
9

Delay-on-Squash: Stopping Microarchitectural Replay

Attacks in Their Tracks

CHRISTOS SAKALIS and STEFANOS KAXIRAS, Uppsala University

MAGNUS SJÄLANDER, Norwegian University of Science and Technology

MicroScope and other similar microarchitectural replay attacks take advantage of the characteristics of spec-

ulative execution to trap the execution of the victim application in a loop, enabling the attacker to amplify a

side-channel attack by executing it indefinitely. Due to the nature of the replay, it can be used to effectively

attack software that are shielded against replay, even under conditions where a side-channel attack would not

be possible (e.g., in secure enclaves). At the same time, unlike speculative side-channel attacks, microarchitec-

tural replay attacks can be used to amplify the correct path of execution, rendering many existing speculative

side-channel defenses ineffective.

In this work, we generalize microarchitectural replay attacks beyond MicroScope and present an efficient

defense against them. We make the observation that such attacks rely on repeated squashes of so-called

“replay handles” and that the instructions causing the side-channel must reside in the same reorder buffer

window as the handles. We propose Delay-on-Squash, a hardware-only technique for tracking squashed in-

structions and preventing them from being replayed by speculative replay handles. Our evaluation shows

that it is possible to achieve full security against microarchitectural replay attacks with very modest hard-

ware requirements while still maintaining 97% of the insecure baseline performance.

CCS Concepts: • Computer systems organization→ Superscalar architectures; • Security and privacy

→ Side-channel analysis and countermeasures;

Additional Key Words and Phrases: Microarchitecture, side-channels, security, replay attacks

ACM Reference format:

Christos Sakalis, Stefanos Kaxiras, and Magnus Själander. 2022. Delay-on-Squash: Stopping Microarchitec-

tural Replay Attacks in Their Tracks. ACM Trans. Archit. Code Optim. 20, 1, Article 9 (November 2022),

24 pages.

https://doi.org/10.1145/3563695

1 INTRODUCTION

Due to the complexity of modern high-performance processors, there exists a large amount of
microarchitectural state that can be abused by a malicious application to create side-channels,

This is a new article, not an extension of a conference paper.

This work was supported by the Swedish Research Council (grants 2015-05159 and 2018-05254) and Microsoft Research

through its EMEA Ph.D. Scholarship Programme (grant 2021-020).

Authors’ addresses: C. Sakalis and S. Kaxiras, Uppsala University, Box 337, Uppsala, Sweden, 75105; emails: {christos.sakalis,

stefanos.kaxiras}@it.uu.se; M. Själander, Norwegian University of Science and Technology, IT-bygget, Gløshaugen, Trond-

heim, Norway, 7034; email: magnus.sjalander@ntnu.no.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2022/11-ART9 $15.00

https://doi.org/10.1145/3563695

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

https://orcid.org/0000-0003-4172-8607
https://orcid.org/0000-0001-8267-0232
https://orcid.org/0000-0003-4232-6976
https://doi.org/10.1145/3563695
mailto:permissions@acm.org
https://doi.org/10.1145/3563695
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563695&domain=pdf&date_stamp=2022-11-17

9:2 C. Sakalis et al.

with the intent of observing the behavior of security-sensitive applications and leaking sensitive
data [33, 53]. This is the case even for trusted execution environments (also referred to as secure
enclaves) that are designed to protect particularly sensitive applications from outside interference,
including interference from a privileged context (e.g., the operating system (OS)). Although there
has been extensive research in the field [17, 33], typical modern processors delegate the respon-
sibility for defending against such side-channels to the software, as general-purpose hardware
side-channel defenses usually incur large overheads [33]. Thankfully, side-channels often suffer
from high noise and low reliability, which has made designing secure software without introduc-
ing large overheads possible, as an attacker has to perform the same attack several times before
they are able to reliably leak sensitive information. This can be difficult for the attacker to achieve,
especially if the application is running in a secure enclave, as in such cases not even a compromised
OS can manipulate the execution of the application directly, making it impossible to repeat an at-
tack. Although it is not hard to imagine cases where the attacker is targeting specific immutable
data and the code can be arbitrarily triggered (e.g., to encrypt some data), in a lot of cases (e.g.,
Software Guard Extensions (SGX) implementations of Tor [1, 24], secure database implemen-
tations, or systems secured against rollbacks [34]), the attacker targets transient execution data
(e.g., Tor traffic) and has only one single opportunity to perform the attack and leak information.
In these cases, the majority of the available side-channels are not effective, as it is not possible to
distinguish a single iteration of the attack from system noise [3, 33, 35].

MicroScope and microarchitectural replay attacks in general, as introduced by Skarlatos
et al. [47], enable an attacker to “trap” the execution of an application and force it to re-execute
specific regions of code ad infinitum. With MicroScope, which focuses on secure enclaves, this
is achieved by abusing a combination of speculative execution and page fault handling, in cases
where the latter is still delegated to the (malicious/compromised) OS. Under typical execution, if
an address translation misses in the translation lookaside buffer (TLB), a page table walk is
triggered. While the page walk is happening, the application is able to continue executing specu-
latively, as long as there exist instructions that do not depend on the faulting memory instruction.
If during the page walk it is determined that the page is not available and that the OS needs to
be invoked, then the speculatively executed instructions are squashed and execution restarts from
the faulting instruction. This time another page walk might be needed, as the translation still does
not exist in the TLB, but since the OS has now mapped the page, the page walk typically succeeds.
MicroScope takes advantage of this behavior by having the OS signal that it has mapped the page
without actually doing so. This traps the victim application in a loop where a memory instruc-
tion (referred to as “the handle”) misses in the TLB, triggers a page walk and continues executing
speculatively, triggers a page fault, squashes the speculatively executed instructions, re-executes
the faulting instruction, and misses in the TLB again. By triggering these loops at specific parts of
the code, just before the instructions that cause the side-channel information leakage, the attacker
can repeat the side-channel until all underlying noise is filtered out, making even the least reliable
side-channels easy to exploit, regardless if the application is executing in a secure enclave or not.

Although MicroScope focuses specifically on the OS abusing the page handling mechanism
found on some enclaves, other sources of speculation and re-execution can be similarly abused,
in some cases even from an unprivileged context. For this reason, in this work we aim to solve the
problem of microarchitectural replay attacks in general, not just MicroScope. Specifically:

• We generalize from re-execution brought on by page faults to re-execution brought on by
any form of speculation in modern processors, some of which do not require a malicious OS.
• We also generalize the method developed by Skarlatos et al. to be applicable to cases where

a single handle cannot by itself trigger a large number of re-executions, by introducing a
method that utilizes multiple handles.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

Delay-on-Squash: Stopping Microarchitectural Replay Attacks in Their Tracks 9:3

• Finally, we introduce Delay-on-Squash, a solution to this critical issue of microarchitectural
replay attacks, which can transparently provide protection for MicroScope and future at-
tacks, while avoiding significant impact on performance, energy, area, and implementation
complexity.

A very simple but naïve solution would be to simply disallow speculative execution after a page
walk miss, but this would only protect against MicroScope itself and not against microarchitectural
replay attacks that utilize other handle types or multiple handles (Section 3.2). At the same time, we
cannot just disable speculation every time a squash happens, nor can we implement defenses for all
possible side-channels, as that would be detrimental to the performance of the system (Section 7).
Furthermore, speculative side-channel defenses that track the data dependencies of side-channel
instructions, such as NDA [54], STT [58, 59], and others [5, 6, 15, 30], do not work in this context,
because the side-channel instructions may actually be in the correct path of execution and can also

be fed with non-speculative data coming from before the point of misspeculation that is used for
replay. Broader defenses (not restricted to data dependencies) that could work in such a case, such
as InvisiSpec [56], Delay-on-Miss [43, 44], and many others [2, 23, 25, 26, 41, 42, 49], not only
focus on a small subset of side-channels but also incur much heavier penalties. Instead, Delay-
on-Squash selectively delays the speculative execution of instructions when it detects that they
might be used as part of a microarchitectural replay attack. We observe that if an attack requires
microarchitectural replay to be successful, then we do not need to restrict all speculation but rather
only repeating speculation interleaved with misspeculation. To achieve this, we use a lightweight
mechanism, based on Bloom filters, that (i) tracks which instructions have been squashed and re-
issued due to misspeculation, and (ii) prevents them from executing speculatively. We propose a
method for clearing the Bloom filters that is based on the youngest seen handled (see Section 5.2),
which assures that an instruction can only be squashed and re-executed once. Our evaluation
shows that a fully secure configuration of Delay-on-Squash, requiring little storage and overall
overhead, can achieve 97% of the performance of a baseline insecure out-of-order CPU.

The rest of the article is structured as follows. First, we will discuss side-channels and why
several iterations of an attack are necessary (Section 2), followed by a discussion on how
MicroScope comes into play and why it is an important security threat (Section 3). Then, with the
background information out of the way, we will discuss our expanded microarchitectural replay
attacks (Section 3.2) and our overall threat model (Section 4). We will present Delay-on-Squash
(Section 5) and evaluate its performance energy overheads (Section 7). Finally, we will discuss
other related work, including existing speculative and non-speculative side-channel defenses and
why they cannot be used to effectively prevent all microarchitectural replay attacks (Section 8), as
well as how Delay-on-Squash differs from Jamais Vu [48].

2 SIDE-CHANNELS

To provide compatibility across different hardware implementations, modern CPU architectures
separate the visible architectural behavior and state of the system from the underlying microarchi-

tectural implementation. For each visible architectural state, there exist one or more corresponding
hidden microarchitectural states (μ-states) [36]. The users/applications interact with the architec-
tural state but have limited or no access to the underlying μ-state. However, although it is usually
not possible to observe the μ-state directly, it is possible to infer it based on observable side effects.

Microarchitectural side-channel attacks take advantage of the μ-state of modern CPUs to leak in-
formation under conditions where it is not possible to do so on the architectural level. For example,
cache side-channels take advantage of the difference in timing between a hit or a miss in the cache
to encode information [33, 39, 57], by indirectly manipulating and probing the state of the cache

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

9:4 C. Sakalis et al.

through normal memory operations. Similar timing side-channels can also be constructed in other
parts of the system [17], such as by utilizing functional unit contention. Finally, non-timing side-
channels are also possible, exploiting side effects of the execution such as power consumption [27]
or EMF radiation [16]. As these side-channels are not purposely designed communication channels
but rather side effects of the normal architectural and microarchitectural behavior of the system,
they are inherently noisy and unreliable. For example, when using a cache-based side-channel,
there is nothing that prevents the cache line(s) being used for the side-channel from being evicted
by a third process in the system. Similarly, interrupts, context switches, and other interruptions in
the application execution can also disrupt the side-channel. Since the system does not provide any
architectural mechanisms for synchronizing the transmitter and the receiver during side-channel
operations, these also have to be constructed using the side-channel itself or other mechanisms.

All of these issues make exploiting side-channels harder but not impossible. After all, these
issues can be found in conventional communication channels as well, especially in the layers clos-
est to the actual hardware and transmission mediums. Similarly to how modern communication
protocols are designed with the underlying channel characteristics in mind, so can protocols for
side-channels be designed. For example, noise on a side-channel can be filtered out using error de-
tection and correction codes, combined with statistical methods [35]. The question then becomes
not if a side-channel can be exploited but rather how easy, reliable, and fast the channel is. As many of
the underlying issues can be resolved by simply repeating the transmission of information through
the side-channel until successful, whether a side-channel can be practically exploited becomes a
function of the delay between each retransmission (i.e., how fast can the side-channel be repeated)
and the average number of retransmissions necessary (i.e., how many times the side-channel has
to be repeated). Under the conditions described by Maurice et al. [35], both the transmitter and
the receiver are under the full control of the attacker. This enables the attacker to not only con-
trol when the side-channel transmission takes place, to better synchronize the transmitter and the
receiver, but to also repeat the transmission as many times as necessary. However, this is not al-
ways the case. For example, sometimes the transmitter is not a purposely designed application but
a targeted victim, such as a cryptographic application running in a secure enclave. The attacker
then uses side-channels to monitor the behavior of the application under normal execution and
infer sensitive information, such as cryptographic keys. In some cases, the attacker is able to di-
rectly execute or otherwise trigger the execution of the victim application at will, repeating the
execution as many times as necessary to extract the keys. This ability to replay the victim code
multiple times is crucial in being able to reliably exploit the utilized side-channel, due to the issues
we have already discussed. This is where MicroScope, a groundbreaking microarchitectural replay

attack technique, comes into play.

3 MICROARCHITECTURAL REPLAY ATTACKS

Microarchitectural replay attacks, as introduced by Skarlatos et al. [47], are not by themselves a
side-channel attack, speculative or otherwise. Instead, they can be seen as a tool to amplify the ef-
fects of side-channel attacks, enabling the attacker to mount a successful attack under conditions
where it would not be possible otherwise. This is why microarchitectural replay can be so dan-
gerous: even the smallest, most innocuous amount of information leakage can be amplified and
abused. This is particularly dangerous when applied to secure enclaves, where the applications are
security sensitive and the programmers are typically expected to manage the risk of side-channels.
In addition, even though they exploit speculative execution, microarchitectural replay attacks are

not the same as speculative side-channel attacks. Whereas the latter target the wrong execution
path, effectively bypassing software and hardware barriers to access information illegally, microar-
chitectural replay attacks can amplify even the correct path of execution. This renders defenses that

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

Delay-on-Squash: Stopping Microarchitectural Replay Attacks in Their Tracks 9:5

stop speculative data transmission [54, 58, 59] ineffective, since a replay attack can also amplify
side-channel instructions that are on the correct path.

3.1 MicroScope

Many modern CPUs offer secure execution contexts referred to as trusted execution environments

(sometimes also referred to as secure enclaves) that protect the executed code from outside inter-
ference, including interference from the OS or the hypervisor. The characteristics of these enclaves
differ for each architecture, but they typically include encrypted memory for applications running
in the enclave, code verification to prevent malicious code from being executed in the enclave, and
hardware-enforced isolation of the enclaved execution context from any other execution context
in the system, including the OS. These measures are meant to protect sensitive code and data, such
as cryptographic functions and their keys, from any attacker that might have compromised other
parts of the system, including the OS or the hypervisor. MicroScope targets exactly this case, focus-
ing specifically on Intel’s SGX enclave, although the underlying exploitable concept is not limited
to SGX. MicroScope exploits the fact that under SGX, the page management of the application is
still delegated to the OS,1 to capture the execution of the application and force the application to
be re-executed as many times as necessary for the side-channel attack to be successful.

Specifically, MicroScope [47] takes advantage of how page faults are handled during execu-
tion and of the out-of-order capabilities of modern CPUs. When a memory load (referred to as
the handle in MicroScope) misses in the TLB, a (typically) hardware page walker tries to resolve
the miss by walking the page table residing in the main memory. While the page walker is try-
ing to resolve the TLB miss, the victim application will continue its execution speculatively. By
abusing this speculative execution mechanism and the squashing and re-execution caused by it,
MicroScope is able to trap the execution of the victim application in a loop for an arbitrary number
of replay iterations, until the attacker is able to reliably denoise the side-channel. A high-level view
of this process can be seen in Figure 1(a), with H representing the load/handle that keeps missing
in the TLB and S representing the information-leaking side-channel instructions that are being
arbitrarily replayed by the attacker.

3.2 Replay Attacks Beyond MicroScope

MicroScope only exploits page faults, but that does not mean that this is the only behavior that can
be exploited. Specifically, under MicroScope, a single instruction that page faults is used as a handle
to replay a set of instructions indefinitely (Figure 1(a)). This is possible because (i) page faults are
a specific type of misspeculation that can be repeated indefinitely, and (ii) there is nothing in the
architecture that prevents an instruction from misspeculating several times in a row. However, it is
conceivable that other forms of speculation can be used as handles. For example, in the short time
since MicroScope has been released, Skarlatos et al. [48] have already described a potential attack
using speculative load re-ordering. Even forms of speculation that cannot be repeated indefinitely,
such as branch prediction, or even transactional memory,2 can be abused. Once a branch has been
executed, the correct path is known and the incorrect path will not be mispredicted a second time.
Similarly, transactions usually abort after a number of tries, at which point they follow a fallback
path. By using multiple handles (H1 and H2 in Figure 1(b)), an attacker could extend the dura-
tion of the attack for each case [47, 48], especially if handles of different types are used together.

1This is considered secure because the memory accessed under SGX execution is cryptographically encrypted and verified,

preventing even the OS from accessing or manipulating it.
2Transactional memory is not necessarily implemented as conventional speculative execution, confined within the reorder

buffer, but it does have similar characteristics.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

9:6 C. Sakalis et al.

Fig. 1. Three different microarchitectural replay attack patterns. The instructions in the reorder buffer are
marked with an ‘H’ for the replay handles, ‘S’ for the side-channel instructions, and ‘X’ for other instructions
not specific to the attack. The currently acquired handles are denoted in bold/red.

In addition, if the system restricted the number of times each instruction is allowed to misspecu-
late and then be re-executed speculatively, for example, as a simple but naïve solution to Micro-
Scope, an attacker would still be able to use multiple handles to force a finite but tangible number
of replays.

We can see that multiple handles acquired and released one after the other can be abused by
an attacker to bypass some of the restrictions posed by different kinds of speculation and system
restrictions. However, using handles serially like this only allows for a limited number of replays,
with the total number being the sum of the replays of each handle. In contrast, Figure 1(c) shows
a way of nesting handles, where each handle (H1 in the figure) amplifies the number of replays
of the next handle (H2). This works by (i) having the inner handle H2 cause as many replays as
possible before releasing it (2 and 3 in Figure 1(c)), (ii) using the outer handle to squash and then
re-execute the inner handle (1 and 4), (iii) re-acquiring the new (as far as dynamic instructions
are concerned) inner handle, and (iv) repeating indefinitely. With this technique, the total number
of replays is not the sum of each individual handle’s replays but instead the product, growing
exponentially with each handle. This can make a huge difference in the number of replays. For
example, if the attacker is able to acquire five handles and use each only once (i.e., one replay
each), with the serial handles the total number of attack iterations would amount to 10, whereas
with the nested handles it would amount to 32. Of course, nesting handles has its own challenges,
including the fact that not all forms of speculation can be used; in some cases (e.g., page faults),

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

Delay-on-Squash: Stopping Microarchitectural Replay Attacks in Their Tracks 9:7

the misspeculation is not handled until after the instruction has reached the head of the reorder

buffer (ROB). However, modern microarchitectures allow branch prediction to go several levels
deep, resulting in the possibility of multiple outstanding (unresolved) predictions at any one time.
By arranging for older branches to depend on longer latency operations (e.g., misses deeper in the
memory hierarchy) and thus resolve slower than younger branches, an effective nested multiple-
handle attack can be mounted. Similarly, if closed nesting of transactions is supported [22], the
same effect can easily be achieved by controlling the abort of the inner versus outer transactions.
In closed nesting, an abort of the inner transaction does not abort the outer transaction, which
will then proceed to repeat the inner transaction.

Our goal is not to simply stop the currently known attacks (namely MicroScope) but to se-
cure speculative execution from as many present and future microarchitectural replay attacks as
possible. The serial and nested attacks that we have developed currently have limited practical ap-
plications, but practical attacks with multiple handles and alternative handles have already been
demonstrated in other works [47, 48]. Therefore, we claim that serial and nested handles cannot
be safely ignored, and we have designed and evaluated our solution accordingly.

4 THREAT MODEL

MicroScope, and microarchitectural replay attacks in general, only make sense under certain con-
ditions. For example, in the specific case of MicroScope, the assumption is that the OS is restricted
from accessing the victim’s execution state and memory. If this is not the case, then the OS can
manipulate the victim directly, without the need for MicroScope. At the same time, even if direct
manipulation is not possible, there are cases where it is possible to repeat the execution of the
side-channel without using a microarchitectural replay attack. For example, a digital rights man-
agement (DRM) system that accepts encrypted data and decrypts them with a secret key could be
fed the same data repeatedly by a malicious attacker, allowing for enough iterations to reliably leak
the secret key. This is possible because, in this case, the secret is immutable, regardless of the input
data. However, as a counter example, there exist applications where the secrets consist of transient
data, such as SGX implementations of Tor [24] (where the sensitive data are arbitrary network
packets) or applications where countermeasures against rollback attacks have been taken [34]. In
such cases, the attacker has only a single opportunity to successfully leak the data. These are ex-
actly the cases where microarchitectural replay attacks become useful, while also being the cases
we expect to be the least protected against side-channel attacks, as, before MicroScope, they were
very hard to exploit.

Although MicroScope focuses on secure enclaves, one can imagine how a microarchitectural
replay attack can be performed from a non-privileged context as well. For example, if the branch
predictor is abused to create handles, it is possible to do a microarchitectural replay attack from an
unprivileged SMT thread. We observe that for a microarchitectural replay attack to be necessary,
two conditions must apply:

(1) The side-channel used in the attack is ineffective unless it is repeated numerous times, as
otherwise there would be no reason to replay the attack code.

(2) The information-leaking victim code is not repeated enough times, either by the program
(e.g., in a loop) or by the attacker (e.g., by interfering with the victim’s execution), to let the
attacker reliably deduce the leaked information.

These two conditions combined mean that it is completely safe, under our current threat model,
to allow a single execution of a side-channel attack while under speculation (transient leakage

(TL) of 1, Section 6), as it will not be effective. Any additional attempts will be blocked by our
replay-blocking defense mechanism, Delay-on-Squash.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

9:8 C. Sakalis et al.

5 DELAY-ON-SQUASH

The principle behind Delay-on-Squash is simple: if an instruction is issued, then squashed due to
a replay handle, and then re-appears in the pipeline, it is not allowed to be re-issued, as it might
constitute part of a microarchitectural replay attack. We have split the description of the Delay-
on-Squash mechanism into two subsections: First, we discuss the concept on a high level, with no
regard for any implementation constraints (Section 5.1), then we discuss the practicalities of an
actual implementation (Section 5.2).

5.1 Conceptual Description

To keep track of instructions that are issued, squashed, and then re-issued under the same handle,
Delay-on-Squash needs to keep track of all potential handles in the ROB. Due to the serial and
nested cases that we described in Section 3.2, it is not enough to keep track of only the handle that
caused the last squash; instead, Delay-on-Squash takes into consideration all handles that affect
each squashed instruction.

To track all of the handles, Delay-on-Squash utilizes a FIFO queue where all of the dynamic
instructions that can cause misspeculation and squashing are inserted during dispatch. While in
the queue, these instructions are considered as potential handles and, by definition, are considered
as “unsafe.” Instructions can only be removed from the head of the queue and only if it can be
determined that they are “safe” (i.e., that they can no longer act as a handle), which happens only
when they have moved outside the window of speculation. The instructions remain in the queue
even if the instructions themselves are squashed in the ROB. For an instruction to be classified
as safe, it first needs to appear at the head of the queue. Then, two scenarios are possible. In the
first scenario, the instruction was on the wrong path of execution and is never seen again. For
this case, the instruction sits at the head of the queue until a full worth of ROB instructions have
been committed, thus assuring that all older handles have left the ROB. In the second scenario, the
instruction is dispatched again and the instruction will exit the head of the queue once it becomes
non-speculative, but for now let us assume that this happens once the instruction is committed.
We will discuss the exact conditions aswhen an instruction is no longer speculative, and thus no
longer a potential handle,in Section 5.2.2. As the queue is a FIFO, and handles can only be removed
from the head of the queue, for a handle to become safe all older handles need to also become safe.
This is a very important condition, as it prevents the serial and nested replay patterns presented
in Section 3.2.

With this queue of potential handles, it is now possible to keep track of squashed instructions on
a per-handle basis. Specifically, every time a misspeculation occurs and instructions are squashed,
Delay-on-Squash records the program counter (PC) for all instructions that have been issued
and are now being squashed. The youngest handle (in ROB order—in contrast, the Clear-on-Retire
variant of Jamais Vu [48] tracks the oldest handle) is retrieved from the queue and is associated to
the squashed PCs. These PCs then remain stored until their corresponding handle is determined
to be safe (i.e., until the handle is removed from the queue). Using the youngest handle, instead of
the actual misspeculating instruction that caused the squash, is important, once again, to prevent
the serial and nested replay patterns. Essentially, by storing the PCs of the squashed instructions
until the youngest (at the point of the squash) handle is safe, Delay-on-Squash ensures that the
record of the squashed PCs will remain stored until all handles that were present in the window of
speculation during the squash have left the window and are thus safe. With this guarantee, all that
remains is to check these records before issuing an instruction. If an instruction PC matches one
of the stored records, it means that this instruction has previously been issued and squashed, and
that the handles that preceded it are still in the ROB and are still considered unsafe. Such instructions
are prevented from being issued until the relevant handles are deemed to be safe, and the records

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

Delay-on-Squash: Stopping Microarchitectural Replay Attacks in Their Tracks 9:9

are removed. To prevent interference from other contexts, this information needs to be stored and
restored on a context switch, much like the rest of the execution state (e.g., registers).

With this mechanism in place, we can instantly detect when an instruction has been issued,
squashed, and then re-issued, even for complex cases, such as when the attacker might be utiliz-
ing nested handles. This enables us to detect and prevent replay iterations of the code, instantly
stopping any microarchitectural replay attacks in their tracks. This mechanism does have one dis-
advantage: the pattern of “issue, squash, and re-issue” can also happen under normal speculative
execution (i.e., when not under attack), for example, when a load is squashed due to a memory order
violation, as in such cases the execution path remains the same. In addition, if we are executing a
loop that is small enough to fit several loop iterations in the window of speculation, a squash in one
of them will cause all iterations that follow (within the window) to be delayed, as the instructions at
each iteration all share the same PC. Fortunately, as we will see in the evaluation (Section 7), the ac-
tual number of cases affected by this are very small and come at a negligible performance cost (1%).

5.2 Efficient Implementation

Although the Delay-on-Squash mechanism, as conceptually described in the previous section, can
be implemented as an actual hardware solution, it would require large storage and expensive con-
tent addressable memories for keeping exact sets of squashed PCs. This would lead to prohibitively
large area, latency, and energy overheads. Instead, we use Bloom filters [9] to represent the sets
of PCs (of squashed instructions) that are temporarily prevented from being issued speculatively.
With this approach, we can store the PCs of tens of squashed instructions with only a few bits
of storage.

5.2.1 Bloom Filters. Bloom filters are hash-based, probabilistic data structures used to test if an
element (in our case, a PC) is part of a set. A basic Bloom filter consists of a fixed-length bit vector
that is initially set to “zero.” A new element is inserted into the filter by first hashing the element
with a number of hash functions. Each hash is then used to index into the bit vector and the bit is
set to “one.” To check if an element is present in the filter, the same hash functions are used and the
bit indicated by each hash is checked. If all bits, as indicated by the hashes, are set to “one,” then the
element is assumed to be present in the filter. Although it is possible to get a false positive when
checking the filter, it is not possible to get a false negative, which is an important property for us,
as false negatives would lead to unsafe replay iterations. False positives, however, only manifest as
reduced opportunities for speculation, in our case causing a negligible performance overhead. The
Bloom filter’s property of never resulting in a false negative and its relative simple implementation
have inspired computer architects to use it for various cases where filtering is beneficial, such as
to filter memory access in cache coherence protocols [38, 60] or set-associative caches [18].

Bloom filter implementation. In Delay-on-Squash, we use the simplest, most efficient form of bi-
nary Bloom filters where the only way of erasing elements from the filter is to clear the whole filter
by bulk-resetting it. Other approaches also exist [10, 13], but they come at increased overheads,
and they would not offer significant performance benefits for our use case. For our implementation,
we assume that all hash functions of the PC of a particular dynamic instruction are precomputed
during dispatch and kept in its ROB entry. Efficient hash functions can be created by only using
Xor gates [51]. For each bit in the hash, a small set of bits from the PC are Xored together. The
precomputed hash functions are then used (in the case of a squash) to index the Bloom filter and
set the corresponding “ones,” in parallel with multiple other ROB entries. We also assume that the
whole process is hidden behind the back-end recovery latency following a squash [20].

Why binary Bloom filters? In addition to false positives, Bloom filters have another property
that we need to account for when designing the Delay-on-Squash implementation: removing

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

9:10 C. Sakalis et al.

individual elements (PCs) from a Bloom filter is expensive. To do that, we need to resort to counting

Bloom filters (or one of their many varieties), significantly increasing our cost. Moreover, updating
a counting Bloom filter entails several (as many as the hash functions) read-increment-write oper-
ations per PC. Parallelizing the insertion of multiple PCs in the Bloom filter becomes problematic,
as we have to watch out for conflicts and serialize conflicting PCs. That can be too expensive to do
(either in cycles or in read/write ports) when we need to store tens of PCs on a squash. In contrast, a
simple binary Bloom filter can be updated much faster by just setting all of the new “ones” in place.

Clearing the Bloom filters. In the conceptual description, for each squash, we associate each set
of squashed PCs with a handle. Observe, however, that in the case of a replay attack, the set of
PCs would hardly change from squash to squash. Maintaining the same redundant information
across multiple Bloom filters is, clearly, a waste of resources. Instead, we could consolidate the
information in a single Bloom filter spanning several squashes, holding all PCs of all squashed
instructions. For each squash, we insert the squashed PCs in the filter, then we associate the Bloom

filter with the PC of the youngest handle in the handle queue (i.e., the entry of the tail). Although this
is an effective way of keeping all of the information we need to prevent replay attacks, it makes
the clearing of the Bloom filter difficult. Recall that we have opted for a simple binary Bloom filter,
where it is not possible to erase individual instructions. In addition, we only associate the youngest
seen handle with the Bloom filter, since it is not possible to remove individual PCs anyway. Finally,
the condition for clearing the Bloom filter is when the associated handle leaves the window of
speculation and becomes safe (i.e., all PCs in the Bloom filter are safe). As at each squash we
re-associate the Bloom filter with the youngest handle during the squash, the lifetime of the filter
can be extended an arbitrary number of times and the clearing can be deferred for an arbitrarily
long time.

Instead, we use two Bloom filters and switch between them periodically. At each point in time,
one of the filters is designated as active, whereas the other is inactive, waiting to be cleared. On a
squash, the PCs of the squashed instructions are inserted in the currently active filter, and the filter
is associated with the youngest handle. Meanwhile, the inactive filter is waiting for its associated
handle to leave the window of speculation to be cleared with a bulk-reset. As soon as the inactive
filter is cleared, it can take over the role of the active filter, letting the previous active filter become
inactive and eventually be cleared as well. Of note here is that a squashed handle might never
appear again as it might have appeared on a wrong path of execution. In such cases, the handle
will remain at the head of the handle queue until as many instructions as can be stored in the ROB
have been committed, delaying the clearing of any Bloom filters. This is motivated by the fact
that speculative replay attacks require the handle and side-channel transmitting instructions to be
within the same ROB window of speculative instructions. Thus, once as many instructions as can
be stored in the ROB have been committed, it is ensured that all previous handles have also been
committed. Of importance here is that instructions that are about to be issued need to check both
filters, the active and the inactive, to see if they can be issued safely. The approach can naturally
be extended to a cyclical list of several Bloom filters, out of which one is active and the rest are
inactive. A high-level overview with just two filters can be seen in Figure 2. As the instructions
at the head of the ROB are committed successfully and the ROB window moves in time, the older
Bloom filter is cleared and moves to become the next active filter, with the old active filter no
longer being marked as inactive.

The Bloom filters are context specific—that is, each execution context has its own set of filters,
which is securely stored and reloaded on a context switch. This prevents other contexts, including
the OS, from saturating or otherwise manipulating Delay-on-Squash.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

Delay-on-Squash: Stopping Microarchitectural Replay Attacks in Their Tracks 9:11

Fig. 2. An abstract visualization of the window of speculation and how it moves with the instruction stream.
Handles are represented with ‘H,’ whereas other instructions are represented with ‘X.’ Once the handle as-
sociated with the filter is resolved, the filter is marked as inactive, to be reused later.

A working example. Figure 3 contains a step-by-step example of how Delay-on-Squash tracks
handles and how the Bloom filters (BFA and BFB in the figure) are used, when the following code
is executed:

1 y = (s e c r e t & 0 x1) ∗ p i / / Not shown i n the i l l u s t r a t i o n

2 _ = l o a d (x) / / l d

3 i f (cond1) { X } e l s e { Y } / / b r1

4 i f (cond2) { X } e l s e { Y } / / b r2

5 s q r t (y) / / S

6 s t o r e (z) / / s t

We have marked the potential handles in red, the side-channel instruction in blue, and the rest
of the instructions in gray. Under this example, the attacker intends to first use br1 and br2 sequen-
tially (one replay for each) by forcing each of them to mispredict once, causing a squash, and then
use ld to squash everything and re-use br1 and br2 (nested attack). Branches cannot be used more
than once sequentially, as once a branch is executed, the correct target becomes known. However,
when the attacker triggers the ld handle, it is possible to re-train the branch predictor, as the victim
will be stalled while the page fault is being handled. The X and Y for the if /else conditions are sim-
ply to show different paths of execution (i.e., first a mispredicted path and later the correct path).
The sqrt(y) instruction is used to illustrate a simplified contention-based attack, since y will either
be 0 or pi, with pi taking significant longer time to execute. A second thread can then perform
square-root operations to determine the value of secret. The purpose of the attack is to execute
the sqrt(y) operation as many times as possible. Note that handles based on page faults have to
always be the outermost handle, as page faults are not handled speculatively, unlike branch-based
handles, which are speculated early in the pipeline. For simplicity, we show the same instructions
being squashed and fetched many times, as showing how instructions are tracked when the exe-
cution diverges between squashes (as is usually the case with branch mispredictions) would make
the example overly complicated:

(1) The ROB contains three potential handle instructions, ld , br1, and br2, which are inserted in
the handle queue (HQ) in order.

(2) The attacker has set up the microarchitectural state so that br1 (which is mispredicted) is
resolved first. This can be achieved by manipulating the branch predictor and other mi-
croarchitectural state that the branch condition (e.g., cached cache lines) depends on. When

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

9:12 C. Sakalis et al.

Fig. 3. Step-by-step example of the instruction tracking mechanism in Delay-on-Squash.

the misprediction has been detected, the instructions that follow br1 will be squashed. The
squashed instructions are inserted into the active Bloom filter BFA, which in turn is tagged
with the youngest potential handle (br2).

(3) As execution restarts from the squashed branch, the instructions in the reconvergent path
are once again dispatched in the ROB. The PCs that have been seen before (i.e., the ones
that hit in the Bloom filters (marked with a gray background)) will be delayed by Delay-on-
Squash. As intended, Delay-on-Squash prevents S from being replayed. Here we also assume
that a new instruction is dispatched, st , which is also a potential handle.

(4) For brevity, we do not show br2 being used as a sequential handle. It is also worth noting
though that br2 has already been squashed once and is prevented from being issued and

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

Delay-on-Squash: Stopping Microarchitectural Replay Attacks in Their Tracks 9:13

further used as a handle. Next, we consider the nested part of the attack. When the load page
faults, execution will be squashed and all issued instructions will be added to the Bloom filter.
Here we assume that we want to switch to a new filter, namely BFB , which is tagged with
the youngest potential handle, st .

(5) When execution resumes, all instructions that have been seen before are, once again, delayed
by Delay-on-Squash. This includes the side-channel instruction S , which is still in BFA.

(6) Once all of the older handles (ld , br1, and br2) have been resolved, BFA can be cleared and
the side-channel instruction S can now finally be executed. Note how br2 has not yet been
retired, but it is considered as resolved once it has been executed and verified that it has not
been mispredicted.

For simplicity, we show ld remaining in the ROB when squashed but in practice, loads that page
fault are typically squashed and re-dispatched. In some cases (e.g., on a context switch), it is pos-
sible that after squashing the handle queue is left empty, as all instructions are either squashed or
otherwise deemed safe. In such cases, we can run into a corner case where the Bloom filters are
cleared before the squashed handles (e.g., br1) have been re-introduced into the window of specu-
lation, enabling the attacker to perform several replay iterations. We handle such cases conserva-
tively by delaying the clearing of the Bloom filters by the length of the dynamic instruction window,
which is the longest window for any handles to be re-introduced. This happens very rarely, only
affects instructions that hit in the Bloom filters, and has no measurable effect on performance.

5.2.2 Handles and the Window of Speculation. We have talked about handles that can cause mis-
speculation and squashing, and when such handles can be considered as safe. In the most naïve
approach, we can consider handles to be safe when they reach the head of the ROB and are retired,
but this is awfully pessimistic. Instead, we draw from the existing research on speculative execu-
tion [4, 7, 42–44, 56, 62] and consider handles as safe when they can no longer cause squashing,
regardless of their position in the ROB. Specifically, we have adopted the approach of using spec-
ulative shadows by Sakalis et al. [42–44], a mechanism for detecting the earliest point at which
an instruction is no longer speculative. Although these shadows are designed to work with spec-
ulative side-channel defenses, which do not necessarily work against microarchitectural replay
attacks (Section 8), the underlying principle can still be used.

According to Sakalis et al., any speculative instruction that can cause squashing is referred to as
a “shadow-casting” instruction. Depending on the type of speculation, Sakalis et al. [42, 43] have
defined different types of shadows (e.g., “E-Shadows” are cast by instructions that might raise an
exception, as is the case with the page faults in MicroScope), but these can be extended to include
other types of speculation as well, such as the transactional memory case described earlier. Once an
instruction (i) is no longer shadowed by another instruction and (ii) no longer casts any shadows
itself (i.e., when there is no reason for said instruction to be squashed), the instruction is considered
non-speculative. At this point, the instruction has left the window of speculation, and assuming
that the instruction was a potential handle, it can be considered as safe. The advantage of this
approach is that it is possible for potential handles to reach the safe state a lot earlier than if we were
waiting for them to retire. In addition, Sakalis et al. [43] also describe a hardware implementation
to track speculation based on a FIFO queue, where younger shadow-casting instructions are only
resolved once all older shadow-casting instructions have also been resolved. This design fits well
with Delay-on-Squash, as the handle queue has similar characteristics.

Note that while using the speculative shadows is not necessary and the use of alternative meth-
ods is possible (e.g., using the head and tail of the ROB), doing so in a naïve manner can lead to
significant performance degradation [42, 62].

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

9:14 C. Sakalis et al.

5.2.3 Software Support. Delay-on-Squash can operate transparently to the user and does not
need any library, compiler, or OS support to work. However, a mechanism to inform the program
being executed of continuous replay attempts would enhance both security and usability, allowing
the program to implement custom security routines for such cases. In addition, if an attack holds
a handle for a long period of time, constantly preventing the application from making forward
progress, the CPU should interrupt the program, once again allowing it to handle the security
threat using custom security routines.

6 SECURITY ANALYSIS

Delay-on-Squash is not intended to protect against attacks where the sensitive code is replayed
by the application itself, such as in cases where a loop accesses the exact same sensitive data
in each iteration. In such cases, microarchitectural replay is not even necessary. As discussed in
Section 4, Delay-on-Squash only guarantees security with respect to the amplification of a side-
channel and does not block the first use of a side-channel while under speculation. Sometimes, it
is possible to leak information with a single iteration of an attack, although this is rare and not
easy to achieve [3, 33, 35], especially when the attacker does not have full control of the victim.
Delay-on-Squash does not protect against such attacks, as they are indistinguishable (and are, in
fact, part of) normal execution. Instead, if such protections are required, Delay-on-Squash can
be combined with other defense mechanisms, such as traditional defenses against side-channel
attacks (Section 8). With Delay-on-Squash offering low overhead protection against many side-
channel attacks (as most attacks require multiple iterations [3, 33, 35]), the additional defenses need
only to focus on the remaining cases, lowering the complexity and overhead needed. Specifically:

• For TL side-channels, as defined by Skarlatos et al. [48], that require microarchitectural am-
plification to leak information, Delay-on-Squash stops speculative execution of all instruc-
tions that have been squashed once in the instruction window. The TL of Delay-on-Squash
is always 1 (only one iteration is allowed), as Delay-on-Squash always waits until all possible

handles in the ROB have been resolved. In comparison, the hardware-only version of Jamais
Vu, Clear-on-Retire [48], can have a TL of up to ROB-1, depending on the number of handles
that can be found in the ROB.
• However, non-transient leakage (NTL) side-channels that require no microarchitectural

amplification to leak information fall outside the scope of Delay-on-Squash and informa-
tion leakage remains the same with or without Delay-on-Squash. For security against such
attacks, some other defense would be needed in parallel. The benefit of Delay-on-Squash
in these cases is that it relieves us from having to defend against both TL and NTL side-
channels and allows us to concentrate on NTL, for which much more efficient defenses have
been proposed (Section 8).

In addition to preventing microarchitectural replay attacks, we also want to ensure that Delay-
on-Squash does not introduce any new side-channels into the system. As already discussed, the
state kept by the mechanism (Bloom filters, etc.) needs to be kept isolated from other contexts
and stored/restored on a context switch. This prevents the attacker from manipulating Delay-on-
Squash either to “make it forget” a replayed instruction or to introduce unnecessary overheads in
the victim application. At the same time, the attacker cannot in any way probe the information that
the Delay-on-Squash mechanism has of the victim, as that would allow the attacker to ascertain
which instructions the victim has executed. These can be enforced by the hardware by isolating
the mechanism between contexts and storing it in an encrypted manner on a context switch, much
like the rest of the context (e.g., the register file) is already stored.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

Delay-on-Squash: Stopping Microarchitectural Replay Attacks in Their Tracks 9:15

Table 1. Simulated System Parameters

Parameter Value

Technology node 22 nm @ 3.4 GHz
ROB size 192
Issue/Execute/Commit width 8
Cache line size 64 bytes
L1 private cache size 32 KiB, 8-way
L1 access latency 2 cycles
L2 shared cache size 1 MiB, 16-way
L2 access latency 20 cycles

Number of Bloom filters 2
Number of bits, hash functions per filter 128, 2
Hash width lg(128) = 7 bits
Hash function 1 Xor-gate per hash bit

Finally, as Delay-on-Squash prevents instructions from executing under certain conditions, it
raises whether it can be used to mount a Denial-of-Service attack on the victim. Although Delay-
on-Squash can affect the performance of the victim negatively, as long as instructions are being
committed from the head of the RO (which is never delayed by Delay-on-Squash) then execution
will not stall. Execution can only stall if the victim is caught into an execute-squash-replay loop
(due to a microarchitectural replay attack), in which case no forward progress would have been
made even if Delay-on-Squash was not present. In practice, when execution is slowed down for
any significant amount of time, due to an attack, the hardware should be designed to notify the
software, allowing it to take appropriate measures to prevent the leakage and ensure that the
system does not stall.

7 EVALUATION

We use the gem5 simulator [8] together with the SPEC CPU2006 benchmark suite [11] for the
performance evaluation, combined with McPAT [31] and CACTI [32] for the energy evaluation.
We generate simpoints with ScarPhase [46] and, for each simpoint, start with a 1 billion instruction
warm up (990 million fast memory warm up and 10 million detailed pipeline warm up) followed by
a 100 million instruction detailed simulation. The main parameters of the simulated system can be
seen in Table 1. We have not performed an extensive evaluation of the most efficient hash function
implementation. We have used a hash function that is based on one 2-input Xor gate per bit in the
hash (i.e., two bits of the PC are Xored together). The delay of a single Xor gate is negligible and
can easily be performed in parallel with other operations in the pipeline.

To avoid mixing different energy models, we estimate the energy expenditure of the additional
handle and squash tracking structures as existing similar structures in McPAT that we size ap-
propriately. Specifically, the handle/shadow-tracking mechanism is modeled as an additional ROB
structure, the Bloom filters as register files, and the hash functions for the Bloom filters as an
additional integer arithmetic unit. Each hash function consists of seven bits, and with each bit re-
quiring one Xor gate, the total gate count for a single hash is seven. With an issue width of eight
and two hash functions per instruction the total number of Xor gates for all hash functions is 112.
In comparison, a single 64-bit parallel adder, such as Kogge-Stone, has 128 Xor gates and signifi-
cantly many more And and Or gates. We have also tried to directly use bits from the PC to index
into the Bloom filter, achieving similar performance results. This indicates that it might be possible

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

9:16 C. Sakalis et al.

Fig. 4. Performance (IPC) normalized to the baseline (bars), overlaid with the number of SPKI (line).

to completely eliminate the hash functions and instead use already available bits associated with
each instruction to populate the Bloom filter. We leave such optimizations as future work.
We evaluate the following configurations in detail:

• Baseline: The insecure out-of-order CPU in gem5.
• Delay-All: A lower-bound, non-speculative configuration where all instructions are delayed

until no unsafe handles precede them. To make the comparison with the Delay-on-Squash
configurations fair, Delay-All utilizes the same handle-tracking mechanism as Delay-on-
Squash to detect when a handle is safe (Section 5.2.2).
• Delay-on-Squash (Perfect): The ideal implementation of Delay-on-Squash, as described in

Section 5.1. We assume that we have unlimited space for storing all squashed instructions
for as long as necessary.
• Delay-on-Squash (Bloom): The actual implementation of Delay-on-Squash with Bloom filters,

as described in Section 5.2, with the Bloom filter parameters seen in Table 1. We chose these
parameters empirically to balance performance, area, and energy usage.

In each case, the defense being evaluated is enabled for the whole duration of the execution.

7.1 Performance

Figure 4 contains the number of instructions per cycle (IPC), normalized to the insecure out-of-
order baseline. In addition, it also contains the baseline number of squashes per 1,000 instruc-

tions (SPKI). Overall, implementing Delay-All, which we are only including as a lower-bound
configuration, would lead to 40% lower performance, when compared to the baseline. However,
implementing Delay-on-Squash with a perfect filter would eliminate almost all performance cost,
reaching 99% of the baseline performance. Only one application has any perceptible performance
degradation, sphinx (−11%), which misspeculates and squashes more often than average. In some
cases, the same static instructions exist in the ROB in multiple dynamic instances, such as when
a loop is dynamically unrolled in the ROB (Section 5.1). If a squash happens in such a situation,
all instances of the static instructions will be conservatively treated by Delay-on-Squash, as po-
tential replay attacks and speculation will be restricted in a large part of the dynamic instruction
window. In contrast, applications like cactusADM and lbm, which rarely misspeculate, are not af-
fected at all. However, the amount of misspeculation in the application is not the only parameter
that affects its performance with the perfect filter, and in fact, there is no correlation between the
SPKI and the performance. Instead, the application’s sensitivity to instruction-level parallelism
and memory-level parallelism (MLP) is also important. Restricting the speculative execution
of an application that relies on instruction-level parallelism and MLP to achieve high performance
can lead to more severe performance penalties, when compared with an application that does not
rely on either [19, 44].

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

Delay-on-Squash: Stopping Microarchitectural Replay Attacks in Their Tracks 9:17

Fig. 5. Rate of Bloom filter false positives over the total number of executed (i.e., including squashed)
instructions.

Table 2. Techniques That (Partially) Mitigate Microarchitectural Replay Attacks

Speculative Side-Channels Reported
Mitigation Cache Coherence Memory-Contention Functional-Unit Implicit Performance

SafeSpec [23] ✓ ✗ ✗ ✗ ✗ +3%
InvisiSpec [56] ✓ ✓ ✗ ✗ ✗ –40%
Ghost Loads [42] ✓ ✓ ✗ ✗ ✗ –20%
CleanupSpec [41] ✓ ✓ ✗ ✗ ✗ –5%
ReViCe [25] ✓ ✓ ✗ ✗ ✗ –6%
MuonTrap [2] ✓ ✓ ✗ ✗ ✗ –4%
DoM [44] ✓ ✓ ✓ ✗ ✗ –18%
CSF (CFENCE) [49] ✓ ✓ ✓ ✗ ✓ –21%
CSF (LFENCE) [49] ✓ ✓ ✓ ✓ ✓ –48%
Jamais Vu [48] ✓ ✓ ✓ ✓ ✓ –3%
Delay-on-Squash ✓ ✓ ✓ ✓ ✓ –3%

Finally, we have the realistic Delay-on-Squash implementation, based on the Bloom filters, with
the parameters described in Table 1. Alongside the IPC, in Figure 5 we can also see the false-positive
rate of the applications (i.e., the number of false positives in the Bloom filter over the number of
instructions executed). On average, we observe one false positive every 210 instructions (a rate of
roughly 0.5%), but this number differs significantly between all applications. The application that
has the highest false-positive rate (mcf) also has lower performance, but that is not true for the
application with the second highest rate (omnetpp). Once again, we see that the false-positive rate
of the filter does not necessarily affect the performance of the application. In fact, the application
whose performance is affected the most is libquantum (−16%), which is not one of the applica-
tions with the highest false-positive rates. Instead, libquantum is a streaming benchmark that
relies heavily on MLP, so it is heavily affected by any restrictions to parallelism. At the same time,
libquantum has the highest SPKI (42) out of all applications, although once again there is overall
no clear correlation between the SPKI and the benchmark behavior.

Overall, for Delay-on-Squash with the Bloom filters, we observe a mean performance of 97%
of the baseline, 2 percentage points lower than the ideal version. Given that secure enclaves
already exchange performance for higher security guarantees, a 3% performance degradation is
insignificant.

Table 2 compares Delay-on-Squash against several state-of-the-art speculative side-channel mit-
igation techniques that can (partially) prevent microarchitectural replay attacks. To be noted, the
table only shows the types of side-channels that they protect against and the reported performance,
without considering the precise threat model or the complexity of the proposed techniques, such
as required modifications to the core, caches, and coherence protocol, among others. Several pro-
posed techniques hide [2, 23, 42, 56], delay [44, 49], or undo [25, 41] the microarchitectural state of

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

9:18 C. Sakalis et al.

Fig. 6. Energy usage normalized to the baseline. Each bar considers of four different parts, representing the
dynamic CPU energy usage (bottom, light), the static CPU energy usage (middle, shaded), the DRAM energy
usage (middle, light), and the overhead of the Delay-on-Squash tracking structures (top, shaded).

speculative load instructions. Such techniques (partially) protect the memory hierarchy but leave
it harder to exploit side-channels unprotected for improved performance. At the same time, side-
channels that exploit the memory hierarchy often use persistent state that is only changed once
evicted by other operations, resulting in relatively reliable side-channels, hence microarchitectural
replay attacks might not even be necessary to begin with. Techniques that protect against all spec-
ulative side-channels, such as the most restrictive version of context-sensitive fencing (CSF) [49],
incur high performance overheads. Jamais Vu’s [48] Clear-on-Retire has a similar performance as
Delay-on-Squash but allows more replays to be performed for serial and nested microarchitectural
replay attacks.

7.2 Energy Usage

The energy usage of the different configurations can be seen in Figure 6. Each bar in the figure
is split into four parts, representing (from bottom to top) dynamic, static, DRAM, and overhead
energy. The overhead contains both the dynamic and static energy usage of the squash tracking
mechanism and the Bloom filters, and is only included in the Bloom filter configuration, as that is
the only configuration where we have a realistic hardware design.

Overall, there are two factors that affect the energy usage in the various configurations: the
number of executed instructions and execution time. Although we simulated all checkpoints to
the same number of committed instructions, the number of (dynamically) executed instructions
varies depending on the amount of speculation and squashing. Specifically, instructions that are
executed speculatively and are squashed still require energy, but this energy is not used for useful
work. For this reason, the dynamic energy usage of the applications is reduced in the strict Delay-
All version.

However, although restricted speculation improves the dynamic energy usage, the static and
DRAM energy usage are instead increased, because both depend on the execution time, which is
increased. Specifically, unless power- or clock-gated, the CPU has the same amount of leakage
regardless if instructions are executed or not. Then, the longer the CPU has to be active, the more
the static energy increases. Similarly, DRAM cells need to be refreshed at regular intervals, so
the DRAM energy increases with the execution time. Overall, these effects overshadow the energy
gains provided by the reduced misspeculation, so the Delay-All version has an overall energy usage
that is 20% higher than the baseline.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

Delay-on-Squash: Stopping Microarchitectural Replay Attacks in Their Tracks 9:19

In contrast, Delay-on-Squash, with a perfect filter, is identical to the baseline. The performance
difference between the two versions is very small, so there are no significant differences in the
static and DRAM energy, and speculation is not restricted enough to lead to any energy usage
reductions. As we are not modeling the filter mechanism, there is no overhead, but it is important
to note that storing and accessing all squashed instructions in the window of speculation would
introduce very large overheads.

However, the Bloom filter version has a 4% energy overhead over the baseline, out of which half
(2 percentage points) is due to the increase in execution time and half is due to the overhead of the
mechanism. Increasing the size of the Bloom filters (to decrease the performance overhead) would
lead to an overall increase in the energy overhead, as the gains (due to the small reduction in the
execution time) would be overshadowed by the increased overhead due to the larger structures.

8 RELATED WORK

Jamais Vu. There exists only one other comprehensive solution to the problem of microarchitec-
tural replay attacks, Jamais Vu [48], which requires compiler support to offer a good balance be-
tween security and performance. It comes with three main variants:

• Clear-on-Retire, a hardware-only solution that is only effective against attacks utilizing a
single handle while having similar performance overheads to Delay-on-Squash.
• Epoch, a combined software and hardware solution that requires compiler support to protect

against attacks that utilize multiple handles, or even attacks that go beyond the ROB, but at
higher overhead. As we have explained in our threat model (Section 4), we consider such
attacks outside the scope of microarchitectural replay. For comparison, instead of having
compiler-defined epochs that can span whole loops, Delay-on-Squash can be thought of as
having hardware autodetected epochs that span the window of speculation.
• Counter, a conservative approach where instructions are never removed from the replay

filters, which has the worst performance overhead when compared against the other two
variants (23%, as reported by Skarlatos et al.).

The critical difference between Delay-on-Squash and Jamais Vu is that Delay-on-Squash is de-
signed to protect against attacks where replay is achieved through purely microarchitectural meth-
ods, whereas Jamais Vu also considers replay iterations due to the software architecture. We con-
sider such attacks to not be microarchitectural replay attacks, as the replay is not done using
microarchitectural methods (Section 4). Because of this insight, we are able to offer a solution that
does not require any software modifications, does not introduce any additional overheads, and is
more secure (lower TL) than the equivalent hardware-only variant of Jamais Vu. However, it is also
possible to combine the two methods, with Delay-on-Miss relieving some of the higher overhead
mechanisms pressure of Jamais Vu, allowing for wider security with lower overheads.

Other related enclave attacks and defenses. Controlled-channel attacks [55] and Sneaky Page
Monitoring (SPM) [52] use the fact that the page management is delegated to the OS to monitor
the access patterns of the victim directly and leak information. As the OS has full control over
the page system, such attacks can have low to zero noise and do not need to be repeated several
times, so no microarchitectural replay is necessary. CacheZoom [37] is another attack that uses
fine-grained control to perform a side-channel, but it only targets cache side-channels. As per our
threat model (Section 4), we consider such attacks outside the scope of our work, as when such
attacks are possible, there is no reason for an attacker to employ microarchitectural replay. We will,
however, note that there exist solutions for such side-channel attacks, such as Klotski by Zhang
et al. [61], but they come with steep performance and area overheads (up to 10× in execution time,
depending on the configuration, for Klotski). There also exist speculative side-channel attacks that

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

9:20 C. Sakalis et al.

abuse speculative execution to gain access to SGX data, such as Zombieload [45] or TLBleed [21].
Such attacks are affected from the same noise issues as any other side-channel attack, and they
can in fact benefit by microarchitectural replay.

Side-channel defenses. There are numerous works on side-channel attacks and defenses [17],
particularly when it comes to cache side-channels [33]. Examples include disruptive prefetching
or cache partitioning to hide the cache access patterns [12, 14, 28, 40] or oblivious RAM to hide
memory access patterns [61]. Each of these solutions tries to prevent or limit the creation of specific
side-channels and comes with different costs and limitations. To the best of our knowledge, there
exists no published work evaluating the total cost of implementing all of the different solutions
that would have been necessary to prevent all of the side-channels that microarchitectural replay
attacks, such as MicroScope, can amplify. In addition, only perfect solutions would be effective,
as otherwise even the smallest observable side effects can be amplified by MicroScope. However,
with Delay-on-Squash in place, a system would only need defenses against the limited range of
attacks that do not require microarchitectural replay, making it possible to offer comprehensive
security with reasonable complexity and overheads.

Speculative side-channel defenses. There is a critical difference between microarchitectural replay
and speculative side-channel attacks: the latter abuse speculative execution to illegally gains ac-
cess to information during the wrong execution path, whereas microarchitectural replay attacks can
amplify the correct path and leak information that has been accessed legally. Defenses and optimiza-
tions that only try to block the wrong execution path [29, 50, 62] will not work against MicroScope
or other microarchitectural replay attacks. Furthermore, during a speculative side-channel attack,
there is a data dependence chain between the illegal access and the information-leaking instruc-
tions, whereas in a microarchitectural replay attack, the handle and the side-channel instructions
have to be independent. State-of-the-art defenses that block the transmission of speculative ac-
cessed data to potential side-channel instructions, such as NDA [54], STT [58, 59], and others [5, 6,
15, 30], are ineffective in this context, because, under microarchitectural replay, the side-channel
instructions may actually be in the correct path of execution and can also be fed with non-speculative

data. At the same time, other defenses that are not restricted to data dependencies, such as InvisiS-
pec [56], Delay-on-Miss [43, 44], and many others [2, 23, 25, 26, 41, 42, 49], only focus on specific
side-channels, under the assumption that not all side-channels can be exploited as easily. However,
the effectiveness of microarchitectural replay attacks comes precisely from the fact that they can be
used to amplify and successfully mount attacks that are hard to exploit, making these speculative
side-channel defenses also unfit for our purposes. Even so, with Delay-on-Squash as the base (sim-
ilar to the non-speculative side-channels), some of these defenses can be modified to only cover
the cases not covered by Delay-on-Squash, offering better overall security with lower overheads.

9 CONCLUSION

Microarchitectural side-channel attacks rely on observable μ-state changes caused by the victim
application under attack. Such observations are commonly noisy, for example, due to the extremely
short lifetime of transient μ-state or due to system interference that causes a persistent μ-state to
change. To successfully launch an attack, the side-channel has to be amplified and denoised by
being repeated several times. This is the specific purpose of MicroScope and microarchitectural
replay attacks, which trap the victim application in a loop, causing it to execute the side-channel
over and over again. MicroScope specifically has proven to be successful in leaking information
from secure enclaves, but microarchitectural replay attacks, in general, may have broader applica-
bility. At the same time, although these attacks do abuse speculative execution, existing speculative
side-channel defenses are unable to mitigate them.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

Delay-on-Squash: Stopping Microarchitectural Replay Attacks in Their Tracks 9:21

We make the observation that such replay attacks rely on repeated squashes of replay han-
dles, and that the instructions causing the side-channel must reside in the same ROB window as
the handles. Based on this observation, we propose Delay-on-Squash, a hardware-only technique
for tracking squashed instructions and stopping them from being replayed. We further describe
that Delay-on-Squash can be efficiently realized using Bloom filters and speculative shadow track-
ing [43].

We evaluate several configurations with different parameters, and we show that a fully secure
system against microarchitectural replay attacks (according to the threat model) comes at a mere
3% performance degradation when compared to a baseline, insecure out-of-order CPU while also
keeping the energy cost low, at 4% over the baseline.

REFERENCES

[1] Tor Project. [n. d]. The Tor Project | Privacy & Freedom Online. Retrieved September 24, 2022 from https://torproject.

org

[2] Sam Ainsworth and Timothy M. Jones. 2020. MuonTrap: Preventing cross-domain spectre-like attacks by capturing

speculative state. In Proceedings of the International Symposium on Computer Architecture. 132–144. https://doi.org/10.

1109/ISCA45697.2020.00022

[3] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida García, and Nicola Tuveri. 2019. Port

contention for fun and profit. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE, Los Alamitos, CA,

870–887. https://doi.org/10.1109/SP.2019.00066

[4] Mehdi Alipour, Trevor E. Carlson, and Stefanos Kaxiras. 2017. Exploring the performance limits of out-of-order

commit. In Proceedings of the ACM International Conference on Computing Frontiers. ACM, New York, NY, 211–220.

https://doi.org/10.1145/3075564.3075581

[5] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodorescu. 2019. Isolating speculative data to prevent

transient execution attacks. IEEE Computer Architecture Letters 18, 2 (July 2019), 178–181. https://doi.org/10.1109/LCA.

2019.2916328

[6] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodorescu. 2019. SpecShield: Shielding speculative

data from microarchitectural covert channels. In Proceedings of the International Conference on Parallel Architectural

and Compilation Techniques. IEEE, Los Alamitos, CA, 151–164. https://doi.org/10.1109/PACT.2019.00020

[7] Gordon B. Bell and Mikko H. Lipasti. 2004. Deconstructing commit. In Proceedings of the International Symposium

on Performance Analysis of Systems and Software. IEEE, Los Alamitos, CA, 68–77. https://doi.org/10.1109/ISPASS.2004.

1291357

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,

et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture News 39, 2 (May 2011), 1–7. https://doi.org/10.

1145/2024716.2024718

[9] Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13,

7 (July 1970), 422–426. https://doi.org/10.1145/362686.362692

[10] Saar Cohen and Yossi Matias. 2003. Spectral Bloom filters. In Proceedings of the ACM SIGMOD International Conference

on Management of Data. ACM, New York, NY, 241–252. https://doi.org/10.1145/872757.872787

[11] Standard Performance Evaluation Corporation. 2006. SPEC CPU2006 Benchmark Suite. Retrieved September 24, 2022

from http://www.specbench.org/cpu2006/.

[12] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry Ponomarev. 2012. Non-monopolizable

caches: Low-complexity mitigation of cache side channel attacks. ACM Transactions on Architecture and Code Opti-

mization 8, 4 (Jan. 2012), Article 35, 21 pages. https://doi.org/10.1145/2086696.2086714

[13] Li Fan, Pei Cao, J. Almeida, and A. Z. Broder. 2000. Summary cache: A scalable wide-area Web cache sharing protocol.

IEEE/ACM Transactions on Networking 8, 3 (June 2000), 281–293. https://doi.org/10.1109/90.851975

[14] Adi Fuchs and Ruby B. Lee. 2015. Disruptive prefetching: Impact on side-channel attacks and cache designs. In Pro-

ceedings of the ACM International Systems and Storage Conference. ACM, New York, NY, 1–12. https://doi.org/10.1145/

2757667.2757672

[15] Jacob Fustos, Farzad Farshchi, and Heechul Yun. 2019. SpectreGuard: An efficient data-centric defense mechanism

against spectre attacks. In Proceedings of the ACM/IEEE Design Automation Conference. ACM, New York, NY, 1–6.

https://doi.org/10.1145/3316781.3317914

[16] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Electromagnetic analysis: Concrete results. In Proceed-

ings of the International Workshop on Cryptographic Hardware and Embedded Systems, Çetin K. Koç, David Naccache,

and Christof Paar (Eds.). Springer, 251–261. https://doi.org/10.1007/3-540-44709-1_21

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

https://torproject.org
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1145/3075564.3075581
https://doi.org/10.1109/LCA.2019.2916328
https://doi.org/10.1109/PACT.2019.00020
https://doi.org/10.1109/ISPASS.2004.1291357
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/872757.872787
http://www.specbench.org/cpu2006/
https://doi.org/10.1145/2086696.2086714
https://doi.org/10.1109/90.851975
https://doi.org/10.1145/2757667.2757672
https://doi.org/10.1145/3316781.3317914
https://doi.org/10.1007/3-540-44709-1_21

9:22 C. Sakalis et al.

[17] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A survey of microarchitectural timing attacks and

countermeasures on contemporary hardware. Journal of Cryptographic Engineering 8, 1 (April 2018), 1–27. https://

doi.org/10.1007/s13389-016-0141-6

[18] Mrinmoy Ghosh, Emre Ozer, Simon Ford, Stuart Biles, and Hsien-Hsin S. Lee. 2009. Way Guard: A segmented counting

Bloom filter approach to reducing energy for set-associative caches. In Proceedings of the International Symposium on

Low Power Electronics and Design. ACM, New York, NY, 165–170. https://doi.org/10.1145/1594233.1594276

[19] Andrew F. Glew. 1998. MLP yes! ILP no. Retrieved September 24, 2022 from https://www.semanticscholar.org/paper/

MLP-yes!-ILP-no-Glew/b9b1144799183affa96c5becfd5920c039fb337e.

[20] Antonio González, Fernando Latorre, and Grigorios Magklis. 2010. Processor Microarchitecture: An Implementation

Perspective. MCP. https://doi.org/10.2200/S00309ED1V01Y201011CAC012

[21] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation leak-aside buffer: Defeating cache

side-channel protections with TLB attacks. In Proceedings of the USENIX Security Symposium. 955–972. https://www.

usenix.org/conference/usenixsecurity18/presentation/gras.

[22] Nicholas Haines, Darrell Kindred, J. Gregory Morrisett, Scott M. Nettles, and Jeannette M. Wing. 1994. Composing

first-class transactions. ACM Transactions on Programming Languages and Systems 16, 6 (Nov. 1994), 1719–1736. https:

//doi.org/10.1145/197320.197346

[23] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry Evtyushkin, Dmitry Ponomarev, and

Nael Abu-Ghazaleh. 2019. SafeSpec: Banishing the spectre of a meltdown with leakage-free speculation. In Proceedings

of the ACM/IEEE Design Automation Conference. 1–6.

[24] Seongmin Kim, Juhyeng Han, Jaehyeong Ha, Taesoo Kim, and Dongsu Han. 2018. SGX-Tor: A secure and practical

tor anonymity network with SGX enclaves. IEEE/ACM Transactions on Networking 26, 5 (Oct. 2018), 2174–2187. https:

//doi.org/10.1109/TNET.2018.2868054

[25] Sungkeun Kim, Farabi Mahmud, Jiayi Huang, Pritam Majumder, Neophytos Christou, Abdullah Muzahid, Chia-Che

Tsai, and Eun Jung Kim. 2020. ReViCe: Reusing victim cache to prevent speculative cache leakage. In Proceedings of the

IEEE Secure Development Conference. IEEE, Los Alamitos, CA, 96–107. https://doi.org/10.1109/SecDev45635.2020.00029

[26] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and Joel Emer. 2018. DAWG: A defense

against cache timing attacks in speculative execution processors. In Proceedings of the IEEE/ACM International Sym-

posium on Microarchitecture. IEEE, Los Alamitos, CA, 974–987. https://doi.org/10.1109/MICRO.2018.00083

[27] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis. In Proceedings of the Annual Interna-

tional Cryptology Conference, Michael Wiener (Ed.). Springer, 388–397. https://doi.org/10.1007/3-540-48405-1_25

[28] Jingfei Kong, Onur Aciicmez, Jean-Pierre Seifert, and Huiyang Zhou. 2008. Deconstructing new cache designs for

thwarting software cache-based side channel attacks. In Proceedings of the ACM Workshop on Computer Security Ar-

chitectures. ACM, New York, NY, 25–34. https://doi.org/10.1145/1456508.1456514

[29] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N. Khasawneh, Chengyu Song, and Nael Abu-

Ghazaleh. 2020. SpecCFI: Mitigating spectre attacks using CFI informed speculation. In Proceedings of the IEEE Sym-

posium on Security and Privacy. IEEE, Los Alamitos, CA, 39–53. https://doi.org/10.1109/SP40000.2020.00033

[30] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. 2019. Conditional speculation: An effective approach

to safeguard out-of-order execution against spectre attacks. In Proceedings of the International Symposium High-

Performance Computer Architecture. IEEE, Los Alamitos, CA, 264–276.

[31] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi. 2009. McPAT:

An integrated power, area, and timing modeling framework for multicore and manycore architectures. In Proceedings

of the IEEE/ACM International Symposium on Microarchitecture. ACM, New York, NY, 469–480. https://doi.org/10.1145/

1669112.1669172

[32] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and Norman P. Jouppi. 2011. CACTI-P: Architecture-level mod-

eling for SRAM-based structures with advanced leakage reduction techniques. In Proceedings of the 2011 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD’21). 694–701. https://doi.org/10.1109/ICCAD.2011.6105405

[33] Yangdi Lyu and Prabhat Mishra. 2018. A survey of side-channel attacks on caches and countermeasures. Journal of

Hardware and Systems Security 2, 1 (March 2018), 33–50. https://doi.org/10.1007/s41635-017-0025-y

[34] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer, Arthur Gervais, Ari Juels, and Srdjan

Capkun. 2017. ROTE: Rollback protection for trusted execution. In Proceedings of the USENIX Security Symposium.

1289–1306. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic.

[35] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel Gruss, Carlo Boano Boano, Stefan Man-

gard, and Kay Römer. 2017. Hello from the other side: SSH over robust cache covert channels in the cloud. In Proceed-

ings of the Network and Distributed System Security Symposium. 1–15. https://doi.org/10.14722/ndss.2017.23294

[36] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, and Toon Verwaest. 2019. Spectre is here to stay: An analysis

of side-channels and speculative execution. arXiv:1902.05178 [cs] (Feb. 2019), 1–26. http://arxiv.org/abs/1902.05178

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1145/1594233.1594276
https://www.semanticscholar.org/paper/MLP-yes!-ILP-no-Glew/b9b1144799183affa96c5becfd5920c039fb337e
https://doi.org/10.2200/S00309ED1V01Y201011CAC012
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://doi.org/10.1145/197320.197346
https://doi.org/10.1109/TNET.2018.2868054
https://doi.org/10.1109/SecDev45635.2020.00029
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1145/1456508.1456514
https://doi.org/10.1109/SP40000.2020.00033
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1109/ICCAD.2011.6105405
https://doi.org/10.1007/s41635-017-0025-y
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://doi.org/10.14722/ndss.2017.23294
http://arxiv.org/abs/1902.05178

Delay-on-Squash: Stopping Microarchitectural Replay Attacks in Their Tracks 9:23

[37] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom: How SGX amplifies the power of cache

attacks. In Proceedings of the International Workshop on Cryptographic Hardware and Embedded Systems, Wieland

Fischer and Naofumi Homma (Eds.). Springer, 69–90. https://doi.org/10.1007/978-3-319-66787-4_4

[38] Andreas Moshovos. 2005. RegionScout: Exploiting coarse grain sharing in snoop-based coherence. In Proceedings of

the 32nd International Symposium on Computer Architecture (ISCA’05). 234–245. https://doi.org/10.1109/ISCA.2005.42

[39] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and countermeasures: The case of AES. In Pro-

ceedings of the RSA Conference, David Pointcheval (Ed.). Springer, 1–20. https://doi.org/10.1007/11605805_1

[40] Daniel Page. 2005. Partitioned cache architecture as a side-channel defence mechanism. IACR Cryptology ePrint

Archive (Aug. 2005), 1–14. https://eprint.iacr.org/2005/280

[41] Gururaj Saileshwar and Moinuddin K. Qureshi. 2019. CleanupSpec: An “Undo” approach to safe speculation. In Pro-

ceedings of the IEEE/ACM International Symposium on Microarchitecture. ACM, New York, NY, 73–86. https://doi.org/

10.1145/3352460.3358314

[42] Christos Sakalis, Mehdi Alipour, Alberto Ros, Alexandra Jimborean, Stefanos Kaxiras, and Magnus Själander. 2019.

Ghost loads: What is the cost of invisible speculation? In Proceedings of the ACM International Conference on Computing

Frontiers. ACM, New York, NY, 153–163. https://doi.org/10.1145/3310273.3321558

[43] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Magnus Själander. 2019. Efficient invisible

speculative execution through selective delay and value prediction. In Proceedings of the International Symposium on

Computer Architecture. 723–735.

[44] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Magnus Själander. 2020. Understanding

selective delay as a method for efficient secure speculative execution. IEEE Transactions on Computers 69, 11 (Nov.

2020), 1584–1595. https://doi.org/10.1109/TC.2020.3014456

[45] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina, Thomas Prescher, and Daniel Gruss.

2019. ZombieLoad: Cross-privilege-boundary data sampling. In Proceedings of the ACM SIGSAC Conference on Com-

puter and Communications Security. ACM, New York, NY, 753–768. https://doi.org/10.1145/3319535.3354252

[46] Andreas Sembrant, David Eklov, and Erik Hagersten. 2011. Efficient software-based online phase classification. In

Proceedings of the 2011 IEEE International Symposium on Workload Characterization (IISWC’11). IEEE, Los Alamitos,

CA, 104–115. https://doi.org/10.1109/IISWC.2011.6114207

[47] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W. Fletcher. 2019. MicroScope: Enabling mi-

croarchitectural replay attacks. In Proceedings of the International Symposium on Computer Architecture. 318–331.

https://doi.org/10.1145/3307650.3322228

[48] Dimitrios Skarlatos, Zirui Neil Zhao, Riccardo Paccagnella, Christopher W. Fletcher, and Josep Torrellas. 2021. Jamais

Vu: Thwarting microarchitectural replay attacks. In Proceedings of the 26th ACM International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS’21). ACM, New York, NY, 1061–1076.

https://doi.org/10.1145/3445814.3446716

[49] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2019. Context-sensitive fencing: Securing specula-

tive execution via microcode customization. In Proceedings of the 24th ACM International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS’19). ACM, New York, NY, 395–410.

https://doi.org/10.1145/3297858.3304060

[50] Kim-Anh Tran, Christos Sakalis, Magnus Själander, Alberto Ros, Stefanos Kaxiras, and Alexandra Jimborean. 2020.

Clearing the shadows: Recovering lost performance for invisible speculative execution through HW/SW co-design.

In Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques. ACM, New

York, NY, 241–254. https://doi.org/10.1145/3410463.3414640

[51] H. Vandierendonck and K. De Bosschere. 2005. XOR-based hash functions. IEEE Transactions on Computers 54, 7 (July

2005), 800–812. https://doi.org/10.1109/TC.2005.122

[52] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu Tang,

and Carl A. Gunter. 2017. Leaky cauldron on the dark land: Understanding memory side-channel hazards in SGX. In

Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. ACM, New York, NY, 2421–

2434. https://doi.org/10.1145/3133956.3134038

[53] Zhenghong Wang and Ruby B. Lee. 2006. Covert and side channels due to processor architecture. In Proceedings of the

Annual Computer Security Applications Conference. IEEE, Los Alamitos, CA, 473–482. https://doi.org/10.1109/ACSAC.

2006.20

[54] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F. Wenisch, and Baris Kasikci. 2019. NDA: Preventing speculative

execution attacks at their source. In Proceedings of the IEEE/ACM International Symposium on Microarchitecture. ACM,

New York, NY, 572–586. https://doi.org/10.1145/3352460.3358306

[55] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel attacks: Deterministic side channels for

untrusted operating systems. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE, Los Alamitos, CA,

640–656. https://doi.org/10.1109/SP.2015.45

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

https://doi.org/10.1007/978-3-319-66787-4_4
https://doi.org/10.1109/ISCA.2005.42
https://doi.org/10.1007/11605805_1
https://eprint.iacr.org/2005/280
https://doi.org/10.1145/3352460.3358314
https://doi.org/10.1145/3310273.3321558
https://doi.org/10.1109/TC.2020.3014456
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1109/IISWC.2011.6114207
https://doi.org/10.1145/3307650.3322228
https://doi.org/10.1145/3445814.3446716
https://doi.org/10.1145/3297858.3304060
https://doi.org/10.1145/3410463.3414640
https://doi.org/10.1109/TC.2005.122
https://doi.org/10.1145/3133956.3134038
https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1109/SP.2015.45

9:24 C. Sakalis et al.

[56] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher Fletcher, and Josep Torrellas. 2018. Invi-

siSpec: Making speculative execution invisible in the cache hierarchy. In Proceedings of the IEEE/ACM International

Symposium on Microarchitecture. 428–441. https://doi.org/10.1109/MICRO.2018.00042

[57] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A high resolution, low noise, L3 cache side-channel attack.

In Proceedings of the USENIX Security Symposium. 719–732.

[58] Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison, and Christopher W. Fletcher. 2020. Speculative data-

oblivious execution: Mobilizing safe prediction for safe and efficient speculative execution. In Proceedings of the Inter-

national Symposium on Computer Architecture. 707–720. https://doi.org/10.1109/ISCA45697.2020.00064

[59] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and Christopher W. Fletcher. 2019. Specula-

tive taint tracking (STT): A comprehensive protection for speculatively accessed data. In Proceedings of the IEEE/ACM

International Symposium on Microarchitecture. ACM, New York, NY, 954–968. https://doi.org/10.1145/3352460.3358274

[60] Jason Zebchuk, Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Andreas Moshovos. 2009. A tagless coherence

directory. In Proceedings of the 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’09).

423–434. https://doi.org/10.1145/1669112.1669166

[61] Pan Zhang, Chengyu Song, Heng Yin, Deqing Zou, Elaine Shi, and Hai Jin. 2020. Klotski: Efficient obfuscated execution

against controlled-channel attacks. In Proceedings of the 25th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS’20). ACM, New York, NY, 1263–1276. https://doi.org/10.1145/

3373376.3378487.

[62] Zirui Neil Zhao, Houxiang Ji, Mengjia Yan, Jiyong Yu, Christopher W. Fletcher, Adam Morrison, Darko Marinov,

and Josep Torrellas. 2020. Speculation invariance (InvarSpec): Faster safe execution through program analysis. In

Proceedings of the IEEE/ACM International Symposium on Microarchitecture. IEEE, Los Alamitos, CA, 1138–1152. https:

//doi.org/10.1109/MICRO50266.2020.00094

Received 2 November 2021; revised 15 July 2022; accepted 2 September 2022

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 9. Publication date: November 2022.

https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1109/ISCA45697.2020.00064
https://doi.org/10.1145/3352460.3358274
https://doi.org/10.1145/1669112.1669166
https://doi.org/10.1145/3373376.3378487
https://doi.org/10.1109/MICRO50266.2020.00094

