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1 Introduction

The higher derivative scalar field theory with action∫
ddxφ�2φ (1.1)

has a dubious reputation among relativistic quantum field theorists. For a metric with
Lorentzian signature, a ∂4

t time derivative in the Lagrangian indicates the presence of
ghosts and the Ostrogradski instability. If we think of �2φ = 0 governing just the spatial
degrees of freedom, then we are forced to treat time differently and sacrifice the sacred
cow of Lorentz invariance. Even in a purely Euclidean context, if we insist on conformal
symmetry, then the scaling dimension of φ is below the unitarity bound, making the theory
non-unitary.
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Yet the equation of motion �2φ = 0 in a Euclidean context is of enormous practical
interest. It was shown about two hundred years ago that this equation for d = 2 governs
small deformations of thin plates [1–3]. Since then it has played an important role in the
engineering community where to this day it is discussed in textbooks [4–6]. (The d = 1
case governs the deformation of beams.)1

Our interest in the theory (1.1) is more formal. It and its bosonic and fermionic
cousins, ∫

ddxφ�kφ and
∫
ddxψ/∂

2k+1
ψ , (1.2)

for k a positive integer provide nontrivial yet tractable examples of Conformal Field Theo-
ries (CFTs) where we can try to classify the set of conformal boundary conditions and the
Renormalization Group (RG) flows between them. Issues with ghosts, instabilities, and
non-unitarity we are able for the most part to ignore. That the �2φ = 0 theory has an en-
gineering application will give our results in this case an interesting physical interpretation,
as we will see.

As a warm-up, let us try to establish under what boundary conditions the operator �2

is symmetric with respect to the inner product (1.1). For an elliptic problem, we should try
to enforce two boundary conditions along each edge. For simplicity, we will consider here a
single, flat edge along the plane xn = 0. Two obvious possibilities are to set Φ(0) ≡ φ|bry = 0
and Φ(1) ≡ ∂nφ|bry = 0 along the edge. The boundary conditions for higher powers of the
normal derivative are more ambiguous however. We are free to consider the homogeneously
scaling combinations

Φ(2) ≡ ∂2
nφ+ ν�‖φ

∣∣∣∣
bry

and Φ(3) ≡ ∂3
nφ+ µ∂n�‖φ

∣∣∣∣
bry

with arbitrary coefficients µ and ν and still have boundary conditions compatible with the
residual rotational and translational invariance of the problem.

If we integrate by parts several times, we find that∫
ddxφ′�2φ =

∫
ddx (�2φ′)φ+

∫
dd−1x

(
Φ′(0)Φ(3) − Φ′(3)Φ(0) − Φ′(1)Φ(2) + Φ′(2)Φ(1)

+ (2− µ− ν)(Φ′(0)�‖Φ(1) − Φ′(1)�‖Φ(0))
)
.

(1.3)

There are three pairs of boundary conditions which will eliminate the boundary terms,

DD : Φ(0) = 0 , Φ(1) = 0 , (1.4)
DN : Φ(0) = 0 , Φ(2) = 0 , (1.5)
ND : Φ(1) = 0 , Φ(3) = 0 , (1.6)

1The flow of a viscous incompressible fluid on a plane is described by the biharmonic equation [7].
We should also mention the semi-flexible polymers which are governed by a one dimensional biharmonic
equation of motion [8]. There is further extensive literature on Lifshitz theories, which involve a �2 kinetic
term in some directions and a � kinetic term in others (see e.g. refs. [9–11] for a discussion of Lifshitz
theories with a boundary).
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and a fourth which works only if µ+ ν = 2,

NN : Φ(2) = 0 , Φ(3) = 0 . (1.7)

The DD, DN , and NN boundary conditions were identified over a hundred years ago
by Kirchoff and others as important in the description of the equilibrium configuration of a
thin plate [12–14].2 The condition DD describes a clamped edge, i.e. a plate embedded in
a wall such that not only its position is fixed but the horizontal angle at which it protrudes
as well. An edge that is free and simply supported, for example by a wedge support
underneath, is described by DN . Finally the boundary condition NN (along with the
constraint µ + ν = 2) describes a free and unsupported edge. The textbook derivations
of these boundary conditions often rely on a free body diagram of the edge along with
corresponding forces and torques, and not on abstract properties of the operator �2.

The coefficient ν for the plate is Poisson’s ratio: the distance a material is compressed
divided by the distance it expands laterally. In an isotropic, two parameter model of
elasticity, it is determined by the bulk modulus K and shear modulus σ [6]:

ν = 1
2

3K − 2σ
3K + σ

. (1.8)

The bulk modulus K determines the energy change of a material under compression while σ
gives the same for shear deformations. For thermodynamic stability, both must be positive
semi-definite, which in turn means Poisson’s ratio is bounded between −1 (for K = 0) and
1
2 (for σ = 0). Liquids, which are incompressible and offer little if any resistance to shear
forces, have ν = 1

2 . Materials with negative Poisson’s ratio are sometimes called auxetic
materials. We will see later that the theory is scale invariant for any ν, but the requirement
of conformal invariance forces us to choose ν = −1 for our boundary conditions. Such
materials are shape invariant under compression and have a stress-tensor with a vanishing
trace.3

It is interesting that we land on the same boundary conditions through the requirement
that �2 be a symmetric operator. In the text, we will impose a stronger requirement, that
these Φ(i) be primary operators with respect to the boundary conformal group. This
requirement will allow us to systematically analyze not just the �2φ theory but all of
the �kφ theories as well as their fermionic cousins /∂2k+1

ψ. Moreover, the requirement of
conformal invariance will fix the coefficients in the boundary conditions uniquely, choosing
ν = −1 in the �2φ case.

In addition to material science, our work has a connection to results in conformal
geometry [16, 17]. A natural curved space generalization of �2 is the Paneitz operator [18,
19]. The Paneitz operator 44 is a fourth order differential operator which has the property
that, under Weyl transformations of the metric, gµν → Ω2gµν , it transforms covariantly

Ω−
d
2−244(g)φ = 44(Ω2g)Ω−

d
2 +2φ . (1.9)

2The labeling convention DD, DN , etc. is our own. We will explain the reason for our choice of the
letters N and D in section 3.

3For a history of Poisson’s ratio, see ref. [15].
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More generally, �k is promoted in curved space to a GJMS operator 42k [20], and there
is a similar promotion of /∂2k+1 to the spinor GJMS operator /42k+1 [21–23]. The case
42 = �+ d−2

4(d−1)R gives the familiar equation of motion for the conformally coupled scalar.
The rule (1.9) guarantees that the curved space generalization of (1.1) is Weyl invariant. In
flat space, we can then expect a residual conformal invariance — the set of diffeomorphisms
that leave the metric invariant up to Weyl rescaling.

The relation between our theories and the GJMS operators leads to an interesting
discussion about the stress-energy tensor [24, 25]. Being careful about the higher derivative
terms, the usual Noether procedure for translational symmetry can be used on our �kφ

and /∂
2k+1

ψ theories to derive a stress tensor. However, this stress tensor is not traceless
nor in fact a primary with respect to the conformal group. However, it can be “improved”
in a unique way to have these properties.4 There is a corresponding stress tensor that can
be derived by varying the curved space action, involving the GJMS operators, with respect
to the metric. A conjecture of [24, 25] is that the “improved” stress tensor and the stress
tensor that comes from the curved space action are generically the same.5

As we have already stated, our interest here is in these conformal theories in the
presence of a boundary. In studying the conditions under which 44 and 46 are symmetric
operators, Case and Luo [16, 17] characterized boundary differential operators B3

i , i =
0, 1, 2, 3 and B5

i , i = 0, 1, . . . , 5, respectively. The B3
i in the flat space limit become perhaps

not surprisingly precisely our Φ(i). The B5
i also match our results for the �3φ theory, as

we will see later. To our knowledge, explicit formulae for the higher order 4k are not yet
available but see refs. [31, 32].

Results. The work is dense with many new results about these �kφ and /∂2k+1
ψ theories,

and it is useful to tabulate the highlights:

• For the �kφ theory, there are 2k boundary primary operators that one can construct
from a single φ and derivatives. We label them Φ(k,q) where q = 0, 1, . . . , 2k−1. There
is a natural pairing among the boundary primaries, (Φ(k,q),Φ(k,2k−q−1)). Conformal
boundary conditions consist of choosing one member of each pair to set to zero.

• For the /∂2k+1
ψ theory, there are 4k + 2 boundary primaries that one can construct

from a single ψ field, derivatives and gamma matrices. We label them Ψ(k,q)
± where

now q = 0, 1, . . . , 2k. There is a similar natural pairing that now also involves the
chirality with respect to the gamma matrix in the normal direction γn:

(Ψ(k,q)
+ ,Ψ(k,2k−q)

− ) .

In this case, conformal boundary conditions consist of setting either Ψ(k,q)
+ or Ψ(k,2k−q)

−
to zero for each pair.

4An extension of the usual Noether procedure that yields the improved stress tensor is described in [26].
5In fact, there is an obstruction to the construction of this stress tensor for the scalar theory which can

occur in d = 2k, 2k−2, 2k−4, . . . . The stress tensor for the �2φ theory in d = 2 cannot be made traceless,
which has given rise to a lengthy discussion in the literature about scale vs. conformally invariant theories
of elasticity [27–30].
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• In the case of the �2φ theory, we explicitly show that the generators of the conformal
symmetry group are time independent given the boundary conditions. For the DD,
ND, and DN cases, we find the usual Cardy boundary condition that the normal-
tangential component of the stress tensor must vanish, Tna|bry = 0 [33]. The NN
case is more subtle, as it requires a boundary contribution to the stress tensor in
order to maintain conformal symmetry.

• We characterize flows between the different boundary conditions. These flows are
caused by adding a term quadratic in the (nonzero) boundary primaries to the bound-
ary action. In the case that such a term has scaling dimension less than d − 1 (i.e.
relevant in the language of the RG) both fields are set to zero at the infrared (IR)
fixed point of the flow.

• We compute the 〈φφ〉 and 〈ψψ〉 two-point functions for the �kφ and /∂2k+1
ψ theories,

respectively.

• Boundary Conformal Field Theories (BCFTs) come with a protected scalar operator
of dimension d, the displacement operator, which is sourced by deformations of the
location of the boundary. We compute the displacement two point function for the
�2φ theory, the �3φ theory and the /∂3

ψ theory with all possible conformal boundary
conditions.
The strength of this two point function is related to an anomalous contribution to
the trace of the stress tensor. The cases d = 3 [34, 35], 4 [36] and 5 [37, 38] have
been worked out in full details, while in [37] such a relation has been discussed
perturbatively for any even-dimensional boundary or defect.

• We compute the free energy on a hemisphere for our theories. The curved space
requires promoting the �k and /∂

2k+1 operators to their GJMS generalizations, but
the GJMS operators on the sphere are sufficiently simple [39] that we are able to
extract the free energy. While for unitary theories this quantity is expected to be
monotonic under RG flow [40–43], our theories are non-unitary and are not ordered
by this quantity, as we see explicitly.

• We discuss a duality that can be constructed from a pair of our �kφ theories with
conjugate boundary conditions. By adding the boundary marginal operator

gΦ(k,q)
R Φ(k,2k−q−1)

L

with a large coefficient g, we can tune to a related theory where the boundary con-
ditions of these two theories, for this particular pair of primaries, are swapped. The
theory is dual to the theory with swapped boundary conditions and deformation
1
gΦ(k,q)

L Φ(k,2k−q−1)
R . The duality is a generalization of an effect discussed by Wit-

ten [44] in an AdS/CFT context.

An outline of this work is as follows. Section 2 sets up some conventions and pro-
vides further details about the definition of our �kφ and /∂

2k+1
ψ theories. Section 3 is
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the heart of the work, providing a derivation of the boundary primaries, the corresponding
set of conformal boundary conditions, and a discussion of the flows between them. The
compatibility of our boundary conditions with the Cardy condition Tna = 0 is also dis-
cussed. Then in section 4, we compute the hemisphere free energy and the displacement
two-point function (along with a brief derivation of the 〈φφ〉 and 〈ψψ〉 two-point functions
in these theories). Section 5 is a brief discussion of a curious duality involving a pair of our
boundary theories with conjugate boundary conditions. A concluding section 6 mentions
some future directions, in particular the problems of quantum gravity, interactions and low
dimensions.

There are two appendices. Appendix A contains additional details about the higher
derivative scalar theories. Appendix A.1 derives the form of the �kφ propagator without
assuming conformal symmetry. The constraints imposed on this propagator by demand-
ing boundary conformal symmetry are explored in appendix A.2. Finally, the effect of a
relevant boundary deformation on the form of the two-point function is computed in ap-
pendix A.3. Appendix B discusses the regularization scheme independent constant term
in the hemisphere free energy in the odd dimensional cases.

2 Background

2.1 Boundaries in CFTs

In this subsection, we review some of the basic aspects of boundaries in CFTs that will
be useful in the following sections. We begin by introducing the notation and conventions
that we will use throughout unless otherwise noted in exceptional cases. The background
geometryM on which we define our theories will typically be a d-dimensional Minkowski
spacetime M = Rd−1,1. We choose coordinates xµ and mostly plus signature metric η =
diag(−1,+1, . . . ,+1) such that the line element is

ds2 = ηµνdx
µdxν , (2.1)

where the spacetime indices µ, ν run from 0, . . . , d− 1 and x0 ≡ t.
As written, the space has no boundary, but one can be suitably introduced by the spec-

ification and embedding of a boundary hypersurface. The boundary hypersurface takes a
single spatial coordinate xn to be valued on the half-line R≥0 such that the induced geom-
etry on the boundary manifold Rd−2,1 is simply the pullback of the bulk geometry to the
boundary by the hypersurface embedding xn = 0 . That is, we take as a coordinatization
of ∂M = Rd−2,1 to be xa where the boundary spacetime indices a, b run from 0, . . . , d− 2.
The boundary metric and line element are ηab and

ds2
‖ = ηabdx

adxb . (2.2)

In order to distinguish bulk and boundary, we will denote quantities tangential to the
boundary by a ‖ subscript, e.g. f(x‖) is a function solely of xa coordinates.

– 6 –
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2.2 Higher derivative free CFTs

We start with a manifoldM in d dimensions, a metric gµν onM, and a scalar field φ(x).
We envision a quadratic action for φ(x) that is invariant both under diffeomorphisms and
Weyl transformations. Moreover, we assume that the Weyl transformations act on both
the metric, gµν → Ω(x)2gµν , and on the scalar field, φ(x)→ Ω− d2 +kφ(x), where k ∈ N and
Ω(x) is a real function:

S
(k)
φ,4 = −1

2

∫
ddx

√
|g|φ42kφ . (2.3)

This action requires the existence of a special scalar differential operator 42k with the
property that 42k → Ω− d2−k42kΩ

d
2−k under Weyl transformations. These operators are

the GJMS operators [20].
While the precise form of these operators, written out in terms of curvatures and

covariant derivatives, can be complicated, special cases can be very simple to write down.
The special case that will occupy most of this paper is flat space, where the GJMS operator
reduces to an integer power of the Laplacian, 42k|flat space = �k:

S
(k)
φ,� = (−1)k

2

∫
ddx

√
|g|φ�kφ . (2.4)

We have introduced a sign to guarantee that the expression is positive definite. Up to
boundary terms, an alternative formulation of this action makes the positivity clear,

S
(k)
φ, sym = 1

2

∫
ddx ∂µ1 . . . ∂µkφ∂

µ1 . . . ∂µkφ , (2.5)

where we have further assumed the Minkowski metric η.6
As a consequence of the invariance of eq. (2.3) under diffeomorphism and Weyl trans-

formations, the flat space action eq. (2.4) has a residual invariance under the conformal
group, i.e. the set of diffeomorphisms that leave the metric invariant up to Weyl transfor-
mations. As a consequence, this family (2.4) of free scalar field theories forms a nice set of
examples of CFTs. Unfortunately, for all cases k > 1, they are also known to have certain
pathologies. For example, when written in a Hamiltonian formulation, the Hamiltonian is
linear in one or more conjugate momenta and hence unbounded below [45], as we remind
the reader in section 6. This phenomenon is dubbed the Ostrogradsky instability. Further-
more, the dimension of the scalar field ∆ = d

2 − k is less than the unitarity bound d
2 − 1 on

scalar representations of the conformal group [46]. Hence these theories are non-unitary.
While these issues form a backdrop to the discussion here, we offer no solutions, instead
focusing on the task of understanding how to preserve conformal symmetry in the presence
of a flat boundary.

6We stress that in this case one would need to add additional boundary terms to ensure the theory
preserves the maximum possible amount of spacetime symmetries in the presence of a flat edge, i.e. the
subgroup SO(d−1, 2) of the bulk conformal group SO(d, 2). These additional terms would bring the action
eq. (2.5) back to eq. (2.4). For this reason, in the rest of the paper we find it convenient to work with the
action eq. (2.4).
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A similar construction can be made for fermions using the spinor GJMS operator [21–23]:

S
(k)
ψ,4 = i

∫
ddx|e|ψ4/ 2k+1ψ , (2.6)

where e denotes the determinant of an orthonormal frame and the Dirac adjoint is ψ̄ = ψ†γ0.
In flat space in Minkowski coordinates and for a stationary frame, this action can be written
in the symmetric form

S
(k)
ψ, sym = i

2

∫
ddx (ψ

→
/∂2k+1ψ − ψ

←
/∂2k+1ψ) , (2.7)

where /∂2k+1 contains 2k + 1 powers of the Dirac operator /∂ = γµ∂µ and {γµ, γν} = 2ηµν .
Similar issues with unitarity are present in the fermionic theory, which we shall largely
ignore, again focusing on the task of understanding conformal boundary conditions for
spinors.

3 Boundary primaries and conformal boundary conditions

In this section, we identify a simple class of boundary conformal primaries in free BCFTs.
We consider two examples: higher derivative theories of scalars and fermions. We then
show how these boundary primaries in higher derivative theories can be used to construct
boundary conditions consistent with a conserved boundary conformal symmetry.

3.1 Boundary conformal primaries

To begin, we recall the form of the bulk d-dimensional conformal algebra for generators of
dilatations D, translations Pµ, Lorentz rotations Mµν , and special conformal transforma-
tions Kµ:

[D, Pµ] = iPµ , [D, Kµ] = −iKµ , [Pµ, Mνλ] = iηµλPν − iηµνPλ ,
[Pµ, Kν ] = 2i(Mµν − ηµνD) , [Kµ, Mνλ] = iηµλKν − iηµνKλ ,

[Mµν , Mλρ] = iηµλMνρ − iηνλMµρ − iηµρMνλ + iηνρMµλ .

(3.1)

Commutators not given are zero. These generators together generate the group SO(d, 2)
in Lorentzian signature. For a given bulk primary state |OI〉 ≡ OI(0)|Ω〉 formed by the
action of the bulk primary operator OI(x) on the vacuum state, the action of the conformal
generators must satisfy the following properties

D|OI〉 = i∆|OI〉 ,
Mµν |OI〉 = −(Mµν)IJ |OJ〉 ,
Kµ|OI〉 = 0 .

(3.2)

The introduction of a boundary breaks this group at least to SO(d−1, 2), the conformal
group of the boundary. Starting with the bulk generators (3.2), we lose Kn, Pn, and Mµn

from the symmetry algebra. The conformal multiplet generated by the Pµ acting on a

– 8 –
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primary OI will decompose into a tower of boundary multiplets. From OI , we can form
new boundary primary operators of the schematic form (P jn + . . .)|OI〉, each of which is
annihilated by all of the Ka but not necessarily by Kn. The precise form of the corrections
we now explicate in the case of a scalar and spinor OI .

A key lemma in the construction of the boundary primaries is found by repeated use of
eqs. (3.1) and (3.2). One can inductively prove that the action of Kµ on a bulk descendant
of the primary state |OI〉 takes the form7

KµPν1 . . . Pνq |OI〉 = 2
q∏
i=1

Pνi

q∑
j=1

 1
Pνj

(iMµνj − (∆ + q − 1)ηµνj ) +
q∑

l=j+1

ηνjνlPµ

PνjPνl

 |OI〉 .
(3.3)

As a first example, let us consider building boundary primary states in a bulk theory
of free scalars where the bulk primary states |φ〉 have ∆ = d−2k

2 and obey Mµν |φ〉 = 0 for
all µ, ν. We denote by |Φ(k,q)〉 the boundary primary state that is constructed from the
level q descendants of |φ〉. By inspection of eq. (3.3), we can easily pick out combinations
of bulk descendants of scalar primary states that will give boundary primaries at the first
few levels

|Φ(k,0)〉 = |φ〉 ,
|Φ(k,1)〉 = Pn|φ〉 ,

|Φ(k,2)〉 =
(
P 2
n −

1
2k − 3P

aPa

)
|φ〉 .

(3.4)

It is worth noting that for k = 1, Φ(1,2) = �φ, which is the equation of motion. In other
words, for the usual free scalar theory, there are only two nontrivial boundary primaries,
Φ(1,0) and Φ(1,1). The operators Φ(1,q) for q ≥ 2 are redundant, i.e. they vanish on the
equations of motion. We will see momentarily that more generally, there are exactly 2k
boundary primaries. Another interesting case is k = 3

2 which corresponds to a scalar
operator of dimension d−3

2 , which saturates the unitarity bound of a d − 1 dimensional
theory.8 We expect such an operator to be in the kernel of the boundary Laplacian, PaP a.
It is perhaps not surprising then that the boundary primary Φ( 3

2 ,2) corresponds to this null
state PaP a|φ〉.

Lorentz invariance suggests the following ansatz generalizing the result (3.4)

|Φ(k,q)〉 =
b q2 c∑
j=0

α
(k,q)
j P 2j

‖ P
q−2j
n |φ〉 , (3.5)

where P 2
‖ = P aPa. Before computing the α(k,q)

j , we make some general observations about
these candidate boundary primaries.

7We divide by Pµ in this formula purely as a book keeping device, in order not to remove the corre-
sponding Pµ from the product.

8While we are mainly interested in theories with integer k, the argument in this subsection depends
purely on representation theory of the conformal group. Hence we are free to set k and correspondingly ∆
to any real or indeed complex value.
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• By orthogonality, we expect to find only one boundary primary for a given (k, q)
pair. Indeed, the primary at level q depends on b q2c+ 1 coefficients and must have a
vanishing two-point function with all the boundary primaries of Pn degree less than
q. If the Pn degrees of two boundary primaries have different parity, then their two-
point function automatically vanishes on the boundary.9 There will be b q2c boundary
primaries of smaller degree and the same parity. Insisting that our level q primary
is orthogonal to all of them, one can fix the coefficients in eq. (3.5) up to an over-all
normalization. We are thus left with a single boundary primary for each level.

• By using the equation of motion �kφ = 0, we can reduce the Pn degree of a boundary
primary below 2k. Thus we expect all Φ(k,q) boundary primaries with q ≥ 2k to be
redundant.

Taken together, these two observations imply that there will be exactly 2k boundary pri-
maries of the form (3.5), one for each q = 0, 1, . . . , 2k − 1.

The goal then is to determine the coefficients α(k,q)
j such that Ka|Φ(k,q)〉 = 0. A special

case of (3.3) useful in computing the α(k,q)
j is

KaP
2l
‖ P

m
n |φ〉 =

(
2l(2k − 2m− 2l − 1)P 2

n +m(m− 1)P 2
‖

)
PaP

2(l−1)
‖ Pm−2

n |φ〉 . (3.6)

Solving Ka|Φ(k,q)〉 = 0 gives a recursion relation for the coefficients

α
(k,q)
j = −(2j − q − 2)(2j − q − 1)

2j(2k + 2j − 2q − 1) α
(k,q)
j−1 , (3.7)

with, choosing a convenient overall normalization, initial data α(k,q)
0 = 1. The solution to

eq. (3.7) is easily found,

α
(k,q)
j = (−1)j

2j
q!

j!(q − 2j)!
(2k − 2q − 1)!!

(2k + 2j − 2q − 1)!! , (3.8)

which determines the coefficients in eq. (3.5) such that |Φ(k,q)〉 is a boundary primary. As
expected, we find just one solution for each (k, q) pair.

Given the ability to employ the equation of motion, the special case Φ(k,2k) is worth a
closer look. In this case, the coefficients α(k,q)

j reduce to the binomial distribution

α
(k,2k)
j =

(
k

j

)
, (3.9)

and the corresponding operator Φ(k,2k) = �kφ is the equation of motion for the scalar field.
In other words Φ(k,2k) is redundant and therefore null. More generally, all further Φ(k,q)

with q = 2k + i for i ≥ 0 can be written as �k times a polynomial in Pn and P 2
‖ ,

|Φ(k,2k+i)〉 =

b
i
2 c∑
j=0

(2j − 1)!!(2k − 2j + 2i− 1)!!
(2k + 2i− 1)!!

(
i

2j

)
P 2j
‖ P

i−2j
n

P 2k|φ〉 , (3.10)

such that these operators are also null.
9This can be seen by taking appropriate derivatives of the bulk two-point function 〈φφ〉 in a near-

boundary expansion.
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We can also consider, as a concrete example, the theory of higher derivative free
fermions (2.7), whose primary states |ψ〉 have dimension ∆ = d−1

2 − k. For this theory, the
analysis is changed slightly as compared to the bulk higher derivative scalar since the bulk
spinor primaries |ψ〉 live in non-trivial irreducible representations (irreps) of the bulk Spin
group and thus are not annihilated by the conformal generator10

Mµν = − i2γµν . (3.11)

Further in the presence of a boundary, care must be taken as the bulk spinor primary does
not live in an irrep of the boundary Spin group. Indeed, we can decompose the bulk 2b d2 c-
dimensional Dirac spinor into boundary 2b d2 c−1 spinors, which are eigenfunctions of γn. In
other words, under the action of the boundary projector Π± = 1

2(1 ± γn), the boundary
primary states |ψ±〉 = Π±|ψ〉 live in irreps of the boundary Spin group.

In starting the search for a general expression for boundary spinor primaries |Ψ(k,q)〉,
a modification to eq. (3.5) needs to be made, where we can contract a free index on Pa not
just with another P a but also with γa. The first few primaries take the form

|Ψ(k,0)〉 = |ψ〉 ,

|Ψ(k,1)〉 =
(
Pnγ

n − 1
2k − 1Paγ

a
)
|ψ〉 ,

|Ψ(k,2)〉 =
(
P 2
n + 2

2k − 3PaPnγ
aγn − 1

2k − 3P
2
‖

)
|ψ〉 ,

(3.12)

which then also need to be projected onto irreps of the boundary Spin group by appropriate
use of Π±. As Π± does not commute with γa, the projection requires that the terms in
a near boundary expansion of ψ have alternating chirality with respect to γn. If the
boundary limit of ψ has positive chirality, then ∂nψ must have negative chirality, ∂2

nψ has
again positive chirality and so on.

As a consistency check, we can examine these boundary primaries for k = 0, where
we expect only Ψ(0,0) to be nontrivial. Indeed we find Ψ(0,1) reduces to the Dirac operator
acting on |ψ〉. Furthermore Ψ(0,2) becomes 3P 2

n − 2PaPnγaγn + P 2
‖ acting on |ψ〉 which

factors as (3/Pn + /P ‖)(/Pn + /P ‖), with the Dirac operator to the right. Thus it is also null.
The k = 1

2 case is also interesting, as the dimension of ψ saturates the unitarity bounds for
a theory in d− 1 dimensions. Indeed, Ψ( 1

2 ,1) becomes the d− 1 dimensional Dirac operator
acting on ψ in this case.

The computation of the most general boundary spinor primary states constructed
from level q descendants of bulk spinor primary states follows the logic of the derivation of
eq. (3.8) for the case of higher derivative scalars, and so we will quote the result without

10We point out an important relative sign. These generators will give rise to the commutation rela-
tions (3.1). However, in applying these generators to a state, we need to include the extra minus sign that
appears in (3.2).
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reproducing the steps:

|Ψ(k,q)〉 =

b
q
2 c∑
j=0

α
(k,q)
j P 2j

‖ P
q−2j
n + (−1)q

b q−1
2 c∑
i=0

(q − 2i)α(k,q)
i

2k + 2i− 2q + 1PaP
2i
‖ P

q−2i−1
n γaγn

 γqn|ψ〉 .
(3.13)

Again, we must project this object using Π±. Generalizing the discussion above for k = 0,
note that at level q = 2k+ 1, the differential operator acting on |ψ〉 can be rewritten as the
kinetic operator, /∂2k+1. Hence, there exists a redundant state in the boundary spectrum
precisely at q = 2k+ 1 for all k. Indeed, analogous to the scalar case, we claim that for all
q ≥ 2k+ 1, Ψ(k,q) can be written as a polynomial in Pn, Pa, γn and γa multiplied by /∂2k+1
acting on ψ and is thus redundant. In other words, only Π±Ψ(k,q) for q = 0, 1, . . . , 2k are
nontrivial boundary states.

3.2 Conformal boundary conditions

The standard lore of conformal boundary conditions in general dimensions is that in or-
der to preserve conformal symmetry at the boundary, the generalized Cardy condition,
Tna|∂M = 0, necessarily holds. In this subsection, we consider the examples of higher
derivative free CFTs introduced above and explore a different definition of conformal bound-
ary conditions. We define conformal boundary conditions in terms of a set of boundary
primaries {OI} that annihilate the vacuum, OI |Ω〉 = 0, and satisfy the variational princi-
ple.

It turns out that these definitions of conformal boundary condition may be different.
While we do not have good expressions for Tna in general, in the case of the �2φ theory
we can check that the condition Tna|∂M = 0 is too restrictive.

Higher derivative scalar BCFT. We begin with the higher derivative scalar CFT in
eq. (2.4). Varying with respect to φ generates a boundary term

δS
(k)
φ,� = . . .+ (−1)k

2

2k−1∑
j=0

k−1−b j2 c∑
l=0

(−1)j k!
l!(k − l)!

∫
dd−1x‖∂

j
nδφ�

l
‖∂

2k−2l−j−1
n φ , (3.14)

where the terms in . . . are bulk variations that automatically vanish on-shell. Moving
forward, we will drop these bulk terms that vanish using the equations of motion.

To illustrate how the boundary variation in eq. (3.14) is built out of boundary conformal
primary operators, let us first consider the case of k = 2 and then return to generic k. The
boundary variation takes a fairly simple form

δS
(2)
φ,� = 1

2

∫
dd−1x‖(φ(∂3

nδφ+ 2∂n�‖δφ)− (∂3
nφ+ 2∂n�‖φ)δφ+ ∂2

nφ∂nδφ− ∂nφ∂2
nδφ) .

(3.15)

Recalling the form of the boundary conformal primary states in eq. (3.5), we can write the
corresponding boundary conformal primary operator Φ(k,q), i.e. |Φ(k,q)〉 ≡ iqΦ(k,q)|Ω〉, and
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find that for k = 2 the boundary conformal primaries up to q = 3 are

Φ(2,0) = φ ,

Φ(2,1) = ∂nφ ,

Φ(2,2) = (∂2
n −�‖)φ ,

Φ(2,3) = (∂3
n + 3∂n�‖)φ .

(3.16)

After a bit of rearranging, eq. (3.15) can be written as

δS
(2)
φ,� = 1

2

∫
dd−1x‖(Φ(2,0)δΦ(2,3) − Φ(2,1)δΦ(2,2) + Φ(2,2)δΦ(2,1) − Φ(2,3)δΦ(2,0)) . (3.17)

This form is quite suggestive as it is an integral over an alternating sum of the variation of
a boundary primary Φ(2,q) multiplied by Φ(2,3−q). Note that the boundary primaries Φ(k,q)

and Φ(2,2k−q−1) have conformal dimensions ∆ = d−2k+2q
2 and ∆̃ = d+2k−2q−2

2 , respectively.
These obey the relation ∆̃ = d − 1 − ∆, just like a primary operator and its shadow
operator. Since the conformal symmetry preserved by the flat boundary is SO(d − 1, 2),
we will sometimes refer to Φ(k,2k−q−1) as the shadow of Φ(k,q).

By computing the boundary variation for other low values of k, which we will not
reproduce here, we are then led to the following ansatz for the boundary variation for
generic k:

δS
(k)
φ,� = (−1)k

2

∫
dd−1x‖

2k−1∑
j=0

(−1)jΦ(k,j)δΦ(k,2k−j−1)

= (−1)k
2

∫
dd−1x‖

k−1∑
j=0

(−1)j
(
Φ(k,j)δΦ(k,2k−j−1) − δΦ(k,j)Φ(k,2k−j−1)

)
.

(3.18)

To prove that this is indeed the correct expression for the boundary variation, we need
to compare to eq. (3.14), and so it is helpful to recast eq. (3.18) in terms of derivatives
of φ and δφ. Using the form of the primaries in eq. (3.5), one can expand the product
Φ(k,j)Φ(k,2k−j−1),

2k−1∑
j=0

(−1)jΦ(k,j)Φ(k,2k−j−1) =
2k−1∑
j=0

k−1−b j2 c∑
l=0

(−1)jβ(k,j)
l ∂jnφ�

l
‖∂

2k−2l−j−1
n φ . (3.19)

Re-ordering the sums, one can identify β
(k,j)
l as a quadratic expression in the α(k,j)

l and
check that indeed

β
(k,j)
l =

k−1−b j2 c∑
i=0

α
(k,j+2i)
i α

(k,2k−2i−j−1)
l−i = k!

l!(k − l)! , (3.20)

as required in order that eq. (3.14) agree with eq. (3.18). Thus, for the scalar higher
derivative CFT, solving the boundary variational problem is equivalent to a vanishing
condition on the boundary action built as a sum of products of relevant boundary primaries
and their shadows.
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Given a boundary term in the variation of the action of the form

1
2

∫
dd−1x‖

(
Φ(k,j)δΦ(k,2k−j−1) − δΦ(k,j)Φ(k,2k−j−1)

)
, (3.21)

we can mutate it into a more canonical form by adding the purely marginal boundary
correction to the original action

Sbry = −1
2

∫
dd−1x‖Φ(k,j)Φ(k,2k−j−1) , (3.22)

which will cancel one of the original terms leaving

−
∫
dd−1x‖δΦ(k,j)Φ(k,2k−j−1) . (3.23)

Assuming j < k, we can make an analogy between this term and the δφ ∂nφ boundary
term that shows up in the standard variational analysis of a free scalar field. We can apply
either Dirichlet δφ = 0 boundary conditions or Neumann ∂nφ = 0 boundary conditions.
By extension, we make the same definition here, Dirichlet for δΦ(k,j) = 0 and Neumann for
Φ(k,2k−j−1) = 0, assuming that j < k, so that Φ(k,2k−j−1) will involve more ∂n derivatives
in its definition than Φ(k,j). The usual Dirichlet condition where Φ(k,j) is set equal to a
generically nonzero constant is not possible, as it introduces a scale. The only possible scale
invariant Dirichlet conditions are Φ(k,j) = 0 and infinity. We rule out the case Φ(k,j) →∞
in order to have finite field configurations.

The variational principle leads us then naturally to consider the following set of con-
formally invariant boundary conditions. We have a k-tuple of pairs of boundary primaries(

(Φ(k,0),Φ(k,2k−1)), (Φ(k,1),Φ(k,2k−2)), . . . , (Φ(k,k−1),Φ(k,k))
)
. (3.24)

For each pair, we can set either Φ(k,j) = 0, which we call Dirichlet (D), or its shadow
involving a larger number ∂n derivatives to zero, Φ(k,2k−j−1) = 0, which we call Neumann
(N). In the k = 1 case, we recover the usual D and N cases. For k = 2, there are four
possibilities, DD, ND, DN , and NN , and so on for larger k.

These boundary conditions are manifestly conformally invariant because they are con-
structed from the boundary primaries, which have the appropriate transformation laws
under the boundary conformal group. Note that a more general boundary condition con-
structed from a linear combination of these boundary primaries would necessarily introduce
a scale, e.g. Φ(k,0) + αΦ(k,1) = 0 introduces a scale through α.

In our discussion of boundary conditions, we added the particular marginal boundary
action eq. (3.22) for each pair of operators (Φ(k,j),Φ(k,2k−j−1)). The particular choice of
over-all sign in eq. (3.22) ensured that the first term in eq. (3.21) cancels in the boundary
variation of the action. Adding a boundary action with the opposite over-all sign, i.e.
−Sbry, one instead removes the second term. With the latter choice, a Dirichlet boundary
condition for Φ(k,j) = 0 with j < k can be obtained as a free boundary condition, where
δΦ(k,2k−j−1) is left arbitrary and its coefficient in the variational argument is interpreted
as an equation of motion for the field. Thus, by suitably choosing the sign of the boundary
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NN

DN ND

DD

φ2 (∂nφ)2

(∂nφ)2 φ2

NNN NDN

DNN DDN

NND NDD

DND DDD

φ2

(∂nφ)2

(∂2
nφ+··· )2

(∂2
nφ+··· )2

φ2

(∂nφ)2

(∂2
nφ+··· )2

(∂2
nφ+··· )2

(∂nφ)2

φ2

φ2

(∂nφ)2

Figure 1. Some of the boundary RG flows induced in the k = 2 system (left) and k = 3 system
(right). There are additional flows, not shown, along the diagonals of the square and the diagonals
of the faces of the hypercube, induced by cΦ(k,q)Φ(k,q′), q 6= q′, type deformations.

terms for each pair in eq. (3.24), one can arrange for an arbitrary X0X1 · · ·Xk−1 type
boundary condition, where Xi ∈ {N,D}, to emerge from boundary equations of motion.

As an additional remark, we notice that had we started our discussion with the symmet-
ric action in eq. (2.5) instead of eq. (2.4), we would have found a different set of boundary
conditions, some of them not conformally (even though scale) invariant. This is due to the
fact that the action eq. (2.5) does not preserve the full SO(d− 1, 2). To elucidate this fact,
let us consider for simplicity the case k = 2. The difference between the two actions is a
boundary term that may be written as

S
(k=2)
φ,� − S(k=2)

φ, sym = 1
2

∫
dd−1x||

[
Φ(2,0)Φ(2,3) − Φ(2,1)Φ(2,2) − 2�||φΦ(2,1)

]
. (3.25)

While the first two terms preserve the boundary conformal group, the last one breaks it
unless either φ(0, x||) = 0 or ∂nφ(0, x||) = 0.

A beautiful aspect of this system is that it allows for a variety of boundary RG flows.
Whenever there is a Neumann boundary condition Φ(k,2k−j−1) = 0, there is a corresponding
relevant boundary operator that can be added to the action, namely c

∫
dd−1x‖(Φ(k,j))2

where c is a coupling constant with positive mass dimension. The variational principle
leads to the boundary equation of motion Φ(k,2k−j−1) = cΦ(k,j). Because of its positive
mass dimension, c effectively becomes infinite at low energies and the system is driven to
the corresponding Dirichlet boundary condition Φ(k,j) = 0 through the flow.

A nice way to visualize this flow is in terms of a k-dimensional hypercube. We place
the various choices X0X1 · · ·Xk−1 of boundary condition at the corners of the cube and
join them by edges corresponding to the relevant operators that induce the boundary RG
flow. The cases k = 2 and k = 3 are shown in figure 1.

One could ask about a more general quadratic boundary deformation cΦ(k,q)Φ(k,q′),
for q 6= q′. The first comment is that we must select q and q′ such that neither the
boundary conditions Φ(k,q) = 0 nor Φ(k,q′) = 0 apply. If they do, Φ(k,q)Φ(k,q′) is an example
of a redundant operator, i.e. one that vanishes by the (boundary) equations of motion.
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We still need to consider the remaining cases where neither Φ(k,q) nor Φ(k,q′) are used as
a boundary condition. Two of the boundary equations of motion will be modified by the
additions cΦ(k,q) and cΦ(k,q′), which in the limit c→ ±∞ classically should set both of these
fields to zero at a critical point.11 By adding such boundary deformations and tuning c to
be large, we can now additionally move along the diagonals of the faces of the hypercube.
Furthermore, we can move in either direction along the edges or diagonals, toward the IR
or toward the UV, depending on the mass dimension of c.

Higher derivative fermion BCFT. We will be less thorough in our analysis of the
higher derivative fermion theories and limit our analysis to the theory in d dimensions
which satisfies the Dirac-type equation /∂

3
ψ = 0. In particular, we consider the action

S = i

2

∫
ddx

(
ψ̄ /∂

3
ψ + /∂

3
ψψ

)
. (3.26)

As in the higher derivative scalar theory, a remarkable simplification happens when we
write the variation of the action in terms of the fermion boundary primaries (3.12). The
bulk part of the variation leads to the Dirac-type equation of motion /∂

3
ψ = 0 while the

boundary contribution can be written in the form

δS|bry = i

2

∫
xn=0

dd−1x

(
+ Ψ(1,0)

γnδΨ(1,2) − δΨ(1,0)
γnΨ(1,2)

+ Ψ(1,1)
γnδΨ(1,1) − δΨ(1,1)

γnΨ(1,1) (3.27)

+ Ψ(1,2)
γnδΨ(1,0) − δΨ(1,2)

γnΨ(1,0)
)
,

where Ψ(k,q) = (Ψ(k,q))†γ0. This expression requires some further processing, because
setting all the Ψ(k,q) to zero is too strong a boundary condition. It is useful to decompose
the boundary primaries into eigenvectors with respect to the γn matrix, which reduces
them to representations of the boundary spin group. We have Ψ(k,q) = Ψ(k,q)

+ + Ψ(k,q)
−

where γnΨ(k,q)
± = ±Ψ(k,q)

± . As we work in Lorentzian signature and ψ involves a γ0 matrix,
the nonvanishing inner products are Ψ(k,q)

∓ Ψ(k,q′)
± .

If we study the contribution Ψ(k,q)
+ δΨ(k,2k−q)

− − δΨ(k,q)
+ Ψ(k,2k−q)

− to δS|bry, we find we
can add a boundary contribution to the original action of the form

Sbry = ± i2

∫
dd−1xΨ(k,q)

+ Ψ(k,2k−q)
− , (3.28)

which will leave either Ψ(k,q)
+ δΨ(k,2k−q)

− or −δΨ(k,q)
+ Ψ(k,2k−q)

− on the boundary. Depending
on the choice of sign, then, we obtain either the free boundary condition Ψ(k,q)

+ = 0 or the
11In the context of the path integral and interactions, the story is more complicated. For the �φ theory

in four dimensions with a φ4 bulk interaction and cφ2 boundary term, c > 0 is associated with Dirichlet
boundary conditions while at the level of mean field theory, c < 0 produces the extraordinary phase
transition where 〈φ〉 ∼ 1/xn [47]. In our analysis, we see a difference between positive and negative c in
the Green’s function. In appendix A.3, we show that there is a pole in the Green’s function for a negative
value of c ∼ k2(k−q)−1

‖ .
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free boundary condition Ψ(k,2k−q)
− = 0. In fact a reality constraint on the action means

that if we add Ψ(k,q)
+ Ψ(k,2k−q)

− to the action, we also must add Ψ(k,2k−q)
− Ψ(k,q)

+ . This reality
constraint in turn means that if we set Ψ(k,q) = 0 as a boundary condition, then we must
also set Ψ(k,q) = 0, which is consistent with the definition of the Dirac adjoint.

While we have only presented the analysis for the /∂
3
ψ theory, a similar story holds

true for the original Dirac fermion /∂ψ = 0, and we believe these boundary conditions will
satisfy the variational principle for all /∂2k+1

ψ = 0 theories.
Similar to the NDN · · · notation for the higher derivative scalar theory, we can intro-

duce a notation for the fermion boundary conditions, +−−+ · · · , where the sign indicates
which γn chirality of the boundary primary we set to zero. For the k = 0 theory, we
have ± boundary conditions which corresponds to setting Ψ(0,0)

+ = 0 or Ψ(0,0)
− = 0. For the

k = 1 theory, we have instead eight boundary conditions corresponding to the three pairs of
boundary primaries (Ψ(1,0)

+ ,Ψ(1,2)
− ), (Ψ(1,2)

+ ,Ψ(1,0)
− ), and (Ψ(1,1)

+ ,Ψ(1,1)
− ). For example, ++−

would correspond to setting

Ψ(1,0)
+ = 0 , Ψ(1,2)

+ = 0 , Ψ(1,1)
− = 0 . (3.29)

Again similar to the scalar story, there are a variety of marginal, relevant and irrelevant
boundary perturbations we can add to the theory to induce a flow between the boundary
conditions. Generically, given a set of boundary conditions, if Ψ(k,q)

± Ψ(k,q′)
∓ is nonzero, then

we anticipate that adding

c

∫
dd−1x

(
Ψ(k,q)
± Ψ(k,q′)

∓ + Ψ(k,q′)
∓ Ψ(k,q)

±

)
(3.30)

to the boundary in the limit c → ∞ will change the boundary conditions to Ψ(k,q)
± = 0,

and Ψ(k,q′)
∓ = 0.12

In the case of the /∂3
ψ = 0 theory, the eight boundary conditions break up into four

groups related by these types of boundary flows. The two cases +++ and −−− are isolated.
There is no possible boundary mass term to write down because such a boundary mass
must involve a primary of each γn-chirality, + and −.

Then we have the group +−+, ++−, and −++ which are related by deformations, as
is the group −+−, −−+, and +−−. For example, if we examine the first group, we can
flow from −++ to ++− by adding Ψ(1,1)

− Ψ(1,0)
+ + c.c. Alternately, we can flow from −++

to +−+ by adding Ψ(1,0)
− Ψ(1,0)

+ + c.c. Finally, we can flow from ++− to +−+ by adding
Ψ(1,0)
− Ψ(1,1)

+ + c.c. The flows are pictured in figure 2.
The results for the k = 0 and k = 1 theories obey a pattern that we conjecture

the /∂2k+1 theory will follow. From the boundary contribution to the variation, we find
a vanishing condition for pairs of boundary spinor primaries that we order in a similar
manner as above, i.e.

(Ψ(k,0)
+ ,Ψ(k,2k)

− ), (Ψ(k,2k)
+ ,Ψ(k,0)

− ), (Ψ(k,1)
+ ,Ψ(k,2k−1)

− ), . . . , (Ψ(k,k)
+ ,Ψ(k,k)

− ) .
12It would be interesting to think about how the story is further enriched by the possibility of a γ5 matrix

in even d. In particular, it is known that a γ5 matrix allows for a family of boundary conditions in the
single derivative Dirac fermion case, (1 + eiβγ5γn)ψ = 0 where β ∈ R. We leave this story for the future.
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−+−

−−+

+−−

Ψ(1,0)
− Ψ(1,1)

+

Ψ(1,0)
+ Ψ(1,0)

−

Ψ(1,0)
+ Ψ(1,1)

−

−++

++−

+−+

Ψ(1,0)
+ Ψ(1,1)

−

Ψ(1,0)
+ Ψ(1,0)

−

Ψ(1,0)
− Ψ(1,1)

+

Figure 2. The RG flows triggered by relevant boundary deformations in the /∂3
ψ theory.

We can easily see that we have 22k+1 conformal boundary conditions. Among all of the
boundary conditions there will always be two isolated boundary conditions for any k ≥ 0:

+ . . .+︸ ︷︷ ︸
2k+1

and − . . .−︸ ︷︷ ︸
2k+1

.

The rest of the boundary conditions can be grouped into sets that are connected by RG
flows induced by deformations of the form of eq. (3.30). However, note that eq. (3.30)
clearly does not change the relative number of +’s and −’s of the boundary condition
along the flow. Thus, we find that, in addition to the two isolated boundary conditions,
there are 2k directed graphs. The vertices of a given graph have the same number of +’s
and −’s and the edges correspond to relevant boundary deformations.

3.3 A puzzle with T na

Cardy’s conformal boundary condition was that Tna|bry = 0 [33]. The condition is am-
biguous because the stress tensor can be “improved”. However, in our case, there appears
to be an unambiguous choice of stress tensor, as discussed in refs. [24, 25]. The claim of
ref. [24] is that there should be a unique stress tensor that is a primary operator with
respect to the generators of the conformal group, both for the higher derivative scalar and
fermion theories. Moreover, this stress tensor agrees with what one could derive starting
from the Weyl invariant curved space generalization of these higher derivative theories and
the corresponding GJMS operator generalization of �k (and its equivalent for the Dirac op-
erator). This stress tensor is conserved, traceless, and annihilated by the special conformal
generators Kµ.

Given a stress tensor, the candidate generators of the conformal group can be written
simply as integrals over codimension one spatial slices. For convenience, we choose the slice
t = 0:

P a =
∫
t=0

dd−1xT at +
∫
t, xn=0

dd−2x τat ,

D =
∫
t=0

dd−1xxµT
µt +

∫
t, xn=0

dd−2xxaτ
at ,

Ka =
∫
t=0

dd−1x (2xaxν − x2δaν)T νt +
∫
t, xn=0

dd−2x (2xaxb − x2δab ) τ bt .

(3.31)
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For reasons that will become clear, we allow for a purely boundary contribution to the
stress tensor τab that we assume to be traceless and symmetric although not conserved.
We can then ask when are these generators independent of time? Running through the
usual manipulations for the conservation of a current, we find a residual term on the
boundary xn = 0:

dP a

dt
=
∫
t, xn=0

dd−2x
[
Tna + ∂tτ

at
]
,

dD

dt
=
∫
t, xn=0

dd−2x
[
xaT

an + ∂t(xaτat)
]
,

dKa

dt
=
∫
t, xn=0

dd−2x
[
(2xaxb − x2δab )T bn + ∂t(2xaxb − x2δab )τ bt

]
.

(3.32)

The simplest solution is to set T an = 0 on the boundary and also to remove τab. However,
there is a possibility of a more complicated solution. Namely, suppose T an = −∂bτab on
the boundary. Then tracelessness and symmetry of τab mean that we can commute ∂b
through xa in the case of the dilatation operator and through (2xaxb − x2δab ) for special
conformal transformations. The total time derivative drops out of the integral, leaving
a total divergence in the remaining spatial directions, and the integral in each case will
vanish.

Let us look at the �2φ = 0 theory. The unique stress tensor is13

Tna = 1
2(d−1)

[
(d−4)φ�‖∂n∂aφ+d(∂n∂aφ)(∂2

nφ)−(d−2)(∂nφ)∂2
n∂aφ+(d−4)φ∂3

n∂aφ

−(d+2)(∂n�‖φ)(∂aφ)−(d+2)(∂3
nφ)(∂aφ)+4(∂n∂a∂bφ)(∂bφ)− 4d

d−2(∂n∂bφ)(∂b∂aφ)

+ d(d+2)
d−2 (∂n∂aφ)(�‖φ)−(d+2)(∂nφ)(�‖∂aφ)

]
. (3.33)

When written in terms of the boundary primaries, this becomes

Tna = 1
2(d− 1)

(
−(d+ 2)Φ(2,3)∂aΦ(2,0) + (d− 4)Φ(2,0)∂aΦ(2,3)

− dΦ(2,2)∂aΦ(2,1) + (d− 2)Φ(2,1)∂aΦ(2,2)
)
− ∂bτba .

(3.34)

There is some ambiguity in how to isolate τab, but if one insists that it is both symmetric
and traceless, then it takes the unique form

τab = 1
d− 2

(
dΦ(2,1)∂a∂bΦ(2,0) + (d− 4)Φ(2,0)∂a∂bΦ(2,1)

− d ∂aΦ(2,1)∂bΦ(2,0) − d ∂aΦ(2,0)∂bΦ(2,1)
)

(3.35)

− δab
(d− 1)(d− 2)

(
dΦ(2,1)�‖Φ(2,0) + (d− 4)Φ(2,0)�‖Φ(2,1) − 2d ∂cΦ(2,1)∂cΦ(2,0)

)
.

Note that τab is not divergence-free, ∂aτab 6= 0.
13For the special case d = 2, this improved stress tensor is ill-dedfined. The unimproved stress tensor

from Noether’s theorem is finite, but cannot be made traceless [28, 29].
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While the ND, DN , and DD boundary conditions are clearly compatible with the
vanishing of Tna on the boundary, the NN boundary condition is not. The Φ(2,0)Φ(2,1)

dependent terms will not vanish in this case. These terms can be combined into an object
τab that is symmetric, traceless, and has the right scaling dimension to be a boundary stress
tensor. However, it is not conserved.

In order to better characterize τab, we compute the boundary three-point function
〈τabΦ(2,0)Φ(2,1)〉. Conformal invariance restricts the form of the correlation function [48]:

〈
τab(x‖)Φ(2,0)(y‖)Φ(2,1)(z‖)

〉
= cτ01

|y‖ − z‖|2

|x‖ − y‖|d−2|x‖ − z‖|d
(
V̂aV̂b −

1
d− 1δab

)
, (3.36)

where

V a = ya − xa

|y‖ − x‖|2
− za − xa

|z‖ − x‖|2
, (3.37)

and the hat indicates unit normalization, V̂ a = V a/|V |. For this theory, we find, using
Wick’s theorem and the NN Green’s function derived later in section 4.2, that

cτ01 = 2d(4− d)2dκ2 , (3.38)

where κ fixes the normalization of the 〈φφ〉 two-point function.14
Another interesting quantity is the two point function

〈τab(x‖)τcd(0)〉 = cττ
|x‖|2d−2

(1
2(Iad(x‖)Ibc(x‖) + Iac(x‖)Ibd(x‖))−

1
d
δabδcd

)
. (3.39)

We are using the so-called inversion tensor Iab(x‖) = δab − 2xaxb
x2
‖
. In our case, we find

cττ = 2d+4κ2d(d− 1)(d− 4)
d− 2 . (3.40)

This two-point function takes the same form no matter if τab is conserved or not. Thus we
find that ∂a〈τab(x‖)τ cd(0)〉 = 0, which has the curious consequence that 〈Tna(x)Tnb(0)〉
evaluated on the boundary will also vanish.

Normally, for a conserved stress tensor, there would be a Ward identity that relates
〈τabΦ(2,0)Φ(2,1)〉 to 〈Φ(2,0)Φ(2,1)〉. In particular, the coefficient cτ01 we computed above
would be proportional to the normalization of 〈Φ(2,0)(y‖)Φ(2,1)(z‖)〉. Thus if 〈Φ(2,0)Φ(2,1)〉
vanishes, as indeed happens in this case because the two operators are primaries of different
dimension, then so should the three point function. However, this Ward identity argument
fails because τab is not conserved and does not generate translations on its own.

We conclude this section by considering the case of more general boundary conditions,
namely the ones corresponding to setting the boundary operators

Φ̃(2,2) ≡ (∂2
n + ν�‖)φ, Φ̃(2,3) ≡ (∂3

n + µ∂n�‖)φ (3.41)
14Our calculation assumed d 6= 2 or 4. Note these cases are special in part because the Green’s functions

will have logarithmic behavior.
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to zero. Note that these are not boundary primaries unless ν = −1 and µ = 3. We
can repeat the analysis above by requiring that the boundary stress tensor is symmetric.
Dropping the tildes for convenience, this gives

τab = 1
2(d− 2)

[
a1(∂a∂bΦ(2,0))Φ(2,1) + a2Φ(2,0)∂a∂bΦ(2,1) + a3∂(aΦ(2,0)∂b)Φ(2,1)+

+ δab
d− 1

(
a4Φ(2,0)�‖Φ(2,1) + a5�‖Φ(2,0)Φ(2,1) + a6∂cΦ(2,0)∂cΦ(2,1)

)]
,

(3.42)

where

a1 = (d− 2)(2ν + γ − νd+ d+ 2)
d− 1 , a2 = −4ν − 2γ + d(4ν + γ − νd+ d− 8) + 4

d− 1 ,

a3 = 2γ(d− 2)− 2d(−ν(d− 2) + d+ 2)
d− 1 , a4 = 2(−2ν + γ + 2)− d(−2ν + γ − 2) ,

a5 = −γ(d− 2) , a6 = 4ν + 4γ + 2d(−ν − γ + 3) + 4 , (3.43)

together with
µ+ ν = 2 . (3.44)

We find that the condition eq. (3.44) is necessary for Tna to be written in the form of
eq. (3.34). In particular, if eq. (3.44) is not satisfied then translational invariance along the
boundary is lost. Without further requirement we also see that the boundary stress tensor
is not uniquely fixed but depends on an undetermined coefficient γ. Nicely, even though
the trace of τab is not vanishing for generic ν, it is a total divergence. Indeed, we may write

τaa = −∂aja , (3.45)

where
ja = b1Φ(2,0)∂aΦ(2,1) + b2∂aΦ(2,0)Φ(2,1) ,

b1 = d(−ν + γ − 3)− 2γ
2(d− 1) , b2 = −d(−ν − γ + 1) + 2ν + 2γ + 2

2(d− 1) .
(3.46)

This means that the boundary conditions with ν 6= −1 are scale invariant but not con-
formal. More precisely, we can add a boundary integral over jt to the definition of D in
eq. (3.31) to guarantee that dD/dt = 0. The minimal condition to have a conformal bound-
ary is that ja can be written as a total divergence, in which case a similar alteration can be
made to the definition of Ka to ensure that dKa/dt = 0. However imposing ja = ∂aj can
be accomplished if and only if b1 = b2, implying ν = −1 in agreement with the discussion
above. Finally, if the latter condition is satisfied, then τab can be improved to be traceless.
This last condition requires b1 = b2 = 0, which uniquely fixes τab giving γ = 2d/(d− 2).

4 Characterizing higher derivative BCFTs

In this section, we employ some of the lessons learned from our analysis of boundary
conformal primaries in higher derivative free theories to characterize the boundary theory.
To that end, we study two particularly important quantities: the boundary free energy on
HSd and the two-point function of the displacement operator in flat space. As a prelude
to the computation of the displacement two-point function, this section also contains a
derivation of the 〈φφ〉 and 〈ψψ〉 correlators in our higher derivative theories.
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4.1 Hemisphere free energy

In this section, our main focus will be the study of the boundary free energy, F∂ , of
higher derivative CFTs placed on the hemisphere HSd. In odd d, F∂ is directly related to
the boundary A-type Weyl anomaly, and so provides crucial data for characterizing the
boundary theory. Moreover, it has been shown in unitary CFTs in both d = 3 and d = 5
that the boundary ‘a-theorem’ holds [41, 42, 49].

In the following subsections, we will first compute F∂ for the generalized Dirichlet
(DND · · · ) and Neumann (NDN · · · ) boundary conditions, and then we will compute the
variation in F∂ generated by relevant deformations triggered by boundary primaries. The
technique we use to compute the change in F∂ due to the boundary deformations was first
employed for double trace deformations in AdS/CFT [50, 51], and because of conformal
symmetry the result is very similar as well [52]. Finally, we will repeat the same analysis
for higher-derivative free fermion theories. Our discussion will employ standard results for
the spectrum of GJMS-type operators on Sd [39]. Our results overlap to some extent with
work of Dowker [53–56]. We will make the points of overlap clearer below.

Our emphasis in the text is on the logarithmic divergence in F∂ in odd d. In appendix B,
we extend the analysis to the regularization independent constant term that appears in even
dimensional theories. This constant term is also believed to be monotonic under RG flow
for unitary theories [40, 43].

As we will see, an interesting upshot is to show explicitly that for bulk non-unitary
CFTs the boundary a-theorem does not necessarily hold, both for the coefficient of the
logarithmic term in odd dimensional cases and the constant term in even dimensional
ones. The violation presumably occurs because these theories are non-unitary.

Scalars on HSd. We begin by computing F∂ for higher derivative scalars. Our back-
ground geometry is taken to be the round metric on HSd with line element

ds2
d = R2(dθ2

d + sin2 θdds
2
d−1) , (4.1)

where for notational simplicity we will call θd = θ and take θ ∈ [0, π2 ] such that the boundary
is located at θ = π

2 . When extending to the round metric on Sd, θ ∈ [0, π]. The quantity
R fixes the radius of the sphere. Often we will set it to one.

Because HSd is curved, we use the action eq. (2.4) to start our spectral analysis. Since
F∂ must be independent of marginal boundary deformations, the boundary terms of the
form eq. (3.22) will play no role here. Recall that the general form of the spherical scalar
GJMS operator on the unit d-sphere is given by [39]

42k =
d
2 +k−1∏
j= d

2

(−�d + j(d− 1− j)) , (4.2)

where the Laplace operator �d on Sd with the round metric as in eq. (4.1) with R = 1
takes the form

�d = ∂2
θ + (d− 1) cot θ ∂θ + 1

sin2 θ
�d−1 −

d(d− 2)
4 . (4.3)
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Notice that the form eq. (4.2) implies that the scalar spherical harmonic eigenfunctions of
�d are also eigenfunctions of 42k.

Performing the spectral analysis of 42k on HSd requires a bit of care as the choice
of boundary conditions applied at θ = π/2 can change the allowed eigenvalues, their de-
generacies, or even their form. Indeed, obtaining the spectrum of the GJMS operator for
generic boundary condition is complicated.

A great simplification arises if we focus only on generalized Neumann (NDN · · · ) or
generalized Dirichlet (DND · · · ) boundary conditions. In these cases, some of the eigen-
functions are removed from the spectrum. The remaining ones keep the same form that
they had on the sphere, and the eigenvalues are the same.15 To see why, first recall that the
solution of the eigenvalue problem for the ordinary Laplacian �d on Sd is the generalized
spherical harmonics Y~̀(~θ ) labelled by the angular quantum numbers ~̀= (`1, . . . , `d−1, `d)
with |`1| ≤ `2 ≤ . . . ≤ `d and ~θ = (θ1, . . . , θd−1, θ). For notational convenience, we will
relabel `d = ` and `d−1 = m. In d-dimensions the eigenvalues �dY~̀(~θ ) = −`(`+d−1)Y~̀ (~θ )
for given ` have degeneracy

deg(`) =
(
d+ `− 1
d− 1

)
+
(
d+ `− 2
d− 1

)
= (d+ 2`− 1)Γ (d+ `− 1)

Γ (d) Γ (1 + `) . (4.4)

In order to see how the degeneracies are lifted when imposing boundary conditions, it
is useful introduce the ‘parity’ operators Pθ : θ → π−θ. The set of spherical harmonics can
then be refined according to parity eigenvalue PθY~̀(~θ ) = (−1)`−mY~̀(~θ ), which suggests
a decomposition into parity even modes with ` − m ∈ 2Z and parity odd modes with
` −m ∈ 2Z + 1. Clearly for the spectrum of �d, the parity odd modes will be those that
satisfy Dirichlet boundary conditions due to vanishing at θ = π/2 by construction, and
the parity even modes obey Neumann boundary conditions. Hence, the degeneracy of a
mode with given ` is lifted according to the boundary conditions applied; for Neumann
and Dirichlet boundary conditions, respectively,

deg(N)(`) =
(
d+ `− 1
d− 1

)
, deg(D)(`) =

(
d+ `− 2
d− 1

)
. (4.5)

Returning to the spectral problem for 42k on HSd, it is easy to see that spherical
harmonics corresponding to Neumann or Dirichlet conditions for k = 1 also satisfy the
generalized Neumann or Dirichlet conditions for generic k. Thus, we can simply use the
degeneracy reported in eq. (4.5), while from eq. (4.2) the eigenvalues can be read off easily
and with a bit of algebra put into the form

λ` =
k−1∏
j=0

(
−
(
`+ d− 1

2

)2
+
(
j + 1

2

)2
)
. (4.6)

15In general on a curved space, we anticipate that our Φ(k,q) boundary primaries should get additional
contributions from curvature terms, as in e.g. [16]. In the particular case of a hemisphere, simplifications
should arise because the extrinsic curvature vanishes. There can nevertheless be intrinsic curvature terms
which we have not worked out in general. When we say N and D in this section, we implicitly assume our
Φ(k,q) can and have been improved by these curvature terms.
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We are now in a position to compute the boundary contribution to the hemisphere free
energy for higher derivative scalars. We can formally write the hemisphere free energy as

F
(X)
HSd

= − logZ(X) = 1
2

∞∑
`=0

deg(X)(`) log λ` + c , (4.7)

where Z(X) is the partition function with boundary conditions (X) = (N) or (D).16 There
are a variety of regularization schemes for isolating the anomalous part of F∂ . Here we take
advantage of the fact that deg(D)(`+ 1) = deg(N)(`) to write the difference F (N)

HSd
−F (D)

HSd
≡

∆F (ND)
∂ in the form

∆F (ND)
∂ = −1

2

∞∑
`=0

(
d+ `− 1
d− 1

)
log

`+ d
2 + k

`+ d
2 − k

. (4.8)

The anomalous part of ∆F (ND)
∂ for odd d is the log-divergent part. Its coefficient can

be isolated by computing a large ` expansion of the summand. For example, in the case
d = 3, the summand can be expanded as

1
4(`+ 1)(`+ 2) log

`+ 3
2 + k

`+ 3
2 − k

= k`

2 + 3k
4 + 4k3 − 3k

24` +O(`−2) . (4.9)

The O(`−1) term in this expansion allows us to read off the coefficient of the log17

∆F (ND)
∂

∣∣∣
log

= k(4k2 − 3)
24 . (4.10)

For k = 1, the two theories are related by a relevant boundary mass deformation, and
the sign is consistent with the a-theorem in 3d BCFTs [41]. Ref. [41] also considered this
particular example and computed the value 1

24 , in agreement with eq. (4.10). The more
general result for arbitrary k can be found in table (12) of [54], where it is related to the
determinant of a Dirac type GJMS operator.

It will be useful to introduce a notation that tracks the value of k and d for this
anomaly coefficient:

fND(d, k) ≡ ∆F (ND)
∂

∣∣∣
log

, (4.11)

Repeating the same procedure for odd d up to d = 11, we find the results for the boundary
anomaly reported in table 1. The results in the k = 1 and d = 5 case also match the
literature [38, 42]. The result for fND(d, k) for odd d can be expressed as an integral over
a polynomial:

fND(d, k) = 1
(d− 1)!

∫ k

0

Γ
(
x+ d

2

)
Γ
(
x− d

2 + 1
)dx = 1

(d− 1)!

∫ k

0

d−1∏
j=1

(
x− d

2 + j

)
dx . (4.12)

16For simplicity in the notation, in this section we will call the generalized Neumann and Dirichlet
boundary condition as N and D, respectively.

17The number is typically reported as the coefficient of the logarithm of a short-distance cut-off (see for
example [37]). Here we naturally find the coefficient of the logarithm of a large angular momentum cut-off,
and so we include an extra minus sign.
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
d = 3 1

24
13
12

33
8

61
6

485
24

141
4

1351
24

d = 5 − 17
5760

103
2880

741
640

9223
1440

25135
1152

18381
320

739081
5760

d = 7 367
967680 − 1061

483840
1111
35840

295627
241920

1706575
193536

685123
17920

17292079
138240

d = 9 − 27859
464486400

8603
33177600 − 9257

5734400
3194621

116121600
3393775
2654208

32535943
2867200

3958017581
66355200

Table 1. ∆F (ND)
∣∣
log for scalars with 42k GJMS kinetic operator on HSd for various odd d and k.

The integrand has zeros at half integer values of k which in turn means fND(d, k) has local
maxima and minima at these values.18

Before moving on to consider the full space of conformal boundary conditions, it is
useful to give a second interpretation to the quantity ∆F (ND)

∂ that we just computed.
Instead of comparing the free energy of the generalized Neumann case with the free energy
of the generalized Dirichlet case, we could have instead compared the free energy of the
Dirichlet or Neumann case on the hemisphere with the total free energy on the sphere [40].
The idea is to regularize the free energy on the hemisphere by substracting half of the
free energy on the sphere. So for example, we could consider F (X)

HSd
− 1

2FSd . In fact,
though, through the diagonalization of �2k that we just carried out, it is clear that FSd =
F

(N)
HSd

+ F
(D)
HSd

. Thus we have that this quantity regularized in comparison to the sphere is
not independent of the quantity we just computed:

F
(N)
HSd
− 1

2FSd = 1
2∆F (ND)

∂ = −F (D)
HSd

+ 1
2FSd . (4.13)

The space of conformal boundary conditions is much richer than simply fully Neumann
and Dirichlet for k > 1, and we would like to explore the change in boundary free energy
between fixed points connected by flows triggered by any of the relevant boundary primary
operators found in the previous section. We will restrict ourselves in the following to
considering only quadratic deformations of the form

Sc = c

∫
dd−1x‖Φ(k,q)Φ(k,q) , (4.14)

where Φ(k,q) is a boundary primary like those found in the previous section.19 Employing
a Hubbard-Stratonovich transformation, we introduce an auxiliary field σ and rewrite the

18A closely related result appears as (13) of [54], in the context of relating the determinant of Dirac GJMS
operators to the determinant of ordinary GJMS operators on the sphere. For d = 2k and half-integer k, the
anomalous part of F (X)

HSd with (X) = (N) or (D) was previously computed in ref. [57]. There, the authors
find a similar integral expression for F (X)

HSd , or equivalently fND(d, d/2), which agrees with ours for odd d.
19We could consider a more general deformation by Φ(k,q)Φ(k,q′) where q 6= q′. A generalization of the

Hubbard-Stratonovich transformation we are about to use can demonstrate such a deformation is equivalent
to a deformation by Φ(k,q)Φ(k,q)+Φ(k,q′)Φ(k,q′). We do not give the details here as we will present a fermionic
version of this argument in the next subsection.
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deformed theory as

Z[c] = 1
Zσ

∫
DσDφ exp

{
−S0 −

1
16 c

∫
dd−1x‖ σ

2 − i

2

∫
dd−1x‖ σΦ(k,q)

}
= Z[0]
Zσ

∫
Dσ e−

1
16 c

∫
dd−1x‖ σ

2 〈
e−

i
2

∫
dd−1x‖ σΦ(k,q)〉

0
,

(4.15)

where 〈. . .〉0 denotes the correlation function being computed in the undeformed path
integral, Z[0], and we defined

Zσ ≡
∫
Dσ e−

1
16 c

∫
dd−1x‖σ

2
, (4.16)

with the σ-integration parallel to the real axis. Since the operator Φ(k,q) is linear in φ, the
expectation value can be computed using Wick’s theorem〈

e−
i
2

∫
dd−1x‖ σΦ(k,q)〉

0
=

=
∞∑
j=0

(−1)j (2j − 1)!!
(2j)! 4j

[∫
dd−1x‖ d

d−1y‖ σ(x‖)
〈

Φ(k,q)(x‖)Φ(k,q)(y‖)
〉

0
σ(y‖)

]j
= exp

{
−1

8

∫
dd−1x‖ d

d−1y‖ σ(x‖)
〈

Φ(k,q)(x‖)Φ(k,q)(y‖)
〉

0
σ(y‖)

}
.

(4.17)

Integrating out σ, we arrive at

Z[c]
Z[0] = 1√

det(2cG(k,q) + 1)
, (4.18)

where we defined
G(k,q)(x‖, y‖) ≡

〈
Φ(k,q)(x‖)Φ(k,q)(y‖)

〉
0
. (4.19)

Thus the variation in the hemisphere free energy is given by

∆F∂ = 1
2Tr log

(
2cG(k,q)(x‖, y‖) + 1

)
, (4.20)

where the UV boundary condition is taken to be Neumann with respect to the Φ(k,q)

primary and the IR fixed point will be Dirichlet. For relevant deformations, such that the
coupling c has positive mass dimension 2(k−q)−1 > 0, the IR limit corresponds to sending
c to infinity. In this limit, we can neglect the contribution of the identity in eq. (4.20) and
interpret the scale set by c as the UV cutoff of the IR theory.

In the IR limit, and this point will be crucial for us, ∆F∂ depends on k and q only
through the conformal dimension of Φ(k,q) which is the quantity ∆ = d−2k+2q

2 . Indeed, by
conformal invariance, the two-point function G(k,q) can in general be written

G(k,q)(x‖, y‖) = 1
R2∆

1
s2∆(x‖, y‖)

, (4.21)

where s(x‖, y‖) is the invariant distance on the boundary Sd−1 of unit radius. Similar to
the fND(d, k) notation we introduced above, let us introduce now also

∆F∂ |log ≡ f(d, k − q) . (4.22)
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Thus the free energy difference from a Φ(k+1,q+1) deformation is the same as that caused
by a Φ(k,q) deformation.

Now if we start with generalized Neumann boundary conditions NDN · · · and add all
the possible relevant deformations, we should end up in the same place that we would if
we started with generalized Dirichlet boundary conditions DND · · · and again added all
the possible relevant deformations, namely the DDD · · · case. This physical expectation
means that

fND(d, k) =
d k2 e−1∑
j=0

f(d, k − 2j)−
b k2 c−1∑
j=0

f(d, k − 2j − 1) =
k∑
q=1

(−1)k−qf(d, q) , (4.23)

where the first and second sums are the contributions from all flows starting with gener-
alized Neumann and generalized Dirichlet boundary conditions, respectively. (A related
expression appears as (16) of [56].) We learn from this short computation that we do not
need to evaluate Tr log G(k,q)(x‖, y‖). The hard work in computing the fND(d, k) is enough
to extract the f(d, k − q). We just need to add the neighboring fND:

f(d, k) = fND(d, k) + fND(d, k − 1) . (4.24)

It is possible to compute Tr log G(k,q)(x‖, y‖) directly using the methods of ref. [50]. We
have checked that the answer is the same, but prefer the derivation here as it avoids many
technical details.

The expression (4.23) is curious, especially given its relation to the intrinsic Euler
density on the boundary when d is odd through the trace anomaly. The alternating sum is
reminiscent of the Euler characteristic, which can be expressed as an alternating sum over
the Betti numbers. Of course the boundary topology of the hemisphere is trivial, but the
result is suggestive that some kind of topology can be associated to this space of RG flows
for which the quantity fND(d, k) is an invariant.

From the fND(d, k) in eq. (4.12), we find for κq = k − q the following closed form
expression as an integral over a polynomial:

f(d, κq) = 1
(d− 1)!

∫ κq

1
2

(2x− 1)Γ
(
x+ d

2 − 1
)

Γ
(
x− d

2 + 1
) dx . (4.25)

Closely related expressions appear in [50] and [52]. That we are able to compute the change
in free energy purely from the dimension of a boundary two-point function means that the
change is independent to some extent of the theory under consideration. Ref. [50] considers
a massive scalar in anti-de Sitter space subject to the Klein-Gordon equation, while ref. [52]
considers a Weyl equivalent set-up on a hemisphere. Even though neither consider a higher
derivative theory, the change in the hemisphere free energy is computed in a similar way.

As a concrete example, the results of the deformation of the boundary theory by the
boundary scalar mass term, i.e. the q = 0 case, for general k are contained in table 2. Since
non-zero q enters as a shift k → k− q, the effect on table 2 by adding a q > 0 deformation
is to shift the kth column to the (k + q)th column.
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
d = 3 1

24
9
8

125
24

343
24

243
8

1331
24

2197
24

d = 5 − 17
5760

21
640

1375
1152

43561
5760

18063
640

456533
5760

1069939
5760

d = 7 367
967680 − 13

7168
5575

193536
34643
27648

359829
35840

45529517
967680

31608239
193536

d = 9 − 27859
464486400

1143
5734400 − 25175

18579456
1718381
66355200

7489989
5734400

5864733391
464486400

32976945833
464486400

Table 2. ∆F∂

∣∣
log for scalars with 42k GJMS kinetic operator on HSd for various odd d and k with

boundary scalar mass deformation (q = 0).

Lastly in this subsection, we note that the results in tables 1 and 2 imply that the
boundary a-theorem [41, 42, 49] can be violated for general k. Explicitly the integrated
boundary A-type Weyl anomaly is captured by F∂ |log. Consider the scalar theory in d = 5
where F∂ |log = −4a. Starting with conformal boundary conditions in the UV and following
the flow triggered by eq. (4.14) to some IR conformal boundary condition, the boundary
a-theorem aUV−aIR ≥ 0 implies ∆F∂ |log ≤ 0, which when q = 0 is only satisfied for k = 1.
This demonstrates that the boundary a-theorem does not necessarily hold when the bulk
theory is non-unitary.

Fermions on HSd. We follow the same logic that we used for the higher derivative scalar
theory, applied now to a higher derivative theory of free Dirac fermions on HSd. We first
calculate the free energy associated with the boundary conditions that allow eigenspinors
of the Dirac operator to be eigenspinors of the higher derivative theory. Then we calculate
the free energy for more general boundary conditions by computing how the free energy
changes under a quadratic boundary deformation.

Similar to what happens for the scalar on the sphere, eigenspinors of the Dirac operator
are also eigenspinors of the spinor GJMS operator 4/ 2k+1. Our first task is to identify what
boundary conditions these eigenspinors can satisfy on the hemisphere. There will in general
be eigenspinors on the hemisphere that satisfy more general boundary conditions and that
do not descend from eigenspinors on the sphere, but we will have to compute their free
energy from the quadratic deformations we consider later.

Our first claim is that, given a collection of eigenspinors with the same eigenvalue with
respect to 4/ 1, the degenerate set divide up into two equal parts, one of which satisfies
Π+ψ+ = 0 and the other satisfies Π−ψ− = 0. As these eigenspinors are dealt with at
length in the literature, we leave a detailed justification of this claim to the references (see
e.g. [52]).

Our next claim is that taking a normal derivative will flip the boundary chirality
of the eigenspinor. If ψ+ is annihilated by Π+ on the equator, then ∂nψ+ will be an-
nihilated by Π− and so on. This claim follows by applying the Dirac operator on ψ±
at the equator and noting that Π±γa = γaΠ∓. In general, we expect Π±(∂n)2jψ± = 0
and Π∓(∂n)2j+1ψ± = 0. In the notation developed in section 3, we expect a ψ+ eigen-
spinor will satisfy ++−−++−− · · · boundary conditions while ψ− will satisfy the opposite
−−++−−++ · · · boundary conditions.
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Similar to the notation we introduced for the scalars, let F (±)
HSd

describe the hemisphere
free energy for these boundary conditions ++−−++−− · · · and −−++−−++ · · ·. From
the construction above, we can draw two conclusions about these quantities. Firstly, since
the eigenvalues and degeneracies for both boundary conditions are the same, F (+)

HSd
= F

(−)
HSd

.
Secondly, together these two sets of eigenspinors diagonalize 4/ 2k+1 on the sphere, which
implies F (+)

HSd
+ F

(−)
HSd

= FSd . Thus, the regularized hemisphere free energy associated with
the (+) and (−) boundary conditions must therefore vanish:

∆F (+−)
∂ = F

(+)
HSd
− F (−)

HSd
= 2

(
F

(+)
HSd
− 1

2FSd
)

= 0 . (4.26)

For any k, we can again use a Hubbard-Stratonovich transformation to study the flow
triggered by a boundary deformation quadratic in the boundary spinor primaries found in
section 3.2. That is, we add to the action in eq. (2.6) the deformation

Sdef = c

∫
dd−1x‖

(
iΨ(k,q)
± Ψ(k,q′)

∓ + c.c.
)
. (4.27)

Introducing auxiliary boundary spinors η̄±, η∓, we can write the deformed theory as

Z[h] = Z[0]
Zη

∫
DηDψ exp

[∫
dx (iη̄±η∓ + ih′η̄±Ψ(k,q′)

∓ + ihΨ(k,q)
± η∓ + c.c.)

]
, (4.28)

where Z[0] is the path integral in the undeformed theory, we define

Zη =
∫
Dη∓Dη̄± e

−i
∫
dx η̄±η∓ , (4.29)

and c = hh′. The couplings h and h′ have mass dimension d−1
2 − ∆q and d−1

2 − ∆q′ ,
where ∆q and ∆q′ are the conformal dimensions of Ψ(k,q)

± and Ψ(k,q′)
± , respectively. To

relieve the notation, as all integrals here are over the parallel directions, we will suppress
the ‖ subscript and also write

∫
dd−1x‖ and

∫
dx. Integrating over ψ and ψ̄ introduces an

expectation value of the exponential function:

Z[h] = Z[0]
Zη

∫
Dη

〈
exp

[ ∫
dx(iη̄±η∓ + ih′η̄±Ψ(k,q′)

∓ + ihΨ(k,q)
± η∓ + c.c.)

]〉
0
. (4.30)

We can bring the expectation value into the exponent by expanding out the original expo-
nential and using Wick’s Theorem:

Z[h] = Z[0]
Zη

∫
Dη exp

[ ∫
dx dy

(
iη̄±(x)δ(x− y)η∓(y) + iη̄∓(x)δ(x− y)η±(y) (4.31)

− h′2η̄±(x)〈Ψ(k,q′)
∓ (x)Ψ(k,q′)

∓ (y)〉η±(y)− h2η̄∓(x)〈Ψ(k,q)
± (x)Ψ(k,q)

± (y)〉η∓(y)
)]
.

This integral has a Gaussian form with an exponent

(
η̄± η̄∓

)(−h′2G(k,q′)
∓ i

i −h2G
(k,q)
±

)(
η±
η∓

)
(4.32)
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where the boundary Green’s function

G
(k,q)
± (x, y) ≡

〈
Ψ(k,q)
± (x)Ψ(k,q)

± (y)
〉
. (4.33)

The change in the boundary sphere free energy is given by the determinant of this 2 × 2
matrix:

∆F∂ = −Tr log
(
1 + c2G

(k,q′)
∓ (x, y)G(k,q)

± (x, y)
)
, (4.34)

which we will now analyze in the large c limit.
The spectrum of the fermionic operator G

(k,q)
∓ (x‖, y‖) can be found by expanding on

the basis of spinor spherical harmonics. The eigenvalues of G(k,q)
∓ on the unit Sd−1 are (up

to ` independent factors) [51]

λ(k,q)(`) ∝
Γ(`+ ∆q + 1

2)
Γ(`+ d−∆q − 1

2)
. (4.35)

The eigenvalue degeneracies are

degG(`) = 2b
d−1

2 c
Γ(`+ d− 1)

Γ(`+ 1)Γ(d− 1) . (4.36)

In the large c limit, the anomalous part of the boundary free energy is then read off from
the log-divergent part of

∆F∂ = −
∞∑
`=0

degG(`)
(
log

(
h2 λ(k,q)(`)

)
+ log

(
h′2 λ(k,q′)(`)

))
. (4.37)

Let us consider just the (k, q) term for simplicity; adding back in the (k, q′) contribution
is trivial. Using generalized zeta function regularization, we first note that h2 has dimension
d− 1− 2∆q, and we rewrite the log

−
∞∑
`=0

degG(`) log(µd−1−2∆qλ(k,q)(`)) = d

ds

∞∑
`=0

degG(`)(µd−1−2∆qλ(k,q)(`))−s
∣∣∣
s=0

, (4.38)

where µ is a mass scale. The part of the sum contributing to the anomaly is then the
coefficient of the logµ term

−
∞∑
`=0

degG(`) log(µd−1−2∆qλ(k,q)(`))
∣∣∣
log

= (d− 2∆q − 1)ζλ(k,q)(0) log µ , (4.39)

where we define the generalized zeta function

ζλ(k,q)(s) ≡
∞∑
`=0

degG(`)
(

Γ(`+ ∆q + 1
2)

Γ(`+ d−∆q − 1
2)

)−s
, (4.40)

whose value at s = 0 can be thought of as the regularized number of eigenvalues. Combining
everything together, the anomalous part of the change in the boundary free energy is

∆F∂ |log = 2
∞∑
`=0

degG(`)(k − q)
(

Γ(`+ d
2 − k + q)

Γ(`+ d
2 + k − q)

)−s ∣∣∣
s=0

+ 2
∞∑
`=0

degG(`)(k − q′)
(

Γ(`+ d
2 − k + q′)

Γ(`+ d
2 + k − q′)

)−s ∣∣∣
s=0

,

(4.41)

where we set ∆q = (d− 2k − 1)/2 + q.
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k = 1
2 k = 1 k = 3

2 k = 2 k = 5
2 k = 3 k = 7

2 k = 4
d = 3 −1

3
1
3 3 26

3
55
3 33 161

3
244
3

d = 5 11
90 − 17

360 − 3
10

103
180

95
18

741
40

4277
90

9223
90

d = 7 − 191
3780

367
30240

13
140 − 1061

15120 −275
756

1111
1120

5257
540

295627
7560

d = 9 2497
113400 − 27859

7257600 − 7
200

8603
518400

425
4536 − 9257

89600 − 8183
16200

3194621
1814400

Table 3. ∆F∂ |log for the boundary RG flow in the /42k+1 theory induced by the Ψ(1,0)
± Ψ(1,0)

∓ type
deformation.

We still need to regularize the sums to compute the boundary anomaly. We fix the
scheme where we first separate out the ` = 0 modes, expand in large `, perform the sum,
and then take the s → 0 limit. The terms that contribute to the anomaly are those that
diverge in the large ` limit (see appendix C of ref. [58]). Noting that the k-dependent part
of the sum scales as

Γ(`+ d
2 − k + q)

Γ(`+ d
2 + k − q)

∼ `−2k+2q(1 +O(`−1)) , (4.42)

we can easily read off the anomalous part of ∆F∂ .
In order to illustrate the method, let us consider k = 1, d = 3 with q = q′ = 0, where

∆F∂ |log = 2b
d+3

2 c
(

1 +
∞∑
`=1

(`+ 1)`2s
(

1 + 2
`

+ 3
4`2

)s) ∣∣∣
s→0

. (4.43)

For convenience in taking the large ` limit, we have factored out `2(k−q)s and `2(k−q′)s from
the (. . .)s terms. Expanding in large ` to O(`−d)(

1 + 2
`

+ 3
4`2

)s
= 1 + 2s

`
+ s(8s− 5)

4`2 + s(s− 1)(8s− 7)
6`3 + . . . . (4.44)

Inserting this expansion back into the sum over ` and taking the s→ 0 limit, we find

∆F∂ |log = 1
3 . (4.45)

Comparing with our results for the scalar, we find the following general expression for
the free energy difference in odd d, where we denote κq = k − q:

∆F∂ |log = 2−
d+1

2
(
fND(d, κq) + fND(d, κq′)

)
. (4.46)

As a concrete examples, the values for ∆F∂ |log for q = q′ = 0 and q = 0, q′ = 1, have been
compiled in tables 3 and 4, respectively, up to d = 9 and k = 4. Note that, for k = 1 the
values of ∆F∂ |log for q = q′ = 0 are exactly double the values for q = 0, q′ = 1. This should
be expected because the diagrams of the flows in figure 2 should commute. Further, since
we have the explicit value for the boundary sphere free energy for the ± ± ∓ boundary
condition, i.e. ∆F (+−)

∂ = 0, the values in table 4 (up to sign) give the boundary sphere free
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k = 1 k = 3
2 k = 2 k = 5

2 k = 3 k = 7
2 k = 4

d = 3 1
6

4
3

9
2

32
3

125
6 36 343

6

d = 5 − 17
720 − 4

45
21
80

112
45

1375
144

132
5

43561
720

d = 7 367
60480

4
189 − 13

448 −128
945

5575
12096

164
35

34643
1728

d = 9 − 27859
14515200 − 92

14175
1143

179200
416

14175 − 25175
580608 − 36

175
1718381
2073600

Table 4. ∆F∂ |log for the boundary RG flow in the /42k+1 theory induced by the Ψ(1,0)
± Ψ(1,1)

∓ type
deformation.

energy for ±∓± and ±∓∓ boundary conditions, and not just the difference. Additionally,
as is obvious from eq. (4.41) at k = 0, ∆F∂ |log = 0 follows from the q = q′ = 0 boundary
deformation being marginal. As was the case for the higher derivative scalar theory, we
also see that in d = 5 the boundary a-theorem can be violated in k > 0 fermionic theories
along flows with generic q and q′.

4.2 Two-point functions

We would like to compute the possible 〈φ(x)φ(x′)〉 and 〈ψ(x)ψ(x′)〉 two-point functions in
the �kφ and /∂

2k+1
ψ theories that are compatible with boundary conformal symmetry. We

will start with the scalar case.
Boundary conformal symmetry means the two point function should have the form

〈φ(x)φ(x′)〉 = f(ξ)
(4xnx′n) d2−k

, where ξ = (x− x′)2

4xnx′n
(4.47)

is the conformally invariant cross-ratio. The Green’s function has the property that

(−�)k〈φ(x)φ(x′)〉 = δ(d)(x− x′) . (4.48)

In terms of f(ξ) and ξ, this partial differential equation boils down to a 2k-order ordi-
nary differential equation. For example, in the k = 1 and k = 2 cases, the differential
equations are

k = 1 : ξ(1 + ξ)f ′′(ξ) + d

2(1 + 2ξ)f ′(ξ) + d(d− 2)
4 f(ξ) = 0 , (4.49)

k = 2 : ξ2(1 + ξ)2f (4)(ξ) + (d+ 2)ξ(1 + ξ)(1 + 2ξ)f (3)(ξ) + d(d+ 2)
4 (1 + 6ξ(1 + ξ))f ′′(ξ)

+ d(d2 − 4)
4 (1 + 2ξ)f ′(ξ) + d(d− 4)(d2 − 4)

16 f(ξ) = 0 . (4.50)

This differential equation in general has the 2k solutions

f(ξ) =
k−1∑
j=0

(
cj

ξ
d
2−k+j

+ bj

(1 + ξ) d2−k+j

)
. (4.51)

Note the d = 2k, 2k− 2, 2k− 4, . . . cases are special: the solutions become degenerate and
one needs to introduce logarithms.
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To check that �k〈φ(x)φ(x′)〉 = 0 away from the coincident limit, it is useful to perform
a Fourier transform. The Fourier transformed version of the two point function has the
structure

∫
dd−1x‖ 〈φ(x)φ(x′)〉e−ip‖·x‖ =

k−1∑
j=0

(xnx′n)j
(
c′je

p|xn−x′n| + b′je
−p(xn+x′n)

)
, (4.52)

where the coefficients b′j and c′j are proportional to bj and cj , respectively, and p = |p‖|.
Indeed, the Fourier transformed Laplacian (−p2 +∂2

n) acting once on each term in this sum
will reduce the xn degree by one. Thus any polynomial in xn of degree less than k will be
annihilated by �k.

A moment’s consideration reveals that the δ(d)(x− x′) in the definition of the Green’s
function can come only from the c0 term in eq. (4.51). The remaining cj will lead to
different singular behavior in the coincident limit, and so we can safely set them to zero.
The (1 + ξ) type terms on the other hand have singularities only in the nonphysical region,
where xn + x′n < 0, and so we keep them.

While c0 is fixed by the normalization of the Dirac delta in (4.48), the remaining bj ,
j = 0, . . . , k− 1, must be fixed by boundary conditions at xn = 0. We have then in general
a k-dimensional family of boundary conditions. The variational principle will pick out two
special values for each bj . Concretely, if we impose a boundary condition by setting certain
boundary conformal primary to zero, then an appropriate combination of derivatives of the
two-point function must vanish in the boundary limit. This fixes all the bj uniquely. For
example, in the k = 2 case, we find

DN : f(ξ) = κ

(
1

ξ
d−4

2
− 1

(1 + ξ) d−4
2

)
, (4.53a)

ND : f(ξ) = κ

(
1

ξ
d−4

2
+ 1

(1 + ξ) d−4
2

)
, (4.53b)

DD : f(ξ) = κ

(
1

ξ
d−4

2
− d− 4

2
1

(1 + ξ) d−2
2
− 1

(1 + ξ) d−4
2

)
, (4.53c)

NN : f(ξ) = κ

(
1

ξ
d−4

2
+ d− 4

2
1

(1 + ξ) d−2
2

+ 1
(1 + ξ) d−4

2

)
, (4.53d)

where the normalization κ = Γ
(
d
2 − k

)
/22kπ

d
2 Γ(k) is chosen to guarantee eq. (4.48).

The fermion two-point function is more intricate to construct. The constraint of bound-
ary conformal invariance means that [59]

〈ψ(x)ψ(x′)〉 = γµ(x− x′)µf(ξ) + γnγµ(x′ − x̃)µg(ξ)
(4xnx′n)∆+ 1

2
, (4.54)

where ∆ = d−1
2 − k and x̃ = (−xn, x‖), in contrast with x = (xn, x‖). Sparing the reader
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b0 d0 d1

±±± −4 + 4
d ∓

(
3− 4

d

)
∓ (d−2)2

d

+−± −1 0 ±d−2
2

±±∓ 0 ±1 0
−+± 1 ∓4(d−1)

3d−2 ∓ (d−2)2

2(3d−2)

Table 5. The coefficients for specifying the fermion Green’s function eq. (4.56) in the /∂3
ψ theory

for the eight different possible conformal boundary conditions.

the details, we find that

f(ξ) =
k−1∑
j=0

(
aj

ξ
d
2−k+j

+ bj

(1 + ξ) d2−k+j

)
+ ak

ξ
d
2
, (4.55a)

g(ξ) =
k−1∑
j=0

(
cj

ξ
d
2−k+j

+ dj

(1 + ξ) d2−k+j

)
+ dk

(1 + ξ) d2
. (4.55b)

The boundary condition in the coincident limit means we need to set aj and cj all to zero,
except for a0. The remaining bj and dj are then set from the boundary conditions at
xn = 0.

In the case of the k = 1 theory, there are eight possible Green’s functions to match
with the eight conformal boundary conditions. The general Green’s function in this case
will take the form eq. (4.54) with

f(ξ) = κ

(
1

ξ
d
2−1

+ b0

(1 + ξ) d2−1

)
, (4.56a)

g(ξ) = κ

(
d0

(1 + ξ) d2−1
+ d1

(1 + ξ) d2

)
. (4.56b)

The values of the constants b0, d0, and d1 are given in table 5. As discussed earlier, the
±±± theories are isolated, while the others are connected by RG flows as shown in figure 2.

4.3 Displacement operator two-point function

In this subsection, we consider one of the basic observables that can be used to characterize
the boundary theory in a BCFT: the two-point function of the displacement operator. The
displacement operator is defined as D ≡ Tnn

∣∣
∂M. Thus, utilizing the form of the bulk

energy-momentum tensor for d-dimensional higher derivative free CFTs, we compute 〈DD〉
for the higher derivative scalars and fermions. We focus on the cases k = 2 and k = 3 for
the scalars and k = 1 for the fermions. (The scalar k = 1 and fermion k = 0 cases are well
known [60].) The coefficient of 〈DD〉 is related to a boundary Weyl anomaly in the special
cases of d = 3 [34, 36] and d = 5 [37].
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〈DD〉 for the �kφ theory. The two-point function of the displacement operator is fixed
by conformal invariance and reads〈

D(x‖)D(0)
〉

= cDD
|x‖|2d

. (4.57)

For the �2 theory, Tnn may be written as [24, 25]

Tnn = 1
d− 1

(
∂ρφ∂

ρ�φ+ 2∂2
n∂ρφ∂

ρφ− (d+ 2)∂n�φ∂nφ+ d− 4
2 ∂2

n�φφ (4.58)

+ 1
d− 2

(
d(d+ 2)

2 �φ∂2
nφ−

d+ 2
2 �φ�φ+ 2∂ρ∂σφ∂ρ∂σφ− 2d∂n∂ρφ∂n∂ρφ

))
.

The two-point function of the displacement operator can be easily computed by using
Wick’s theorem and the form of the propagators in eq. (4.53). We find the same result for
the DN and ND boundary conditions, namely

cDD = −16(d− 4)2(d− 2)(d+ 4)κ2, (4.59)

while for DD and NN we get

cDD = 32(d− 4)2(d− 2)2κ2 . (4.60)

Note that for the DN and ND cases cDD is negative, while for the DD and NN it is
positive. Unitarity would guarantee that cDD is always positive.

Still using Wick contractions and the explicit form of Tnn for the �3 theory [24, 25],
we calculate

cDD = 384(d− 6)2(d− 4)(d− 2)(d+ 4)(d+ 6)κ2 (4.61)

for DND and NDN boundary conditions. For the �kφ theory with boundary conditions
DND · · · and NDN · · · , the pattern of (4.59) and (4.61) suggests

cDD = 2k2+k−1k(d− 2k)2(1− 1
2d
)
k−1

(1
2d+ 2

)
k−1κ

2 , (4.62)

where (a)x is the Pochhammer symbol. We were led to this result through comparison
with the coefficient of the stress tensor two-point function, which has been computed for
general d [25]. Note this result naively seems to vanish in d = 2(k − n) dimensions for n
a non-negative integer. In fact, with our choice of normalization for κ — below eq. (4.53)
— cDD is finite in d = 2k and diverges when n is positive. The corresponding divergence
in κ in these cases correlates with the appearance of logarithms in the propagator. These
theories are all non-unitary cousins of the scalar field in two dimensions.

We would like to give a couple of additional results in the d = 5 and k = 2 case. In
the appendix, we derive the 〈φφ〉 two-point function for general scale invariant boundary
conditions eq. (A.16). A special case of that boundary condition is consistent with having a
symmetric �2 operator. Even though the boundary generically breaks conformal invariance
in these cases, our philosophy is to continue to use the bulk stress tensor (4.58) because
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locally, at sufficient distance from the boundary, the conformal invariance should be re-
stored. We then use Wick’s theorem to compute cDD from these more general expressions
for 〈φφ〉. From the propagator eq. (A.16), we find

cDD = −3
(
−8a2 + 9ab+ 16ac− 6b2 − 12bc+ c2 + 9

)
32π4 . (4.63)

Specializing to the boundary conditions in the introduction,

∂2
nφ+ ν∂2

‖φ = 0 , ∂3
nφ+ (2− ν)∂2

‖∂nφ = 0 , (4.64)

the displacement two-point function becomes

cDD = −3 + 3ν(88 + ν(86 + 3(−16 + ν)ν))
8π4(ν − 1)2(3 + ν)2 . (4.65)

For ν = −1, we match the NN case for d = 5 (4.60), as expected. Also, for ν → ∞, we
match the DD case as well. We do not have a physical expectation for why this expression
diverges at ν = 1 and ν = −3 although one should note that the underlying 〈φφ〉 correlator
diverges for these values.

〈DD〉 for the /∂3
ψ theory. In this section, we consider the k = 1 free fermion theory

with generic boundary conditions leaving b0, d0, and d1 unspecified, and compute cDD.
The symmetric, conserved, off-shell stress tensor for this theory on flat space can be found
in ref. [24], which we won’t reproduce in complete detail here. In order to compute the
displacement operator two-point function, we only need the form of Tnn, which after a bit
of massaging becomes

Tnn =
(d+ 1)(�‖ψ̄Γn∂nψ − ∂nψ̄Γn�‖ψ)

2(d− 1) +
(ψ̄Γn∂n�‖ψ − ∂n�‖ψ̄Γnψ)

d− 1

+
d(∂aψ̄Γa�‖ψ −�‖ψ̄Γa∂aψ)

(d− 1)(d− 2) +
(d− 3)(�‖∂aψ̄Γaψ − ψ̄Γa∂a�‖ψ)

2(d− 1)

− (d2 − 3d+ 4)(∂nψ̄Γn∂2
nψ − ∂2

nψ̄Γn∂nψ)
(d− 1)(d− 2) + (d+ 3)(∂aψ̄Γn∂n∂aψ − ∂n∂aψ̄Γn∂aψ)

2(d− 1)

− (d2 − 3d+ 6)(∂nψ̄Γa∂n∂aψ − ∂n∂aψ̄Γa∂nψ)
2(d− 1)(d− 2) + 2(∂a∂bψ̄Γb∂aψ − ∂aψ̄Γb∂b∂aψ)

(d− 1)(d− 2)

+ 1
2(∂2

nψ̄Γa∂aψ + ∂2
n∂aψ̄Γaψ − ψ̄Γa∂2

n∂aψ − ∂aψ̄Γa∂2
nψ) . (4.66)

The details of the computation of the two-point function are straightforward and not
particularly interesting. We use Wick’s theorem with the propagator eq. (4.54) in combi-
nation with a point splitting procedure. Leaving the boundary conditions unspecified, the
final result for the coefficient in 〈DD〉 is

cDD = −
2b d−7

2 cΓ2
(
d
2

)
(d− 2)2πd

(
d3
(
6b20 + d2

0 + 1
)
− d2

(
18b20 + d2

0 − 4d0d1 + 1
)

(4.67)

+ 4d
(
3b20 − 5d2

0 − 11d0d1 − 9d2
1 − 5

)
+ 36

(
d2

0 + 2d0d1 + d2
1 + 1

) )
.
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±±± −(d− 1) (41d− 70) /(d− 2)
+−± d− 9
±±∓ −

(
d2 + d− 18

)
/(d− 2)

−+± −
(
39d4 − 97d3 − 58d2 + 180d− 72

)
/(d− 2)(3d− 2)2

Table 6. For the corresponding conformal boundary condition in the left column, we report the
values of πdcDD/

(
2b(d−5)/2cΓ2(d/2)

)
for the /∂3

ψ theory in the right column.

The results for the conformal boundary conditions in table 5 are displayed in table 6.
Note that, as with the scalars, cDD does not have definite sign for all conformal boundary
conditions, which again signals an absence of unitarity in the two-point function.

5 A curious duality

In this section we discuss a duality involving a pair of identical higher derivative theories.
For simplicity, we will focus on the scalar case. A closely related duality for (two derivative)
massive scalars in anti-de Sitter space was pointed out first to our knowledge in a work by
Witten [44]. The connection to BCFT was later emphasized by one of us in ref. [61] and
also in ref. [62]. The duality we discuss below generalizes to the /∂2k+1

ψ theories as well.
Let us consider a pair of �kφ theories in the presence of a boundary at xn = 0. We

will assume that for one of the scalars, the boundary condition for a particular boundary
primary is Φ(k,q) = 0. Call that scalar φD. For the other scalar, we then insist on the
conjugate boundary condition Φ(k,2k−q) = 0. We call that scalar φN . From our analysis in
section 3, we know that there will be a piece in the variation of the boundary action that
looks like

δSq =
∫
dd−1x‖

[
δΦ(k,q)

N Φ(k,2k−q)
N − Φ(k,q)

D δΦ(k,2k−q)
D

]
. (5.1)

Allowing the variations to be arbitrary, we deduce the corresponding boundary equations
of motion Φ(k,2k−q)

N = 0 and Φ(k,q)
D = 0.

Given this starting point, we can consider the exactly marginal boundary deformation

Sdef = g

∫
dd−1x‖Φ(k,q)

N Φ(k,2k−q)
D . (5.2)

(Note that if we try to construct a marginal deformation using Φ(k,q)
D or Φ(k,2k−q)

N , it will
vanish by the boundary equations of motion and hence is redundant.) The variation now
takes the more complicated form

δSq + δSdef =
∫
dd−1x‖

[
δΦ(k,q)

N (Φ(k,2k−q)
N + gΦ(k,2k−q)

D ) + δΦ(k,2k−q)
D (−Φ(k,q)

D + gΦ(k,q)
N )

]
.

(5.3)

In the limit g → ∞, this deformation will act to switch the boundary conditions on this
pair of boundary primaries: Φ(k,2k−q)

N = 0 → Φ(k,q)
N = 0 and Φ(k,q)

D = 0 → Φ(k,2k−q)
D = 0.

Neumann becomes Dirichlet and Dirichlet becomes Neumann.
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To make precise the duality we have in mind, let us start from the g → ∞ limit,
where this original boundary condition is flipped, and ask how to get back to the original
theory. For this conjugate theory, from our earlier analysis, we have the following boundary
contributions to the variation of the action:

δS̃q =
∫
dd−1x‖

[
−Φ(k,q)

N δΦ(k,2k−q)
N + δΦ(k,q)

D Φ(k,2k−q)
D

]
. (5.4)

To this action, we add instead

S̃def = g̃

∫
dd−1x‖Φ(k,q)

D Φ(k,2k−q)
N , (5.5)

and the variation now is

δS̃q + δS̃def =
∫
dd−1x‖

[
δΦ(2k−q,q)

N (−Φ(k,q)
N + g̃Φ(k,q)

D ) + δΦ(k,q)
D (Φ(k,2k−q)

D + g̃Φ(k,2k−q)
N )

]
.

(5.6)

In other words, we find exactly the same boundary equations of motion as before, provided
we identify g = g̃−1. This is the duality we have in mind. We have a pair of theories with
conjugate boundary conditions on one of the boundary primaries. The conjugate nature
allows for an exactly marginal deformation which can then be used to swap this pair of
boundary conditions. We claim the two theories can be identified under this quadratic
marginal deformation, provided one sets g = g̃−1.

These pairs of conjugate scalar fields can arise very naturally in certain circumstances.
Consider a �kφ theory with no boundary and introduce a trivial interface at xn = 0. The
interface divides the fields into φ̃R living on the right side, with xn > 0, and φ̃L fields living
on the left side, with xn < 0. To ensure the interface is trivial, we must have continuity of
the field and its derivatives at the interface

φ̃L|xn=0 = φ̃R|xn=0 , ∂nφ̃L|xn=0 = ∂nφ̃R|xn=0 , ∂2
nφ̃L|xn=0 = ∂2

nφ̃R|xn=0 , etc.

Having split the field in this way, we are free invoke the folding trick and place both fields on
the same side of the trivial interface, xn > 0, converting an interface theory into a boundary
theory, φL(−xn) = φ̃L(xn) and φR(xn) = φ̃R(xn). When we fold, the xn direction for the
fields on the left is inverted, which will flip the sign of the ∂n derivatives, and the matching
conditions become

φR|xn=0 = φL|xn=0 , ∂nφR|xn=0 = −∂nφL|xn=0 , ∂2
nφR|xn=0 = ∂2

nφL|xn=0 , etc.

This complicated looking set of relations can be simplified in a surprising way by considering
the following linear combinations of the fields:

φD = 1√
2

(φR − φL) , φN = 1√
2

(φR + φL) . (5.7)

The square root factor is to keep the same normalization of the two point function in the
coincident limit. We have used the subscript D to emphasize that φD|xn=0 = 0 satis-
fies a Dirichlet condition and N to emphasize that ∂nφN |xn=0 = 0 satisfies a Neumann
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condition. More precisely, in earlier notation, φD will have a DND · · · type boundary
condition while φN will have a NDN · · · boundary condition. We are thus left with a
pair of scalars with conjugate boundary conditions for which one can construct marginal
boundary deformations of the form of eq. (5.2).

6 Outlook

This work provides a careful look at a class of free BCFTs. We were able to characterize
the conformal boundary conditions for the �kφ and /∂

2k+1
ψ theories and the flows be-

tween them. We also computed the hemisphere free energy and the displacement operator
two-point function. We conclude by mentioning some future directions: higher derivative
theories of gravity, interactions, and the peculiar nature of these theories in small, integer
numbers of dimensions.

Quantum gravity. The analysis of theories that are more than quadratic in time deriva-
tives is an important challenge in the context of quantum gravity. String theories, while
leading to Einstein gravity at low energy scales, naturally produce higher derivative cor-
rections to Einstein’s equations that become important at high scales. Alternate quantum
gravity scenarios, such as conformal gravity or brane worlds, are faced with similar higher
derivative issues.

Our biharmonic theory �2φ features prominently as a toy model in discussions of
conformal gravity and brane worlds (see [63, 64] and references therein). Decomposing
this biharmonic theory into momentum modes parallel to the boundary and treating the
normal direction to the boundary as time, the Lagrangian becomes closely related to that
of the Pais-Uhlenbeck oscillator [65],

L = z̈2 − (ω2
1 + ω2

2)ż2 + ω2
1ω

2
2z

2 , (6.1)

in the case where the frequencies are degenerate, ω1 = ω2. The non-degenerate case is
already a challenging example to give a quantum mechanical interpretation, as it naively
has an unbounded Hamiltonian, with eigenenergies Enm =

(
n+ 1

2

)
ω1−

(
m+ 1

2

)
ω2 for m

and n positive integers. The m dependent sign can be flipped but at the price of rendering
the corresponding eigenfunctions non-normalizable. The degenerate case requires special
treatment, as the canonical transformation employed to rewrite the Hamiltonian as a pair
of harmonic oscillators becomes singular when ω1 = ω2.

The authors of refs. [63, 64] do not appear to agree on how to make sense of (6.1).
Ref. [63] invokes the machinery of PT symmetric quantum mechanics, changing the norm
of the Hilbert space and the reality properties of z to both flip the sign of m in Enm while
simultaneously keeping the eigenfunctions normalizable. Ref. [64], critical of what they per-
ceive as an overly radical reframing of the original physics problem in [63], instead stresses
that for a free theory, there is nothing wrong with negative energies per se. The issues
will come later with interactions. At least classically, ref. [64] provides some evidence that
within a certain regime of parameter space these higher derivative theories can have stable
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dynamics. Given tunneling, whether this stable behavior persists quantum mechanically is
an open question.

A complementary line of work is ref. [58] where the authors study �kφ theories more
generally (but without boundaries). Their motivation is again quantum gravity, but from a
holographic perspective. As quantum gravity in anti-de Sitter space can be defined through
a unitary CFT living on its boundary, there is hope that de Sitter space can be defined
similarly. An important difference however is that any such CFT is likely to be non-unitary.
These �kφ are some of the simplest non-unitary CFTs and so they are perhaps a good place
to start an investigation into de Sitter holography.20

Against this backdrop, one of our motivations for a boundary approach to these higher
derivative theories is a perhaps naive hope that the instabilities can be cured through
boundary conditions. For example ref. [67] argues that the ghosts of conformal gravity can
be eliminated and familiar black hole solutions obtained in de Sitter space if appropriate
Neumann boundary conditions are chosen. In our simpler case, the boundary primaries
Φ(2,2) and Φ(2,3) for the biharmonic theory can be cast as canonically conjugate momenta
to the fields φ and ∂nφ. Indeed, as we saw in the introduction, there is some flexibility
in how we define Φ(2,2) and Φ(2,3), parametrized by the Poisson ratio ν. Only in the case
ν = −1 do we recover full conformal symmetry while elasticity theory bounds the Poisson
ratio −1 ≤ ν ≤ 1

2 . This flexibility in defining the conjugate momenta is absent in the
discussions of [63, 64], and we wonder if restoring this Lorentzian version of Poisson’s ratio
will lead to a better physical interpretation of the biharmonic theory.

To see how this flexibility emerges, let us review the Hamiltonian formalism for the
�2φ theory and its corresponding Ostrogradski instability. We start with the Lagrangian
density

L0 = 1
2 (�φ)2 = 1

2
(
φ̈2 − 2(∂2

‖φ)φ̈+ (∂2
‖φ)2

)
, (6.2)

where we have defined φ̇ ≡ ∂tφ. Using a Lagrange multipler, we introduce a new field χ

which on-shell will be identified with φ̇:

L = 1
2
(
χ̇2 − 2χ̇(∂2

‖φ) + (∂2
‖φ)2

)
+ λ(χ− φ̇) + α∂t(χ∂2

‖φ) , (6.3)

where we have left ourselves the freedom of adding a total derivative with a free parameter
α. We can identify two canonical momenta

Pχ ≡
∂L
∂χ̇

= χ̇+ (α− 1)∂2
‖φ ,

Pφ ≡
∂L
∂φ̇

= −λ+ α∂2
‖χ .

(6.4)

An Euler Lagrange equation χ̈− ∂2
‖ φ̇ = λ along with the constraint χ = φ̇ can be used to

re-express the canonical momenta:

Pχ = φ̈+ (α− 1)∂2
‖φ ,

Pφ = −
...
φ + (α+ 1)∂2

‖ φ̇ .
(6.5)

20See [66] for another recent use of the �2φ = 0 equation in the context of cosmology.
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Up to a minus sign from a factor of gtt, these are precisely the boundary conditions we
identified in the introduction from insisting that �2 be a symmetric operator. The choice
which leads to conformal boundary conditions is α = 2, and the Poisson ratio can be
identified as ν = 1 − α. The choice α = 0 made by refs. [63, 64] is curiously outside the
physical range for the Poisson ratio although the significance of this fact, if any, in this
Lorentzian setting remains to be determined.

The Hamiltonian density takes the form

H = Pφφ̇+ Pχχ̇− L

= 1
2P

2
χ + (1− α)Pχ∂2

‖φ+ Pφχ+ 1
2α(α− 2)(∂2

‖φ)2 − αχ∂2
‖χ . (6.6)

The Ostrogradski instability is the fact that the Hamiltonian is linear in Pφ and thus
unbounded below. Note that choosing α = 2 or zero means the Hamiltonian is at most
quadratic in spatial derivatives.

Interactions. We should also make some comments about interactions. With an un-
bounded spectrum, the worry is that interactions between the modes can easily lead to
runaway behavior while conserving energy. At least classically, however, these systems can
be stable. For example, the degenerate Pais-Uhlenbeck oscillator

L = z̈2 − 2ω2ż2 + ω4z2 − 1
2αz

4 (6.7)

with a quartic interaction was studied in ref. [68] using numerics. For α > 0, initial
conditions in the neighborhood of z(0) = ż(0) = z̈(0) = ...

z (0) = 0 lead to stable time
evolution.

In the Euclidean context, interactions in the presence of boundaries will likely lead to
a further proliferation in the types of allowed conformal boundary conditions. We know for
the �φ theory that a quartic interaction φ4 can produce so-called extraordinary boundary
conditions [47]. The classically marginal φ4 interaction in four dimensions supports a
scaling solution φ ∼ x−1

n . In the language of boundary critical phenomena, as one decreases
the temperature, the surface orders before the bulk, and then at the bulk critical point,
there is already a one-point function for the scalar field 〈φ〉 ∼ x−1

n supported by the
interaction. In de Sitter and anti-de Sitter space, the Weyl factor cancels against the x−∆

n

behavior of the one point function; the extraordinary transition gets mapped to a state
with a constant one-point function in curved space-time.

It will be interesting to investigate these interactions in more detail. A finger counting
exercise reveals that classically marginal interactions support φ ∼ x−∆

n behavior in a variety
of other cases as well. For example, for the �2φ theory a φ10 interaction in d = 5, φ6 in
d = 6, φ4 in d = 8, and φ3 in d = 12 all support this type of near boundary behavior.
More general types of interactions that involve derivatives of the scalar field as well, in
particular so called shift-symmetric theories [69] invariant under φ → φ + constant, may
lead to novel surface behavior. The generalization of Liouville theory in two dimensions
to higher dimensions may also be an interesting way to add interactions to these systems
with boundaries [70].
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Low dimensions. A final topic which requires a few closing remarks is the peculiar
behavior that emerges in these theories in low numbers of dimensions. While we emphasized
in the introduction the connection between the biharmonic theory and deformations of a
thin plate, the d = 2 dimensional case does not have a traceless stress tensor. We did not
actually show in this case how conformal symmetry can be realized. Ref. [58] discusses
some of the exotic features of this theory in the absence of a boundary — that the single
trace Hilbert space is finite dimensional and that the theory has comparatively few primary
operators and nonzero correlation functions. The underlying issue is that the two point
function of the primary operator 〈φ(x)φ(0)〉 ∼ x2 is a monomial. As a result, there are
only a few nonzero two-point functions in the associated conformal multiplet; acting thrice
with momentum kills the correlation function. The emphasis in our work was on higher
dimensional theories where the correlation functions die off rather than grow with distance
and these truncation issues do not occur. It would be interesting to revisit these low
dimensional theories, the interplay between scale and conformal invariance, and how a
boundary does or does not affect the correlation functions and operator spectrum.
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A Details on higher-derivative scalars with boundaries

In this appendix we present a momentum space derivation of the two-point function for the
�kφ theories that complements the real space derivation presented in the text. By going
to momentum space, we are able to derive more general two-point functions that break
conformal invariance but preserve dilatations. We also provide a detailed discussion of the
two-point function along the boundary RG flows of section 3.2.

A.1 Propagator

The bulk propagator in the absence of a boundary can be easily found by using the
momentum-space representation, namely

〈φ(x)φ(y)〉 ≡ G(x, y) =
∫

ddp

(2π)d
eip·(x−y)

p2k =
Γ
(
d−2k

2

)
22kπd/2Γ(k)

1
|x− y|d−2k . (A.1)
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In the presence of a boundary, we can find the propagator by solving(
−∂2

)k
G(x‖, z1, z2) = δ(d−1)(x‖)δ(z1 − z2) (A.2)

for the Green’s function, where in this appendix we set xn ≡ z for convenience. Due to
translational invariance along the parallel directions to the boundary we can write

G(x‖, z1, z2) =
∫

dd−1p‖
(2π)d−1 f(p‖, z1, z2)eip‖·x‖ , (A.3)

and by plugging this form into the differential equation we obtain(
p2
‖ − ∂

2
z1

)k
f(p‖, z1, z2) = δ(z1 − z2) . (A.4)

First of all, we study the homogeneous equation, whose general solution reads

f(p‖, z1, z2) =
k−1∑
l=0

[
Al(z2)zl1e−p‖z1 +Bl(z2)zl1e+p‖z1

]
, (A.5)

where by a slight abuse of notation we write p‖ = |p‖|.
Next we have to consider the two regions z1 > z2 and z1 < z2 separately. We call the

coefficients of the former region A>,l and B>,l while the one of the latter A<,l and B<,l.
Let us first focus on the region z1 > z2. In this case regularity at infinity forces B>,l = 0.
In contrast, for the region z1 < z2 there are no conditions so far. Thus,

f(p‖, z1, z2) =


∑k−1
l=0 A>,l(z2)zl1e−p‖z1 , z1 > z2 ,∑k−1
l=0

[
A<,l(z2)zl1e−p‖z1 +B<,l(z2)zl1e+p‖z1

]
, z1 < z2 .

(A.6)

To solve the inhomogeneous equation we will need to require continuity up to the (2k−2)-
th derivative on z1, while there will be a discontinuity in the (2k − 1)-th one. Thus, we
impose

∂iz1f
∣∣∣+
z1=z2

= ∂iz1f
∣∣∣−
z1=z2

, i = 0, . . . , 2k − 2 , (A.7)

and
∂2k−1
z1 f

∣∣∣+
z1=z2

− ∂2k−1
z1 f

∣∣∣−
z1=z2

= (−1)k . (A.8)

To be concrete, we first specialize to k = 2. In that case, the solution to the above
algebraic system reads

A<,0(z2) = A>,0(z2) +
p‖z2 − 1

4p3
‖

ep‖z2 , A<,1(z2) = A>,1(z2)− ep‖z2

4p2
‖
,

B<,0(z2) =
p‖z2 + 1

4p3
‖

e−p‖z2 , B<,1(z2) = −e
−p‖z2

4p2
‖

,

(A.9)

which implies

f(p‖, z1, z2) =
A<,0(z2)e−p‖z1 − p‖z2−1

4p3
‖
ep‖(z2−z1) +A<,1(z2)e−p‖z1z1 + e

p‖(z2−z1)

4p2
‖

z1 , z1 > z2 ,

A<,0(z2)e−p‖z1 +A<,1(z2)e−p‖z1z1 + p‖z2+1
4p3
‖
e−p‖(z2−z1) − e

−p‖(z2−z1)

4p2
‖

z1 , z1 < z2 .

(A.10)
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At this point we impose symmetry under the exchange z1 ↔ z2. This leads to the equation

A<,0(z2)e−p‖z1 +A<,1(z2)e−p‖z1z1 = A<,0(z1)e−p‖z2 +A<,1(z1)e−p‖z2z2 , (A.11)

with general solution

A<,0(z2) =
a+ c p‖z2

p3
‖

e−p‖z2 , A<,1(z2) =
b p‖z2 + c

p2
‖

e−p‖z2 . (A.12)

Thus, the final result is

f(p‖, z1, z2) =
p‖|z1 − z2|+ 1

4p3
‖

e−p‖|z1−z2| +
a+ c p‖(z1 + z2) + b p2

‖z1z2

4p3
‖

e−p‖(z1+z2).

(A.13)
Repeating the same analysis for k = 3, we instead obtain

f(p‖, z1, z2) = e−p‖|z1−z2| p‖|z1 − z2|(p‖|z1 − z2|+ 3) + 3
16p5
‖

+ e−p‖(z1+z2)a+ b p‖(z1 + z2) + c p2
‖
(
z2

1 + z2
2
)

+ e p2
‖z1z2 + g p3

‖z1z2(z1 + z2) + h p4
‖z

2
1z

2
2

p5
‖

.

(A.14)

Generalizing to arbitrary k, we find

f(p‖, z1, z2) =
|z1 − z2|k−

1
2K 1

2−k
(p‖|z1 − z2|)

2k− 1
2
√
π Γ(k)pk−

1
2

‖

+ e−p‖(z1+z2)

p2k−1
‖

 k−1∑
i,j=0

aijp
i+j
‖ zi1z

j
2

 , (A.15)

where aij is a k × k-symmetric matrix. We stress that up to now the only requirement is
that the bulk equation of motion eq. (A.2) is satisfied. In particular, we did not require
either conformal or scale invariant boundary conditions.

If we impose scale invariance, then the coefficients aij are pure numbers independent
of the momentum p‖. As an example we consider the case k = 2 and d = 5, where going
back to position space gives the propagator

G(x, y) = 1
16π2

1
|x− y|

+ a|x− ỹ|3 + b xnyn (|x− ỹ|+ xn + yn) + c (xn + yn)|x− ỹ|2
16π2|x− ỹ|3 (|x− ỹ|+ xn + yn) .

(A.16)
While this Green’s function is scale invariant, it does not in general respect conformal
symmetry, as we will show in the next subsection. The conformal boundary conditions in
the main part of the text correspond to the following assignments for a, b, and c:

a b c

DD −1 −2 −1
DN −1 0 −1
ND 1 0 1

(A.17)
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For the scale but not necessarily conformally invariant generalized NN boundary condition
discussed around eq. (3.41), we find in terms of ν

NN : a = − 5 + 2ν + ν2

(ν − 1)(ν + 3) , b = −2(ν − 1)
ν + 3 , c = −ν − 1

ν + 3 , (A.18)

where the conformal choice is ν = −1. Evidently this Green’s function is not well defined
for ν = −3 and ν = 1.

A.2 Constraint due to conformal symmetry

In this section we discuss the constraints of conformal symmetry on the boundary conditions
from the point of view of the propagator. A convenient way to proceed is by employing
the Ward identity associated with the special conformal transformation, which reads n∑

j=1

(
2∆jx

µ
j + 2xµj xνj

∂

∂xνj
− x2

j

∂

∂xjµ

) 〈O1(x1)O2(x2) . . .On(xn)〉 = 0 . (A.19)

In the presence of a boundary, only the generators along the parallel directions are pre-
served. In momentum space, the Ward identity for the two-point function O1 = O2 = O
becomes [

2(∆− d+ 1) ∂

∂pa
− 2pb ∂

∂pb

∂

∂pa
+ pa

∂

∂pb
∂

∂pb
+

+2z1
∂

∂pa

∂

∂z1
− z2

1p
a + z2

2p
a
]
f(p, z1, z2) = 0 ,

(A.20)

where for simplicity we drop the subscripts and write pa ≡ pa‖, and a, b = 0, . . . , d − 2 run
over the preserved special conformal generators, which are along the directions parallel to
the boundary. The discussion here is an adaptation of [71] to the case with a boundary.
The above equation implies

k−1∑
i,j=0

aij
[
Aijz

i
1z
j
2 +Bi |p|zi+1

1 zj2 −Bj |p|z
i
1z
j+1
2

]
= 0 , (A.21)

where we defined

Aij ≡ (i− j)(1 + i+ j − 2k), Bi ≡ 2(k − i− 1) . (A.22)

Since z1, z2 can assume any positive value, we need to set to zero all the possible combina-
tions of zi1z

j
2. This gives the following conditions

(a10 − a00)(k − 1) = 0 , (A.23a)
ai0Ai0 + ai−1,0Bi−1 = 0 , i ∈ (2, k − 1) , (A.23b)

aijAij + ai−1,jBi−1 − ai,j−1Bj−1 = 0 , i, j ∈ (1, k − 1) . (A.23c)

We note that the first two equations impose k−1 conditions, while the last one correspond-
ing to a (k − 1) × (k − 1) antisymmetric matrix gives (k − 1)(k − 2)/2 conditions. Thus,
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we got (k − 1)k/2 conditions in total. Finally, since the aij matrix contains k(k + 1)/2
free coefficients, we see that conformal invariance leaves us with precisely k undetermined
constants.

Now we discuss some specific cases:

• For k = 1, there are no conditions. Indeed, the first one disappears due to the
combination k − 1, while the other ones are absent. Thus, we are left with one free
coefficient.

• For k = 2 there is only the first condition, which gives a10 = a00 (or a = c in the
notation of eq. (A.13)), in agreement with what we found in the section 4.2.

• For k = 3 we get a10 − a00 = 0, a10 − 3a20 = 0, and a12 + 2a02 − a11 = 0. In terms of
the coefficient of the propagator eq. (A.14) those are a = b, b = 3c, and 2c+g−e = 0.

As an example, we write down the propagator for k = 2 and generic d, which we used
in the main text to compute the two-point function of the displacement operator. It reads

G(x‖, z1, z2) =
Γ
(
d−4

2

)
16πd/2

[ 1
|x− y|d−4 + a

|x− ỹ|d−4 + (d− 4)b z1 z2
|x− ỹ|d−2

]

=
Γ
(
d−4

2

)
16πd/2

1
(4z1z2)

d−4
2

 1
ξ
d−4

2
+ a

(1 + ξ)
d−4

2
+ (d− 4)

4
b

(1 + ξ)
d−2

2

 ,
(A.24)

where we defined
ξ ≡ (x− y)2

4z1 z2
.

ND and DN boundary conditions correspond to a = +1 and a = −1, respectively, and
b = 0. NN and DD correspond to a = ±1, b = ±2.

A.3 RG flows and two-point functions

Here, we consider a BCFT containing the boundary primary of level (k, q). When 0 ≤ q <
2k − 1, the quadratic boundary deformation

S(q)
c = c

∫
dd−1x‖Φ(k,q)Φ(k,q) (A.25)

is relevant, and we expect it to trigger an RG flow from the Neumann-type boundary
condition Φ(k,2k−q−1) = 0 to the Dirichlet-type boundary condition Φ(k,q) = 0. Since the
deformation is quadratic, we can solve the theory exactly, obtaining the propagator and
other interesting correlators analytically for any value of the coupling c.

For simplicity we normalize the boundary primary fields such that〈
Φ(k,q)

(
x‖
)

Φ(k,q′)(0)
〉

0
= δq,q′∣∣∣x‖∣∣∣d−2(k−q) (A.26)

and 〈
φ(x)Φ(k,q)(0)

〉
0

= Ck,q

z−q
(
x2
‖ + z2

) d−2(k−q)
2

, (A.27)
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where 〈 · 〉0 indicates that the correlation functions are computed in the undeformed theory,
i.e. for c = 0. To obtain the propagator of the deformed theory, we expand the exponen-
tial in the path-integral corresponding to the deformation and successively apply Wick’s
theorem as in ref. [72]. We obtain

〈φ(x)φ(0)〉c = 〈φ(x)φ(0)〉0 +
∞∑
n=1

(−c)n
∫ n∏

i=1
dd−1x‖i

〈
φ(x)Φ(k,q)(x‖1)

〉
0

〈
Φ(k,q)(x‖n)φ(0)

〉
0∏n−1

j=1 |x‖j − x‖j+1|d−2(k−q) .

(A.28)
At this point we find it convenient to go to Fourier space, namely

1∣∣∣x‖∣∣∣d−2(k−q) = A

∫
dd−1p‖
(2π)d−1

eip‖·x‖∣∣∣p‖∣∣∣2(k−q)−1 , A =
4k−qπ d−1

2 Γ
(
k − q − 1

2

)
2 Γ

(
d
2 − k + q

) , (A.29)

and
1(

x2
‖ + z2

) d−2(k−q)
2

=
∫

dd−1p‖
(2π)d−1

eip‖·x‖∣∣∣p‖∣∣∣2(k−q)−1 g
(∣∣∣p‖∣∣∣ z) , (A.30)

with

g
(∣∣∣p‖∣∣∣ z) = 2π d−1

2

Γ
(
d
2 − k + q

) (2|p‖|z
)k−q− 1

2 Kk−q− 1
2

(
|p‖|z

)
. (A.31)

In Fourier space the integrals and the sum in eq. (A.28) can be performed giving

〈φ(x1)φ(0,z2)〉c = 〈φ(x1)φ(0,z2)〉0

−C2
k,q

∫
dd−1p‖
(2π)d−1 e

ip‖·x|| czq1z
q
2

p
2(k−q)−1
‖ +Ac

1∣∣∣p‖∣∣∣2(k−q)−1 g
(∣∣∣p‖∣∣∣z1

)
g
(∣∣∣p‖∣∣∣z2

)
.

(A.32)
This is the general result valid for any k, q, and c.

As an example, let us consider the case k = 2 with NN boundary condition and the
deformation corresponding to (k, q) = (2, 0). In this case we find C2

2,0 = 8πd/2/Γ(d/2− 2)
and A = 4πd/2/Γ

(
d
2 − 2

)
. Thus, we find

〈φ(x1)φ(0, z2)〉c = 〈φ(x1)φ(0, z2)〉0

− 8π d2
Γ
(
d
2 − 2

) ∫ dd−1p‖
(2π)d−1 e

ip‖·x‖ c e
−|p‖|(z1+z2)∣∣∣p‖∣∣∣3 +Ac

(
1 +

∣∣∣p‖∣∣∣ z1
)

(1 +
∣∣∣p‖∣∣∣ z2)∣∣∣p‖∣∣∣3 .

(A.33)
The interesting limit is c → +∞, where the theory is expected to become conformal.
Indeed, it is easy to see that we obtain

〈φ(x1)φ(0, z2)〉c =
Γ
(
d−4

2

)
16πd/2

1
|x− y|d−4 −

∫
dd−1p‖
(2π)d−1 e

ip‖·x‖
1 +

∣∣∣p‖∣∣∣ (z1 + z2)

2
∣∣∣p‖∣∣∣3 e−|p‖|(z1+z2),

(A.34)
which is exactly the propagator in the DN case, as expected.
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Another interesting correlator is the two-point function of the boundary primary la-
beled by (k, q). By repeating the above procedure one finds

〈
Φ(k,q)(x‖)Φ(k,q)(0)

〉
c

= A

∫
dd−1p‖
(2π)d−1

eip‖·x‖∣∣∣p‖∣∣∣2(k−q)−1
+Ac

. (A.35)

The claim is that at short distances we recover the unperturbed two-point function cor-
responding to the level (k, q), while at large separations we expect to find the power-law
behavior of the conjugate field with level (k, 2k − q − 1). If we consider the endpoint of
the flow, where we have the nonzero operator Φ(k,2k−q−1), we can walk back up the flow
a little ways by introducing the irrelevant deformation c−1Φ(k,2k−q−1)Φ(k,2k−q−1) to the
Lagrangian. As we saw in section 3, this deformation leads to the boundary equation of
motion Φ(k,q) + c−1Φ(k,2k−q−1) = 0. This boundary equation of motion lets us read off the
perturbative result in the large c limit

〈Φ(k,q)(x‖)Φ(k,q)(0)〉 ∼ c−2〈Φ(k,2k−q−1)(x‖)Φ(k,2k−q−1)(0)〉 , (A.36)

which we will now demonstrate explicitly using (A.35).
Firstly, we take advantage of the spherical symmetry of the boundary and rewrite the

above correlator in terms of the Hankel transform
〈

Φ(k,q)(x‖)Φ(k,q)(0)
〉
c
∝ 1
|x‖|

d−3
2

∫ +∞

0

d|p‖|
(2π)d−1

|p‖|
d−1

2∣∣∣p‖∣∣∣2(k−q)−1
+Ac

J d−3
2

(
|p‖||x‖|

)
. (A.37)

Expanding the rational part of the integrand for small |p‖|,

|p‖|
d−1

2∣∣∣p‖∣∣∣2(k−q)−1
+Ac

= 1
Ac

|p‖| d−1
2 −

|p‖|
d−3

2 +2(k−q)

Ac
+ . . .

 ,

we can employ the following standard integral

∫ ∞
0

dt tµJν(tx) =
2µΓ

(
1+µ+ν

2

)
x1+µΓ

(
1−µ+ν

2

) . (A.38)

Integrating |p‖|
d−1

2 against the Bessel function gives a contact term that we ignore, but the
second term in the expansion gives the result of interest:〈

Φ(k,q)(x‖)Φ(k,q)(0)
〉
c
∼ 1
c2

1
|x‖|d+2(k−q−1) , (A.39)

where we are ignoring overall constant factors and subleading contributions at large sep-
arations. Note that if the power of p‖ in the denominator of the integrand in eq. (A.37)
were an even positive number, then the integral eq. (A.38) would vanish due to a pole in
the Γ-function in the denominator. This is consistent with the asymptotic behaviour of the
usual scalar propagator (p2 + m2)−1, which, being exponentially decreasing in real space,
cannot be obtained by a perturbative expansion.
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k = 1 k = 2 k = 3
d = 4 ζ(3)

8π2

d = 6 −π2ζ(3)+3ζ(5))
96π4

5π2ζ(3)−3ζ(5)
48π4

d = 8 8π4ζ(3)+30π2ζ(5)+45ζ(7)
5760π6 −22π4ζ(3)+60π2ζ(5)−45ζ(7)

2880π6 −56π4ζ(3)+70π2ζ(5)−15ζ(7)
640π6

Table 7. The constant term in ∆F (ND)
∂ for the �kφ theories for the first few values of k and d.

The d = 4, k = 1 result appears in [40, 73]. The d = 6, k = 1 result is (14) of [55].

B The constant term in ∆F∂

In the text, we emphasized the coefficient of the logarithmic divergence in ∆F∂ that occurs
in odd bulk dimensions d. This coefficient has been important because of its connection to
boundary contributions to the anomaly in the trace of the stress tensor. In even dimensions,
there is a constant term which is also believed to be regularization independent and should
obey a similar monotonicity condition, at least for unitary theories [40]. Isolating this term
is more involved than the procedures used in the text to compute the coefficient of the
logarithmic divergence. Here, we use zeta function regularization to compute ∆F (ND)

∂ for
the �kφ theories.

A general integral formula for this constant term is available as eq. (24) of [53]. We
content ourselves here to reproduce a few specific cases (see table 7). Our method fails to
produce a finite result when k ≥ d

2 . This bound is interesting because it corresponds to
theories where there is an obstruction to writing a stress tensor that is also a conformal
primary [24].

We will illustrate how to compute ∆F (ND)
∂ for the �φ theory in d = 4, which recovers

a result in [40, 73]. The remaining values in table 7 follow from analogous if more involved
calculations. The starting point is the sum (4.8) in the special case k = 1 and d = 4:

∆F (ND)
∂ = − 1

12

∞∑
`=0

(`+ 1)(`+ 2)(`+ 3) log `+ 3
`+ 1 .

We regularize the logarithm using zeta functions:

∆F (ND)
∂ = 1

12
d

ds

∞∑
`=0

(`+ 1)(`+ 2)(`+ 3)
[ 1

(`+ 3)s −
1

(`+ 1)s
]
s=0

.

Evaluating the sum then gives

∆F (ND)
∂ = ζ(3)

8π2 .

The positive sign here is consistent with the monotonicity of this quantity proposed in
ref. [40]. That the sign alternates as we move from column to column is in contradiction
with a monotonic behavior under RG flow. Presumably this failure of monotonicity is
correlated with the loss of unitarity for the k > 1 theories.
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Following a similar strategy to what is in the text, we could then in principle go
further and determine the change ∆F∂ induced by a relevant boundary deformation and
also similar data for the fermionic /∂

2k+1
ψ theories. While we include this appendix to

illustrate the control we have over these theories, as it is not clear to us yet what lessons
to extract from this data, we will leave these further tasks as an exercise for the reader.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] S. Germain, Recherches sur la théorie des surfaces élastiques, V. Courcier (1821).

[2] J.L. Lagrange, Note communiquée aux Commissaires pour le prix de la surface élastique
Décembre 1811, Ann. Chimie Physique 39 (1828).

[3] S.D. Poisson, Memoire sur l’équilibre et le movement des corps élastique, L’Académie Royale
des Sciences (1829).

[4] S. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill (1951).

[5] W.S. Slaughter, The linearized theory of elasticity, Springer Science & Business Media (2012).

[6] L.D. Landau, E.M. Lifshitz, A.M. Kosevich and L.P. Pitaevskii, Theory of elasticity: volume
7, Elsevier (1986).

[7] L. Rayleigh, XXXVIII. On the flow of viscous liquids, especially in two dimensions, The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 36 (1893)
354.

[8] T.W. Burkhardt, Y. Yang and G. Gompper, Fluctuations of a long, semiflexible polymer in a
narrow channel, Phys. Rev. E 82 (2010) 041801 [arXiv:1008.1594].

[9] H.W. Diehl, S. Rutkevich and A. Gerwinski, Surface critical behavior at m axial Lifshitz
points: Continuum models, boundary conditions and two loop renormalization group results,
J. Phys. A 36 (2003) L243 [cond-mat/0303148] [INSPIRE].

[10] H.W. Diehl, Bulk and boundary critical behavior at Lifshitz points, Pramana 64 (2005) 803
[cond-mat/0407352] [INSPIRE].

[11] H.W. Diehl, M.A. Shpot and P.V. Prudnikov, Boundary critical behaviour atm-axial Lifshitz
points of semi-infinite systems with a surface plane perpendicular to a modulation axis, J.
Phys. A 39 (2006) 7927 [cond-mat/0512681] [INSPIRE].

[12] A.E.H. Love, XVI. The small free vibrations and deformation of a thin elastic shell,
Philosophical Transactions of the Royal Society of London A 179 (1888) 491.

[13] G. Kirchoff, Vorlesungen über mathemathische Physik, Teubner (1876).

[14] G. Kirchoff, About the balance and the movement of an elastic disc, Journal of Pure and
Applied Mathematics (Crelle’s J) 40 (1850) 51.

[15] G.N. Greaves, Poisson's ratio over two centuries: challenging hypotheses, Notes and Records:
the Royal Society Journal of the History of Science 67 (2012) 37.

– 50 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/14786449308620489
https://doi.org/10.1080/14786449308620489
https://doi.org/10.1080/14786449308620489
https://doi.org/10.1103/physreve.82.041801
https://arxiv.org/abs/1008.1594
https://doi.org/10.1088/0305-4470/36/46/c01
https://arxiv.org/abs/cond-mat/0303148
https://inspirehep.net/literature/616675
https://doi.org/10.1007/BF02704584
https://arxiv.org/abs/cond-mat/0407352
https://inspirehep.net/literature/683255
https://doi.org/10.1088/0305-4470/39/25/s09
https://doi.org/10.1088/0305-4470/39/25/s09
https://arxiv.org/abs/cond-mat/0512681
https://inspirehep.net/literature/1847252
https://doi.org/10.1098/rsta.1888.0016
https://doi.org/10.1098/rsnr.2012.0021
https://doi.org/10.1098/rsnr.2012.0021


J
H
E
P
0
4
(
2
0
2
3
)
0
9
8

[16] J.S. Case, Boundary operators associated to the Paneitz operator, Indiana Univ. Math. J.
(2018) 293, [arXiv:1509.08342].

[17] J.S. Case and W. Luo, Boundary Operators Associated With the Sixth-Order GJMS
Operator, Int. Math. Res. Not. 2021 (2019) 10600 [arXiv:1810.08027].

[18] E.S. Fradkin and A.A. Tseytlin, Asymptotic freedom in extended conformal supergravities,
Phys. Lett. B 110 (1982) 117 [INSPIRE].

[19] E.S. Fradkin and A.A. Tseytlin, One Loop Beta Function in Conformal Supergravities, Nucl.
Phys. B 203 (1982) 157 [INSPIRE].

[20] C.R. Graham, R. Jenne, L.J. Mason and G.A.J. Sparling, Conformally Invariant Powers of
the Laplacian, I: Existence, J. London Math. Soc. s2-46 (1992) 557.

[21] M. Fischmann, On Conformal Powers of the Dirac Operator on Spin Manifolds,
arXiv:1311.4182.

[22] J. Holland and G. Sparling, Conformally invariant powers of the ambient Dirac operator,
math/0112033.

[23] G. de Berredo-Peixoto and I.L. Shapiro, On the High derivative fermionic operator and trace
anomaly, Phys. Lett. B 514 (2001) 377 [hep-th/0101158] [INSPIRE].

[24] A. Stergiou, G.P. Vacca and O. Zanusso, Weyl covariance and the energy momentum tensors
of higher-derivative free conformal field theories, JHEP 06 (2022) 104 [arXiv:2202.04701]
[INSPIRE].

[25] H. Osborn and A. Stergiou, CT for non-unitary CFTs in higher dimensions, JHEP 06
(2016) 079 [arXiv:1603.07307] [INSPIRE].

[26] H. Osborn, Lectures on Conformal Field Theories in more than two dimensions,
http://www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf.

[27] F. Ferrari, Biharmonic conformal field theories, Phys. Lett. B 382 (1996) 349
[hep-th/9507142] [INSPIRE].

[28] G.K. Karananas and A. Monin, Weyl vs. Conformal, Phys. Lett. B 757 (2016) 257
[arXiv:1510.08042] [INSPIRE].

[29] Y. Nakayama, Interacting scale invariant but nonconformal field theories, Phys. Rev. D 95
(2017) 065016 [arXiv:1611.10040] [INSPIRE].

[30] V. Riva and J.L. Cardy, Scale and conformal invariance in field theory: A Physical
counterexample, Phys. Lett. B 622 (2005) 339 [hep-th/0504197] [INSPIRE].

[31] T. Branson and A.R. Gover, Conformally invariant non-local operators, Pacific J. Math. 201
(2001) 19.

[32] A.R. Gover and L.J. Peterson, Conformal boundary operators, T-curvatures, and conformal
fractional Laplacians of odd order, arXiv:1802.08366 [DOI:10.2140/pjm.2021.311.277].

[33] J.L. Cardy, Conformal Invariance and Surface Critical Behavior, Nucl. Phys. B 240 (1984)
514 [INSPIRE].

[34] C. Herzog, K.-W. Huang and K. Jensen, Displacement Operators and Constraints on
Boundary Central Charges, Phys. Rev. Lett. 120 (2018) 021601 [arXiv:1709.07431]
[INSPIRE].

– 51 –

https://arxiv.org/abs/1509.08342
https://doi.org/10.1093/imrn/rnz121
https://arxiv.org/abs/1810.08027
https://doi.org/10.1016/0370-2693(82)91018-8
https://inspirehep.net/literature/179793
https://doi.org/10.1016/0550-3213(82)90481-3
https://doi.org/10.1016/0550-3213(82)90481-3
https://inspirehep.net/literature/168735
https://doi.org/10.1112/jlms/s2-46.3.557
https://arxiv.org/abs/1311.4182
https://arxiv.org/abs/math/0112033
https://doi.org/10.1016/S0370-2693(01)00801-2
https://arxiv.org/abs/hep-th/0101158
https://inspirehep.net/literature/552429
https://doi.org/10.1007/JHEP06(2022)104
https://arxiv.org/abs/2202.04701
https://inspirehep.net/literature/2030727
https://doi.org/10.1007/JHEP06(2016)079
https://doi.org/10.1007/JHEP06(2016)079
https://arxiv.org/abs/1603.07307
https://inspirehep.net/literature/1432724
http://www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf
https://doi.org/10.1016/0370-2693(96)00677-6
https://arxiv.org/abs/hep-th/9507142
https://inspirehep.net/literature/397644
https://doi.org/10.1016/j.physletb.2016.04.001
https://arxiv.org/abs/1510.08042
https://inspirehep.net/literature/1401044
https://doi.org/10.1103/PhysRevD.95.065016
https://doi.org/10.1103/PhysRevD.95.065016
https://arxiv.org/abs/1611.10040
https://inspirehep.net/literature/1501026
https://doi.org/10.1016/j.physletb.2005.07.010
https://arxiv.org/abs/hep-th/0504197
https://inspirehep.net/literature/681262
https://doi.org/10.2140/pjm.2001.201.19
https://doi.org/10.2140/pjm.2001.201.19
https://arxiv.org/abs/1802.08366
https://doi.org/10.2140/pjm.2021.311.277
https://doi.org/10.1016/0550-3213(84)90241-4
https://doi.org/10.1016/0550-3213(84)90241-4
https://inspirehep.net/literature/209563
https://doi.org/10.1103/PhysRevLett.120.021601
https://arxiv.org/abs/1709.07431
https://inspirehep.net/literature/1624728


J
H
E
P
0
4
(
2
0
2
3
)
0
9
8

[35] L. Bianchi, M. Meineri, R.C. Myers and M. Smolkin, Rényi entropy and conformal defects,
JHEP 07 (2016) 076 [arXiv:1511.06713] [INSPIRE].

[36] C.P. Herzog and K.-W. Huang, Boundary Conformal Field Theory and a Boundary Central
Charge, JHEP 10 (2017) 189 [arXiv:1707.06224] [INSPIRE].

[37] A. Chalabi et al., Weyl anomalies of four dimensional conformal boundaries and defects,
JHEP 02 (2022) 166 [arXiv:2111.14713] [INSPIRE].

[38] A. Faraji Astaneh and S.N. Solodukhin, Boundary conformal invariants and the conformal
anomaly in five dimensions, Phys. Lett. B 816 (2021) 136282 [arXiv:2102.07661] [INSPIRE].

[39] T.P. Branson, Sharp inequalities, the functional determinant, and the complementary series,
Transactions of the American Mathematical Society 347 (1995) 3671.

[40] D. Gaiotto, Boundary F-maximization, arXiv:1403.8052 [INSPIRE].

[41] K. Jensen and A. O’Bannon, Constraint on Defect and Boundary Renormalization Group
Flows, Phys. Rev. Lett. 116 (2016) 091601 [arXiv:1509.02160] [INSPIRE].

[42] Y. Wang, Defect a-theorem and a-maximization, JHEP 02 (2022) 061 [arXiv:2101.12648]
[INSPIRE].

[43] N. Kobayashi, T. Nishioka, Y. Sato and K. Watanabe, Towards a C-theorem in defect CFT,
JHEP 01 (2019) 039 [arXiv:1810.06995] [INSPIRE].

[44] E. Witten, Multitrace operators, boundary conditions, and AdS / CFT correspondence,
hep-th/0112258 [INSPIRE].

[45] M. Ostrogradsky, Mémoires sur les équations différentielles, relatives au problème des
isopérimètres, Mem. Acad. St. Petersbourg 6 (1850) 385 [INSPIRE].

[46] G. Mack, All unitary ray representations of the conformal group SU(2,2) with positive
energy, Commun. Math. Phys. 55 (1977) 1 [INSPIRE].

[47] T.C. Lubensky and M.H. Rubin, Critical phenomena in semi-infinite systems. 2. Mean-field
theory, Phys. Rev. B 12 (1975) 3885 [INSPIRE].

[48] H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for
general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

[49] H. Casini, I. Salazar Landea and G. Torroba, Irreversibility in quantum field theories with
boundaries, JHEP 04 (2019) 166 [arXiv:1812.08183] [INSPIRE].

[50] S.S. Gubser and I.R. Klebanov, A Universal result on central charges in the presence of
double trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [INSPIRE].

[51] A. Allais, Double-trace deformations, holography and the c-conjecture, JHEP 11 (2010) 040
[arXiv:1007.2047] [INSPIRE].

[52] C.P. Herzog and I. Shamir, On Marginal Operators in Boundary Conformal Field Theory,
JHEP 10 (2019) 088 [arXiv:1906.11281] [INSPIRE].

[53] J.S. Dowker, Determinants and conformal anomalies of GJMS operators on spheres, J. Phys.
A 44 (2011) 115402 [arXiv:1010.0566] [INSPIRE].

[54] J.S. Dowker, Spherical Dirac GJMS operator determinants, J. Phys. A 48 (2015) 025401
[arXiv:1310.5563] [INSPIRE].

[55] J.S. Dowker, The boundary F-theorem for free fields, arXiv:1407.5909 [INSPIRE].

– 52 –

https://doi.org/10.1007/JHEP07(2016)076
https://arxiv.org/abs/1511.06713
https://inspirehep.net/literature/1405758
https://doi.org/10.1007/JHEP10(2017)189
https://arxiv.org/abs/1707.06224
https://inspirehep.net/literature/1610651
https://doi.org/10.1007/JHEP02(2022)166
https://arxiv.org/abs/2111.14713
https://inspirehep.net/literature/1979447
https://doi.org/10.1016/j.physletb.2021.136282
https://arxiv.org/abs/2102.07661
https://inspirehep.net/literature/1846724
https://doi.org/10.1090/s0002-9947-1995-1316845-2
https://arxiv.org/abs/1403.8052
https://inspirehep.net/literature/1287968
https://doi.org/10.1103/PhysRevLett.116.091601
https://arxiv.org/abs/1509.02160
https://inspirehep.net/literature/1392474
https://doi.org/10.1007/JHEP02(2022)061
https://arxiv.org/abs/2101.12648
https://inspirehep.net/literature/1843990
https://doi.org/10.1007/JHEP01(2019)039
https://arxiv.org/abs/1810.06995
https://inspirehep.net/literature/1698922
https://arxiv.org/abs/hep-th/0112258
https://inspirehep.net/literature/569032
https://inspirehep.net/literature/1468685
https://doi.org/10.1007/BF01613145
https://inspirehep.net/literature/100788
https://doi.org/10.1103/PhysRevB.12.3885
https://inspirehep.net/literature/107915
https://doi.org/10.1006/aphy.1994.1045
https://arxiv.org/abs/hep-th/9307010
https://inspirehep.net/literature/35315
https://doi.org/10.1007/JHEP04(2019)166
https://arxiv.org/abs/1812.08183
https://inspirehep.net/literature/1710375
https://doi.org/10.1016/S0550-3213(03)00056-7
https://arxiv.org/abs/hep-th/0212138
https://inspirehep.net/literature/604507
https://doi.org/10.1007/JHEP11(2010)040
https://arxiv.org/abs/1007.2047
https://inspirehep.net/literature/861135
https://doi.org/10.1007/JHEP10(2019)088
https://arxiv.org/abs/1906.11281
https://inspirehep.net/literature/1741810
https://doi.org/10.1088/1751-8113/44/11/115402
https://doi.org/10.1088/1751-8113/44/11/115402
https://arxiv.org/abs/1010.0566
https://inspirehep.net/literature/871703
https://doi.org/10.1088/1751-8113/48/2/025401
https://arxiv.org/abs/1310.5563
https://inspirehep.net/literature/1261454
https://arxiv.org/abs/1407.5909
https://inspirehep.net/literature/1307271


J
H
E
P
0
4
(
2
0
2
3
)
0
9
8

[56] J.S. Dowker, a-F interpolation with boundary, arXiv:1709.08569 [INSPIRE].

[57] A.C. Kislev, T. Levy and Y. Oz, Odd dimensional nonlocal Liouville conformal field theories,
JHEP 07 (2022) 150 [arXiv:2206.10884] [INSPIRE].

[58] C. Brust and K. Hinterbichler, Free �k scalar conformal field theory, JHEP 02 (2017) 066
[arXiv:1607.07439] [INSPIRE].

[59] C.P. Herzog and V. Schaub, Fermions in boundary conformal field theory: crossing symmetry
and E-expansion, JHEP 02 (2023) 129 [arXiv:2209.05511] [INSPIRE].

[60] D.M. McAvity and H. Osborn, Energy momentum tensor in conformal field theories near a
boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].

[61] C.P. Herzog and V. Schaub, A sum rule for boundary contributions to the trace anomaly,
JHEP 01 (2022) 121 [arXiv:2107.11604] [INSPIRE].

[62] L. Di Pietro, E. Lauria and P. Niro, 3d large N vector models at the boundary, SciPost Phys.
11 (2021) 050 [arXiv:2012.07733] [INSPIRE].

[63] C.M. Bender and P.D. Mannheim, Exactly solvable PT-symmetric Hamiltonian having no
Hermitian counterpart, Phys. Rev. D 78 (2008) 025022 [arXiv:0804.4190] [INSPIRE].

[64] A. Smilga, Classical and quantum dynamics of higher-derivative systems, Int. J. Mod. Phys.
A 32 (2017) 1730025 [arXiv:1710.11538] [INSPIRE].

[65] A. Pais and G.E. Uhlenbeck, On Field theories with nonlocalized action, Phys. Rev. 79
(1950) 145 [INSPIRE].

[66] L. Boyle and N. Turok, Cancelling the vacuum energy and Weyl anomaly in the standard
model with dimension-zero scalar fields, arXiv:2110.06258 [INSPIRE].

[67] J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].

[68] A.V. Smilga, Benign versus malicious ghosts in higher-derivative theories, Nucl. Phys. B 706
(2005) 598 [hep-th/0407231] [INSPIRE].

[69] M. Safari, A. Stergiou, G.P. Vacca and O. Zanusso, Scale and conformal invariance in higher
derivative shift symmetric theories, JHEP 02 (2022) 034 [arXiv:2112.01084] [INSPIRE].

[70] T. Levy and Y. Oz, Liouville Conformal Field Theories in Higher Dimensions, JHEP 06
(2018) 119 [arXiv:1804.02283] [INSPIRE].

[71] A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in
momentum space, JHEP 03 (2014) 111 [arXiv:1304.7760] [INSPIRE].

[72] L. Bianchi et al., Monodromy defects in free field theories, JHEP 08 (2021) 013
[arXiv:2104.01220] [INSPIRE].

[73] I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-Theorem without Supersymmetry, JHEP 10
(2011) 038 [arXiv:1105.4598] [INSPIRE].

– 53 –

https://arxiv.org/abs/1709.08569
https://inspirehep.net/literature/1625342
https://doi.org/10.1007/JHEP07(2022)150
https://arxiv.org/abs/2206.10884
https://inspirehep.net/literature/2099475
https://doi.org/10.1007/JHEP02(2017)066
https://arxiv.org/abs/1607.07439
https://inspirehep.net/literature/1478064
https://doi.org/10.1007/JHEP02(2023)129
https://arxiv.org/abs/2209.05511
https://inspirehep.net/literature/2151068
https://doi.org/10.1016/0550-3213(93)90005-A
https://arxiv.org/abs/hep-th/9302068
https://inspirehep.net/literature/34289
https://doi.org/10.1007/JHEP01(2022)121
https://arxiv.org/abs/2107.11604
https://inspirehep.net/literature/1892492
https://doi.org/10.21468/SciPostPhys.11.3.050
https://doi.org/10.21468/SciPostPhys.11.3.050
https://arxiv.org/abs/2012.07733
https://inspirehep.net/literature/1836445
https://doi.org/10.1103/PhysRevD.78.025022
https://arxiv.org/abs/0804.4190
https://inspirehep.net/literature/784427
https://doi.org/10.1142/S0217751X17300253
https://doi.org/10.1142/S0217751X17300253
https://arxiv.org/abs/1710.11538
https://inspirehep.net/literature/1633631
https://doi.org/10.1103/PhysRev.79.145
https://doi.org/10.1103/PhysRev.79.145
https://inspirehep.net/literature/8932
https://arxiv.org/abs/2110.06258
https://inspirehep.net/literature/1944227
https://arxiv.org/abs/1105.5632
https://inspirehep.net/literature/901740
https://doi.org/10.1016/j.nuclphysb.2004.10.037
https://doi.org/10.1016/j.nuclphysb.2004.10.037
https://arxiv.org/abs/hep-th/0407231
https://inspirehep.net/literature/655252
https://doi.org/10.1007/JHEP02(2022)034
https://arxiv.org/abs/2112.01084
https://inspirehep.net/literature/1982737
https://doi.org/10.1007/JHEP06(2018)119
https://doi.org/10.1007/JHEP06(2018)119
https://arxiv.org/abs/1804.02283
https://inspirehep.net/literature/1666398
https://doi.org/10.1007/JHEP03(2014)111
https://arxiv.org/abs/1304.7760
https://inspirehep.net/literature/1230988
https://doi.org/10.1007/JHEP08(2021)013
https://arxiv.org/abs/2104.01220
https://inspirehep.net/literature/1856106
https://doi.org/10.1007/JHEP10(2011)038
https://doi.org/10.1007/JHEP10(2011)038
https://arxiv.org/abs/1105.4598
https://inspirehep.net/literature/900880

	Introduction
	Background
	Boundaries in CFTs
	Higher derivative free CFTs

	Boundary primaries and conformal boundary conditions
	Boundary conformal primaries
	Conformal boundary conditions
	A puzzle with Tna

	Characterizing higher derivative BCFTs
	Hemisphere free energy
	Two-point functions
	Displacement operator two-point function

	A curious duality
	Outlook
	Details on higher-derivative scalars with boundaries
	Propagator
	Constraint due to conformal symmetry
	RG flows and two-point functions

	The constant term in DeltaF(partial)

