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In this paper, we introduce a high-order accurate finite element method for incompressible vari-

able density flow. The method uses high-order Taylor-Hood velocity-pressure elements in space 
and backward differentiation formula (BDF) time stepping in time. This way of discretization 
leads to two main issues: (𝑖) a saddle point system that needs to be solved at each time step; (𝑖𝑖)
a stability issue when the viscosity of the flow goes to zero or if the density profile has a dis-

continuity. We address the first issue by using Schur complement preconditioning and artificial 
compressibility approaches. We observed similar performance between these two approaches. To 
address the second issue, we introduce a modified artificial Guermond-Popov viscous flux where 
the viscosity coefficients are constructed using a newly developed residual-based shock-capturing 
method. Numerical validations confirm high-order accuracy for smooth problems and accurately 
resolved discontinuities for problems in 2D and 3D with varying density ratios.

1. Introduction

The simulation of incompressible variable density flow plays an important role in several areas of fluid dynamics. Its importance 
stems from its usefulness when simulating flow largely affected by density variations. This situation occurs in many places in nature, 
such as stratified flow in the ocean and the mixing of fluids with distinct phases, e.g., oil and water. The governing equations 
that we consider in this manuscript are the incompressible Navier-Stokes equations, augmented with an advection equation for 
density.

The aim of this manuscript is to develop a reliable high-order accurate finite element method (FEM) for variable density flow, 
based on Taylor-Hood velocity-pressure elements [17]. In the finite element literature concerning variable density flow, velocity and 
pressure are often uncoupled using a so-called projection method [21,22,48,60]. This approach can be justified due to computation-

ally efficiency, but as mentioned by Guermond and Minev [18,19], these methods seemingly cannot exceed second-order accuracy 
in time without losing unconditional stability. A challenge emerges from incorporating pressure-related boundary conditions within 
the projection operator, necessitating temporal extrapolation. Because of this order barrier, we instead consider a fully coupled 
approach that directly discretizes the weak formulation of the Navier-Stokes equations, sometimes referred to as the monolithic ap-

proach [41], resulting in a saddle point system. This approach can be considered computationally expensive and Schur complement 
preconditioning is typically employed [3,33,53].
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One way to speed up this process is to utilize artificial compressibility techniques [11,55,52] to relax the divergence-free con-

straint and regularize the saddle point system. It is also common to use artificial compressibility to decouple velocity and pressure 
[18,19,37,13,61,45]. Artificial compressibility methods involve a penalty parameter that determines the strength of the imposed 
divergence-free constraint, leading to a trade-off between accuracy and computational effort. For explicit artificial compressibility 
methods [61,45,39], this limitation arises from time-step restrictions. On the other hand, implicit artificial compressibility methods 
[18,19,37] are affected by the resulting condition number of the linear systems. Motivated by artificial compressibility and guided by 
the ideas presented in [14,33], we propose an approximation for the Schur complement that is well-suited for both implicit artificial 
compressibility methods and the monolithic method, acting as a computational link between these two approaches. We show that 
the performance of the proposed preconditioning is similar between the implicit artificial compressibility method and the monolithic 
method for all values of the artificial compressibility penalty parameter.

Another difficulty concerns stabilization since it is well-known that Galerkin discretizations are unstable for convection-dominated 
problems. Historically, linear stabilization techniques such as Galerkin-Least-Squares (GLS) [28] and Streamline upwind Petrov-

Galerkin (SUPG) [8] methods have been immensely popular in the finite element context. Notably, Johnson et al. [32] were able 
to prove convergence of the GLS method for scalar conservation laws by including a residual-based artificial viscosity term. Later, 
Nazarov [42] recognized that the residual viscosity term was the essential piece in the convergence proof. By discarding the least-

square terms, it was shown that the stabilized finite element method was still convergent. Since the least-square terms were absent, 
the method could be easily extended to explicit time-stepping schemes [43,44] and could be made arbitrarily high-order accurate. It 
also paved the way for applying the method to other spatial discretizations, such as finite-difference methods [54], spectral element 
methods [36] and radial basis function methods [56]. In fact, the interest in nonlinear viscosity stabilization techniques that disregard 
linear stabilization techniques has been growing. This trend is attributed to their ease of implementation, reduced computational 
requirements, potential for arbitrary high-order accuracy and compatibility with a wide range of time-stepping methods. In particular, 
the so-called entropy viscosity method [24,23] has been successfully applied in the compressible context [44] and also applied to 
the constant density incompressible context [25,59] where its role as a so-called implicit large eddy simulation (LES) has been 
investigated. The authors in [24,23] used the Navier-Stokes viscous flux as a viscous regularization of the compressible Euler system, 
while [44] used the so-called Guermond-Popov viscous flux, see e.g., [20], to regularize the system. For an incompressible flow with 
variable density, we have to solve an additional density equation, so in this paper, we propose a modified Guermond-Popov viscous 
flux to regularize our system. A semi-discrete kinetic energy estimate shows that the modified Guermond-Popov flux is energy stable 
and the added mass diffusion does not affect the kinetic energy balance.

We construct the viscosity parameters in the Guermond-Popov flux proportional to the residual of the system, a method commonly 
referred to as the residual viscosity method (RV method for short). The RV method is closely related to the entropy viscosity method: 
for example, for scalar conservation laws, the residual is a special case of the entropy residual, since the solution to the equation 
can be chosen as an entropy functional. However, a similar proof of the convergence of the RV method for general non-linear scalar 
conservation laws, as in [42], is not known for the entropy viscosity method. In addition, it can be difficult to choose the entropy 
functional so that the corresponding entropy viscosity is robust.

In this paper, we introduce a novel way of using residuals to construct artificial viscosity coefficients. We use the residual of 
PDE to compute a discontinuity indicator 𝛼ℎ ∈ [0, 1], which is close to zero when the solution is smooth and is close to one when the 
solution has discontinuities. Then this discontinuity indicator is multiplied by the traditional Lax-Friedrichs viscous flux. The resulting 
scheme is discontinuity capturing since it converts to the Lax-Friedrichs scheme close to discontinuities and is high-order in smooth 
regions since it converts to the Galerkin method there. The discontinuity indicator function 𝛼ℎ can oscillate since it is constructed 
using the residual. We propose two additional post-processing steps: first, a smoothing step is employed, where the oscillations on 
𝛼ℎ are removed; second, an activation function is applied to 𝛼ℎ which suppresses the values of 𝛼ℎ in the smooth regions, while it 
amplifies the values of 𝛼ℎ close to discontinuities. Scaling artificial viscosity by the means of a discontinuity indicator can be traced 
back to the Jameson-Schmidt-Turkel scheme [30] and also more recent research such as [26, Sec 3.4] and [47,27].

This paper is organized as follows: In Section 2 the governing equations are introduced together with some finite element pre-

liminaries. In Section 3 we describe the full numerical method including spatial- and temporal discretization, the nonlinear viscosity 
method and our preconditioning approach. In Section 4 we present numerical results and in Section 5 we give concluding re-

marks.

2. Preliminaries

In this section, we introduce the governing equations that model variable density flow. We then discretize the equations using 
continuous finite element approximations. The discretization is stabilized using nonlinear viscous fluxes.

2.1. Governing equations

We consider the incompressible Navier-Stokes equation with variable density in an open polyhedral domain Ω ⊂ ℝ𝑑 and finite 
2

time interval [0, 𝑇 ]
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𝜕𝑡𝜌+ 𝒖⋅∇𝜌 = 0,

𝜕𝑡(𝜌𝒖) + 𝒖⋅∇(𝜌𝒖) + ∇𝑝−∇⋅ (𝜇(∇𝒖+ (∇𝒖)𝑇 )) = 𝒇 , (𝒙, 𝑡) ∈ Ω × (0, 𝑇 ],

∇⋅𝒖 = 0,

𝒖(𝒙,0) = 𝒖0(𝒙),

𝜌(𝒙,0) = 𝜌0(𝒙), 𝒙 ∈Ω,

(2.1)

where the density 𝜌(𝒙, 𝑡) > 0, the velocity field 𝒖(𝒙, 𝑡) and the pressure 𝑝(𝒙, 𝑡) are the unknowns. 𝒇 (𝒙, 𝑡) represents an external force, 
𝜇 > 0 is the dynamic viscosity and 𝜌0(𝒙), 𝒖0(𝒙) are initial conditions for the density and velocity. We assume that the governing 
equations are supplied with well-posed boundary conditions.

2.2. Finite element preliminaries

In this section, we introduce the finite element spaces and notations that are used in this work. We denote a shape regular 
computational mesh by ℎ which is a triangulation of Ω into a finite number of disjoint elements 𝐾 . The global shape functions 
{𝜑𝑖}

𝑁ℎ

𝑖=1 form a basis for the space ℎ, where 𝑁ℎ is the total number of nodes in ℎ. We define (𝑖) as the set of all nodal points 
contained within the support of 𝜑𝑖. The finite element spaces we use for the density, velocity and pressure are respectively given by

ℎ ∶= {𝑤 ∶𝑤 ∈ 0(Ω);𝑤|𝐾 ∈ ℙ𝑘,∀𝐾 ∈ ℎ},
Vℎ ∶= [ℎ]𝑑 ,

ℎ ∶=
⎧⎪⎨⎪⎩𝑞 ∶ 𝑞 ∈ 0(Ω); 𝑞|𝐾 ∈ ℙ𝑘∗ ,∀𝐾 ∈ ℎ,∫

Ω

𝑞 d𝒙 = 0
⎫⎪⎬⎪⎭ ,

where ℙ𝑘 and ℙ𝑘∗ are the set of multivariate polynomials of total degree at most 𝑘 ≥ 1 and 𝑘∗ ≥ 1 defined over 𝐾 . It is well-known that 
to satisfy the so-called inf-sup condition [17] we require Taylor-Hood finite elements, i.e., 𝑘 > 𝑘∗. We often use the inner products

(𝑣,𝑤) ∶=
∑

𝐾∈ℎ ∫𝐾
𝑣𝑤 d𝒙, (𝒗,𝒘) ∶=

∑
𝐾∈ℎ ∫𝐾

𝒗 ⋅𝒘 d𝒙,

(∇𝒗,∇𝒘) ∶=
∑

𝐾∈ℎ ∫𝐾
∇𝒗 ∶ ∇𝒘 d𝒙, (𝑣,𝑤)𝜕Ω ∶=

∑
𝐾∈ℎ ∫

𝜕𝐾∖𝜕Ω

𝑣𝑤 d𝑠,

with associated norms ‖ ⋅ ‖. For 𝒖, 𝒘, 𝒗 ∈ [𝐻1(Ω)]𝑑 and with 𝒖|𝜕Ω = 0, the following relation holds due to integration by parts

(𝒖⋅∇𝒗,𝒘) = −((∇⋅𝒖)𝒗,𝒘) − (𝒖⋅∇𝒘,𝒗). (2.2)

In this paper, we limit ourselves to meshes that are quasi-uniform. We compute the nodal based mesh size ℎ(𝒙) ∈ ℎ using 
𝐿2-projection with additional smoothing:

(ℎ,𝑤) + (|𝐾|2∕𝑑∇ℎ,∇𝑤) = (|𝐾|1∕𝑑∕𝑘,𝑤), ∀𝑤 ∈ℎ,

where |𝐾| is the volume of the cell 𝐾 . To facilitate the analysis, we define the following finite element space

̄𝑠 ∶= {𝑤(𝒙) ∶𝑤∈𝐿2(Ω),𝑤|𝐾 ∈ ℙ𝑠,∀𝐾 ∈ ℎ}, (2.3)

where we note that  ⊂ ̄𝑠 provided that 𝑘 ≤ 𝑠.

3. Numerical method

In this section, we present a numerical method approximation of (2.1). In Section 3.1 we provide the spatial discretization using 
a continuous FEM. Later, in Section 3.2 time is discretized using a standard high-order BDF method. In Section 3.3 we introduce 
the nonlinear viscosity method which is used to construct the artificial viscosity coefficients used in the spatial discretization. In 
Section 3.4 the preconditioning strategy is explained. Lastly, in Section 3.5 the whole numerical method is summarized.

3.1. Spatial discretization

Since this manuscript aims to develop a high-order method, we choose a pure Galerkin discretization of the governing equations 
(2.1). The method is derived by taking (2.1) and testing the density equation with 𝑤, the momentum equations with 𝒗 and the 
divergence-free condition with 𝑞. After performing integration by parts on some of the terms, the Galerkin method reads as follows: 
3

Find (𝜌ℎ, 𝒖ℎ, 𝑝ℎ) ∈ℎ ×Vℎ ×ℎ such that
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𝜕𝑡𝜌ℎ,𝑤

)
+
(
𝒖ℎ⋅∇𝜌ℎ,𝑤

)
= 0, ∀𝑤 ∈ℎ,(

𝜕𝑡
(
𝜌ℎ𝒖ℎ

)
,𝒗

)
+ (𝒖ℎ⋅∇(𝜌ℎ𝒖ℎ),𝒗) − (𝑝ℎ,∇⋅𝒗)

+𝜇

(
∇𝒖ℎ +

(
∇𝒖ℎ

)𝑇
,∇𝒗

)
= (𝒇 ,𝒗), ∀𝒗 ∈Vℎ,

(∇⋅𝒖ℎ, 𝑞) = 0, ∀𝑞 ∈ℎ.

(3.1)

For the time being, only space has been discretized. Time discretization is provided later in Section 3.2. The boundary conditions 
that we impose in this manuscript fulfill the condition 𝒖 ⋅ 𝒏|𝜕Ω = 0 which we impose strongly. This means that many of the boundary 
terms inside (3.1) have been omitted.

3.1.1. Stabilized scheme

Since the Galerkin scheme is unstable for hyperbolic problems (such as the density update inside (2.1)), numerical stabilization 
of the scheme is necessary. For this purpose, we propose adding a modified Guermond-Popov viscous flux [20]:

∇⋅𝐅(𝜌ℎ,𝒖ℎ) ∶= ∇⋅
⎡⎢⎢⎣

𝜅ℎ∇𝜌ℎ

𝜅ℎ

(
𝜌ℎ

(
∇𝒖ℎ + (∇𝒖ℎ)𝑇

)
+∇𝜌ℎ ⊗ 𝒖ℎ

)
0

⎤⎥⎥⎦ , (3.2)

to the Galerkin scheme. For additional divergence cleaning we also add grad-div stabilization [46,10] (𝛾ℎ∇⋅𝒖ℎ, ∇⋅𝒗) to the scheme. 
Here 𝜅ℎ ≥ 0 is artificial kinematic viscosity and 𝛾ℎ is a penalty parameter. Both 𝜅ℎ and 𝛾ℎ are mesh-dependent and vanish as ℎ → 0. 
Note, that the Guermond-Popov flux is aimed to stabilize the convection field, whereas the grad-div stabilization provides additional 
divergence cleaning. We later show that the Guermond-Popov flux leads to kinetic energy stability. The term ∇𝜌ℎ⊗𝒖ℎ is key to ensure 
that the momentum equations are adequately compensated due to the added mass diffusion. For further details and other alternative 
viscous regularizations, we refer the readers to [38]. Adding the Guermond-Popov flux, grad-div stabilization to the Galerkin scheme 
(3.1) yields the following stabilized scheme:(

𝜕𝑡𝜌ℎ,𝑤
)
+
(
𝒖ℎ⋅∇𝜌ℎ,𝑤

)
+ (𝜅ℎ∇𝜌ℎ,∇𝑤) = 0, ∀𝑤 ∈ℎ,(

𝜕𝑡
(
𝜌ℎ𝒖ℎ

)
,𝒗

)
+ (𝒖ℎ⋅∇(𝜌ℎ𝒖ℎ),𝒗) +

1
2
(𝜌ℎ𝒖ℎ(∇⋅𝒖ℎ),𝒗) − (𝑝ℎ,∇⋅𝒗)

+𝜇(∇𝒖ℎ +
(
∇𝒖ℎ

)𝑇
,∇𝒗) + (𝛾ℎ∇⋅𝒖ℎ,∇⋅𝒗)

+(𝜅ℎ(𝜌ℎ(∇𝒖ℎ +
(
∇𝒖ℎ

)𝑇 ) + ∇𝜌ℎ ⊗ 𝒖ℎ)),∇𝒗) = (𝒇 ,𝒗), ∀𝒗 ∈Vℎ,

(∇⋅𝒖ℎ, 𝑞) = 0, ∀𝑞 ∈ℎ,

(3.3)

where we also add the so-called skew-symmetric term 12 (𝜌ℎ𝒖ℎ(∇⋅𝒖ℎ), 𝒗) which will be useful for the stability analysis. Choosing the 
artificial viscosity coefficient 𝜅ℎ sufficiently large will lead to a stable method. We will go more into detail on how to construct 𝜅ℎ

and 𝛾ℎ in Section 3.3 to yield a stable scheme that is also high-order accurate.

Remark 3.1. Note that it is also possible to write the momentum update as a time evolution for 𝜌𝜕𝑡𝒖 or 
√

𝜌𝜕𝑡(
√

𝜌𝒖) instead. The reason 
why we chose to write the governing equations in momentum form, is that they are easily combined with the Guermond-Popov flux.

3.1.2. Semi-discrete stability estimate

In this section, we provide a semi-discrete stability estimate for the stabilized scheme (3.3). To simplify the analysis we assume 
that the solution has compact support, i.e., 𝒖 = 0 at 𝜕Ω, and will lead to the boundary term resulting from integration by parts 
disappearing. The novelty of the analysis presented here is showing that the Guermond-Popov flux (3.2) fits well in the incompressible 
flow context. More specifically, we show that the added mass diffusion (𝜅ℎ∇𝜌ℎ, ∇𝑤) does not affect the discrete kinetic energy balance. 
The main result is presented below:

Proposition 3.1. If 𝒇 = 0, the scheme satisfies the following stability estimate

1
2
𝜕𝑡‖√𝜌ℎ𝒖‖2 + 𝜇‖∇𝒖ℎ‖2 + 𝜇‖∇⋅𝒖ℎ‖2 + ‖√𝛾ℎ ∇⋅𝒖ℎ‖2 + 1

2
‖√𝜅ℎ𝜌ℎ(∇𝒖ℎ + (∇𝒖ℎ)𝑇 )‖2 = 0. (3.4)

Proof. We take the stabilized scheme (3.3) and set 𝑞 = 𝑝ℎ and 𝒗 = 𝒖ℎ. Using that ∇⋅ (∇𝒖ℎ + (∇𝒖ℎ)𝑇 ) =∇⋅∇𝒖ℎ +∇∇⋅𝒖ℎ yields(
𝜕𝑡

(
𝜌ℎ𝒖ℎ

)
,𝒖ℎ

)
+ (𝒖ℎ⋅∇(𝜌ℎ𝒖ℎ),𝒖ℎ) +

1
2
(𝜌ℎ𝒖ℎ

(
∇⋅𝒖ℎ

)
,𝒖ℎ) + 𝜇‖∇𝒖ℎ‖2 + 𝜇‖∇⋅𝒖ℎ‖2

+‖√𝛾ℎ ∇⋅𝒖ℎ‖2 + (
𝜅ℎ

(
𝜌ℎ

(
∇𝒖ℎ +

(
∇𝒖ℎ

)𝑇 )+∇𝜌ℎ ⊗ 𝒖ℎ

)
,∇𝒖ℎ

)
= 0.

(3.5)

Using that the contraction between a symmetric and anti-symmetric matrix with zero diagonal is zero [34, Ch 11.2.1], i.e., (𝐴 +𝐴𝑇 ) ∶
4

(𝐴 −𝐴𝑇 ) = 0 where 𝐴 is a square matrix, one can show that
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𝜅ℎ𝜌ℎ

(
∇𝒖ℎ +

(
∇𝒖ℎ

)𝑇)
,∇𝒖ℎ

)
=1
2

(
𝜅ℎ𝜌ℎ

(
∇𝒖ℎ +

(
∇𝒖ℎ

)𝑇 )
,∇𝒖ℎ + (∇𝒖ℎ)𝑇

)
+ 1

2

(
𝜅ℎ𝜌ℎ

(
∇𝒖ℎ +

(
∇𝒖ℎ

)𝑇)
,∇𝒖ℎ − (∇𝒖ℎ)𝑇

)
=1
2

(
𝜅ℎ𝜌ℎ

(
∇𝒖ℎ +

(
∇𝒖ℎ

)𝑇 )
,∇𝒖ℎ + (∇𝒖ℎ)𝑇

)
.

(3.6)

Inserting (3.6) into (3.5) gives(
𝜕𝑡

(
𝜌ℎ𝒖ℎ

)
,𝒖ℎ

)
+ (𝒖ℎ⋅∇(𝜌ℎ𝒖ℎ),𝒖ℎ) +

1
2
(𝜌ℎ𝒖ℎ

(
∇⋅𝒖ℎ

)
,𝒖ℎ) + (𝜅ℎ∇𝜌ℎ ⊗ 𝒖ℎ,∇𝒖ℎ)

+𝜇‖∇𝒖ℎ‖2 + 𝜇‖∇⋅𝒖ℎ‖2 + ‖√𝛾ℎ ∇⋅𝒖ℎ‖2 + 1
2
‖√𝜅ℎ𝜌ℎ(∇𝒖ℎ + (∇𝒖ℎ)𝑇 )‖2 = 0.

(3.7)

Using the integration by parts relation (2.2), one can show that

(𝒖ℎ⋅∇(𝜌ℎ𝒖ℎ),𝒖ℎ) +
1
2
(𝜌ℎ𝒖ℎ(∇⋅𝒖ℎ),𝒖ℎ) =

1
2
(𝒖ℎ⋅∇(𝜌ℎ𝒖ℎ),𝒖ℎ) +

1
2
(𝒖ℎ⋅∇(𝜌ℎ𝒖ℎ),𝒖ℎ)

+1
2
(𝜌ℎ𝒖ℎ(∇⋅𝒖ℎ),𝒖ℎ)

= −1
2
(𝜌ℎ𝒖ℎ⋅∇𝒖ℎ,𝒖ℎ) −

1
2
(𝜌ℎ𝒖ℎ(∇⋅𝒖ℎ),𝒖ℎ) +

1
2
(𝒖ℎ⋅∇(𝜌ℎ𝒖ℎ),𝒖ℎ) +

1
2
(𝜌ℎ𝒖ℎ(∇⋅𝒖ℎ),𝒖ℎ)

= −1
2
(𝜌ℎ𝒖ℎ⋅∇𝒖ℎ,𝒖ℎ) +

1
2
(𝒖ℎ⋅∇(𝜌ℎ𝒖ℎ),𝒖ℎ).

Expanding ∇(𝜌ℎ𝒖ℎ) then shows that

(𝒖ℎ⋅∇(𝜌ℎ𝒖ℎ),𝒖ℎ) +
1
2
(𝜌ℎ𝒖ℎ(∇⋅𝒖ℎ),𝒖ℎ) = −1

2
(𝜌ℎ𝒖ℎ⋅∇𝒖ℎ,𝒖ℎ) +

1
2
(𝒖ℎ⋅∇(𝜌ℎ𝒖ℎ),𝒖ℎ)

= −1
2
(𝜌ℎ𝒖ℎ⋅∇𝒖ℎ,𝒖ℎ) +

1
2
(
𝒖ℎ⋅∇𝜌ℎ, |𝒖ℎ|2)+ 1

2
(𝜌ℎ𝒖ℎ⋅∇𝒖ℎ,𝒖ℎ)

= 1
2
(
𝒖ℎ⋅∇𝜌ℎ, |𝒖ℎ|2) .

(3.8)

Inserting (3.8) into (3.7) gives(
𝜕𝑡

(
𝜌ℎ𝒖ℎ

)
,𝒖ℎ

)
+ 1

2
(
𝒖ℎ⋅∇𝜌ℎ, |𝒖ℎ|2)+ (𝜅ℎ∇𝜌ℎ ⊗ 𝒖ℎ,∇𝒖ℎ)

+𝜇‖∇𝒖ℎ‖2 + 𝜇‖∇⋅𝒖ℎ‖2 + ‖√𝛾ℎ ∇⋅𝒖ℎ‖2 + 1
2
‖‖‖√𝜅ℎ𝜌ℎ(∇𝒖ℎ + (∇𝒖ℎ)𝑇 )

‖‖‖2 = 0.
(3.9)

Simplifying the term (𝜅ℎ∇𝜌ℎ ⊗ 𝒖ℎ, ∇𝒖ℎ) inside (3.9) and then performing integration by parts on it yields:(
𝜕𝑡

(
𝜌ℎ𝒖ℎ

)
,𝒖ℎ

)
+ 1

2
(
𝒖ℎ⋅∇𝜌ℎ, |𝒖ℎ|2)+ 1

2
(𝜅ℎ∇𝜌ℎ,∇(|𝒖ℎ|2))

+𝜇‖∇𝒖ℎ‖2 + 𝜇‖∇⋅𝒖ℎ‖2 + ‖√𝛾ℎ ∇⋅𝒖ℎ‖2 + 1
2
‖‖‖√𝜅ℎ𝜌ℎ(∇𝒖ℎ + (∇𝒖ℎ)𝑇 )

‖‖‖2 = 0(
𝜕𝑡

(
𝜌ℎ𝒖ℎ

)
,𝒖ℎ

)
+ 1

2
(
𝒖ℎ⋅∇𝜌ℎ, |𝒖ℎ|2)− 1

2
(∇⋅ (𝜅ℎ∇𝜌ℎ), |𝒖ℎ|2)

+𝜇‖∇𝒖ℎ‖2 + 𝜇‖∇⋅𝒖ℎ‖2 + ‖√𝛾ℎ ∇⋅𝒖ℎ‖2 + 1
2
‖‖‖√𝜅ℎ𝜌ℎ(∇𝒖ℎ + (∇𝒖ℎ)𝑇 )

‖‖‖2 = 0.

(3.10)

We define the following 𝐿2-projection. Find |𝒖ℎ|2 ∈ such that(|𝒖ℎ|2,𝑤)
=
(|𝒖ℎ|2,𝑤)

∀𝑤 ∈ ̄2𝑘−1, (3.11)

where ̄2𝑘−1 is defined by (2.3). Taking the density update in (3.1.1) and setting 𝑤 = −1
2 |𝒖ℎ|2 and performing integration by parts 

on the last term yields

− 1
2

((
𝜕𝑡𝜌ℎ, |𝒖ℎ|2)+

(
𝒖ℎ⋅∇𝜌ℎ, |𝒖ℎ|2)+

(
𝜅ℎ∇𝜌ℎ,∇

(|𝒖ℎ|2))) = 0

− 1
2

((
𝜕𝑡𝜌ℎ, |𝒖ℎ|2)+

(
𝒖ℎ⋅∇𝜌ℎ, |𝒖ℎ|2)−

(
∇⋅ (𝜅ℎ∇𝜌ℎ), |𝒖ℎ|2)) = 0.

(3.12)

Adding (3.10) and (3.12) yields(
𝜕𝑡

(
𝜌ℎ𝒖ℎ

)
,𝒖ℎ

)
− 1

2

(
𝜕𝑡𝜌ℎ, |𝒖ℎ|2)+ 𝜇‖∇𝒖ℎ‖2 + 𝜇‖∇⋅𝒖ℎ‖2 + ‖√𝛾ℎ ∇⋅𝒖ℎ‖2

+1
2
‖‖‖√𝜅ℎ𝜌ℎ

(
∇𝒖ℎ + (∇𝒖ℎ)𝑇

)‖‖‖2 + 1
2

(
𝒖ℎ⋅∇𝜌ℎ, |𝒖ℎ|2 − |𝒖ℎ|2)− 1

2

(
∇⋅ (𝜅ℎ∇𝜌ℎ),−|𝒖ℎ|2 + |𝒖ℎ|2) = 0

(3.13)

Since ∇⋅ (𝜅ℎ∇𝜌ℎ) ∈ ̄2𝑘−2 ⊂ ̄2𝑘−1 and 𝒖ℎ⋅∇𝜌ℎ ∈ ̄2𝑘−1 and 𝜕𝑡𝜌 ∈  ⊂ ̄2𝑘−1, we can use the 𝐿2 projection (3.11) on (3.13) to 
5

finally yield



Journal of Computational Physics 497 (2024) 112608L. Lundgren and M. Nazarov (
𝜕𝑡

(
𝜌ℎ𝒖ℎ

)
,𝒖ℎ

)
− 1

2
(
𝜕𝑡𝜌ℎ, |𝒖ℎ|2)+ 𝜇‖∇𝒖ℎ‖2 + 𝜇‖∇⋅𝒖ℎ‖2 + ‖√𝛾ℎ ∇⋅𝒖ℎ‖2

+1
2
‖‖‖√𝜅ℎ𝜌ℎ

(
∇𝒖ℎ + (∇𝒖ℎ)𝑇

)‖‖‖2 = 0,

1
2
𝜕𝑡‖√𝜌ℎ𝒖‖2 + 𝜇‖∇𝒖ℎ‖2 + 𝜇‖∇⋅𝒖ℎ‖2 + ‖√𝛾ℎ ∇⋅𝒖ℎ‖2 + 1

2
‖‖‖√𝜅ℎ𝜌ℎ

(
∇𝒖ℎ + (∇𝒖ℎ)𝑇

)‖‖‖2 = 0,

which concludes the proof. □

3.2. High-order time stepping

The time derivative in the variational formulation (3.3) is discretized using high-order backward differentiation formulas (BDFs). 
This section describes the variable time step BDF method we use. The variable time step BDF method [2] is derived by replacing 𝜕𝑡𝜌ℎ, 
𝜕𝑡(𝜌ℎ𝒖ℎ) with appropriate discrete approximations. The full method is as follows: Let (𝜌𝑛

ℎ
, 𝒖𝑛

ℎ
, 𝑝𝑛

ℎ
) ∈ (ℎ, Vℎ, ℎ) be solutions at time 

𝑡𝑛. Let Δ𝑡𝑛+𝑗 ∶= 𝑡𝑛+𝑗+1 − 𝑡𝑛+𝑗 denote the time step and 𝜔𝑖 ∶= Δ𝑡𝑖∕Δ𝑡𝑖−1 denote the time step ratio. Given artificial viscosity coefficients 
𝜅𝑛
ℎ

and 𝛾𝑛
ℎ

and solutions from previous time steps, 𝜌𝑛+𝑗

ℎ
, 𝒖𝑛+𝑗

ℎ
, first find 𝜌𝑛+1

ℎ
∈ℎ such that(

𝑑𝑡

(
𝜌𝑛+1
ℎ

)
,𝑤

)
+
(
𝒖∗
ℎ
⋅∇𝜌𝑛+1

ℎ
,𝑤

)
+
(
𝜅𝑛
ℎ
∇𝜌𝑛+1

ℎ
,∇𝑤

)
= 0, ∀𝑤 ∈ℎ, (3.14)

where 𝒖∗
ℎ

is a linearization of 𝒖ℎ, then find 𝒖𝑛+1
ℎ

∈Vℎ and 𝑝𝑛+1
ℎ

∈ℎ such that(
𝑑𝑡

(
𝜌𝑛+1
ℎ

𝒖𝑛+1
ℎ

)
,𝒗

)
+
(
𝒖∗
ℎ
⋅∇

(
𝜌𝑛+1
ℎ

𝒖𝑛+1
ℎ

)
,𝒗

)
+ 1

2
(
𝜌𝑛+1
ℎ

𝒖𝑛+1
ℎ

(
∇⋅𝒖∗

ℎ

)
,𝒗

)
−
(
𝑝𝑛+1
ℎ

,∇⋅𝒗
)
+ 𝜇

(
∇𝒖𝑛+1

ℎ
+
(
∇𝒖𝑛+1

ℎ

)𝑇
,∇𝒗

)
+
(
𝛾𝑛
ℎ
∇⋅𝒖𝑛+1

ℎ
,∇⋅𝒗

)
+
(
𝜅𝑛
ℎ

(
𝜌𝑛+1
ℎ

(
∇𝒖𝑛+1

ℎ
+
(
∇𝒖𝑛+1

ℎ

)𝑇 )+∇𝜌𝑛+1
ℎ

⊗ 𝒖𝑛+1
ℎ

)
,∇𝒗

)
=
(
𝒇 𝑛+1,𝒗

)
, ∀𝒗 ∈Vℎ,(

∇⋅𝒖𝑛+1
ℎ

, 𝑞
)
= 0, ∀𝑞 ∈ℎ,

(3.15)

where 𝑑𝑡

(
𝜌𝑛+1
ℎ

)
, 𝑑𝑡

(
𝜌𝑛+1
ℎ

𝒖𝑛+1
ℎ

)
are discrete approximations of 𝜕𝑡𝜌ℎ, 𝜕𝑡(𝜌ℎ𝒖ℎ), respectively. The finite-difference approximations of these 

for variable time step BDF methods are presented up to order 4 in the Appendix. The choice of 𝒖∗
ℎ

with respect to the BDF scheme 
is given in the Appendix. The time step ratio 𝜔𝑖 is critical to ensure that the underlying BDF scheme is zero-stable and convergent. 
For example, [58] showed that 𝜔𝑖 ≤ 1.101 for BDF4 and 𝜔𝑖 ≤ 1.501 for BDF3. Denote by [𝑠min, 𝑠max] the interval in which 𝜔𝑖 lives and 
ensures the zero-stability of the BDF scheme. Then, for given time step Δ𝑡𝑛−1, we calculate the next time step Δ𝑡𝑛 using the following 
adaptive algorithm:

Algorithm 1 A simplified version of the time step control algorithm from [19, Sec 5.4] used to compute the next time step Δ𝑡𝑛 given 
user-defined parameters CFL, 𝑠max, 𝑠min.

/* Compute time step increment based on CFL condition */

𝑠cfl = CFLmin𝒙∈Ω ℎ(𝒙)∕ (‖𝒖𝑛
ℎ
‖𝑙2 Δ𝑡𝑛−1

)
/* Make sure the next time step Δ𝑡𝑛 is bounded by 𝑠maxΔ𝑡𝑛−1 */

𝑠 =min
(
𝑠cfl , 𝑠max

)
Δ𝑡𝑛 = 𝑠Δ𝑡𝑛−1
if 𝑠 < 𝑠min then

Repeat previous time step with Δ𝑡𝑛 instead

end

return Time step Δ𝑡𝑛 and flag whether to repeat the time step or not

Remark 3.2 (Initialization). A common approach to initialize high-order BDF methods is to use lower-order BDF methods using small 
time steps. We follow this approach and take

Δ𝑡initial = 𝑐initΔ𝑡0,

as initial time step, where Δ𝑡0 is the otherwise usual initial time step given by the CFL-condition and 𝑐init ≤ 1. If 𝑐init is sufficiently 
small, high-order accuracy is still obtained even if the method is initialized using a low-order method. If 𝒖ℎ is zero initially we 
set Δ𝑡0 = CFLmin𝒙∈Ω ℎ(𝒙) ∗ (1 [s/m]), where the last factor is included to obtain the correct unit. Another approach is to use the 
initialization algorithm proposed by Guermond and Minev [19, Sec 3.3].

Remark 3.3. The particular linearization used in (3.14) and (3.15) ensures that the semi-discrete estimate (3.4) still holds. To the 
authors’ knowledge, a higher than second order fully discrete estimate [22] for variable density flow is not known for BDF methods.

3.3. Nonlinear viscosity method

In this section we present how to construct the artificial viscosity coefficients 𝜅𝑛
ℎ

and 𝛾𝑛
ℎ

which are used in the fully discrete 
6

approximation, i.e., (3.14) and (3.15). Briefly stated, the stabilization is performed by using a sufficient amount of artificial viscosity, 
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determined by 𝜅𝑛
ℎ

and 𝛾𝑛
ℎ
. In Sections 3.3.1 and 3.3.2 we describe how we compute 𝜅𝑛

ℎ
using a residual-based viscosity approach 

which is one of the contributions of this work. In Section 3.3.3 we describe how we compute the grad-div stabilization penalty 
parameter 𝛾𝑛

ℎ
in a way that is suitable for the proposed discretization. Lastly, in Section 3.3.4 we summarize the procedure.

3.3.1. A new residual viscosity method

The nonlinear viscosity 𝜅𝑛
ℎ

is constructed based on the PDE residual and this technique is commonly referred to as the RV method. 
This technique has been successfully applied to hyperbolic problems and compressible flow [43,54,36,40,12]. The effect of the 
residual viscosity in this context is twofold: it provides sufficient stabilization while also acting as a large eddy simulation. Since the 
residual is small in smooth, resolved regions of the domain, high-order accuracy is still maintained. For a comparison between the 
RV method and the well-known Lilly-Smagorinsky model, we refer to Marras et al. [40].

Our approach in this work is different than the one in the references. The key idea is to use the residual to construct discontinuity 
indicator 𝛼𝑛

ℎ
∈ℎ ∩ [0, 1] which is close to 1 in non-smooth areas of the solution and close to zero in smooth parts of the solution. 

This indicator is then used to compute 𝜅𝑛
ℎ
, which is chosen as first-order viscosity scaled with the indicator 𝛼𝑛

ℎ

𝜅𝑛
ℎ
= 𝛼𝑛

ℎ
ℎ𝐶max‖𝒖𝑛

ℎ
‖𝓁2 , (3.16)

where 𝐶max is a user-defined parameter determining the amount of first-order viscosity used. We have three new contributions: i) An 
improved localized normalization of the RV method. ii) Additional post-processing steps for increased accuracy in smooth regions 
and additional robustness for strong discontinuities. iii) An extension of the RV method to incompressible variable density flow. 
Below, we describe how to construct 𝛼𝑛

ℎ
.

We first define the residuals 𝑅𝑛
𝜌ℎ

, 𝑅𝑛
𝒖ℎ

, 𝑅𝑛

div𝒖ℎ
∈ℎ on each node 𝑖 as

𝑅𝑛
𝜌ℎ,𝑖

∶= |||𝑑𝑡(𝜌𝑛
ℎ
) + 𝒖𝑛

ℎ
⋅∇𝜌𝑛

ℎ

|||𝑖 ,
𝑅𝑛
𝒖ℎ,𝑖

∶= ‖‖‖𝑑𝑡(𝜌𝑛
ℎ
𝒖𝑛
ℎ
) + 𝒖𝑛

ℎ
⋅∇(𝜌𝑛

ℎ
𝒖𝑛
ℎ
) + ∇𝑝𝑛

ℎ
− 𝜇∇⋅

(
∇𝒖𝑛

ℎ
+ (∇𝒖𝑛

ℎ
)𝑇

)
− 𝒇 𝑛‖‖‖𝓁2 ,𝑖 ,

𝑅𝑛

div𝒖ℎ,𝑖
∶= |||∇⋅𝒖𝑛

ℎ

|||𝑖 ,
(3.17)

where 𝑑𝑡(𝜌𝑛
ℎ
), 𝑑𝑡(𝜌𝑛

ℎ
𝒖𝑛
ℎ
) are approximations of 𝜕𝑡𝜌ℎ, 𝜕𝑡(𝜌ℎ𝒖ℎ) at time 𝑡𝑛 using a BDF formula. We also define localized normalization 

functions on each node 𝑖 as

𝑛𝑛

loc,𝜌ℎ,𝑖
∶=|𝑑𝑡(𝜌𝑛

ℎ
)|𝑖 + ‖𝒖𝑛

ℎ
‖𝓁2 ,𝑖‖∇𝜌𝑛

ℎ
‖𝓁2 ,𝑖,

𝑛𝑛

loc,𝒖ℎ,𝑖
∶=‖𝑑𝑡(𝜌𝑛

ℎ
𝒖𝑛
ℎ
)‖𝓁2 ,𝑖 + ‖𝒖𝑛

ℎ
‖𝓁2 ,𝑖‖∇(𝜌𝑛

ℎ
𝒖𝑛
ℎ
)‖𝓁2 ,𝑖

+ ‖∇𝑝𝑛
ℎ
‖𝓁2 ,𝑖 + ‖𝜇∇⋅ (∇𝒖𝑛

ℎ
+ (∇𝒖𝑛

ℎ
)𝑇

)‖𝓁2 ,𝑖 + ‖𝒇 𝑛‖𝓁2 ,𝑖,
𝑛𝑛

loc,div𝒖ℎ,𝑖
∶=‖‖‖∇𝒖𝑛

ℎ

‖‖‖𝓁2 ,𝑖 ,
where ‖∇𝒖𝑛

ℎ
‖𝓁2 ∶=√∑𝑑

𝑗=1
∑𝑑

𝑖=1 | (∇𝒖𝑛
ℎ

)
𝑖,𝑗

|2.
Let us start our discussion with the density equation. Computing 𝑅𝑛

𝜌ℎ,𝑖
∕𝑛𝑛

loc,𝜌ℎ,𝑖
for each node 𝑖 will yield a number between 0 and 

1 which will indicate if 𝜌𝑛
ℎ

is smooth or non-smooth. If 𝜌𝑛
ℎ

is smooth 𝑅𝑛
𝜌ℎ

will be small and if 𝜌𝑛
ℎ

is non-smooth both 𝑅𝑛
𝜌ℎ

and 𝑛𝑛

loc,𝜌ℎ
will be ≈ 1∕ℎ and thus 𝑅𝑛

𝜌ℎ,𝑖
∕𝑛𝑛

loc,𝜌ℎ,𝑖
will be close to 1. Due to its construction, 𝑅𝑛

𝜌ℎ,𝑖
∕𝑛𝑛

loc,𝜌ℎ,𝑖
will not exceed 1. One pitfall occurs when 

𝜌𝑛
ℎ

is flat (or close to flat) since then, both 𝑅𝑛
𝜌ℎ

and 𝑛𝑛

loc,𝜌ℎ
will be small, and 𝑅𝑛

𝜌ℎ,𝑖
∕𝑛𝑛

loc,𝜌ℎ,𝑖
will be close to 1. To cure this, we introduce 

the following improved normalization values for each node 𝑖:

𝑛𝑛
𝜌ℎ,𝑖

∶=
⎧⎪⎨⎪⎩
𝑛𝑛

loc,𝜌ℎ,𝑖
, if ℎ𝑖‖∇𝜌𝑛

ℎ
‖𝓁2 ,𝑖 > 𝐶flat,

max
(
ℎ−1
𝑖

𝑛glob(𝜌𝑛
ℎ
‖𝒖𝑛

ℎ
‖𝓁2 ), 𝑛𝑛

loc,𝜌ℎ,𝑖

)
, otherwise,

𝑛𝑛
𝒖ℎ,𝑖

∶=
⎧⎪⎨⎪⎩
𝑛𝑛

loc,𝒖ℎ,𝑖
, if ℎ𝑖‖∇(𝜌ℎ𝒖ℎ)‖𝓁2 ,𝑖 > 𝐶flat,

max
(
ℎ−1
𝑖

𝑛glob(𝜌𝑛
ℎ
‖𝒖𝑛

ℎ
‖2𝓁2 ), 𝑛𝑛

loc,𝒖ℎ,𝑖

)
, otherwise,

𝑛𝑛

div𝒖ℎ,𝑖
∶=

⎧⎪⎨⎪⎩
𝑛𝑛

loc,div𝒖ℎ,𝑖
if ℎ𝑖

‖‖‖∇𝒖𝑛
ℎ

‖‖‖𝓁2 ,𝑖 > 𝐶flat,

max(ℎ−1
𝑖

𝑛glob(‖𝒖𝑛
ℎ
‖𝓁2 ), 𝑛𝑛

loc,div𝒖ℎ,𝑖
), otherwise,

(3.18)

where we define 𝑛glob(𝑤) to be a function which takes the global jump of 𝑤 ∈ℎ on Ω

||maxΩ 𝑤−minΩ 𝑤||2

7

𝑛glob(𝑤) ∶= |maxΩ 𝑤−minΩ 𝑤|+ 𝜀‖𝑤‖𝐿∞(Ω×(0,𝑡𝑛))
,
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Fig. 1. Activation function 𝑓RV used to suppress 𝑅𝑛
max

in smooth regions and increase 𝑅𝑛
max

in non-smooth regions. The solution is considered smooth to the left of the 
dashed grey line and non-smooth to the right of it.

with a user-defined parameter 𝜀 ≪ 1 to avoid division by zero. In (3.18), a user-defined parameter 𝐶f lat ∈ (0.01, 1) is used to indicate 
if the solution is flat with respect to the mesh-size ℎ. Finally, we are ready to define the global normalized residual 𝑅𝑛

max,ℎ ∈ℎ that 
is later used to construct the discontinuity indicator as

𝑅𝑛
max,ℎ,𝑖 ∶= max

(
𝑅𝑛

𝜌ℎ,𝑖

𝑛𝑛
𝜌ℎ,𝑖

,
𝑅𝑛
𝒖ℎ,𝑖

𝑛𝑛
𝒖ℎ,𝑖

,

𝑅𝑛

div𝒖ℎ,𝑖

𝑛𝑛

div𝒖ℎ,𝑖

)
. (3.19)

Remark 3.4. Traditionally, 𝑑𝑡(𝜌𝑛
ℎ
) and 𝑑𝑡(𝜌𝑛

ℎ
𝒖𝑛
ℎ
) are computed using a sufficiently accurate BDF-formula, but other options exist, such 

as using a carefully constructed spatial approximation [54,36]. In this work we use BDF3 (A.1).

Remark 3.5. The standard RV method [56,36,40,12,44,25,59] for the advection equation, as expressed as 
𝑅𝑛

𝜌ℎ,𝑖

𝑛𝑛
𝜌ℎ,𝑖

∈ [0, 1] for each node 

𝑖, is given by

𝑅𝑛
𝜌ℎ,𝑖

𝑛𝑛
𝜌ℎ,𝑖

=min
⎛⎜⎜⎝1,2ℎ

|||𝑑𝑡𝜌
𝑛
ℎ
+ 𝒖𝑛

ℎ
⋅∇𝜌𝑛

ℎ

|||𝑖|||𝒖𝑛
ℎ
|𝓁2 ,𝑖‖𝜌𝑛

ℎ
− �̄�

‖‖‖𝐿∞(Ω)
+ 𝜖

⎞⎟⎟⎠, (3.20)

where �̄� = |Ω|−1 ∫Ω 𝜌 d𝒙 and 𝜖 is a small parameter to avoid division by zero. The downsides of (3.20) as a discontinuity indicator are:

•
‖‖‖𝜌𝑛

ℎ
− �̄�

‖‖‖𝐿∞(Ω)
is a global normalization used to ensure that 𝛼𝑛

ℎ
has the correct unit. If, for example, the domain is stretched, this 

normalization causes the method to artificially behave differently.

• The wave-speed |𝒖𝑛
ℎ
| does not provide any information to 

𝑅𝑛
𝜌ℎ,𝑖

𝑛𝑛
𝜌ℎ,𝑖

about numerical error or smoothness for 𝜌𝑛
ℎ
.

The residual indicator proposed in this work (3.19) avoids these two issues.

3.3.2. Further post-processing and nonlinear transformations of the discontinuity indicator

In this section, we describe how to further enhance the properties of our proposed discontinuity indicator using some nonlinear 
transformations. We aim to make the method less diffusive in smooth areas of the solution and make the method more robust for 
strong discontinuities. To this end, we propose using a so-called activation function 𝑓RV so that 𝑓RV(𝑅𝑛

max,ℎ) < 𝑅𝑛
max,ℎ when 𝑅𝑛

max,ℎ is 
small and 𝑓RV(𝑅𝑛

max,ℎ) > 𝑅𝑛
max,ℎ when 𝑅𝑛

max,ℎ is large. There are many ways to choose a suitable activation function, see e.g., [27], and 
in this work we choose

𝑓RV(𝑥) = 𝑎𝑥𝑝,

with 𝑝 > 1 and 𝑎 > 0, which is a simple activation function that has the aforementioned properties. This is illustrated in Fig. 1, where 
we see that 𝑓RV(𝑅𝑛

max,ℎ) suppresses 𝑅𝑛
max,ℎ to the left of the gray dashed line, where the solution is considered smooth and increases 

𝑅𝑛
max,ℎ to the right of it.

We propose solving the following projection problem: find �̃�𝑛
ℎ
∈ℎ such that

(�̃�𝑛
ℎ
,𝑤) + (ℎ2∇�̃�𝑛

ℎ
,∇𝑤) = (𝑓RV(𝑅𝑛

max,ℎ),𝑤), ∀𝑤 ∈ℎ, (3.21)

which is a standard 𝐿2-projection with additional smoothing. Since the PDE residual is oscillative by its nature, the added smooth-

ing helps remove oscillations from �̃�𝑛
ℎ
. In Section 4.5.1 we compare the performance of the method with and without the added 
8

smoothing.
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Finally, we define the discontinuity indicator

𝛼𝑛
ℎ
∶= min(1, |�̃�𝑛

ℎ
|), (3.22)

so that the values of 𝛼𝑛
ℎ

are still between 0 and 1.

Remark 3.6. The added smoothing in (3.21) serves a similar role as the smoother proposed by Reisner et al. [50], Barter and 
Darmofal [5] and Ramani et al. [49]. They construct a smoother variation of artificial viscosity by solving an additional scalar 
reaction-diffusion equation. This approach removes small nonphysical oscillations introduced by non-smooth viscosity and does not 
pollute the solution in the downstream region. The difference between their approach and ours is that we solve an 𝐿2-projection 
problem at each time step instead of solving an additional scalar reaction-diffusion equation.

3.3.3. An efficient grad-div stabilization parameter

Grad-div stabilization is frequently added to Galerkin discretizations of the Navier-Stokes equations and is an effective way of 
reducing divergence errors in the solution [46,10,31]. A larger 𝛾𝑛

ℎ
will lead to smaller divergence errors present in the numerical 

solution. As 𝛾𝑛
ℎ
→∞ the solution converges to a pointwise divergence-free solution as demonstrated by Case et al. [10]. The optimal 

value of 𝛾𝑛
ℎ

(in terms of discretization error) is problem dependent and varies depending on which error norm is utilized and can 
vary from 𝛾𝑛

ℎ
∈ [ℎ, 10000] [31,10]. The downside with a high value of 𝛾 is that the linear system becomes very hard for an iterative 

Krylov method to solve. We choose 𝛾𝑛
ℎ

in a Galerkin-Least-Squares fashion [57, Sec 3.1]

𝛾𝑛
ℎ
= 𝐶max,𝛾ℎ|𝜌𝑛

ℎ
|∞,𝐾 |𝒖𝑛

ℎ
|𝓁2 , (3.23)

where 𝐶max,𝛾 is a user-defined parameter. As demonstrated in Section 4.5.2, choosing 𝐶max,𝛾 = 0.5 gives additional divergence cleaning 
without making the iterative method significantly more expensive.

3.3.4. Summary of the nonlinear viscosity method

To summarize, the artificial viscosity coefficients 𝜅𝑛
ℎ

and 𝛾𝑛
ℎ

used in the stabilized FEM ((3.14) and (3.15)) are computed as 
follows:

1. Compute the residuals (3.17) and normalization functions (3.18).

2. Compute the node-wise maximum of each normalized residual (3.19).

3. Solve the projection problem with smoothing (3.21).

4. Set 𝛼𝑛
ℎ

to (3.22).

5. Compute 𝜅𝑛
ℎ

combining first-order viscosity and 𝛼𝑛
ℎ

(3.16).

6. Compute 𝛾𝑛
ℎ

using (3.23).

3.4. Preconditioning strategy

In this section, we describe the preconditioning strategy we use. Since the density update has been decoupled from the momentum 
update, two linear systems need to be solved at each time step. The density update (3.14) is easily handled by, for example, 
standard block Jacobi preconditioning. We, therefore, focus our discussion on the preconditioning technique used for the linear 
system associated with the momentum update. When writing (3.15) as a linear system we obtain the following block system for 
velocity and pressure[

𝐹 𝐵𝑇

𝐵 0

][
𝑈𝑛+1

𝑃 𝑛+1

]
=
[
𝑅𝐻𝑆

0

]
, (3.24)

where 𝑈𝑛+1 and 𝑃 𝑛+1 are the solution vectors for velocity and pressure, 𝐹 is the momentum block, which contains mass, convection 
and stiffness matrices, 𝐵 is the matrix associated with the pressure and velocity coupling and 𝑅𝐻𝑆 is the right-hand side associated 
with (3.15). The block system (3.24) is a classical saddle point system that is difficult to solve unless a suitable preconditioning 
technique is chosen. In this manuscript, we use a preconditioner based on the Schur complement. We also investigate artificial 
compressibility as a technique to regularize the saddle point problem.

3.4.1. Artificial compressibility

The main idea with artificial compressibility is to regularize the incompressibility constraint using a penalty parameter 𝜖 > 0 such 
that

𝜖𝑝𝑡 +∇⋅𝒖 = 0, (3.25)

to impose the divergence-free condition less strong [11,55]. In the discrete setting, (3.25) is discretized using backward Euler leading 
to
9

𝑝𝑛+1 = 𝑝𝑛 − 𝜆∇⋅𝒖𝑛+1, (3.26)
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where 𝜆 ∶= Δ𝑡𝑛∕𝜖 is a penalty parameter. Employing a Galerkin approach to the regularized divergence-free constraint (3.26) gives 
rise to a slightly different linear system than doing the same with the usual strong constraint ∇⋅𝒖𝑛+1. The singular linear system from 
before (3.24) has been changed into a non-singular matrix[

𝐹 𝐵

𝐵𝑇 1
𝜆
𝑀𝑝

][
𝑈𝑛+1

𝑃 𝑛+1

]
=

[
𝑅𝐻𝑆
1
𝜆
𝑃 𝑛

]
, (3.27)

where 𝑀𝑝 is the pressure mass matrix. The block system (3.27) converges to (3.24) as 𝜆 → ∞. The above system (3.27) has an 
improved condition number compared to (3.24), but with the tradeoff that the divergence-free condition is imposed less strongly, 
leading to loss of accuracy.

One of the goals of this manuscript is to investigate this. The research questions we pose are the following: How large should 𝜆
be to obtain high-order accuracy? For which 𝜆 is the implicit artificial compressibility method (3.27) faster than the classical saddle 
point system (3.24)? Can we find a preconditioning strategy that shows similar performance between solving (3.24) and (3.27)?

Remark 3.7. Another approach is to impose artificial compressibility in the strong form as used by Guermond and Minev [18], Layton 
and McLaughlin [35]. This leads to a completely different system involving solving a grad-div (𝜆∇∇⋅𝒖ℎ) dominated linear system 
which is notoriously difficult to solve when 𝜆 ≫ 1 (which is required for high-order accuracy). This was circumvented by the time 
stepping technique by Guermond and Minev [18,19], Lundgren and Nazarov [37] which allowed using 𝜆 = 1 to achieve high-order 
accuracy.

Remark 3.8. Instead of an implicit discretization of the artificial compressibility constraint (3.26) it is also possible to discretize 
the constraint explicitly. Significant computational benefits arise from employing explicit time-stepping in conjunction with artificial 
compressibility [45,61], eliminating the need to solve an expensive linear system. However, as the references indicate, explicit 
artificial compressibility imposes a time-restriction criterion of Δ𝑡 ≤ 𝜆−1∕2ℎ. As mentioned by Guermond and Minev [18, Remark 2.2]

we require 𝜆 = (Δ𝑡)−1 to be formally first-order accurate leading to Δ𝑡 ≤ ℎ2. This restriction becomes worse for higher-order accuracy, 
requiring 𝜆 = (Δ𝑡)−𝑝 where 𝑝 represents the desired order of accuracy. Notably, DeCaria et al. [13] demonstrates that a stability 
condition can be circumvented by introducing a grad-div operator (∇∇ ⋅𝒖ℎ) to the momentum equations. However, this approach can 
be considered computationally intensive. For this reason, we opt to benchmark our results against implicit artificial compressibility, 
given its practical considerations.

3.4.2. Schur complement preconditioning

In this section we propose a preconditioning strategy suitable for both (3.24) and (3.27). We use flexible GMRES with right 
preconditioning [51]. The preconditioner we use is

𝑃 =
[
𝐹 𝐵

0 𝑆

]
, (3.28)

where the Schur complement 𝑆 is defined as

𝑆 = 1
𝜆
𝑀𝑝 −𝐵𝑇 𝐹−1𝐵.

If the exact Schur complement is used as a preconditioner, iterative solvers such as GMRES converge in at most two iterations 
[15]. The challenge, however, is to design a good approximation of the Schur complement since the exact Schur complement is a 
dense matrix. There have been various approaches to construct this throughout the years, see e.g., [15,3,33,53].

Let 𝑀𝑢 and 𝐴𝑢 denote the velocity mass and stiffness matrices and let 𝑀𝑝 and 𝐴𝑝 denote the pressure mass and stiffness matrices. 
In the Stokes context, one very appealing idea comes from the fact that 𝐵𝑇 𝑀−1

𝑢
𝐵 ≈ 𝐴𝑝 and 𝐵𝑇𝐴−1

𝑢
𝐵 ≈ 𝑀𝑝 which allows the con-

struction of a Schur complement of viscosity-dominated or reaction-dominated problems. Unfortunately, to the authors’ knowledge, 
a similar approximation is not known for the convection operator. If we assume that the time step follows a CFL condition and that 
𝜇 is relatively small (in this manuscript 𝜇 ≤ 0.01), 𝐹 is dominated by 𝑀𝑢. We, therefore, propose the following approximation of the 
Schur complement

(
𝑆𝑎𝑝𝑝𝑟𝑜𝑥

)
𝑖,𝑗

=max
( 1
𝜆
,𝐶𝜆

)(
𝜑

𝑝

𝑖
,𝜑

𝑝

𝑗

)
−

Δ𝑡𝑛

𝛼4,𝑛

(
1

𝜌𝑛+1
ℎ,𝑖

∇𝜑
𝑝

𝑖
,∇𝜑

𝑝

𝑗

)
, (3.29)

where the first matrix is the pressure mass matrix, the second matrix is a variable coefficient pressure stiffness matrix, 𝐶𝜆 ≪ 1 is 
a user-defined parameter and 𝛼4,𝑛 is the leading coefficient of the BDF4-method, see the Appendix. A similar approximation of the 
Schur complement has previously been used by Kronbichler et al. [33] for flow at low Reynolds numbers. The difference between 
their approach and ours is that we have neglected the viscous contribution of 𝐹 and assumed that 𝐹 is dominated by 𝑀𝑢. The idea 
of including 1

𝜆

(
𝜑

𝑝

𝑖
,𝜑

𝑝

𝑗

)
in our Schur complement approximation came from the work by Dorostkar et al. [14].

We use PETSc [4] as linear algebra backend which provides many routines for iterative methods and preconditioners. In particular, 
PETSc has routines for flexible GMRES together with preconditioning of the form (3.28) where the user can supply their own 
approximation of the Schur complement. To solve the inner systems, we use conjugate gradient as an iterative method, where we 
10

limit inner iterations to 1. As preconditioner for the momentum block we use block Jacobi preconditioning and we use algebraic 
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multigrid as a preconditioner when solving the Schur complement block. More specifically, we use the package hypre [29] using its 
default settings.

We use (3.29) as an approximation for the Schur complement, both when solving the saddle point system (3.24) and the regular-

ized saddle point system (3.27). For (3.24), one can observe that 𝜆 =∞. We have noticed that removing the pressure mass matrix 
entirely leads to slow convergence of the iterative method. Instead of removing the pressure mass matrix entirely, we propose scaling 
the number in front of the pressure mass matrix to ≈ [10−6, 10−14] for the monolithic method by setting 𝐶𝜆 ≈ [10−6, 10−14]. Choosing 
a number in this range gives good results and the performance is not sensitive to numbers within this range. Because of this similar 
performance is observed between the implicit artificial compressibility method (3.27) and the monolithic approach (3.24) for all 
values of 𝜆.

3.4.3. Generating a good initial guess

Choosing a good initial guess can drastically reduce the number of iterations needed for an iterative method to converge. We 
present a simple way of generating an initial guess which, in the ideal case, can decrease the iteration number up to four times at 
a minimal computational cost. We propose generating an initial guess by using linear extrapolation from previous time steps. We 
denote 𝑢∗ as an initial guess for the next time step. Below some extrapolation formulas for constant time steps are presented, from 
first-order to eight-order accuracy

𝑢∗ =𝑢𝑛 = 𝑢𝑛+1 + (Δ𝑡) , (3.30)

𝑢∗ =2𝑢𝑛 − 𝑢𝑛−1 = 𝑢𝑛+1 +(
Δ𝑡2

)
,

𝑢∗ =3𝑢𝑛 − 3𝑢𝑛−1 + 𝑢𝑛−2 = 𝑢𝑛+1 +(
Δ𝑡3

)
, (3.31)

𝑢∗ =4𝑢𝑛 − 6𝑢𝑛−1 + 4𝑢𝑛−2 − 𝑢𝑛−3 = 𝑢𝑛+1 +(
Δ𝑡4

)
,

𝑢∗ =5𝑢𝑛 − 10𝑢𝑛−1 + 10𝑢𝑛−2 − 5𝑢𝑛−3 + 𝑢𝑛−4 = 𝑢𝑛+1 +(
Δ𝑡5

)
,

𝑢∗ =6𝑢𝑛 − 15𝑢𝑛−1 + 20𝑢𝑛−2 − 15𝑢𝑛−3 + 6𝑢𝑛−4 − 𝑢𝑛−5 = 𝑢𝑛+1 +(
Δ𝑡6

)
,

𝑢∗ =7𝑢𝑛 − 21𝑢𝑛−1 + 35𝑢𝑛−2 − 35𝑢𝑛−3 + 21𝑢𝑛−4

− 7𝑢𝑛−5 + 𝑢𝑛−6 = 𝑢𝑛+1 +(
Δ𝑡7

)
,

𝑢∗ =8𝑢𝑛 − 28𝑢𝑛−1 + 56𝑢𝑛−2 − 70𝑢𝑛−3 (3.32)

+ 56𝑢𝑛−4 − 28𝑢𝑛−5 + 8𝑢𝑛−6 − 𝑢𝑛−7 = 𝑢𝑛+1 +(
Δ𝑡8

)
.

There are many extrapolation orders to choose from, and the performance of the initial guess varies depending on the discretiza-

tion used. In Section 4.4 we investigate which orders perform best on the discretization we use in this work. Extrapolation formulas 
for variable time steps (taken from [58]) are found in the Appendix. The formulas in the Appendix reduce to (3.30)-(3.32) when the 
time step is constant. We note that the projection-based initial guess is a viable alternative [16].

3.5. Summary of the method

To summarize, our stabilized finite element solution of the variable density Navier-Stokes equations (2.1) is obtained by the 
following steps. In each time step, the solution is advanced as

1. Compute artificial viscosity coefficients according to Section 3.3.4.

2. Compute the next time step Δ𝑡𝑛 using Algorithm 1.

3. Compute an initial guess using one of the extrapolation formulas ((3.30)-(3.32) for constant Δ𝑡 or the Appendix for variable Δ𝑡).

4. Assemble and solve density update (3.14).

5. Assemble the momentum equations (3.15) as represented by the block-system (3.24).

6. Assemble the Schur complement approximation (3.29).

7. Solve the block-system (3.24) using flexible GMRES with right preconditioning using (3.28) as a preconditioner.

To initialize the method, see Remark 3.2.

4. Numerical examples

In this section, we test the method against some benchmarks from the literature. A summary of the method is described in 
Section 3.5. Our code is implemented in FEniCS [1], an open-source finite element library. In the current work, we carry out 
experiments using ℙ3 finite elements in space and the variable time step BDF4 method in time. To satisfy the inf-sup condition we 
use ℙ2 elements for pressure. In all computations, the BDF-method is initialized using the initial time step factor 𝑐𝑖𝑛𝑖𝑡 = 0.1. We also 
set CFL = 0.15, 𝑠max = 1.01 and 𝑠min = 0.99 in the time step control routine. In the Krylov solver, we use conjugate gradient for both 
the 𝐹 solve and 𝑆 solve. The 𝐹 solve is preconditioned using block Jacobi and the 𝑆 solve is preconditioned with algebraic multigrid 
11

using hypre [29] with default settings. We fix the number of inner iterations to one.
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Fig. 2. Manufactured solution. Discretization error as a function of artificial compressibility penalty parameter 𝜆 for a given mesh resolution. Comparison with saddle 
point approach (denoted SP in the figure) which corresponds to 𝜆 =∞.

We use the following parameters for the nonlinear viscosity method: 𝐶flat = 0.1, 𝐶max = 1.0, 𝑓RV(𝑥) = 15𝑥2, 𝐶max,𝛾 = 0.5. We chose 
these parameters to make the method as robust as possible and use them for all benchmark problems in this work. In particular, the 
benchmark problem in Section 4.7.2 proved particularly challenging and 𝐶max had to be set to 1 to be able to solve the problem 
without getting negative density.

4.1. Manufactured solution

In this section, we verify the accuracy of the proposed method by using a manufactured solution on a unit disk. We follow the 
setup from [21] where the forcing function 𝒇 is chosen to obtain the following exact solution

𝜌(𝒙, 𝑡) = 2 + 𝑥 cos(sin(𝑡)) + 𝑦 sin(sin(𝑡)),

𝒖(𝒙, 𝑡) =
[
−𝑦 cos(𝑡)
𝑥 cos(𝑡)

]
,

𝑝(𝒙, 𝑡) = sin(𝑥) sin(𝑦) sin(𝑡).

Dirichlet boundary conditions are imposed for the velocity. We perform a convergence study using a series of unstructured meshes. 
The dynamic viscosity is set to 𝜇 = 0.01. The termination time is set to 𝑇 = 10 and we set CFL = 0.1 to see the convergence rates as 
clearly as possible.

The convergence results are presented in Table 1. The 𝐿1, 𝐿2 and 𝐿∞ errors are presented for all components. All the errors 
are computed using a high-order quadrature and are relative, i.e., they are normalized with their corresponding norm. Overall, the 
density and velocity errors converge with the expected convergence rate 4. Similarly, the pressure errors converge with the expected 
rate 3. The stabilized method also converges with its expected accuracy. We mention that the results of our modified RV method are 
surprisingly accurate. Typically, the errors of the coarse mesh of the RV-method can be around one order of magnitude less accurate 
than the unstabilized scheme [54], especially if the simulation is run for a long time (like in this case).

4.2. The impact of artificial compressibility on accuracy and computational effort

In this section, we investigate how the artificial compressibility penalty parameter 𝜆 impacts computational effort and discretiza-

tion errors. We use the same setup as in Section 4.1 with an unstructured mesh consisting of 25327 ℙ3 nodes. In Fig. 2 the maximum 
divergence error over space and time, i.e., ‖∇⋅𝒖ℎ‖𝐿∞(Ω×(0,𝑇 )), is plotted against 𝜆. Moreover, the relative 𝐿2 error of the velocity and 
density at time 𝑇 = 10 is plotted against 𝜆. Overall the figure indicates that a sufficiently large 𝜆 is required to ensure that the errors 
of the artificial compressibility method have comparable errors to solving the classical saddle point method.

4.3. Performance of the preconditioner

To evaluate our proposed preconditioning technique we take the manufactured problem from before and measure the mean 
number of outer iterations necessary to converge to a specified tolerance when solving (3.24). Since we keep the number of inner 
iterations fixed to one, the number of outer iterations is the key number when it comes to measuring the performance of the proposed 
preconditioning technique. The results are presented in Table 2. The relative tolerance is set to 10−9 and we use the solution from 
the previous timestep as an initial guess. The results show that the preconditioner scales well when the problem size increases for all 
values of 𝜆 tested. Interestingly, when 𝜆 takes on larger values, the performance of solving both the saddle point problem (3.24) and 
12

the regularized saddle point problem (3.27) becomes indistinguishable.
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Table 1

Manufactured solution. Convergence study for 𝑇 = 10, 𝜇 = 0.01, CFL=0.1, (𝜌ℎ, 𝒖ℎ, 𝑝ℎ) ∈ ℙ3ℙ3ℙ2 .

Velocity

# dofs 𝐿1 rate 𝐿2 rate 𝐿∞ rate

G
a
le

rk
in

794 9.76E-05 0.00 1.15E-04 0.00 3.39E-04 0.00

3314 7.38E-06 3.61 8.52E-06 3.65 3.27E-05 3.28

13184 5.38E-07 3.79 6.21E-07 3.79 3.11E-06 3.41

50654 3.83E-08 3.93 4.34E-08 3.95 2.21E-07 3.93

165998 3.67E-09 3.95 4.07E-09 3.99 3.03E-08 3.35
R

V

794 9.80E-05 0.00 1.16E-04 0.00 3.36E-04 0.00

3314 7.38E-06 3.62 8.52E-06 3.65 3.28E-05 3.26

13184 5.38E-07 3.79 6.21E-07 3.79 3.11E-06 3.41

50654 3.83E-08 3.93 4.34E-08 3.95 2.21E-07 3.93

165998 3.53E-09 4.02 3.94E-09 4.04 2.97E-08 3.39

Density

# dofs 𝐿1 rate 𝐿2 rate 𝐿∞ rate

G
a
le

rk
in

397 9.53E-05 0.00 1.24E-04 0.00 4.91E-04 0.00

1657 4.16E-06 4.38 5.58E-06 4.35 3.57E-05 3.67

6592 2.59E-07 4.02 3.59E-07 3.97 1.76E-06 4.36

25327 1.42E-08 4.31 1.94E-08 4.33 1.50E-07 3.65

82999 1.15E-09 4.24 1.51E-09 4.30 1.33E-08 4.09

R
V

397 9.47E-05 0.00 1.24E-04 0.00 4.40E-04 0.00

1657 4.18E-06 4.37 5.61E-06 4.34 3.40E-05 3.58

6592 2.59E-07 4.03 3.59E-07 3.98 1.75E-06 4.29

25327 1.42E-08 4.31 1.94E-08 4.33 1.50E-07 3.65

82999 1.08E-09 4.35 1.45E-09 4.37 1.33E-08 4.09

Pressure

# dofs 𝐿1 rate 𝐿2 rate 𝐿∞ rate

G
a
le

rk
in

184 6.89E-04 0.00 8.18E-04 0.00 2.47E-03 0.00

751 7.56E-05 3.14 9.40E-05 3.08 4.65E-04 2.38

2958 8.45E-06 3.20 1.09E-05 3.15 4.53E-05 3.40

11311 1.05E-06 3.11 1.38E-06 3.07 4.50E-06 3.44

36987 1.72E-07 3.06 2.25E-07 3.06 8.02E-07 2.91

R
V

184 6.89E-04 0.00 8.18E-04 0.00 2.47E-03 0.00

751 7.56E-05 3.14 9.40E-05 3.08 4.65E-04 2.38

2958 8.45E-06 3.20 1.09E-05 3.15 4.53E-05 3.40

11311 1.05E-06 3.11 1.38E-06 3.07 4.50E-06 3.44

36987 1.72E-07 3.06 2.25E-07 3.06 8.10E-07 2.90

Table 2

Manufactured solution. Outer iterations necessary to reach tolerance 10−9.

# ℙ3 nodes 397 1657 6592 26092 82999

𝜆 = 1 10.2 8.9 8.2 7.1 6

𝜆 = 10 11.5 9.7 8.5 7.3 6.2

𝜆 = 100 11.9 10 8.8 7.3 6.3

𝜆 = 1000 12.1 10 8.8 7.3 6.3

𝜆 = 10000 12.1 10 8.9 7.4 6.3

Saddle-point (𝜆 =∞) 12.1 10 8.9 7.4 6.3

Saddle-point (𝜆 =∞), with initial guess 6.6 6 6 5.5 6.5

This convergence can be attributed to the role of 𝜆 and the parameter 𝐶𝜆 within the Schur complement approximation (3.29). 
For our proposed saddle-point method, we recommend setting 𝐶𝜆 within the range of approximately 10−6 to 10−14. This leads to 
comparable performance between the saddle-point problem and its regularized counterpart and performance is not sensitive to 
numbers within this range.

4.4. Investigation of initial guess

In this section we investigate which of the extrapolation formulas (3.30)-(3.32) performs best as an initial guess when solving the 
linear system (3.24). We take the same problem setup from before, but only solve the problem with a constant time step since the 
13

extrapolation formulas (3.30)-(3.32) are given for constant time steps. Variable time step extrapolation formulas are presented up to 
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Fig. 3. Manufactured solution. Mean number of iterations to reach tolerance 10−14 as a function of initial guess.

Table 3

Rayleigh-Taylor instability at 𝑅𝑒 = 5000 and density ratio 3. Outer iterations necessary to reach tolerance 10−9.

# ℙ3 nodes 7471 29341 116281 462961

𝜆 = 1 20.5 20.7 20.3 20.3

𝜆 = 10 22.2 22.1 21.7 22

𝜆 = 100 22.5 22.3 21.9 22.4

𝜆 = 1000 22.5 22.4 22 22.3

𝜆 = 10000 22.5 22.4 22 22.2

Saddle-point (𝜆 =∞) 22.5 22.4 22 22.1

Saddle-point (𝜆 =∞), with initial guess 18 17.8 17.1 16.7

order 4 in the Appendix. The mesh is chosen as an unstructured mesh containing 25327 ℙ3 nodes and the relative tolerance is set 
very low (10−14) so that the difference between the different extrapolation formulas is more pronounced.

In Fig. 3 the mean number of iterations needed to converge is presented for different extrapolation orders. We vary the extrapo-

lation orders for both pressure and velocity. Using the solution from the previous time step as an initial guess, i.e., (3.30), is referred 
to as the standard approach in the figure. The results indicate that, in some sense, an optimal initial guess can be generated using 
order 3 for pressure and order 4 to 6 for velocity, which are similar to the order of the scheme.

4.5. Rayleigh-Taylor instability

Now we will focus on solving more complex problems. Consider the so-called Rayleigh-Taylor instability in 2D. The Rayleigh-

Taylor instability occurs when a fluid accelerates into another fluid with a different density. The classical setup is that a lighter fluid 
supports a heavier fluid in a gravitational field. Any small perturbation to the system forces it out of equilibrium since the initial 
equilibrium state is unstable. We follow the same setup as [21]. The solution is computed in a rectangular domain Ω = {(𝑥, 𝑦) ∈
(−𝐿∕2, 𝐿∕2) × (−2𝐿, 2𝐿)} and the characteristic velocity scale is set to 

√
𝐿𝑔 which gives the Reynolds number 𝑅𝑒 = 𝜌2𝐿

3∕2𝑔1∕2∕𝜇. 
The forcing function is set to 𝒇 = (0, −𝜌𝑔) to achieve a downward gravitational force, where 𝑔 is the gravitational acceleration. The 
density jump is initially regularized using a hyperbolic tangent function and is given by

𝜌0(𝒙) =
𝜌1 + 𝜌2

2
+

𝜌1 − 𝜌2
2

tanh
(

𝑦− 𝜂(𝒙)
0.01𝑑

)
,

where 𝜂(𝒙) = −0.1𝑑 cos(2𝜋𝑥∕𝑑), 𝑑 = 2. Slip boundary conditions are enforced at the boundaries. The following parameters are used: 
𝐿 = 1, 𝜌1 = 3, 𝜌2 = 1, 𝑔 = 1.

We present the time evolution of the computed density field and the computed discontinuity indicator 𝛼ℎ , in the time-scale of 
Tryggvason (𝑡 =

√
2𝑡𝑇 𝑟𝑦𝑔), for 𝑅𝑒 = 1000 in Fig. 4 and 𝑅𝑒 = 5000 in Fig. 5. The results use 462961 ℙ3 nodes. Overall, the results are in 

agreement with the result obtained by Guermond and Salgado [21] where a second-order accurate Taylor-Hood FEM was used.

To evaluate our preconditioning strategy, we include the number of outer iterations necessary to converge to the relative tolerance 
10−9 in Table 3. The solution from the previous time step is used as an initial guess. In the last row of Table 3, we present results when 
the initial guess strategy from Section 3.4.3 is used. Motivated by the results from Section 4.4, we choose third-order extrapolation 
for pressure and fourth-order extrapolation for velocity to generate our initial guess. The proposed preconditioning technique shows 
14

similar performance between the regularized saddle-point problem (3.27) and the saddle-point problem (3.24).
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Fig. 4. Rayleigh-Taylor instability at 𝑅𝑒 = 1000 and density ratio 3. Density 𝜌ℎ (right) and discontinuity indicator 𝛼ℎ in logarithmic scale (left) at times 
𝑡 = 1, 1.5, 1.75, 2, 2.25 and 2.5.

Fig. 5. Rayleigh-Taylor instability at 𝑅𝑒 = 5000 and density ratio 3. Density 𝜌ℎ (right) and discontinuity indicator 𝛼ℎ in logarithmic scale (left) at times 
𝑡 = 1, 1.5, 1.75, 2, 2.25 and 2.5.

4.5.1. Effect of post-processing the discontinuity indicator

In this section, we briefly investigate the impact of the post-processing proposed in Section 3.3.2. One of the proposed ideas was 
to use an activation function 𝑓RV such that 𝑓RV suppresses the residual in the smooth region, but amplifies the residual in non-smooth 
regions. The motivation was to increase accuracy in smooth regions while also improving discontinuity detection when needed. The 
other proposed idea was to add the additional elliptic smoothing in (3.21) to reduce oscillations in 𝛼ℎ. We consider the same setup 
as in Section 4.5.

In Fig. 6 we compare the results obtained at 𝑇 = 2.5 with two activation functions: 𝑓RV = 15𝑥2 and 𝑓 RV = 𝑥, and with or without 
elliptic smoothing (ℎ2∇�̃�𝑛

ℎ
, ∇𝑤) when solving the 𝐿2 projection step (3.21). We see that using 𝑓RV = 15𝑥2 results in a higher value of 

the discontinuity indicator at the discontinuities and a smaller value in the smooth region. The computed densities are overall quite 
similar with slightly more structure in the flow when using 𝑓RV = 15𝑥2. As evident from the figure, the added smoothing reduces 
15

oscillations in the discontinuity indicator and makes the interface of the density sharper.
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Fig. 6. Rayleigh-Taylor instability at 𝑅𝑒 = 5000 and density ratio 3. Discontinuity indicator 𝛼ℎ and density 𝜌ℎ for different activation functions and smoothing 
post-processing: using 𝑓RV = 𝑥 with no smoothing (left), using 𝑓RV = 15𝑥2 with no smoothing (middle), and using 𝑓RV = 15𝑥2 with smoothing (right).

Fig. 7. Rayleigh-Taylor instability at 𝑅𝑒 = 5000 and density ratio 3. Comparison between (left column) grad-div stabilization using 𝐶max,𝛾 = 0.5 and (right column) no 
grad-div stabilization, i.e., 𝐶max,𝛾 = 0. Computed density 𝜌ℎ (right) and divergence error ∇⋅𝒖ℎ in logarithmic scale (left).

Table 4

Rayleigh-Taylor instability at 𝑅𝑒 = 5000 and density ratio 3. Outer iterations necessary 
to reach tolerance 10−9 with and without grad-div stabilization.

# ℙ3 nodes 7471 29341 116281 462961

Saddle-point, 𝐶max,𝛾 = 0.0 18 17.8 17.1 16.7

Saddle-point, 𝐶max,𝛾 = 0.5 18.5 18.4 17.9 17.5

Saddle-point, 𝐶max,𝛾 = 1, 19.7 19.6 19.1 18.7

4.5.2. Effect of grad-div stabilization

In this section, we illustrate the effects of adding grad-div stabilization. In Fig. 7 the results of our proposed discretization are 
presented at 𝑇 = 2.5, both with and without grad-div stabilization. The effect on the number of iterations is presented in Table 4

showing that choosing 𝐶max,𝛾 ≈ 0.5 has minimal effect on the number of iterations necessary for the iterative Krylov method to 
16

converge. Third-order extrapolation for pressure and fourth-order extrapolation for velocity was used to generate an initial guess.
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Fig. 8. Lock-exchange problem at 𝑅𝑒 = 4000 and density ratio 1∕0.7. Density 𝜌ℎ (top) and discontinuity indicator 𝛼ℎ in logarithmic scale (bottom) at times 𝑡 =
1, 3, 5, 7, 10.

Since 𝛾ℎ = (ℎ), the divergence cleaning effect is quite small as evident by the figure. However, it still does have some effect 
on the flow feature and the performance of the iterative method is only slightly slower due to the added grad-div stabilization. In 
conclusion, the proposed scaling of the added grad-div stabilization adds additional divergence cleaning without adversely affecting 
the performance of the method.

4.6. Lock-exchange

This benchmark problem was studied extensively by Bartholomew and Laizet [6] and Birman et al. [7]. The classical setup is a 
heavy fluid with density 𝜌1 and a lighter fluid with density 𝜌2 separated by a vertical barrier. The heavy fluid is located to the left 
of the barrier and the lighter fluid is to the right. The barrier is removed at 𝑡 = 0 and then the heavy gas moves to the right and the 
lighter fluid moves to the left. Following the setup from [6,7], the computational domain is set to Ω = {(𝑥, 𝑦) ∈ (−𝐿∕2, 𝐿∕2) × (0, 32𝐿)}
with a characteristic velocity scale set to 𝑢 =

√
𝑔(𝜌1 − 𝜌2)∕𝜌1𝐿 and the Reynolds number is defined as 𝑅𝑒 = 𝜌1𝐿

3∕2√𝑔(𝜌1 − 𝜌2)∕𝜌1∕𝜇. 
Following the reference we set 𝐿 = 1, 𝜌1 = 1 and 𝜌2 = 0.7. The Reynolds number is set to 4000 yielding a constant dynamic viscosity 
coefficient 𝜇. The forcing function is set to 𝒇 = (0, −𝜌𝑔) to yield a downward gravitational force. The initial condition is initially 
regularized using the error function and is given by

𝜌0(𝒙) = 1
2

(
𝜌2
𝜌1

+ 1
)
− 1

2

(
1 −

𝜌2
𝜌1

)
erf

(
𝑥0

√
𝑅𝑒

)
,

where 𝑥0 = 14 is the location of the barrier at 𝑡 = 0. The computed density and discontinuity indicator are presented in Fig. 8 at 
times 𝑇 = 1, 3, 5, 7, 10 (at time-scale 𝐿1∕2 (𝑔(𝜌1 − 𝜌2)∕𝜌1

)−1∕2
). The results use 2889901 ℙ3 nodes. The main difference between the 
17

results presented in this work and [6,7] is that the authors in [6,7] added a constant diffusion term to the density update to model 
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Fig. 9. Falling bubble in 2D at 𝑅𝑒 = 3132 and density ratio 100. Density 𝜌ℎ (top) and discontinuity indicator 𝛼ℎ (bottom) at times 𝑡 = 0.1,1,1.1,1.3,2.2,3.

molecular diffusivity. In this work, the only added mass diffusivity comes from our proposed stabilization in Section 3.3. In this way, 
more structure is evident in Fig. 8 compared to the results from [6,7]. Another difference is that Bartholomew and Laizet [6], Birman 
et al. [7] used constant kinematic viscosity instead of constant dynamic viscosity in their simulations.

4.7. Robustness at large density ratios

In this section, we verify the robustness of the proposed method by solving benchmark problems with density ratios of 100 and 
1000 at high Reynolds numbers. To this end, we first consider the benchmark problem proposed Calgaro et al. [9] which simulates 
a heavy droplet that falls through a light fluid into a planar heavy fluid in Section 4.7.1. We later extend this benchmark problem to 
3D in Section 4.7.2.

The point of these benchmarks is not to simulate a realistic fluid. As mentioned by Calgaro et al. [9], there is no surface tension 
present in the model (2.1) and a level-set approach, a Cahn-Hillard approach or a volume of fluid approach, see e.g., references 
in [9], is preferred if the goal is to model multiphase flow of liquids. The good thing about this benchmark is that it serves as a 
challenging robustness test when the density ratio becomes very large.

4.7.1. Falling bubble in 2D

This benchmark was first proposed in [9] which simulates a heavy droplet that falls through a light fluid into a planar heavy 
fluid. The computational domain is Ω = {(𝑥, 𝑦, 𝑧) ∈ (0, 𝐿) × (0, 2𝐿)} with 𝐿 = 1 and at 𝑡 = 0 the fluid is at rest. The forcing function is 
set to 𝒇 = (0, −𝜌𝑔) with 𝑔 = 1. Similar to Section 4.5, the Reynolds number is defined as 𝑅𝑒 = 𝜌𝑚𝑖𝑛𝐿

3∕2𝑔1∕2∕𝜇 which we set to 3132. 
The initial density profile is given by

𝜌0(𝒙) =

{
100, if 0 ≤ 𝑦 ≤ 1 or 0 ≤ 𝑟 ≤ 0.2,

1, if 1 < 𝑦 ≤ 2 or 0.2 < 𝑟,

where 𝑟 =
√
(𝑥− 0.5)2 + (𝑦− 1.75)2. Since the initial condition 𝜌0(𝒙) is discontinuous, it will lead to negative density when interpolated 

to ℙ3 space. We, therefore, perform a smoothing step on the initial condition by solving the following 𝐿2-projection problem

(�̃�0,𝑤) + 𝜎(ℎ2∇�̃�0,∇𝑤) = (𝜌0,𝑤), ∀𝑤 ∈ℎ, (4.1)

to ensure that there are no oscillations present in the initial condition. We set the smoothing weight to 𝜎 = 7. The computed density 
field and discontinuity indicator are presented in Fig. 9. The results use 180901 ℙ3 nodes. Calgaro et al. [9] solved this problem 
18

using a hybrid finite-volume FEM and observed a similar deformation of the bubble.
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Fig. 10. Falling bubble in 3D at 𝑅𝑒 =∞ and density ratio 1000. The density threshold 𝜌ℎ ≥ 500 is plotted at times 𝑡 = 0.0,0.9,1.2,1.8.

Fig. 11. Falling bubble in 3D at 𝑅𝑒 =∞ and density ratio 1000. Density 𝜌ℎ (top) and discontinuity indicator 𝛼ℎ (bottom) at 𝑧 = 0.5 and at times 𝑡 = 0.3, 0.9, 1.2,1.5,
1.8, 2.4.

4.7.2. Falling bubble in 3D

Inspired by the 2D falling bubble test in Section 4.7.1 we aim to construct a more challenging benchmark by increasing the 
density ratio, moving the domain to 3D and setting 𝜇 = 0. The computational domain is Ω = {(𝑥, 𝑦, 𝑧) ∈ (0, 𝐿) × (0, 2𝐿) × (0, 𝐿)} with 
𝐿 = 1 and at 𝑡 = 0 the fluid is at rest. The forcing function is set to 𝒇 = (0, −𝜌𝑔, 0) with 𝑔 = 1. The initial condition is set to a 3D bubble

𝜌(𝑥, 𝑦, 𝑧,0) =

{
1000, if 0 ≤ 𝑦 ≤ 1 or 0 ≤ 𝑟 ≤ 0.2,

1, if 1 < 𝑦 ≤ 2 or 0.2 < 𝑟,

where 𝑟 =
√
(𝑥− 0.5)2 + (𝑦− 1.75)2 + (𝑧− 0.5)2. As in the 2D case, we solve (4.1) with 𝜎 = 7 to ensure that the initial condition is 

oscillation free. The computed density field and discontinuity indicator are presented in Fig. 11. To better visualize the solution we 
only plot the heavy fluid in Fig. 10 where we set the threshold value to 500. The results use 1498861 ℙ3 nodes. The combination of 
a coarse mesh together with the large density ratio leads to quite diffusive results. The results do, however, confirm the robustness 
19

of the method.
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5. Conclusion and further work

The purpose of this work was to develop a reliable high-order FEM approximation of the variable density Navier-Stokes equations. 
To this end, we considered a monolithic approach and the proposed discretization leads to a saddle point system that needs to be 
solved each time step. We investigated artificial compressibility as a technique to regularize the saddle point system. A Schur comple-

ment preconditioning technique was employed to solve the system and we provided a link between artificial compressibility methods 
and the solution of classical saddle point systems. The performance of the proposed preconditioning shows similar performance to 
solving the classical saddle point system and using the artificial compressibility method for all values of the penalty parameter 𝜆.

We proposed stabilizing the method using a modified Guermond-Popov viscous flux [20] scaled with mesh-dependent artificial 
viscosity and grad-div stabilization which we showed satisfies a semi-discrete kinetic energy balance. More specifically, we showed 
that the added mass diffusion does not affect the kinetic energy balance. The artificial viscosity coefficients were constructed using 
high-order residual-based viscosity. We explored a new variant of the RV method where the residual was self-normalized to construct 
a unit-free discontinuity indicator.

In the current work, ℙ3ℙ3ℙ2 continuous finite elements were used and in time a BDF4 time stepping method was used. Several 
benchmark problems in 2D and 3D were solved which confirms the expected convergence rate for smooth problems and shows 
accurately resolved discontinuities in the presence of sharp gradients. The method was also shown to handle density ratios up 
to 1000 in 3D without encountering issues with positivity of density. Even though the method performs well on the benchmarks 
considered in this manuscript, the solution is not oscillation free and positivity of density can not be guaranteed. Additional work is 
required to achieve this and is one of the future goals of the authors.
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Appendix A

In this section we provide the coefficients used to approximate 𝜕𝑡(𝜌ℎ𝒖ℎ), 𝜕𝑡𝜌ℎ and 𝒖∗
ℎ

for commonly used variable time step 
BDF-methods [58]. Since these are used to initialize the BDF4 method used in this work, we present these for completeness. The 
extrapolation formulas used for 𝒖∗

ℎ
presented in this section reduce to (3.30)-(3.31) if the time steps are constant. Given solutions 

from previous time steps 𝜌𝑛+𝑗

ℎ
, 𝒖𝑛+𝑗

ℎ
, 𝑗 = −(𝑁BDF − 1), … 0, where 𝑁BDF is the order of the BDF, find 𝜌𝑛+1

ℎ
∈𝑀ℎ such that (3.14) holds. 

Then find 𝒖ℎ ∈ 𝑽 ℎ and 𝑝ℎ ∈𝑄ℎ such that (3.15) holds. The necessary coefficients are provided in the following sections.

A.1. Variable BDF1 method

𝑑𝑡

(
𝜌𝑛+1
ℎ

)
= 1

Δ𝑡𝑛
(𝜌𝑛+1

ℎ
− 𝜌𝑛

ℎ
), 𝑑𝑡

(
𝜌𝑛+1
ℎ

𝒖𝑛+1
ℎ

)
= 1

Δ𝑡𝑛
(𝜌𝑛+1

ℎ
𝒖𝑛+1
ℎ

− 𝜌𝑛
ℎ
𝒖𝑛
ℎ
), 𝒖∗

ℎ
= 𝒖𝑛

ℎ
.

A.2. Variable BDF2 method

𝑑𝑡

(
𝜌𝑛+1
ℎ

)
= 1

Δ𝑡𝑛

2∑
𝑗=0

𝛼𝑗,𝑛𝜌
𝑛+𝑗−1
ℎ

, 𝑑𝑡

(
𝜌𝑛+1
ℎ

𝒖𝑛+1
ℎ

)
= 1

Δ𝑡𝑛

2∑
𝑗=0

𝛼𝑗,𝑛𝜌
𝑛+𝑗−1𝒖𝑛+𝑗−1, 𝒖∗

ℎ
=

1∑
𝑗=0

𝛽𝑗,𝑛𝒖
𝑛+𝑗−1
ℎ

,

20

where
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𝛼0,𝑛 =
𝜔2

𝑛

1 +𝜔𝑛

,

𝛼1,𝑛 = −(1 +𝜔𝑛),

𝛼2,𝑛 =
1 + 2𝜔𝑛

1 +𝜔𝑛

,

𝛽0,𝑛 = −𝜔𝑛,

𝛽1,𝑛 = 1 +𝜔𝑛.

A.3. Variable BDF3 method

𝑑𝑡

(
𝜌𝑛+1
ℎ

)
= 1

Δ𝑡𝑛

3∑
𝑗=0

𝛼𝑗,𝑛𝜌
𝑛+𝑗−2
ℎ

, 𝑑𝑡

(
𝜌𝑛+1
ℎ

𝒖𝑛+1
ℎ

)
= 1

Δ𝑡𝑛

3∑
𝑗=0

𝛼𝑗,𝑛𝜌
𝑛+𝑗−2𝒖𝑛+𝑗−2, 𝒖∗

ℎ
=

2∑
𝑗=0

𝛽𝑗,𝑛𝒖
𝑛+𝑗−2
ℎ

, (A.1)

where

𝛼0,𝑛 = −
𝜔3

𝑛−1𝜔
2
𝑛
(1 +𝜔𝑛)

(1 +𝜔𝑛−1)(1 +𝜔𝑛−1 +𝜔𝑛−1𝜔𝑛)
,

𝛼1,𝑛 = 𝜔2
𝑛

(
𝜔𝑛−1 +

1
1 +𝜔𝑛

)
,

𝛼2,𝑛 = −1 −𝜔𝑛 −
𝜔𝑛−1𝜔𝑛(1 +𝜔𝑛)

1 +𝜔𝑛−1
,

𝛼3,𝑛 = 1 +
𝜔𝑛

1 +𝜔𝑛

+
𝜔𝑛−1𝜔𝑛

1 +𝜔𝑛−1(1 +𝜔𝑛)
,

𝛽0,𝑛 =
𝜔2

𝑛−1𝜔𝑛(1 +𝜔𝑛)
1 +𝜔𝑛−1

,

𝛽1,𝑛 = −𝜔𝑛

(
1 +𝜔𝑛−1(1 +𝜔𝑛)

)
,

𝛽2,𝑛 =
(1 +𝜔𝑛)(1 +𝜔𝑛−1(1 +𝜔𝑛))

1 +𝜔𝑛−1
.

A.4. Variable BDF4 method

𝑑𝑡

(
𝜌𝑛+1
ℎ

)
= 1

Δ𝑡𝑛

4∑
𝑗=0

𝛼𝑗,𝑛𝜌
𝑛+𝑗−3
ℎ

, 𝑑𝑡

(
𝜌𝑛+1
ℎ

𝒖𝑛+1
ℎ

)
= 1

Δ𝑡𝑛

4∑
𝑗=0

𝛼𝑗,𝑛𝜌
𝑛+𝑗−3𝒖𝑛+𝑗−3, 𝒖∗

ℎ
=

3∑
𝑗=0

𝛽𝑗,𝑛𝒖
𝑛+𝑗−3
ℎ

,

where

𝛼0,𝑛 =
1 +𝜔𝑛

1 +𝜔𝑛−2

𝐴2
𝐴1

𝜔4
𝑛−2𝜔

3
𝑛−1𝜔

2
𝑛

𝐴3
,

𝛼1,𝑛 = −𝜔3
𝑛−1𝜔

2
𝑛

1 +𝜔𝑛

1 +𝜔𝑛−1

𝐴3
𝐴2

,

𝛼2,𝑛 = 𝜔𝑛

(
𝜔𝑛

1 +𝜔𝑛

+𝜔𝑛−1𝜔𝑛

𝐴3 +𝜔𝑛−2
1 +𝜔𝑛−2

)
,

𝛼3,𝑛 = −1 −𝜔𝑛

(
1 +

𝜔𝑛−1(1 +𝜔𝑛)
1 +𝜔𝑛−1

(
1 +

𝜔𝑛−2𝐴2
𝐴1

))
,

𝛼4,𝑛 = 1 +
𝜔𝑛

1 +𝜔𝑛

+
𝜔𝑛−1𝜔𝑛

𝐴2
+

𝜔𝑛−2𝜔𝑛−1𝜔𝑛

𝐴3
,

𝛽0,𝑛 = −𝜔3
𝑛−2𝜔

2
𝑛−1𝜔𝑛

1 +𝜔𝑛

1 +𝜔𝑛−2

𝐴2
𝐴1

,

𝛽1,𝑛 = 𝜔2
𝑛−1𝜔𝑛

1 +𝜔𝑛

1 +𝜔𝑛−1
𝐴3,

𝛽2,𝑛 = −𝐴2𝐴3
𝜔𝑛

1 +𝜔𝑛−2
,

𝜔𝑛−1(1 +𝜔𝑛) (1 +𝜔𝑛)(𝐴3 +𝜔𝑛−2) +
1+𝜔𝑛−2
𝜔𝑛−1
21

𝛽3,𝑛 = 1 +𝜔𝑛−1 𝐴1
,
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𝐴1 = 1 +𝜔𝑛−2(1 +𝜔𝑛−1),

𝐴2 = 1 +𝜔𝑛−1(1 +𝜔𝑛),

𝐴3 = 1 +𝜔𝑛−2𝐴2.
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