is to realize that the
SU(k − n0) global symmetry of the orbi-instanton must enhance to SU(k) if the E8 label
identifies a massive E1+(8−n0)-string rather than an orbi-instanton. Then, we can impose
the enhancement at the level of 3d magnetic quiver: it is enough to require that certain
nodes in it be balanced (i.e. 2Nc = Nf). In fact, generically, the balanced part of the
magnetic quiver gives the full flavor symmetry at the fixed point [28].18 Constructing the
magnetic quiver of (2.15), we readily see that it has the expected structure (2.5), and that
the 1− · · · − (k− n0− 1) portion of the left tail is already balanced, providing the expected
SU(k−n0) symmetry. To impose that the latter enhances to the full SU(k) we must require
that the balanced tail is actually part of a bigger connected subquiver with k nodes which
are all balanced. This in turn constrains the number N and also the choice of labels that
give rise to such a structure.

Either way, the constraints we obtain can be neatly summarized, and have been recorded
in table 1.

2.5 A holographic check

To reinforce our claim that any massive theory at n0 is equivalent to an orbi-instanton at
k − n0 and a length-one plateau, we will now compute their holographic duals [62]. These
are conveniently encoded in a single polynomial function of one variable, α(z) [53, 63].19

Therefore it is enough to show that any of the physical observables extracted from α which
can be matched with the leading term of the dual field theory observable (at large N) has
the same value for both massive and orbi-instanton theory. One such observable is the a
conformal anomaly.

Following the prescription in [53], it is easy to find that, at the two ends of the finite
interval I = [0, N ] representing the base of the internal space S2 ↪→ M3 → I of the dual
AdS7 vacua, we must enforce the following boundary conditions, representing O8-D8 and

18Exceptions to this rule are known. Sometimes the balanced part is only a subalgebra of the full
(enhanced) flavor [60] (see also [61] for further examples).

19The coordinate z parameterizes the “near-horizon” of the direction along which the NS5’s are arranged,
progressively far away from the O8−.
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α(z)

0 N − 1 N

∫
F2

N − 1 N0

(N − 1)n0

Nn0

Figure 4. Left: α(z) for the massive theory (red, dashed) and the corresponding orbi-instanton
(blue, solid) obtained via Hanany-Witten moves. The two graphs overlap for z ∈ [0, N ] and diverge
slightly in the interval [N − 1, N ]. Right: integral

∫
F2 of the two-form RR flux for the massive (red,

dashed) and massless (blue, solid) theories.

D6 sources:

D8-O8 at z = 0: α̇, α̈→ 0 , D6 at z = N : α→ 0 . (2.17)

Enforcing these boundary conditions, the “boundary data” which are needed to construct
the α’s fall into the class of [53, appendix B.6] (to which we refer the reader for more
details on this construction) in both cases. With those, we can construct explicitly the α’s.
Focusing on the simplest case with empty −1 curve, we find:

α(z)mass = 33π2

2 n0
(
(N − 1)3 − z3

)
(2.18)

for the massive E1+(8−n0)-string with k = Nn0, and

α(z)orbi =

α(z)mass z ∈ [0, N − 1]
34π2

2 (N − 1)n0z((N − 1)− z) z ∈ [N − 1, N ]
(2.19)

for the orbi-instanton at k − n0 and with a plateau of length one. We have plotted these
functions in figure 4. Using α(z), we can compute for instance the RR flux F2:∫

S2
F2 = − 1

81π2 α̈ . (2.20)

When integrated on the S2 over the point z = N this flux detects the number of D6 sources
present at the right end of the supergravity dual. We can see from the right frame of figure 4
that F2 differs between massive and orbi-instanton string, as it should. Using α(z) we can
also compute the holographic a anomaly [53, 63, 64],

aholo = − 128
189π2

∫ N

0

αα̈

2 (9π)2 dz = 48
35n

2
0N

5 +O
(
n2

0N
4
)
, (2.21)

for both massive string and orbi-instanton, where the coefficients at order N4 and lower
are different, and are expected to be rendered equal only once one includes stringy and
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2 4 6 8 10

6
HW←−→ 2 4 6 8 8

6 2

(n0 = 2)y
Higgsing

2 4 6 7 7

6 1 1
HW←−→ 2 4 6 7 8

6 1

(n0 = 1)

Figure 5. The top row represents a massive E-string theory at k = 10, n0 = 2 which, via Hanany-
Witten (HW) moves, is equivalent to an orbi-instanton at k = 8. Higgsing the flavor group on the
stack of 2 D8’s results in the bottom row. Via HW moves, this is now equivalent to a massive
E-string theory at k = 8, n0 = 1.

higher-derivative corrections to the supergravity solutions. On the other hand, computing
the exact a anomaly for the massive string or orbi-instanton in figure 3,20 we obtain

a = 16
35n

2
0N

(
3N4 − 5N2 + 2

)
, (2.22)

whose leading term at large N matches the holographic a, as expected.

3 Higgs branch flows at fixed n0

In this section we construct RG flows between massive E-strings at fixed n0. This is
the case that presents the least novelty, since it is a close copy of what happens for orbi-
instantons [8, 9]. Once we fix the class of massive strings between which we wish to construct
flows, we give vev’s to the moment maps of E1+(8−n0) and flow between constrained E8 Kac
labels at fixed n0. That is, the flows between massive theories at n0 are a subset of the flows
between orbi-instantons at k−n0. For this reason, we can use the technology set up in [8, 9]
to construct the flows, i.e. 3d magnetic quivers and quiver subtraction between these. As
for “unconstrained” orbi-instantons, all flows can be understood in the massive IIA brane
setup as peeling off D8-branes from the stack on the O8. We exclude flows corresponding
to subdivisions of the stack of n0 D8’s as this would constitute a flow that changes n0 (as
shown in the example of figure 5). We will devote section 4 to this latter type of flows.

One remark is in order. In [9] we decided to fix N to construct flows between orbi-
instantons for clarity of exposition. Doing so produces flows where the Kac label [1k], which
preserves the full E8 for any k, is always at the most bottom position in the hierarchy.
However one may naively expect it to be at the top instead, since in a sense it is the largest
flavor symmetry f preserved by any label. This expectation is indeed borne out if one allows
N to change in the flows via small instanton transition (corresponding to the addition of a
full E8 Dynkin diagram to the right tail of the magnetic quiver, see (2.5)). A clear example
of this can be seen comparing [9, figure 11(c)] and [9, figure 12], which give the hierarchy

20Since the two quiver gauge theories are connected by a Hanany-Witten move, and are thus the same, we
can use either to compute the a exactly.
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of RG flows for the k = 4 A-type orbi-instanton at fixed N and changing N , respectively.
In [11] it has been conjectured that the two graphs correspond to two possible “slicings”
of the so-called double affine Grassmannian of E8, whose Hasse diagram of E8 orbits is
parameterized both by the labels and by N .

For massive theories, seen as orbi-instantons at k − n0 with constrained Kac labels, we
are forced to allow N to change to construct the RG flows. An easy way to see this is as
follows. If we fix n0, we are also fixing the highest rank in the length-one plateau of the
corresponding orbi-instanton, k − n0. This also means the number of semi-infinite D6’s to
the right is fixed. When we flow between constrained Kac labels, the ranks of the electric
quivers associated to each of them jump by at least n0. As a consequence, N (i.e. the total
number of compact curves, or gauge algebras, possibly including a trivial one with zero
rank) is forced to get reduced along the flow so that the rank of the last gauge algebra does
not “overshoot” k − n0, which was fixed by hypothesis. We will indicate the value of N for
a massive theory by a subscript on the constrained E8 Kac labels for k − n0.

3.1 Some examples for n0 = 1, . . . , 9

Here we present some examples of flows for all possible values of n0 (see figures 6–12).
There are a few observations worth making.

• All edges in these hierarchies are labeled by the corresponding quiver subtraction, i.e.
a Kraft-Procesi transition of type A, a, d, e. This is because the singularities of the
E8-orbits of the (double) affine Grassmannian of E8 (which conjecturally gives the
Higgs branch of the orbi-instanton [9]) can only be of those types [65, Thm. A].

• In some of the examples (see figures 11 and 12) we have encountered isolated theories,
i.e. IR SCFTs defined by allowed constrained Kac labels which are not reached by (or
are not starting points of) any flows.

• Some of the allowed constrained labels in the hierarchies are related by a 6d θ angle
(e.g. [2′2, 3′2]θ=π and [4′2, 2′]θ=0 for k − n0 = 10 in figure 7). We have colored in red
the occurrences of SCFTs belonging to a θ angle “pair”. This is likely to occur in
other examples (i.e. other values of n0) for sufficiently high k, given the genericity of
these so-called “parallel flows” [9, section 4.3].

• It is quite satisfactory to note that the k = 5, n0 = 1 case (i.e. the massive E8-string
with k = 5, equivalent to the orbi-instanton at k′ = 5 − 1 = 4) matches what was
originally found (via other techniques) in [7, figure 1], which is reproduced in [9,
figure 12] via magnetic quiver subtraction.

4 Higgs branch T-brane flows to different n0

In this section we will be less systematic, and explore some examples of a new type of RG
flow that can be triggered in massive theories.
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Figure 6. Hierarchy of RG flows for (a) massive E8-theories with n0 = 1 and k = 5 (i.e. orbi-
instanton at k′ = k − n0 = 5 − 1 = 4); (b) massive E8-theories with n0 = 1 and k = 7 (i.e.
orbi-instanton at k′ = 7− 1 = 6).
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Figure 7. Hierarchy of RG flows for (a) massive E7-theories with n0 = 2 and k = 12, and (b)
massive E6-theories with n0 = 3 and k = 13. The labels colored in red differ by a 6d θ angle along
the tensor branch.
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Figure 8. Hierarchy for massive E5-theories with n0 = 4 and k = 16.
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Figure 10. Hierarchy for massive E3-theories with n0 = 6 and k = 18.
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Figure 11. (a) Hierarchy for massive E2-theories with n0 = 7 and k = 19; (b) hierarchy for massive
E1-theories with n0 = 8 and k = 20. Notice the presence of an isolated theory in both cases.
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Figure 12. (a) Hierarchy for massive Ẽ1-theories with n0 = 8 and k = 38; there are two
isolated theories. (b) Hierarchy for massive E0-theories with n0 = 9 and k = 39; there is a single
isolated theory.

As we have seen all massive theories associated with a Type IIA brane system with
k semi-infinite D6-branes are equivalent to a massless theory with orbifold order k− n0 and
a length-one plateau. However, contrary to generic k − n0 orbi-instantons, these must have
an enhanced SU(k) symmetry and we will now study the effect of a nilpotent vev for the
SU(k) moment map. Nilpotent vev’s for the SU(k − n0) global symmetry (which exists for
all orbi-instantons) have already been considered in the literature, and have been identified
with T-brane configurations in F-theory for the non-perturbative seven-branes wrapping
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Figure 13. Top: activating one Jordan block of size N means letting N (out of Nn0) D6’s end on
a single D8. Bottom: we can then rearrange the brane system via simple Hanany-Witten moves.

the noncompact −2 curve hosting this flavor algebra [2, 3, 66]. Here we would like to point
out that the enhanced global symmetry of the massive theories leads to new effects and the
purpose of this section is to discuss in detail this aspect. Such vev’s have also been considered
in [27, section 5.6] but only for generic orbi-instantons with sufficiently long plateau, so
that their effects do not propagate to the far left. Here we want to achieve the opposite.

We can approach this problem in two closely related ways: either using the brane setup,
by letting multiple semi-infinite D6’s end on a single D8, or by modifying the magnetic
quiver in suitable ways. As we will see, these flows do “mix” left E1+(8−n0) and right SU(k)
flavor factors, a situation which has been vastly avoided in the literature because of its
complication (with respect to vev’s for decoupled factors). On the other hand, employing
the 3d magnetic quiver technology allows us to deal with this mixing quite easily: the vev
for the SU(k) factor propagates to the rest of the magnetic quiver, unbalancing some of
the nodes, and thus modifying the preserved flavor algebra to a common subalgebra of
E1+(8−n0) ⊕ su(k). Rebalancing appropriately we land on the magnetic quiver for a new
massive string at a different value of n0.

First, consider for simplicity the case with empty −1 curve. As done in figure 3, we
can replace the k = Nn0 semi-infinite D6-branes with k D6’s each ending on a different D8.
To activate a nilpotent vev for the SU(k) symmetry rotating them simply means letting
multiple D6’s end on the same D8 [28], where the number of D6’s ending on each D8
encodes the size of the Jordan blocks of the nilpotent vev matrix. We should then take into
account the fact that the S-rule forces us to suspend at most one D6 between an NS5 and
a D8. As a result, if we activate a vev with a single Jordan block of size N in the brane
system of figure 3, we find figure 13. It is a simple exercise to bring in more D8’s with
further Hanany-Witten moves and their final location (assuming there are no D6’s ending
on them) depends on the size of the corresponding Jordan blocks. In particular, we end up
with a massless configuration if we bring in exactly n0 D8-branes (which is always possible
since k = Nn0 > n0 by construction).

The corresponding orbi-instanton has orbifold order given by

k′ = k −
n0∑
i=1

Ni , (4.1)
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where Ni denotes the size of the i-th Jordan block (i.e. the i-th D8 has Ni D6’s ending on
it). When Ni = 1 for all i there is no nilpotent vev, the RG flow is trivial and we recover
the correspondence between massive and massless theories we have discussed in section 2.4.
So in a sense massive strings at n0 and orbi-instantons at k − n0 are connected by a trivial
flow, which we can generalize by activating nontrivial T-brane vev’s. In fact by activating
a nilpotent Higgsing for the SU(k) symmetry we can obtain for every massive theory a
collection of several massless models, labeled by different orbifold orders. This feature is
not present for generic orbi-instantons, where typical Higgs branch RG flows do not change
the orbifold order (e.g. this is held fixed in references [8, 9]).

We will analyze in turn the three different classes of electric quivers mentioned at
the end of section 2.2 (i.e. 1,

usp
1 or

su
1). Let us state our general result here and give an

explanation by means of examples in the three following subsections (one per class). As
long as the size of all Jordan blocks does not exceed the number N of NS5-branes, the
gauge algebra supported on the −1 curve is not Higgsed and the effect of the vev can be
written in terms of the jumps in ranks ri of the algebras supported on consecutive −2 curves.
The result is that for a Jordan block of size Ni the last Ni − 1 gauge algebras are Higgsed
nontrivially and their rank differences ri+1 − ri decrease by one unit. If instead the size of
one Jordan block is equal to the number of NS5’s plus one, the rank of the gauge algebra
supported on the −1 curve decreases by one unit. If that algebra is su it also acquires one
fundamental hypermultiplet in the process, whereas if it is usp the number of fundamentals
stays the same, but the number of fundamentals for the second gauge algebra increases by
one unit.

Let us analyze nilpotent vev’s for the theory we will encounter in (4.17) to illustrate
how our general result works in practice. The gauge algebras are su(4), supported on the −1
curve, su(7) and su(10) and therefore the ranks jump by three each time. In terms of the
as parameters introduced in (2.16) we therefore have a3 = 2 and all other as’s vanish. The
corresponding constrained Kac label is [32, 4′] and when we turn on a Jordan block of size
two su(4) and su(7) survive whereas su(10) is Higgsed to su(9). As a result we now have
a2 = a3 = 1 and the Kac label becomes [2, 3, 4′]. With a block of size three su(10) is Higgsed
to su(8) and su(7) to su(4), hence a3 becomes zero and a2 = 2. In terms of Kac labels we
find [22, 4′], while we get [22, 3′] in the case of a block of size four, when the gauge group
reduces to su(3)⊕ su(5)⊕ su(7). In the last step we see the Higgsing of the gauge algebra
supported on the −1 curve. If in the latter case we then turn on a second Jordan block of
e.g. size two we get [1, 2, 3′] since the su(7) algebra is further Higgsed to su(6), whereas a
second block of size three leads to [12, 3′], i.e. the gauge group becomes su(3)⊕ su(4)⊕ su(5).
One can easily implement this process in the general case in a straightforward manner.

4.1 Electric quivers with empty −1 curve

We have just seen how to analyze the effect of a nilpotent vev for theories with an empty −1
curve at the level of branes in figure 13. The same result can be obtained by implementing
the Higgsing at the level of the corresponding magnetic quiver. In order to explain how
this works, we have to briefly recall the properties of T (SU(N)) [28]. This is a 3d N = 4
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quiver gauge theory of the form

1− 2− · · · − (N − 2)− (N − 1)− N (4.2)

adopting the same notation as in (2.5), where moreover N denotes a flavor node. The
theory has a U(1)N−1 topological symmetry which enhances to SU(N) due to the fact that
all the gauge nodes are balanced. If we now turn on a nilpotent vev for the SU(N) moment
map with Jordan block of size n1 ≥ n2 ≥ · · · ≥ n`, the T (SU(N)) theory flows in the IR to

· · · − (N − n1 − n2)− (N − n1)− N . (4.3)

This is relevant for us because the magnetic quiver associated with our massive theories
is given by a T (SU(k)) theory coupled to a quiver with the shape of th E1+(8−n0) Dynkin
diagram and we can therefore analyze the effect of the nilpotent vev for SU(k) by exploiting
the result we just recalled in (4.3).

Consider for instance the massive theory at n0 = 2 with the following electric quiver,
characterized by an empty −1 curve (i.e. no D6’s cross the O8−):

k − 2 = 2N − 2 = [2N−1] : [E7] 1
su(2)

2
su(4)

2
su(6)

2 · · ·
su(2N−2)

2 [SU(2N)] , (4.4)

the corresponding magnetic quiver is given by

1− 2− · · · − (2N − 1)︸ ︷︷ ︸
T (SU(2N))

−2N − 3N − 4N − 5N −
3N
|

6N − 4N − 2N︸ ︷︷ ︸
E7 Dynkin

(4.5)

If we turn on a vev with a Jordan block of size N as explained in (4.3), the quiver becomes

1− 2− · · · −N − 2N − 3N − 4N − 5N −
3N
|

6N − 4N − 2N , (4.6)

corresponding to the massive electric quiver with n0 = 1

k − 1 = N − 1 = [1N−1] : [E8] 1
su(1)

2
su(2)

2
su(3)

2 · · ·
su(N−1)

2 [SU(N)] , (4.7)

in agreement with the brane analysis of figure 13.
On the other hand, if we turn on a Jordan block of size N + 1 we get

1− 2− · · · − (N − 1)− 2N − 3N − 4N − 5N −
3N
|

6N − 4N − 2N . (4.8)

This is a bad quiver in the sense of [28], i.e. it includes monopole operators which violate
the unitarity bound, and its Coulomb branch is not a hyperkähler cone. This issue reflects
the fact that in the brane system it is not possible to satisfy the S-rule because the number
of D6’s ending on the D8 is larger than the number of NS5’s. We will henceforth discard
bad quivers and interpret their appearance as evidence of the fact that the vev we are trying
to turn on is incompatible with the chiral ring relations defining the Higgs branch of the
6d SCFT.

– 25 –



J
H
E
P
0
3
(
2
0
2
3
)
0
8
9

4.2 Electric quivers with usp on the −1 curve

Let us move on to theories with the −1 curve supporting a usp gauge algebra. This means
there are D6-branes crossing the O8− in the massive IIA setup. For simplicity we first focus
on the following example with n0 = 2,

k − 2 = 10− 2 = 8 = [2′2, 22] : [E7]
usp(4)

1
su(6)

2
su(8)

2 [SU(10)] , (4.9)

and generalize the analysis later. The corresponding brane system is

4 6 8 10

6

(4.10)

and the magnetic quiver reads

1− 2− · · · − 9− 10− 13− 16− 19−
11
|

22− 14− 6 . (4.11)

If we turn on a Jordan block of size N = 2 (N = 3), we simply bring in another D8 in the
above brane system or, equivalently, in the magnetic quiver we replace the U(9) node with
U(8) (U(7)). This comes from the modification of the T (SU(10)) tail in (4.11) according to
the rule (4.3). A bit more subtle is the case of a Jordan block of size N = 4, which Higgses
the usp node in the 6d electric quiver. The effect of the vev is most easily understood at
the level of the magnetic quiver, which becomes

1− 2− · · · − 5− 6− 10− 13− 16− 19−
11
|

22− 14− 6 . (4.12)

Here we come across a new effect: the U(10) node is underbalanced. In fact at that node we
have 2 · 10− 1 = 13 + 6, i.e. Nf = 2Nc− 1. Thanks to this fact we can exploit the known 3d
duality [28] between U(N) SQCD with Nf = 2N − 1 and U(N − 1) SQCD with Nf = 2N − 1
plus one free hypermultiplet. By dualizing in such a way all underbalanced nodes, we end
up with 12 free hypermultiplets together with the quiver

1− 2− · · · − 5− 6− 8− 11− 14− 17−
10
|

20− 13− 6 (4.13)

which describes the Higgs branch of the SCFT associated engineered by the brane system

2 4 5 6

6 1

. (4.14)
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This result can be also be neatly understood at the level of brane setup. Starting from the
brane system (4.10) and performing Hanany-Witten moves we find

3
1

4 5 6

6 1

. (4.15)

The left part of the brane system can be rearranged as follows:

3 4 2 4 2 4
. (4.16)

We first break the D6-branes into segments suspended between D8’s. Each segment provides
a free hypermultiplet, for a total of twelve, reproducing the result of the magnetic quiver
analysis. Once we have remove the D6 segments (i.e. we slide them off to infinity along
x789 (see e.g. [9, p.13]), we can bring the last D8 across the NS5 with a Hanany-Witten
move. In the process the usp(4) algebra is Higgsed down to usp(2).

By repeating this procedure for general n0 we find 16−2n0 free hypermultiplets and the
usp(2r) gauge group gets broken to usp(2r − 2). If we attempt to turn on a bigger Jordan
block we find that the magnetic quiver becomes bad. We interpret this as evidence that the
Higgsing is not possible due to the chiral ring relations defining the 6d Higgs branch.

4.3 Electric quivers with su on the −1 curve

Finally let us turn to the case with a half-NS5 stuck on the O8− plane. This case corresponds
to an su gauge algebra with an antisymmetric hypermultiplet supported on the −1 curve.
For n0 = 3 the associated brane system is of the form

4 7 10 13
. (4.17)

In this case a Jordan block of size N = 4 (the number of full NS5-branes plus one, in general)
requires us to let one of the D6’s end on the half-NS5. Again, bigger Jordan blocks are
not allowed due to the S-rule. Let us analyze in detail these statements via the associated
magnetic quivers, which for (4.17) reads

1− 2− · · · − 11− 12− 13− 16− 19−
11
|

22− 14− 7 . (4.18)
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If we turn on a nilpotent vev involving a Jordan block of size N = 4 we should replace the
U(12) node in (4.18) with a U(9) and accordingly decrease the rank of all nodes on its left
by four units. As a result the U(13) node becomes ugly and can be dualized as above. Once
we have removed all ugly nodes we find

1− 2− · · · − 8− 9− 12− 15− 18−
10
|

21− 14− 7 , (4.19)

accompanied by 5 free hypermultiplets. We can understand how the free hypermultiplets
arise by looking again at the brane system:

3 5 7 9
. (4.20)

The left part of the brane system can be rearranged by suspending D6-branes between D8’s:

3 5 3 5 3 5
(4.21)

where in the last step we have removed the 5 D6 segments suspended between D8’s, each
providing a free hypermultiplet, and then we have moved the leftmost D8 through the
orientifold plane: due to the Hanany-Witten effect the brane suspended between it and the
half-NS5 disappears as it crosses the O8−-plane. At the same time the image D8 enters and
becomes the new leftmost brane. In short we have the transition n0 → n0 − 1 accompanied
by the production of n0 free hypermultiplets.

There is one exception to this rule when the gauge algebra supported on the −1 curve
is broken all the way to su(2). In this case we have the production of n0 + 1 hypermultiplets.
The origin of the extra free field is easy to understand. In the Higgsed theory the half-NS5
contributes a hypermultiplet in the antisymmetric of su and this coincides with the trivial
representation when that algebra is su(2). This observation is indeed reproduced by the
magnetic quiver analysis. If we consider (4.19), which describes a SCFT whose −1 curve
supports su(3), and turn on again a Jordan block of size N = 4, we obtain the quiver

1− 2− · · · − 5− 8− 11− 14− 17−
10
|

20− 13− 6 . (4.22)

This includes as usual underbalanced nodes which produce free hypermultiplets via dualiza-
tion. Overall, we find 6 hypermultiplets as expected, plus the magnetic quiver

1− 2− · · · − 5− 8− 11− 14− 17−
10
|

20− 13− 6 , (4.23)
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which describes the brane system

2 3 4 5
. (4.24)

Lastly, if we turn on again a nilpotent vev in the resulting theory we find in the IR the
rank-3 E-string theory accompanied by the usual free sector.

All we have done so far is not directly applicable to n0 > 7 since the magnetic quiver
does not have the structure described before, with a T (SU(k)) theory coupled to another
quiver. For large n0 the balanced subquiver responsible for the SU(k) symmetry includes
the central node and can rather be described by a T σρ (SU(k)) theory [67], with ρ = (1k), so
only the σ partition is nontrivial. Let us discuss one example to illustrate this point.

Consider the theory with n0 = 9 for k = 24. The gauge algebras are su(6), supported
on the −1 curve, and su(15). The corresponding magnetic quiver is

1− 2− 3− · · · − 17− 18− 19− 20−
8
|

21− 14− 7 , (4.25)

and all the nodes are balanced except the U(8) node on top. If we ungauge it, we obtain
the theory T σρ (SU(24)) with ρ = (124) and σ = (38).

The idea now is to describe the effect of the nilpotent vev for the SU(24) symmetry
by changing ρ and leaving σ untouched. Finally, we regauge the U(8) node to obtain the
magnetic quiver of the IR SCFT. If we want for example to consider a Jordan block of
size 2 for the theory at hand we should replace ρ = (124) with ρ = (2, 122). Once we have
regauged the U(8) node we land on

1− 2− 3− · · · − 17− 18− 19−
8
|

20− 13− 6 , (4.26)

which we claim to be the magnetic quiver associated with the IR SCFT. As a consistency
check, we can notice that, upon subtracting the E8 quiver twice, (4.26) becomes the mirror
dual of a gauge theory with gauge groups SU(6) and SU(14). We therefore see that su(15)
is Higgsed to su(14), in agreement with the brane intuition.

5 Conclusions

This work complements naturally what done in [8, 9] for orbi-instantons, and extends the
techniques used there to construct the hierarchy of Higgs branch RG flows to the infinite
class of 6d SCFTs known as massive E-string theories. We have seen that, on top of flows
between massive theories defined by different constrained Kac labels at fixed n0, there
also exist flows involving the right SU(k) flavor symmetry factor (which were neglected for
orbi-instantons for clarity of exposition, even though they are part of their full Higgs branch).
These flows allow to go from a massive theory defined by n0 to one by a different n0 upon
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switching on nontrivial Jordan blocks in the vev of hypermultiplets charged under SU(k).
We have seen that these flows actually “mix” left and right flavor symmetry factors of the
SCFT, since these Jordan blocks have the nontrivial effect of propagating an unbalancing
from the left to the right tail of the 3d magnetic quiver. Upon rebalancing, we land on a
new massive theory.

An obvious extension of this work was already mentioned in the conclusions of [9]. Here
we have found that the E8 Kac labels, constrained as per table 1, correspond to massive
E-strings with electric quiver as in (2.11) (or appropriate generalizations with nonempty
−1 curve, see e.g. figure 1). However one may also ask whether the E1+(8−n0) Kac labels
(which can be defined in the obvious way, using the Coxeter labels of the affine version
of E1+(8−n0) for n0 > 1 [68]) play any role in the classification of (massive) 6d SCFTs.
Simple counting arguments show that there exist many more E1+(8−n0) Kac labels than
constrained E8 Kac labels, so one could ask whether the former correspond to new 6d
SCFTs. By the same token, we could also consider the twisted affine E1+(8−n0) Dynkin
diagrams (which are obtained by acting with an outer automorphism on the extended
Dynkin, see [9, table 4]) to construct even more Kac labels.21 It would be interesting to
understand whether these too play a role in the classification of massive E-strings, and
whether one can construct flows for these by subtracting the associated magnetic quivers
(perhaps by using the techniques of [74]). If this turns out to be correct, it may suggest
the existence of small E1+(8−n0) instanton transition beyond the well-known E8 case (in
which one tensor multiplet is transmuted into twenty-nine hypermultiplets). A different but
related question which was already asked in section 2.3.1 is whether the massive E-strings
give rise to new high-rank 5d SCFTs.

Another generalization comes from considering D-type orbi-instantons rather than
A-type to construct the associated massive E-strings (as done here around (2.6)–(2.11)).
The Type IIA picture contains a combined O8-O6 projection,22 and some of these massive
theories have already been constructed in [53, section 3.4]. A different possible generalization
involves the O80 and O8−1 planes of [57, 58]. One could ask whether adding some D8’s
on top of either of the two produces another class of massive E-strings, which could be
amenable to be studied (together with their flows) by the same techniques adopted here.

Finally, the most important conjecture we can formulate [9, 11] is that the hierarchies
of RG flows of orbi-instantons are nothing but Hasse diagrams of E8-orbits of the double
affine Grassmannian of E8 [12]. The double in the name is related to the fact that one uses
the affine E8 Dynkin to construct (via dominant coweights) the Grassmannian (see e.g. [13]
for an introduction aimed at physicists), rather than the finite one (as in the singly affine
Grassmannian). The number N of M5’s/NS5’s is related to the imaginary roots in the affine

21The twisted affine Dynkin diagrams are obtained by folding the corresponding untwisted ones, see [69,
chapter 30] (and the original reference [68]) for root foldings in a Lie algebra. The concept has already
found applications in 3d [70], 2d CFTs [71, 72], and much more recently in 4d N = 3 SCFTs [73]. A
possible obstacle in 6d constructions is the absence of an obvious ingredient in perturbative Type IIA which
implements the Z2 automorphism (which is order-two for the Lie algebras in the E1+(8−n0) list). This could
come from an additional Z2 orbifold.

22And at their intersection a so-called ON0 as well, see [9, footnote 40].
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E8 Kac-Moody algebra (see e.g. [75, chapter 12]). Slicing the Hasse along a subdiagram at
fixed N produces the graphs in [9, appendix A]; considering the full Hasse produces instead
a hierarchy which starts in E8 at N and ends in E8 at N − 1 (all the way down to N = 1),
i.e. we are performing small instanton transitions. (See e.g. [9, figure 12], which is an early
result for k = 4 from [7], or the k’s considered in [8].) Then, for massive E-strings the
hierarchies produced in section 3 must be understood as disconnected subdiagrams of the
full Hasse albeit for a nongeneric orbi-instanton at k − n0 with length-one plateau, where
only some flows are considered (those between constrained Kac labels of k, given the choice
of n0). From this perspective, it is also clear the examples of section 4 provide a perspective
on a yet different “wedge” of the full Higgs branch of those massive strings, since there we
are activating vev’s for the right SU(k) factor which propagate to the far left, landing us on
a massive string at a different value of n0 with respect to the one we started with.

The structure of the Higgs branch of 6d (1, 0) theories is obviously extremely complicated.
The above conjecture (if proven) would open a completely new window into the study of 6d
Higgs branches at infinite coupling, including their geometry. This is important, as [27] has
identified the Higgs branch of orbi-instantons with the moduli space of N E8 instantons
on an ALE space (the orbifold), for which there exists no ADHM construction (although
see [76]). We plan to come back to this point in the future.
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A Rules for magnetic quivers

In this appendix we list the rules to construct the magnetic quivers associated with the
three different classes of 6d electric quivers we can have, namely those that start out with
an empty −1 curve, those with usp on the −1, those with su (and one antisymmetric). We
will deal with the three classes separately. The magnetic quivers are used to construct
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allowed RG flows between fixed points via quiver subtraction [25], as in [8, 9]. In practice,
we follow this simple algorithm:

• choose n0 and k;

• write down all possible constrained Kac labels for k − n0 according to table 1;

• use the algorithm in [27] to construct the associated 6d electric quivers of the allowed
orbi-instantons at k − n0;

• use the rules given below to construct the 3d magnetic quivers of these 6d electric
quivers;

• use quiver subtraction to construct the allowed flows.

In the quivers below we will just write [E...] to indicate the left flavor symmetry factor
associated with the constrained Kac label, which generically is a subalgebra of E1+(8−n0).

A.1 Empty −1 curve

For 6d quivers of the type

[E...] 1
su(r1)

2
[Nf=f1]

su(r2)
2

[Nf=f2]
· · ·

su(rn)
2 [SU(fn)] . (A.1)

The magnetic quiver is given by

1− 2− · · · −

N︷ ︸︸ ︷
1 · · · 1\ /

rn − x1 − x2 − · · · − xi (A.2)

where the ranks xi are given by the sum of all boxes to the right of (not including) the i-th
column in the following Young tableau (which contains ri+1 − ri boxes in each row):

r1 : . . .

r2 − r1 : . . .
...

...
...

...
rn − rn−1 : . . .

. (A.3)

The actual values of the xi depend on the chosen Kac label. As an example, the quiver
in (4.4)

[E7] 1
su(2)

2
su(4)

2
su(6)

2 · · ·
su(2N−2)

2 [SU(2N)] , (A.4)

gives

1− 2− · · · − (2N − 1)−

N︷ ︸︸ ︷
1 · · · 1\ /

(2N − 2)− 2 (A.5)
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After N small instanton transitions (which add N copies of the affine E8 Dynkin diagram),
this becomes (4.5), i.e.

1− 2− · · · − (2N − 1)− 2N − 3N − 4N − 5N −
3N
|

6N − 4N − 2N . (A.6)

A.2 usp on the −1 curve

For quivers of the type

[E...]
usp(2r0)

1
[Nf=f0]

su(r1)
2

[Nf=f1]

su(r2)
2

[Nf=f2]
· · ·

su(rn)
2 [SU(fn)] , (A.7)

the magnetic quiver is given by

1− 2− · · · −

N︷ ︸︸ ︷
1 · · · 1\ /

rn − x1 − · · · − 2r0 − 2r0 − · · · −

r0
|

2r0︸ ︷︷ ︸
7 nodes

−r0 (A.8)

where the tail in (A.2) is truncated at xi = 2r0 and replaced with the new tail such that the
trivalent node U(2r0) is 7 nodes away from the node U(rn). Taking the example of (4.9)
with N = 3, r0 = 2, rn = 8 we get

1− 2− · · · −

1 1 1\
| /
8 − 6− 4− 4− 4− 4− 4−

2
|
2− 2 (A.9)

which after 3 instanton transitions gives (4.11),

1− 2− · · · − 9− 10− 13− 16− 19−
11
|

22− 14− 6 . (A.10)

A.3 su on the −1 curve

The case of a −1 curve decorated by an su(r) algebra can be further subdivided into three
subcases:

i) r = 2m with a two-index antisymmetric hypermultiplet of su(2m);

ii) r = 2m+ 1 with a two-index antisymmetric hypermultiplet of su(2m+ 1);

iii) r = 6 with a three-index antisymmetric half-hypermultiplet of su(6).

A.3.1 r = 2m

For quivers of the type

[E...]
su(2m)

1
[N =1]

su(r1)
2

[Nf=f1]

su(r2)
2

[Nf=f2]
· · ·

su(rn)
2 [SU(fn)] , (A.11)
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the magnetic quiver is similar to (A.8), except for the tail:

1− 2− · · · −

N︷ ︸︸ ︷
1 · · · 1\ /

rn − x1 − · · · − 2m− 2m− · · · −
m
|

2m︸ ︷︷ ︸
7 nodes

−m− 1 . (A.12)

A.3.2 r = 2m + 1

For quivers of the type

[E...]
su(2m+1)

1
[N =1]

su(r1)
2

[Nf=f1]

su(r2)
2

[Nf=f2]
· · ·

su(rn)
2 [SU(fn)] , (A.13)

the tail is now given by

1−2−· · ·−

N︷ ︸︸ ︷
1 · · · 1\ /

rn − x1 − · · · − (2m+ 1)− (2m+ 1)− · · · −
m
|

(2m+ 1)︸ ︷︷ ︸
7 nodes

−(m+1)−1 . (A.14)

A.3.3 r = 6

For quivers of the type

[E...]
su(6)

1
[N

1
2

=1]

su(r1)
2

[Nf=f1]

su(r2)
2

[Nf=f2]
· · ·

su(rn)
2 [SU(fn)] , (A.15)

the tail becomes

1− 2− · · · −

N︷ ︸︸ ︷
1 · · · 1\ /

rn − x1 − · · · − 6− 6− · · · −
2
|
6︸ ︷︷ ︸

7 nodes

−4− 2 . (A.16)

In writing this, we are assuming that the U(6) comes before the trivalent node of affine E8,
which is indeed the case whenever the su(6) supported on the −1 curve has at least three
fundamental flavors. The quiver is instead modified as follows in the other cases. When
there are two flavors we have

1− 2− · · · −

N︷ ︸︸ ︷
1 · · · 1\ /

rn − x1 − · · · − x5 −
2
|
x6︸ ︷︷ ︸

7 nodes

−4− 2 . (A.17)

If we have only one flavor we should use

1− 2− · · · −

N︷ ︸︸ ︷
1 · · · 1\ /

rn − x1 − · · · − x5 −
2
|
x6︸ ︷︷ ︸

7 nodes

−(x7 − 2)− 2 . (A.18)
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Finally, in the case without flavors we have

1− 2− · · · −

N︷ ︸︸ ︷
1 · · · 1\ /

rn − x1 − · · · − x5 −
2
|
x6︸ ︷︷ ︸

7 nodes

−(x7 − 2)− (x8 − 4) . (A.19)
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