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Abstract: Two-dimensional (2D) materials have sparked intense interest among the scientific commu-
nity owing to their extraordinary mechanical, optical, electronic, and thermal properties. In particular,
the outstanding electronic and optical properties of 2D materials make them show great application
potential in high-performance photodetectors (PDs), which can be applied in many fields such as
high-frequency communication, novel biomedical imaging, national security, and so on. Here, the
recent research progress of PDs based on 2D materials including graphene, transition metal carbides,
transition-metal dichalcogenides, black phosphorus, and hexagonal boron nitride is comprehensively
and systematically reviewed. First, the primary detection mechanism of 2D material-based PDs is
introduced. Second, the structure and optical properties of 2D materials, as well as their applications
in PDs, are heavily discussed. Finally, the opportunities and challenges of 2D material-based PDs are
summarized and prospected. This review will provide a reference for the further application of 2D
crystal-based PDs.

Keywords: two-dimensional material; optical properties; graphene; photodetector

1. Introduction

Two-dimensional (2D) materials have received more and more attention in recent
years. This family of materials developed rapidly, and their unique structures endow
them with many excellent properties that allow them to be promising candidates for the
next generation of optoelectronic devices, such as high-performance photodetectors (PDs).
First, the quantum confinement in the direction perpendicular to the 2D plane enables 2D
materials to acquire exceptional electrical and optical properties, which are favorable for
light absorption, ultrafast, and ultrasensitive photodetection [1]. Second, the surface of 2D
materials is naturally passivated and lacks dangling bonds, making them easy to integrate
with silicon chips [1,2]. Third, due to their diverse electrical characteristics, 2D materials can
cover a wide range of electromagnetic spectrum responses [3,4]. Finally, some 2D materials
with atomically thin characteristics, such as graphene and black phosphorus (BP), can
construct scale-to-nano devices free of parasitic capacitors [5] because their photoelectric
properties can be altered by local fields [6–8]. In addition, it is possible to build vertical
heterostructures using distinct 2D materials without the “lattice mismatch” issue produced
by Van der Waals interactions.
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Benefiting from these excellent properties, 2D materials, as well as the heterostructures,
show great application potential in the fabrication of PDs (Figure 1) [9]. According to the
different properties of each 2D material, they can be applied in different detection areas. For
example, the zero bandgap and ultra-high carrier mobility of graphene can be used in the
applications of photovoltaic cells, high-speed PDs, and photosensitive transistors [10–12].
In addition, its identical absorbance throughout a wide electromagnetic spectrum range
offers it great application potential in broadband irradiation detection from ultraviolet
to terahertz (THz) [13]. In addition to graphene, BP, transition-metal dichalcogenides
(TMDs), and hexagonal boron nitride (hBN) have also become research hotspots. The
unique properties of single layer BP, called “phosphorene”, allow it to show great potential
in optoelectronics applications [14]. BP is a direct bandgap semiconductor, and its electron–
hole pairs can be easily excited by absorbing visible or near-infrared (NIR) light [15]. Similar
to BP, by adjusting the number of layers of TMDs, the bandgap can be tuned in the range of
1.1~1.9 eV, leading to their wide applications in the field of optoelectronics. hBN with a
graphite-like layered structure is also an attractive 2D material [16]. Since charge carriers
driven by high-energy electrons or photons can efficiently emit light at deep ultraviolet
(DUV) frequencies via strong electron–phonon interactions, hBN has the potential to be
utilized in UV light-emitting devices.
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Figure 1. The research focus of 2D materials for PDs, including 2D nonlayered materials, 2D layered
materials, and their heterostructures.

2D materials have broad application prospects in optoelectronics devices, and they
hold the promise to break through the development bottleneck of conventional PDs [17–20].
In this review, we provide a systematic survey of recent progresses in 2D material-based
PDs. First, we briefly introduce the light detection mechanism of PDs based on 2D materials.
Subsequently, we introduce the structure and optical properties of various 2D materials
and summarize the recent development of corresponding PDs. Lastly, the challenges and
perspectives of 2D material-based PDs are prospected. This review may provide a deeper
grasp of 2D materials, offering insights in device fabrication for commercialization.

2. Photocurrent Generation Mechanism

PDs are crucial functional devices capable of converting illusive optical impulses
into electrical signals, which are essential for numerous applications [21,22]. The basic
working mechanism includes: (1) photogenerated charge carriers generated by illumination;
(2) current generated by carrier diffusion or drift; (3) amplification of the photocurrent
and transformation of voltage signals in the amplifier circuit. According to the nature of
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physical effects caused by incident radiation, PDs can be divided into two types. One is
photon detectors based on the photoelectric effect. The other is thermal detectors that rely
on changes in electron or lattice temperature to cause the thermalization of carriers. The
most notable characteristic of a thermal detector is that it is insensitive to the wavelength
of light emission.

2.1. Photonic-Type Mechanism
2.1.1. Photovoltaic Effect

Numerous investigations have demonstrated that the core of a photoelectric effect is
the built-in electrical field, which drives the separation of charge carriers created by illumi-
nation, to a certain extent. The built-in electrical field is realized at the semiconductor–metal
interface using chemical doping, heterostructure manufacturing, and other techniques.
Taking the p-n junction as an example, the concentration gradients of electrons and holes in
the p-n junction force them to move relative to each other, resulting in a built-in electrical
field at the interface, as illustrated in Figure 2a. Under the influence of a built-in electrical
field, the electron–hole pairs generated by illumination are separated to form photocur-
rents, whose flow direction is related to the orientation of the electrical field (Figure 2b).
This phenomenon is generally known as the photovoltaic (PV) effect, which can facilitate
the separation of photo-excited carriers. Figure 2c shows the nonlinear I–V characteris-
tic curves of a p-n junction, which exhibit the rectification feature in both light and dark
conditions [23]. Under illumination with a bias voltage (Vds) of 0 volts, there is an appre-
ciable photogenerated current (Ids). When the energy of a photon exceeds the bandgap, the
electron–hole pairs are excited and then form short circuit currents after being separated
by the built-in electrical field. If the circuit is open, the holes and electrons accumulate
in the device to form an open-circuit voltage. Assuming that a sizeable reverse bias is
applied to a heavily doped p-n junction, the incident light will accelerate the generation of
charge carriers, resulting in a high photoconductive gain in PDs [5]. Due to the electrical
field generated by the p-n junction’s inherent potential, the carriers’ lifetime can also be
extended. Self-powered PDs are typically based on PV effects in semiconductors because
detecting zero-bias photons requires less power consumption, low light noise caused by
dark current, and an exceptionally high photocurrent to dark current ratio [24–27].
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2.1.2. Photoconductive Effect

The photoconductance (PC) effect employs the mechanism by which surplus charge
carriers are activated when semiconductors absorb photons, resulting in an increase in
material conductivity and a decrease in resistance (Figure 3) [28]. As shown in Figure 3a,
in the darkness, the absorbed free carriers are driven by the applied Vds to produce a tiny
dark current (Idark). However, under illumination, when the photon energy exceeds the
semiconductor’s bandgap, the electrons in the valence band will jump to the conduction
band, forming electron–hole pairs. Electron–hole pairs separated by Vds drift opposite to
the source-drain stage, thus generating currents (Iligh) that are more significant than dark
currents. The net current increase is called photocurrent (Iphoto), which can be represented
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as Iphoto = Ilight − Idark. In general, most carriers have superior mobility at moderate
Vds, thus having short migration periods [29]. The lifetime of photogenerated carriers
substantially impacts the response speed and photoconductive gain. Figure 3b depicts a PD
employing the PC effect, which consists of a semiconductor channel and two ohmic contacts
connected to the ends of the channel as source-drain poles. The photo-field effect transistor
(photo-FET) is a famous structure of PD that typically utilizes a back-gated configuration
(Figure 3b) to prevent incident light from being obstructed by the electrode. Photo-FETs
using 2D channel materials have an advantage over bulk materials in achieving lower dark
currents at the same gate bias because the depletion region can extend through the entire
2D channel thickness, allowing for better current control and improving efficiency [30].
The band diagram of the gate/insulator/channel of PDs at negative gate bias (top-right
panel) and positive gate bias (bottom-left panel) is shown in Figure 3b. In order to achieve
a high photoconductive gain in PDs, it is important to either increase the lifetime of
the photogenerated carriers or decrease the transit time of electrons. However, a longer
lifetime of photocarriers leads to a slower recombination process, which can negatively
impact the response speed of the PDs. Therefore, it is crucial to strike a balance between
gain and response speed by managing this trade-off effectively. The bottom-right panel
demonstrates the relationship between the source-drain current and the gate bias under
dark and illuminated conditions. Compared with the dark condition, the source-drain
current versus gate bias curve shows a shift upwards under illumination conduction,
indicating a higher level of conductivity in the channel region due to the generation of
electron–hole pairs by incident light. The magnitude of this shift can be used to detect and
quantify the intensity of incident light, making PDs an important component in various
applications such as imaging and sensing.
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Figure 3. (a) A schematic diagram of the PC effect mechanism. Under dark conditions (upper panel),
a semiconductor channel contacted by two metal electrodes produces a dark current Idark at a bias
voltage of Vds. Under illumination (bottom panel), the extra carriers excited by incident photons lead
to a large photocurrent Ilight at a bias voltage of Vds. (b) The principle diagram of a back-gated PD
(top-left panel), the band diagram of the gate/insulator/channel of the PD under the dark conditions
at a negative gate bias (top-right panel) and at a positive gate bias (bottom-left panel), and the
relationship between the source-drain current and gate bias under illumination and dark conditions
(bottom-right panel). (Reprinted with permission from ref. [30]. Copyright 2021 John Wiley and
Sons Publications).

2.1.3. Photogating Effect

The photogating (PG) effect (Figure 4a) is a photocurrent generation process seen as
a particular case of the PC effect that can produce significant responsiveness in PDs [31].
Due to numerous defects and traps in semiconductors, light-generated electrons and holes
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may be captured by localized states on the defects or surface (Figure 4a). If the carriers
are trapped in the trap states, the charged trap states can act as a localized floating gate,
influencing the channel conductance [32]. As a result, the conductivity of a channel can be
tuned in this way. Because of the slow detrapping process, the photogenerated carriers in
the semiconductor might undergo multiple cycles, thus resulting in a high gain. The I–V
curves in darkness and illumination indicate that the photocurrent may be larger or smaller
than the dark current (Figure 4b). For bipolar semiconductors, the photocurrent’s signal
varies with the function of gate voltage (Figure 4c), whereas for unipolar semiconductors,
the photocurrent is either larger or smaller than the dark current and is unaffected by gate
voltage (Figure 4d). In bipolar FET devices, both electrons and holes contribute to the
photocurrent, and the gate voltage can control the relative contributions of these two types
of charge carriers. As a result, the photocurrent in bipolar FETs can be positive or negative
depending on the gate voltage applied. In contrast, the photocurrent in a unipolar FET is
generated by the same type of charge carriers (either electrons or holes) that are responsible
for the device’s electrical conductivity. The gate voltage in unipolar FETs controls the flow
of these charge carriers, but it does not change the type of charge carriers that are present
in the device, as there is no junction in a unipolar device. Fukushima et al. constructed
a medium IR graphene PD utilizing the PG effect in 2020 [33]. The PD consisted of a
source drain, an insulating layer, a graphene channel on top, and a photosensitizer. Results
indicated that the response to medium IR light with the PG effect was 100 times greater
than that of conventional graphene detectors lacking the PG effect. The PD’s responsivity
increased from 61.7 to 321.0 A/W when the channel area was reduced from 100 to 25 µm2.
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2.2. Thermal-Type Mechanism
2.2.1. Photothermoelectric Effect

The photothermoelectric (PTE) effect is a novel photocurrent mechanism that can
convert energy between light, heat, and electricity without requiring an external electrical
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field to separate electron and hole pairs generated by photoexcitation. The PTE effect
generates electrical energy via a temperature gradient formed by hot carrier diffusion in
the device. When the light spot is smaller than the device’s channel size, a temperature
difference (∆T) arises across the semiconductor channel, driving the diffusion of electron
holes to form a PTE voltage on the channel, which may be represented as VPTE = S∆T [30]
(S is the Seebeck coefficient of the semiconductor). It is reported that the PTE effect
depends on the Seebeck coefficient fluctuation caused by the doping dispersion of 2D
materials [34]. Furthermore, a second PTE effect, known as the PTE channel effect, may
occur on the uniform graphene channel in the presence of electron temperature gradients.
To date, the PTE effect has garnered significant attention because the heat energy lost
during the relaxation process of photogenerated carriers can be exploited to improve the
responsiveness of PDs and the energy conversion efficiency of solar cells. The reported
PTE effect studies have concentrated on low-dimensional materials such as graphene,
black phosphorus, III–V semiconductor nanowires, and so on. Nonetheless, the poor light
absorption of these materials and the difficulty of large-area controllable preparation limit
the practical application of the PTE effect as a new photoelectric conversion mechanism in
solar cells and PDs.

2.2.2. Photobolometric Effect

The Photobolometric (PB) effect refers to the temperature change of active materials
after absorbing incident light under thermal radiation, which increases or decreases in
resistivity [35,36]. Thus, at a fixed bias voltage, the device’s current will also change. The
difference between the PB and PTE effects is whether or not an external bias is necessary
for current conduction. Without an external bias, the photocurrent from the PTE effect
can be self-driven, whereas this cannot be observed in the PB effect. Bolometers are
photoelectric devices based on the PB effect that may be widely employed in the mid-IR
to THz wavelength range due to the wavelength-independent features of the PB effect.
Additionally, certain 2D material IR PDs also use the PB effect. In 2020, Xu et al. fabricated
a SnSe IR PD based on the PB effect that attained a responsivity of 0.16 A/W under mid-IR
light with a wavelength of 10.06 µm [37].

3. 2D Material-Based PDs
3.1. Graphene Based

In recent years, graphene-based materials, such as graphene nanoribbons, graphene
oxide, and its reduced form, doped graphene materials, as well as other derivatives, have
garnered significant interest in various scientific domains [38]. This is because they possess
many intriguing qualities, including a vast surface area (approximately 2630 m2/g for a
single layer of graphene), strong electrical conductivity, and unusual optical, thermal, and
mechanical capabilities.

3.1.1. Morphology and Structure

In 2004, Novoselov et al. successfully exfoliated single-layer graphene from a graphite
crystal sheet using the mechanical exfoliation approach, which challenged the scientific
understanding of 2D crystals [39]. Graphene is a 2D carbon material with a honeycomb
crystal structure (Figure 5). It is the thinnest and strongest nanomaterial, with a single layer
thickness of 0.33 nm [40]. Each carbon atom in graphene is bonded to three neighboring
carbon atoms via σ bonds, and the C–C bond length is only 0.142 nm [41]. In addition to σ

bonds, graphene has a conjugated π-network that is structurally similar to an indefinitely
large planar aromatic molecule. This feature gives graphene many excellent properties.
The edge structure of graphene is similar to carbon nanotubes, which can be classified
into zigzag and armchair forms based on different carbon chains with distinct transport
properties. Graphene nanoribbons with zigzag edge patterns have spin-polarized capa-
bilities, but those with armchair edge structures exhibit semiconducting properties [42].
Due to the existence of charge carriers, the electronic structure of few-layer graphene is
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complex. Some investigations have revealed that the electronic structure of graphene
changes rapidly as the number of layers grows, approaching graphite’s 3D limit at ten
layers [43]. Three-dimensional graphite is different from the traditional graphite, which has
a layered two-dimensional structure, as it has a three-dimensional structure. By applying
high pressure and high temperature on graphite, such as shock compression, 3D graphite
can be obtained. The high pressure and temperature cause the graphite layers to deform
and bond together, resulting in a 3D structure. In addition to shock compression, another
method to produce 3D graphite is by using diamond anvil cells. As a result of the high
pressure generated by compressing two diamond anvils, the layers of graphite deform and
combine; then, a 3D structure can also be obtained. The distinct properties of 3D graphite
make it a desirable material for various applications, such as serving as a high-capacity
electrode material in batteries and as a component in high-strength materials used in the
aerospace and defense industries.
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3.1.2. Optical Properties

Graphene has outstanding optical qualities. It has an absorptivity of roughly 2.3%
over a wide wavelength range, as well as a transmittance constant of 97.3% for visible and
IR light [45,46]. The optical properties of large surface area graphene films vary with the
thickness, with the absorbance increasing by 2.3% for each additional layer. Furthermore,
the graphene bandgap may be altered from 0 to 0.25 eV by supplying a voltage to the
double-gate bilayer graphene FET at ambient temperature, and the optical response can
be tuned to the THz region by applying a magnetic field [47]. In addition, graphene’s
absorption will reach saturation when the incident light intensity surpasses a particular
threshold value. Since graphene is a semi-metallic material, it exhibits ultra-high carrier
mobility of up to 20,000 cm2/(Vs) at low temperatures [39]. The electron mobility of
monolayer graphene is roughly 15,000 cm2/(Vs) [45,48] at temperatures ranging from 50 to
500 K, making it a suitable candidate for PDs.
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3.1.3. PDs Based on Graphene

Graphene can maximize the gain of PDs and has wide electromagnetic spectrum
responses. Due to the zero bandgap and linear dispersion around the Dirac point, graphene
can absorb light over a wide spectrum, making it possible to be used in the application
of light detection in a wide spectral range (Figure 6) [49]. Moreover, graphene has excel-
lent flexibility, which further expands its application in flexible optoelectronics. However,
graphene’s poor light absorption, high noise, high dark current, and phototransistor’s com-
plicated construction restrict its practical application. The first graphene PD was reported
in 2009; Xia et al. demonstrated ultrafast PDs based on transistors made from single and
multiple graphene layers [50]. Due to the exceptional electrical and photonic characteristics
of graphene, the PD has an extraordinarily high bandwidth, zero source-drain bias, and
excellent internal quantum efficiency. Since then, research on graphene-based PDs has
primarily focused on enhancing their performance in terms of quantum efficiency, respon-
sivity, and noise-equivalent power. The following will provide an overview of PDs that
primarily used graphene over the last five years.
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Graphene has potential applications in imaging devices considering its monolithic
integration with complementary metal oxide semiconductors (CMOS) [51–53], strong field
effects of electrostatic gates [54,55], and broadband absorption spectra [31,56]. Therefore,
the incorporation of graphene into silicon-based image sensors can be employed to en-
hance sensitivity and spectral performance. Recently, Liu et al. reported a graphene
charge-injection PD that combines the charge integration feature of the charge-coupled
device with the CMOS’s independent pixel structure [57]. The detector exhibits high
sensitivity (>0.1 A/W in the IR), high speed, broadband imaging (UV to mid-IR), high
linearity, high fill factor, low noise, and low cost. In 2022, Ge et al. fabricated a flexible
PD using 3D graphene films and organic materials, which achieved a high responsivity
of 5.8 × 105 A/W in the visible region and can detect light from visible to mid-IR at room
temperature [58]. However, the photoresponsivity of graphene-based PDs is restricted to
a few mA/W as a result of their ultra-fast hot carrier recombination characteristics and
very poor light absorption [59]. The combination of graphene and 2D semiconductors
may address the issue of a tiny effective junction area and simultaneously improve the
light-quality interaction, but the semiconductor bandgap restricts the spectrum response
range [60]. Additionally, the hybridization of graphene with quantum dots (QD) offers a
reasonable and effective way to dramatically enhance the photoresponsivity of graphene-
based PDs through a PG process [6]. It is reported that a PD based on graphene/SiO2/Si
with an interface gating mechanism can detect a weak optical signal of 0.6 nW with an
optical response rate of 1000 A/W at Vds = 1 V [61]. In 2021, Huang et al. fabricated a
graphene/HfO2/a-MOS2 PD that could detect light in the range of 473~2712 nm at room
temperature, with a response time of 68 µs and a responsivity of 5.36 A/W [62]. In addition,
the simple production process and low cost indicate the applicability of gated graphene
PDs in the photoelectric area. Table 1 lists some reports on graphene-based PDs.
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Table 1. PDs based on graphene.

Device Structure Detectivity Response Time Responsivity (A/W) Ref.

Graphene/Si/SiO2 PD 1 µs 0.1 A/W [57]
Graphene/HfO2/a-MoS2 PD 68 µs 5.36 A/W (473~2712 nm) [62]
WSe2–graphene–MoTe2 PD 1.21 × 1011 Jones (0 V bias) 468/428 µs (rise/decay) 40.84 mA/W (550 nm) [63]

Graphene/Si/graphene oxide PD 1 ms 0.65 A/W (633 nm) [64]
Graphene/P-InP PD 1.3 × 1010 Jones 5.2 mA/W (808 nm) [65]

Graphene nanofilms/Si PD 371 ns 0.4 mA/W (1870 nm)
10 A/W (after avalanche) [66]

Graphene/Ge PD 9.6 × 109 Jones 1.27 A/W (1550 nm) [67]
multilayer graphene/InSe PD 22 ms 1.88 × 105 A/W [68]
Graphene/Si/Gd3Fe5O12 PD 1.35 × 1013 Jones (633 nm) 0.15 ms 0.9 A/W [69]

Graphene/Pbs PD 109 Jones (1200 nm) 104 A/W [70]
Graphene/TiO2 films/PbS PD 1.5 × 1012 Jones (1 V bias) 35 ms 1.2 × 104 A/W (635 nm) [71]

Graphene nanofilm/silicon
Heterojunction PD 1.6 × 1011~1.9 × 109 Jones 20~30 ns 3~11 mA/W [72]

MoS2/graphene/GaAs PD 4.86 × 1010 Jones 46.8 µs 19.9 mA/W (808 nm) [73]
Tellurium/Graphene PD 1.04 × 109 Jones (2 µm) 28 µs 96.4 mA/W [74]

Graphene/germanium hybrid 5.28 × 1010 Jones 2.02 A/W [75]

3.2. Transition Metal Carbides Based PDs

Recently, transition metal carbides, nitrides, and carbonitrides (MXenes) have aroused
wide attention due to their excellent properties. MXenes have the typical formula Mn+1XnTx
(n = 1, 2, 3), where M stands for an early transition metal such as Sc, Ti, V, Zr, Nb, Cr, or
Mo; X is carbon or nitrogen; and Tx represents a surface functional group (such as –O,
–OH, –F, etc.) [76,77]. They are typically made by selectively etching the A element in the
MAX phase employing high concentrations of hydrofluoric acid, where A is the third or
fourth main group element in the periodic table. In the last decade, MXene’s unique shape
and structure, exceptional mechanical capabilities, and considerable carrier mobility have
attracted the curiosity of researchers. Notably, the electrical properties and carrier transport
qualities of MXenes can be modified by varying the surface functional group types [78,79].

3.2.1. Morphology and Structure

MXene’s hexagonal structure is inherited from its precursor MAX phase, which be-
longs to the space group P63/mmc. Figure 7a depicts the experimentally synthesized
M2X, M3X2, and M4X3 structures [80]. In MXenes, n layers of X are covered by n + 1
layers of M, with van der Waals interactions connecting adjacent layers to form an [MX]nM
arrangement [81]. Additionally, MXenes produced by etching with an acidic fluoride solu-
tion have intense surface activity and, thus, can easily form –OH, –O, and –F end groups
by reacting with pollutants in solution. MXene offers three possible places for surface
termination: (a) atop the transition metal atoms, (b) the position of the hole between the top
metal atoms, and (c) the position of the hole between the next pile of X atoms [82]. The –O
terminal site is more likely to occupy the vacancy site of the gap bond with the two metal
atoms for stabilization because it requires two electrons to achieve a steady state, whereas
the –OH and –F terminal sites require just one electron. Tang et al. outlined three MXene
structure types based on the different orientations of –T (–F and –OH) in Ti3C2T2, as shown
in Figure 7b,c [83]. The A-oriented T groups are positioned above the hollow sites between
three nearby C atoms or point straight at the Ti (2) atoms, while the B-oriented T groups
are positioned above the C atoms on the same side. Type I structures have orientation A on
both sides; Type II structures have orientation B on both sides; and Type III structures have
a mixed orientation, with orientation A on one side and orientation B on the other. Type I is
the most structurally stable of the three, whereas Type II is the least stable. As a result, Type
I is that in which the majority of MXenes are arranged. MXenes can be classified based on
their M/X element ratio and crystal structure types, such as single M element type, solid
solution M element type, ordered double M element type, etc. On the other hand, MXenes’
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properties are intimately related to the M elements and T surface functional groups, which
influence the majority of electronic and optical properties.
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3.2.2. Optical Properties

The band structure, including the energy bandgap, direct/indirect bandgap, etc.,
strongly influences the linear and nonlinear optical properties of MXenes. MXenes have
potent light-absorbing abilities and can absorb light from UV to NIR. Ti3C2T2 films, for
example, can absorb light from 300 to 500 nm. First, it is worth noting that the optical
characteristics of MXenes rely on the number of layers and that transmittance rises with de-
creasing thickness, reaching >90% for layers with a thickness of 2.5 nm and <15% for layers
with a thickness of 73 nm. Moreover, a significant transmission valley is detected between
750 and 800 nm as a result of surface plasmon resonance at 780 nm and the intrinsic transi-
tion between out-of-plane bands at around 800 nm [84]. Second, surface terminals formed
during the experimental synthesis of MXenes impact its electronic structure and optical
characteristics [85]. It was discovered that Ti3C2 with –F and –OH surface terminations had
lower absorption coefficients than pristine Ti3C2 and Ti3C2 with –O terminations, making
them suitable for transparent electrode applications [86]. The absorptivity and responsivity
of Ti2CT2 (T = F, O, and OH) compounds in the IR to UV region have been shown to depend
on the surface functional groups [87]. These findings suggest a possible way to modify the
optical characteristics of MXenes by manipulating surface functional groups [88]. Finally,
the optical properties of MXenes can be tuned by varying their chemical intercalation. For
instance, the transmittance will change if different cations are intercalated into negatively
charged Ti3C2Tx film layers. This behavior of changing transparency can be partially
attributed to the change of c-axis lattice constant and charge transport [89].

3.2.3. PDs Based on Mxenes

MXenes exhibit many intriguing characteristics, including excellent transparency,
mechanical flexibility, high electrical conductivity, as well as a tunable work function that
can be tuned by surface termination and internal composition. By utilizing their superior
electronic and optical capabilities, they can serve as transparent conductive electrodes,
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Schottky contacts, conductive additives, light absorbers, charge transfer layers, and other
essential roles in the application of optoelectronic devices. Among the current Mxene-
related PDs, simple photoconductors, self-actuated PDs, and plasma-enhanced PDs have
been reported. The following provides an overview of PDs that have primarily used
MXenes over the last three years. Table 2 provides a summary of these PDs’ components,
corresponding properties, and sources.

Table 2. PDs based on MXenes.

Device Structure Response Wavelength Detectivity Ilight/Idark Ratio Responsivity (A/W) Reference

InSe/Ti2CTx avalanche PD 0.4–1.55 µm 7.3 × 1012 Jones 1.0 × 105 A/W [90]
Ti3C2Tx-TiO2 photodetector 405 nm 8.40 × 104 jones 0.078 mA/W [91]

Ti3C2Tx/GaAs Schottky junction 405–980 nm ~1.23 × 1013 Jones 5.6 × 105 ~1.46 A/W [92]
Ti3C2Tx/TiO2 heterojunctions 280–400 nm 2.06 mA/W [93]

MXenes–β-Ga2O3 Schottky junctions 248 nm 6.1 × 1012 Jones 1.6 × 104 12.2 mA/W [94]
ZnO/Ti3C2TX/ZnO Schottky PD 254 nm 2.53 × 109 Jones 6.17 × 10−2 A/W [95]

Mxene-GaAs-Mxene PD 532, 780, 830 nm 11.6 × 1010 Jones 278 mA/W [96]
Perovskite/MXene-Based PD 450 nm 6.4 × 108 Jones 2.3 × 103 44.9 mA/W [97]

Mo2C/MoGeSiN4 hot-electron PD 1550 nm 176 mA/W [98]
MXene-embedded transparent PD 365 nm 4.1 × 1010 Jones 20 mA/W [99]

Ti3C2Tx MXene/Si based PD 980 nm 5.4 × 1013 Jones 302 mA/W [100]
MXene/MoS2 PD 635 nm 5.39 × 1012 Jones 20.67 A/W [101]

ZnO QD/MXene nanoflake PD 350 nm 7.1 × 1011 jones 425 mA/W [102]
Co-CoOx/NC/Mo2CTx

heterostructure PD
350, 400, 450, 550, and

650 nm 4.5 × 107 Jones 20.7 µA/W [103]

In addition to channel materials, electrodes are crucial PD components, and the us-
age of MXenes as high-performance PD electrodes has been documented in the scientific
literature. Yang et al. created an InSe/Ti2CTx PD (Figure 8a) in 2019 by designing a
Ti2CTx electrode as a nanoband array and analyzing the PD’s band structure with a Kelvin
microscope (Figure 8b) [90]. The Fermi levels of InSe and Ti2CTx are 4.4 eV and 4.9 eV,
respectively. Due to the large work function of Ti2CTx, there is a sizeable Schottky barrier
between InSe and Ti2CTx suppressing the dark current and allowing a sufficiently high
drain voltage to trigger an avalanche effect. Figure 8c depicts the band structure when the
avalanche effect occurs, showing that a strong electrical field accelerates the photoexcited
charge carrier to greater energy. Afterward, the carrier accumulates to generate additional
pairs of hole electrons, resulting in a greater drain current. The performance of a PD is
significantly enhanced by the avalanche effect, which shows a responsivity of 1 × 105 A/W,
a detectivity of 7.3 × 1012 Jones, and a dark current of 3 nA. Moreover, MXene has emerged
as one of the alternative materials for transparent electrodes in the photonics research
area, but it is challenging to create highly transparent and conductive MXene electrodes
for flexible PDs. A translucent PD with excellent flexibility and photoresponsivity was
created in 2020 by Chen et al. using a bio-inspired transparent MXene film with a light
transmittance of roughly 90% and a resistance value of approximately 3 Ω/sq [104]. How-
ever, the practical application of pure MXenes in PDs is severely constrained by their
high scattering rate and low light absorption, so it is necessary to investigate how hetero-
junctions affect these devices. Oxidized MXenes and MXene/perovskite nanocomposites
have been identified as effective strategies for improving device performance because
there is a synergistic interaction between the high carrier mobility of MXenes and the high
absorption of the MXene/perovskite derivative [105,106]. In 2022, Xiong et al. established
a 3D network Ti3C2Tx-TiO2 PD using a controllable in situ oxidation method. The new
PD demonstrated 13.3 times better performance than the original Ti3C2Tx-based PD under
405 nm illumination, as illustrated in Figure 8d [89]. With morphologically controlled
reagents, TiO2 nanosheets, a controllable oxidation derivative, were vertically inserted into
layered Ti3C2Tx nanosheets to create Ti3C2Tx-TiO2 heterostructures (Figure 8e). Ti3C2Tx
nanosheets have superior photoelectric properties and light-absorbing capacity due to the
presence of TiO2 derivatives, as demonstrated in Figure 8f. Subsequently, Ma et al. created
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a self-powered UV PD based on a Ti3C2Tx/TiO2 heterojunction, which provides a high
responsivity of 2.06 mA/W, short rise and decay times, and long-term stability [93].
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3.3. Transition Metal Dichalcogenide (TMD) Based PDs

TMDs are layered semiconductor materials of the MX2-type, where M represents
transition metal atoms (such as Mo, Re, W, Ta, etc.) and X is a chalcogen atom (such as
S, Se, and Te). TMDs are appealing for optoelectronic applications due to their semicon-
ducting properties and superior thermal stability [107–109]. There has been a significant
amount of study conducted on TMDs. In 1923, Linus Pauling and others established
the structure model of TMDs [110]. By the 1960s, over sixty varieties of TMDs had been
identified [111]. The initial synthesis of monolayer MoS2 occurred in 1986, furthering the
research on 2D-TMDs [112]. To date, the most reported TMDs are molybdenum disulfide
(MoS2) [113], tungsten disulfide (WS2) [114], vanadium disulfide (VS2) [115], tungsten
selenide (WSe2) [116], and molybdenum selenide (MoSe2) [117].

3.3.1. Morphology and Structure

As illustrated in Figure 9a, TMDs have a sandwich structure distinct from graphene,
with chalcogen atoms placed in two hexagonal planes separated by a metal atom plane [118].
The atoms in these three layers are bound together by covalent bonds, and each layer is
coupled by a weak Van der Waals force. Thus, the layers can be separated from each
other [119]. On account of the distinct coordination modes of transition metal atoms,
TMDs have a variety of structural phases. Triangular prism (2H) and octahedral (1T)
coordination modes are the most common phases (Figure 9b) [120]. The various structures
of monolayer TMDs can be viewed as the different stacking orders of the three atomic
plane layers (chalcogene-metal-chalcogene elements) that comprise each layer of these
materials. The 2H phases correspond to the stacking mode of ABA, in which the chalcogens
in various atomic layers always occupy the same position A, and each chalcogen is just
above the lower chalcogens in the direction perpendicular to the layer. Additionally, the
1T phases correspond to the ABC stacking order. The thermodynamically stable phase in
the coordination of transition metals (groups IV, V, VI, VII, IX, and X) with chalcogenides
(S, Se, and Te) is the 2H or 1T phase. Figure 9c summarizes the present understanding of
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the existence of two phases (stable or metastable forms) and other characteristics of TMDs.
In group VI transition metals, the 2H phase is thermodynamically stable, whereas the 1T
phase is metastable, with the exception of WTe2, whose stable phase at room temperature
is the orthogonal 1Td phase [120]. For multilayer and bulk TMDs, the structure is typically
described by the stacked structure of monolayer TMDs due to the possibility of periodicity-
reducing distortions. If these distortions are extremely severe, they generate metal–metal
bonds, which may transform the 1T structural phase of group VI TMD into the dimeric
(1T′) phase. However, If the lattice distortion is weak, it leads to the formation of the charge
density wave phase. Studies have shown that the thickness of TMDs can change their
electrical and structural properties, which makes it easier to use them in micro- and nano-
electronic devices. MoS2, one of the earliest members of TMDs, rose to prominence in 1963
after it was peeled off in an ultra-thin form utilizing tape technology, and then in a single
layer in 1986. The fundamental structure of MoS2 consists of a single Mo atom sandwiched
by two sulfur ions, comparable to the basic structure of graphene. The neighboring lattice
spaces in MoS2 are occupied by various atoms that are related via spin-orbit coupling.
The special structure of MoS2 endows it with attractive photoelectric properties, such as
a direct bandgap of 1.8 eV, high carrier mobility of about 200 cm2/(Vs), as well as strong
light-matter interaction [121,122].
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Figure 9. (a) The structure of TMDs. (Reprinted with permission from ref. [112]. Copyright 2011
Springer Nature Publications). (b) Atomic structures of monolayer TMDs in their triangular prismatic
(2H), twisted octahedral (1T), and dimeric (1T′) phases. (Reprinted with permission from ref. [120].
Copyright 2017 Springer Nature Publications). (c) The existing structural phase of the TMDs (2H, 1T,
or other), as well as the twisted structural phase and the observed electronic phase. (Reprinted with
permission from ref. [120]. Copyright 2017 Springer Nature Publications).

3.3.2. Optical Properties

TMDs are utilized extensively in the fields of photodetection and photoluminescence
due to their superior optical characteristics. According to studies, the photoluminescence of
bulk MoS2 is unremarkable, whereas that of monolayer MoS2 is exceptional [123]. Hence,
monolayer MoS2 can be employed in solar photovoltaic panels, PDs, and photoemitters [124].
Moreover, some members of the TMD family have different bandgaps. Molybdenum
and tungsten groups have an optical bandgap in the range of 1~2 eV, which makes them
suitable for NIR absorption and emission. The light absorption of monolayer TMDs
in the NIR and visible ranges is mostly determined by the direct transition between the
conduction and valence band [125,126]. In the absence of excitonic effects, Direct transitions
in 2D materials are characterized by a step-function spectrum generated from the energy-
independent joint density of states and transition matrix components near the parabolic
band edge (Figure 10a) [127,128]. Theoretical estimates have predicted that the exciton
binding energy of monolayer TMDs is about 0.5~1 eV [125,129,130]. Meanwhile, higher-
order quasiparticles are also observed in the TMDs in addition to excitons (Figure 10b).
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Currently, triexcitons (bound states of two electrons and one hole or two holes and one
electron) have been observed in doped TMDs [131,132], whereas biexcitons (bound states
of two excitons) were discovered in monolayer TMDs under pulsed light excitation [133].
Duerloo et al. experimentally demonstrated that mechanical deformation might change
the thermodynamic stability of molybdenum and tungsten disulfide monolayers between
semiconductors and metallic crystal structures [134]. In addition, they concluded that
MoTe2 could be an excellent choice for observing phase transitions and modifying the
optical response of other materials.
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Figure 10. (a) Absorption spectrum of monolayer MoS2 at 10 K (solid green line). Exciton resonances
A and B correspond to the transition of electron–hole pairs from two valence bands split by spin to the
conduction band. The absorbance in the absence of excitonic effects is represented by the blue dotted
line (in arbitrary units). The inset depicts the Coulomb attraction between the electron–hole pairs
generated optically, resulting in the formation of a bound exciton. (b) Illustration of excitons and
higher-order exciton complexes, including a two-particle neutrally charged exciton, a three-particle
charged exciton (trion), and a four-particle double exciton. (Reprinted with permission from ref. [128].
Copyright 2016 Springer Nature Publications).

3.3.3. PDs Based on TMDs

As one of the most researched 2D layered materials in photoelectronic devices, TMDs
have a bandgap (approximately 1~2 eV) of corresponding wavelengths from visible to NIR
ranges, a diverse structure, and stability at room temperature, making them the best choice
for PDs that are anticipated to provide excellent responsivity and absorption efficiency.
The literature on PDs based on TMDs has continued to grow rapidly in the past few years,
including mono-material and hetero-structured devices. The FET and p-n junction are the
most typical device structures in TMD-based PDs.

MoS2 is an attractive candidate for light detection due to its adjustable band gap, high
switching ratio, excellent optical properties, high carrier mobility, and stability [135–137].
More interestingly, the bandgap varies with the number of layers in the MoS2 crystal [138].
Yin et al. produced the first MoS2-based PDs in 2011 using a straightforward mechanical
exfoliation method, and they investigated the photoelectric properties in detail [139]. Under
illumination conditions and a gate voltage of 50 V, the responsivity and response time of
the PD is 7.5 mA/W and 50 ms, respectively, which are superior to the first graphene-based
PD. Since then, numerous researchers have endeavored to enhance the structure and perfor-
mance of MoS2-based PDs. In 2015, Wang et al. demonstrated a MoS2-based PD driven by
poly-vinylidene-trifluoride ferroelectric with a detectivity of 2.2 × 1012 Jones and a respon-
sivity of 2570 A/W at 635 nm; the light response wavelength was 0.85~1.55 µm [7]. In 2020,
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Xiao et al. produced a thin MoS2 film with excellent thermal stability and superior quality
on a SiC substrate using a chemical vapor deposition (CVD) technique [140]. The PDs made
of this film exhibit an extraordinarily low dark current of less than 1 nA (at a bias voltage
of 20 V), low noise equivalent of 10−13~10−15 W/Hz1/2, and a maximum responsivity of
5.7 A/W under 365 nm UV irradiation. At present, the fundamental obstacle to the imple-
mentation of single-layer MoS2 in high-performance PDs is the ultrathin structure’s low
light absorption, which leads to comparatively poor optical detection performance [141].
Several techniques for synthesizing layered MoS2 have been reported, including CVD,
chemical and mechanical exfoliation, the Van der Waals epitaxial growth method, and so
on. Meanwhile, numerous methods for enhancing the responsiveness of PDs have also
been reported, such as heterojunction manufacturing [142] and QD combination [143], etc.
However, these technologies have certain limitations that prevent applications from being
flexible and miniaturized, including high electron energy consumption, difficult heterojunc-
tion production, and insufficient QD stability. The photoresponsivity of MoS2-based PDs is
normally poor when measured at moderate source-drain voltage (VDS) and gate voltage
(VGS), but it may be enhanced by utilizing the PG effect and increasing the VDS, for which
higher VDS can extract more photogenerated carriers [139,144,145]. Chemical doping is an
efficient method for adjusting Fermi levels and carrier concentrations; it can also improve
the optical responsiveness of MoS2-based PDs. In 2019, Li et al. proposed a chemical in situ
n-type doping method to improve the optical response of MoS2-based PDs, which was more
stable and simpler than the pristine CVD method [141]. Figure 11a depicts the electrical
connection and construction of the bottom-gate MoS2 PD. The FET’s electrical properties
were measured in a dark environment to confirm the difference between the doped and
original MoS2. The output curve (Figure 11b) shows that drain current (ID) and VDS have
a good linear relationship, indicating the contact between the electrode and MoS2 is an
excellent ohmic contact. Figure 11c,d illustrates the distinction of electrical performance
between the doped and original MoS2 transistors. The doped MoS2 transistor had a 32-fold
increase in leakage current density, a higher switching ratio, and a higher Fermi level. Over-
all, the green arrow indicates that doping has a positive effect on the electrical performance
of MoS2 FETs, as it leads to an increase in drain current. Notably, the responsivity and
detectivity of this doped MoS2-based PD were 99.9 A/W and 9.4 × 1012 Jones at low VDS
(0.1 V) and VGS (0 V), respectively, which are 14.6 times and 4.8 times higher than those of
the original CVD MoS2 PD.

It has been demonstrated that reducing the capture of photogenerated electrons by
doping MoS2 can enhance the PG effect and device performance. Liu et al. prepared a
high-performance PD using carbon QDs and MoS2 for the first time [146]. Due to the co-
absorption effect and the interlayer exciton transition between MoS2 layers and carbon QDs,
the performance of the PD is greatly enhanced. The device’s optical responsivity (377 A/W)
and detectivity (1.6× 1013 Jones) under 360 nm illumination are 22 and 7 times greater than
those of the original MoS2 PD, respectively. In 2018, Park et al. fabricated an NIR PD based
on multilayer MoS2 by chemical exfoliation, which showed a clear light response at 1550 nm
by controlling the thickness of the MoS2 film [147]. The introduction of Ag nanocrystals
improved the responsivity and detectivity to 0.539 mA/W and 0.94 × 109 Jones at 1550 nm,
respectively [147]. Pulikodan et al. constructed a PD based on a few-layer MoS2 nanosheet
in 2020 using a liquid phase stripping approach and systematically explored the light
response mechanism [148]. The association between slow-rise current and temperature, as
well as vacuum level, in MoS2 was proven. In addition, the incorporation of nanoparticles
(NPs) can also increase the near-surface electromagnetic field, which in turn results in an
enhanced light response. Recently, Zou et al. produced a PD hybrid MXene NPs/MoS2
by spin-coating and CVD techniques, showing a high responsivity and detectivity of
20.67 A/W and 5.39 × 1012 Jones, respectively, and an external quantum efficiency of
5167% [101]. Local surface plasmon resonance created by MNPs is the reason for the
improved performance of this PD.



Nanomaterials 2023, 13, 1379 16 of 30Nanomaterials 2023, 13, 1379 17 of 32 
 

 

 
Figure 11. Electrical characteristics of a doped MoS2 PD. (a) Schematic diagram of the construction 
of the doped MoS2 PD and its electrical connections. (b) Output curve of the transistor in dark 
environment (VGS = −50~50 V). Illustration shows an optical microscope image of a doped MoS2 PD 
with a 10 µm scale (red). (c) Output curve (VGS = 0 V) and (d) transfer curve of doping and original 
MoS2 FETs in the dark (VDS = 1.0 V). The green arrow shows that the drain current of the FETs based 
on the doped MOS2 is higher than that of the pristine MoS2. (Reprinted with permission from ref. 
[141]. Copyright 2019 American Chemical Society Publications). 

It has been demonstrated that reducing the capture of photogenerated electrons by 
doping MoS2 can enhance the PG effect and device performance. Liu et al. prepared a 
high-performance PD using carbon QDs and MoS2 for the first time [146]. Due to the 
co−absorption effect and the interlayer exciton transition between MoS2 layers and carbon 
QDs, the performance of the PD is greatly enhanced. The device�s optical responsivity 
(377 A/W) and detectivity (1.6 × 1013 Jones) under 360 nm illumination are 22 and 7 times 
greater than those of the original MoS2 PD, respectively. In 2018, Park et al. fabricated an 
NIR PD based on multilayer MoS2 by chemical exfoliation, which showed a clear light 
response at 1550 nm by controlling the thickness of the MoS2 film [147]. The introduction 
of Ag nanocrystals improved the responsivity and detectivity to 0.539 mA/W and 0.94 × 
109 Jones at 1550 nm, respectively [147]. Pulikodan et al. constructed a PD based on a 
few−layer MoS2 nanosheet in 2020 using a liquid phase stripping approach and 
systematically explored the light response mechanism [148]. The association between 
slow−rise current and temperature, as well as vacuum level, in MoS2 was proven. In 
addition, the incorporation of nanoparticles (NPs) can also increase the near−surface 
electromagnetic field, which in turn results in an enhanced light response. Recently, Zou 
et al. produced a PD hybrid MXene NPs/MoS2 by spin−coating and CVD techniques, 
showing a high responsivity and detectivity of 20.67 A/W and 5.39 × 1012 Jones, 
respectively, and an external quantum efficiency of 5167% [101]. Local surface plasmon 
resonance created by MNPs is the reason for the improved performance of this PD. 
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Figure 11. Electrical characteristics of a doped MoS2 PD. (a) Schematic diagram of the construction
of the doped MoS2 PD and its electrical connections. (b) Output curve of the transistor in dark
environment (VGS = −50~50 V). Illustration shows an optical microscope image of a doped MoS2

PD with a 10 µm scale (red). (c) Output curve (VGS = 0 V) and (d) transfer curve of doping and
original MoS2 FETs in the dark (VDS = 1.0 V). The green arrow shows that the drain current of the
FETs based on the doped MOS2 is higher than that of the pristine MoS2. (Reprinted with permission
from ref. [141]. Copyright 2019 American Chemical Society Publications).

Rhenium disulfide (ReS2) is a promising prospective material in the TMD family for
photoelectric detection with an MX2 sandwich structure [111]. Due to the distortion of the
T phase in ReS2 bulk material, its weak interlayer coupling provides ReS2 with several
remarkable properties, such as the bulk form behaving similarly to the single-layer form in
terms of optics, electronics, and vibration [149]. ReS2 has a direct bandgap of approximately
1.5 eV. Thakar et al. reported the support and suspension channel FET structures using
ReS2 as channel material, as shown in Figure 12a–d. Those two structures represent two
different trap densities, respectively [150]. They employ gate bias to vary the occupancy of
internal and external traps, increasing photocurrent gain while decreasing speed, and the
reaction rate is adjusted by more than four orders of magnitude. Methods for adjusting the
photoelectric properties of PDs based on low-dimensional materials typically utilize surface
charge transfer doping. Nevertheless, previous studies have not systematically explored
the relationship between the number of layers and the doping effect. More recently, Zeng
et al. investigated different layers of ReS2 PDs and demonstrated that doping the top
ReS2 device with tetrafluorotetracyanoquinodimethane could induce the formation of a
vertical p-n junction [151]. The performance of this device was multiplied by several times
compared with the original, and it was discovered that the doping effect is linked to the
ReS2 thickness. In 2022, Selamneni et al. successfully fabricated a Au-NPs/ReS2 device by
integrating gold NPs onto the ReS2 nanosheet with a responsivity under NIR and visible
illumination of ~1.3 and ~2.1 A/W, and a detectivity of 7.27 × 1011 and 1.12 × 1012 Jones,
respectively. Notably, the optical detection performance was 15 times higher than that of the
original ReS2 device [152]. Effective charge transfer and surface local plasmon resonance at
the Au-NPs and ReS2 interfaces are two reasons the device’s optical sensing performance
improved. These efforts will encourage the development of flexible, high-performance
ReS2-based PDs for future optoelectronic applications.
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Figure 12. (a) Schematic diagram of the supported ReS2 transistor (ReS2 in contact with the SiO2 gate
medium) and (b) false color SEM image. (c) Schematic diagram of a suspended ReS2 transistor (with
an air gap between ReS2 and SiO2 gate) and (d) false color SEM image (Reprinted with permission
from ref. [150]. Copyright 2018, American Chemical Society Publications).

In addition to MoS2 and ReS2, WS2 has also emerged as a promising material exten-
sively utilized in photoelectron and PD applications considering its suitable band gap,
environmental stability, and high carrier mobility [153–155]. For instance, Li et al. first
fabricated a flexible PD using WS2 prepared by vacuum filtration and hydrothermal in-
tercalation method. The PD can respond to the broadband wavelength of 532~1064 nm,
with a responsivity of 4.04 mA/W and a detectivity of 2.55 × 109 Jones under 532 nm
irradiation [156]. In addition, this PD has stable light response characteristics under arbi-
trary bending conditions. In 2021, Kim et al. prepared a PD based on WS2 on a flexible
substrate by means of electron beam irradiation and radio frequency technology. Its re-
sponsivity at wavelength 450, 532, and 635 nm was increased by 1506, 1677, and 1710 times,
respectively [157].

3.4. Black Phosphorus Based PDs

Black phosphorus (BP), a unique member of 2D layered materials that is the most
stable allotrope of phosphorus, was formed by Bridgman in 1914 with a phase transition
of white phosphorus (WP) under high pressure [158]. However, BP did not draw much
attention for the entire century after its discovery because its quality was difficult to
control. Numerous researchers have revealed its unusual photoelectric properties through
experiments and theories, thus introducing BP as a 2D layered material with great promise
for future electronics and photonics [159–161]. BP is a direct bandgap semiconductor with
a bandgap range of 0.3 eV (bulk) to 1.7 eV (monolayer), depending on the number of
layers [162–164], making it more appropriate for optical detection than graphene with a
zero bandgap [165]. BP’s bandgap can absorb visible and IR photons, but TMD can only
respond to light in the visible. Additionally, BP possesses high light absorption, high room
temperature carrier mobility (~5000 cm2/(Vs)), and biological compatibility, which make
it a candidate to apply in various devices, such as PDs, ultrafast lasers, optical switching,
modulators, sensors, and even biomedicine. Due to its distinctive puckered structures that
produce anisotropic in-plane characteristics, it is a superb candidate for researching novel
physical processes as well.

3.4.1. Morphology and Structure

BP is converted from WP under high pressure. Therefore, its crystal structure is
similar to WP [166]. Figure 13a depicts the crystal structure of BP, which consists of four
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P atoms, each of which combines with three adjacent P atoms via sp3 orbitals to form
two unequal orientations, parallel and perpendicular to the atomic ridge corresponding to
armchair and zigzag directions, respectively. Compared with WP, BP exhibits relatively
better stability owing to its orthogonal crystal structure. Many monolayers of BP are stacked
into bulk BP by weak van der Waals interactions, with tetrahedral structural units and
sp3 hybridizing each other to form each successive layer, resulting in a non-planar folded
hexagonal structure similar to the folded honeycomb structure (Figure 13(ai)). Typically,
different bond angles in BP result in various bond lengths. One is the in-plane bond with
a bond length of 0.2224 nm, the other is the external plane bond connecting the top and
bottom P atoms with a bond length of 0.2244 nm. The bond length of the interlayer P-P
in the block BP is 0.55 nm, indicating that the layers of BP are held together by weak
van der Waals forces rather than bond interactions. Figure 13(aii) shows the top view of
monolayer BP. The unit consisted of four P atoms in BP joined to create continuous layers
by breaking down the individual bonds to generate sp3 hybridization, with bond angles of
96.300◦ and 102.095◦ that approach 102.1◦ for a perfect tetragonal [167,168], offering better
crystal network stability [15,169]. Figure 13b illustrates BP’s band structure, revealing that
both monolayer and bulk BP have direct bandgaps. As the number of layers rises, the
bandgap redshifts from 2.0 eV to 0.3 eV (Figure 13(bi)) [166]. In 2016, Feng et al. examined
the bandgaps of BP with various thicknesses using absorption spectroscopy. They found
that the monolayer, bilayer, and block BP bandgaps were 1.73 eV, 1.15 eV, and 0.35 eV,
respectively [170]. Although the bandgap of BP varies with thickness, it always retains
the features of direct bandgap [171], which complements the zero bandgap of graphene
and the narrow bandgap of TMDs [172]. Figure 13(bii) depicts the relationship between
the bandgap and the number of layers. Notably, the Fermi energy level moves toward the
valence band as the thickness increases, resulting in a p-type characteristic usually evident
in BP-based devices.
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Physical Society Publications).



Nanomaterials 2023, 13, 1379 19 of 30

3.4.2. Optical Properties

In many aspects, BP is more attractive than graphene and other materials thanks to
its unique light response and strong anisotropy. Figure 14a represents the optical image
of BP. Experiments and theories have confirmed that few-layer BP exhibits a moderate-
intensity photoluminescence peak, while the light luminescence peak of monolayer BP can
reach 1.45 eV [167]. The atomic force microscope (AFM) image of a BP flake is shown in
Figure 14a. The Raman peaks at 365, 440, and 470 cm−1 correspond to A1

g, B2
g, and A2

g of the
BP vibration modes, respectively [173,174], as depicted in Figure 14b. As the polarization of
the excitation laser progressively increases from 0 to 90◦, the fundamental atomic vibration
of the B2

g mode is in the x direction; hence, the B2
g mode’s intensity decreases substantially.

Moreover, Raman observations of single-, double-, and bulk BP indicate that Raman peaks
in monolayer BP are redshifted [159]. When BP flakes are exposed to polarized light in the z
direction with a range of 0◦~300◦ and a step size of 30◦, all polarization directions of the IR
spectrum exhibit a notable increase at 2400 cm−1, corresponding to a bandgap of 0.3 eV [15].
The bandgap of BP is the most significant factor in determining optical absorption. The
band structure will determine the optical properties of 2D materials, particularly those
that may interact with light. Furthermore, with appropriate polymer functionalization,
the optoelectronic characteristics of BP-based nanocomposites can be improved, enabling
their utilization in nonlinear optical properties, electrical and optoelectronic devices, and
biomarker detection.
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3.4.3. PDs Based on BP

In recent years, BP has shown great application potential in the field of PD, especially
NIR detection, due to its marvelous properties such as a modest bandgap (0.3~2 eV), high
carrier mobility (1000 cm2/(Vs)), considerable switching ratio (up to 106), and anisotropy.
Buscema et al. developed a BP-based FET with a responsivity of 4.8 mA/W to 940 nm
NIR light and a response time of less than 4 ms, significantly superior to that of the WS2
device [175]. Engel et al. developed an array of optical detectors that could be used
for broadband imaging, demonstrating the enormous potential of BP in optoelectronic
detection and display [176]. However, due to the easy oxidation features of BP, it is
easy to produce surface contamination during the device manufacturing process using
conventional lithography, which severely limits its practical application. Therefore, it is
essential to explore better device preparation schemes and introduce defects effectively
to improve the performance of BP-based PDs. To date, a variety of approaches have been
implemented to improve BP’s environmental stability. For example, BP compounds were
synthesized using wet chemistry with electron-poor and polarimetric polycyclic aromatic
hydrocarbons, resulting in strong non-covalent interactions between BP and molecules. In



Nanomaterials 2023, 13, 1379 20 of 30

this regard, the physical encapsulation and chemical passivation prior to use is of great
significance. Zhang et al. used hydrophobic polyionic liquid poly hexafluorophosphate
(PIL-TFSI) to encapsulate BP QDs for PDs and extensively investigated the morphology,
composition, and characteristics of BP-PIL in 2019 [177]. The results suggested that the
unique hydrophobic properties of PIL-TFSI and the fluoridation of BP QDs can considerably
enhance the environmental stability of BP QDs. Compared with the conventional BP-
based PDs, the BP-PIL-based PDs have better optical response characteristics and longer-
term environmental stability. In addition, this self-healing PD exhibited a distinct on/off
signal after 50 cycles, indicating the immense practical potential of BP-PIL-based PDs.
Subsequently, Fan et al. proposed a PD constructed from chemically modified BP sheets
that showed high performance and environmental stability over 4 months [178].

In addition, the poor light absorption of BP limits its utilization in high-performance
PDs. To address this issue, heterostructures are used as hybrid structures to trap electron–
hole pairs efficiently. Early publications have shown that QDs exhibit remarkable localized
photon trapping capabilities owing to quantum confinement and surface effects and are
considered superior light adsorbents to enhance the performance of PDs. Kwak et al. made
the first 0D-2D hybrid PD using InP QDs and BP, which exhibit the responsivity and detec-
tivity of 1 × 109 A/W and 4.5 × 1016 Jones, respectively, under 405 nm illumination [178].
The exceptional performance of this hybrid PD is a result of photogenerated electron injec-
tion from the InP QD into the BP. In 2020, Qiao et al. used a liquid separation method to
prepare BP QDs and built heterojunction PD [179]. The quantum confinement effect of BP
QDs and their synergistic effect with MoS2 nanosheets significantly improved the optical
response of the device. The PD’s optical response at 0.6 V bias and the photocurrent at zero
bias are approximately 2.8 times and 2.2 times that of the original MoS2-based PD, respec-
tively, indicating its remarkable self-powered PD properties. These strategies improve the
responsivity, optical gain, and response time to some extent but require managing toxic
substances, making them challenging to implement on a large scale.

Local surface plasmon resonance (LSPR) is a technique to improve the light absorption
of materials used with noble metal NPs containing many free electrons, such as Au, Ag,
and Pt. Light can be trapped on the surface of metal NPs using LSPR, resulting in enhanced
photoabsorption from visible to IR wavelengths. Jeon et al. created a PD based on BP/Au
NPs using the LSPR method, which significantly improved the PD’s performance [180].
The density of NPs can be adjusted by simply depositing Au NPs on the BP surface and
regulating the annealing process. Due to the integration of Au NPs on the BP channel, the
photoabsorption is enhanced while the dark current is suppressed. The laser responsivity
of visible and IR wavelengths is increased to 6000 and 500 A/W, respectively. In 2021,
Tian et al. published a method of integrating high-performance BP-based PD on silicon
planar photonic crystal cavities, in which the light absorption of BP is greatly enhanced
due to the interaction between light and matter in the cavity [181]. Thanks to the relatively
short BP channel, the PD has a responsivity of 125 mA/W and a dark current of less than
20 nA at 0.5 V bias voltage. Recently, Cao et al. built a van der Waals heterostructure
based on BP with a 2D chiral perovskite for the first time [182]. The advantages of BP
in IR photoelectrons combined with the effective photoabsorption and charge transfer of
perovskites in this straightforward heterostructure make the PD’s responsivity and optical
gain increase by several orders of magnitude compared with BP alone.

3.5. Hexagonal Boron Nitride (hBN) Based PDs
3.5.1. Morphology and Structure

hBN is regarded as “white graphene” due to its similarity in crystal structure to
graphite. However, unlike graphite, whose layers are stacked using the AA method,
hBN employs the ABAB method, with nitrogen and boron atoms placed alternately. As
illustrated in Figure 15 [183], the interaction of van der Waals forces and strong ionic bonds
between the layers makes the structure of hBN more stable. Monolayer hBN has a 2D
honeycomb structure similar to graphene to form sp2 hybridized B–N bonds. Although
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they have similar structures, the electrical properties of the two types of 2D materials
are different. Graphene has a zero bandgap, whereas monolayer hBN has a bandgap of
5.97 eV [184,185]. Since hBN layers are coupled by weak van der Waals forces, few-layer
or even monolayer hBN can be easily obtained by the mechanical exfoliation of bulk
monocrystals [186]. Although hBN has poor intrinsic conductivity, it can be employed in
electrocatalysis through structural and electronic modifications. In addition, it exhibits
high specific surface area, numerous active centers, strong thermal stability, and excellent
mechanical strength [187,188].
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3.5.2. Optical Properties

As shown in Figure 16 [189], hBN has high transparency in the range of 250~900 nm,
with a transmittance of 99% and a strong absorption peak in the DUV region (200~220 nm).
Calculations reveal that the bandgap of multilayer hBN is 5.56 eV [189], whereas the mono-
layer hBN and bulk hBN are approximately 5.84~6.07 eV [190] and 5.2 eV [191], respectively.
The interaction between the hBN layers leads to an increase in electron band dispersion
and a corresponding decrease in the band gap. hBN samples can exhibit DUV or UV
luminescence through electron beam excitation. The existence of defects or lattice defects
results in several extra exciton peaks in the cathodic luminescence spectrum [192]. Because
of its broad bandgap and UV emission capabilities, hBN has broad application prospects
in UV lasers [193], photon emission [194], and DUV detectors [195]. Furthermore, hBN
has excellent nonlinear optical properties such as two-photon absorption, deep penetra-
tion, and high three-dimensional resolution, making it ideal for multi-photon imaging
optical applications.
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3.5.3. PDs Based on hBN

With its ultra-wide bandgap of approximately 6 eV, hBN is highly transparent to
visible light and capable of absorbing DUV light due to its inherent absorption properties.
Its high band edge absorption coefficient also makes it an ideal choice for DUV photoelec-
tric detection, without requiring any additional processing or doping. This makes hBN a
promising material for a wide range of applications in the field of optoelectronics, including
DUV photodetection, UV-light-emitting devices, and DUV light sources [196]. Moreover, it
can operate in harsh environments and high temperatures because of its excellent oxidation
resistance, high temperature resistance, and corrosion resistance [188,197]. In addition,
hBN has an exceptionally large bandgap and, thus, does not require a solar filter or an extra
cooling system, greatly simplifying device design [196,198]. Recently, numerous scientists
have explored the photoelectric performance of hBN-based PDs. Gao et al. fabricated high-
quality hBN thin films on a sapphire substrate using the ion beam sputtering deposition
in 2019 [199]. Compared with transferred hBN, the DUV hBN-based PD prepared by this
method has better performance. For instance, the on/off ratio can reach 6800, the relative
detectivity exceeds 1.8 × 1010 Jones, and the response time is about 1 ms. High quality
hBN crystals were prepared by Zhang et al. at atmospheric pressure by using the flux
growth method [200]. Two types of solar-blind PD with top contact electrode and bottom
contact electrode were fabricated on the basis of this hBN layer, which was mechanically
stripped at 15–17 nm. The results demonstrate that the device has a specific detectivity
of 3.68 × 108 Jones at 215 nm. Reports of hBN-based PDs primarily fabricated on rigid
substrates exhibit low optical response, and little about applications in flexible electrons. In
2021, Veeralingam et al. deposited hBN nanosheets on Cu (111) substrates to make DUV
PDs with superior performance. The ultra-high responsivity, specific detectivity and exter-
nal quantum efficiency were 5.022 A/W, 6.1 × 1012 Jones, and 2945%, respectively [197].
Wu et al. fabricated a graphene/hBN/n-AlGaN DUV PD in 2020 [201]. AlGaN semicon-
ductors with a large bandgap can discern DUV signals without UV filters. Moreover, hBN
insulators are excellent for decreasing dark current and enabling photogenerated carrier
quantum tunneling. By reducing the strain issue between graphene and conventional bulk
insulators, nanographene-hBN heterostructures can boost the performance of PDs.

4. Conclusions

This paper gives a comprehensive summary on the recent research progress of PDs
based on 2D materials including graphene, MXenes, TMD, BP, and hBN, with emphasis
on their morphology and structure, optical properties, as well as detailed applications in
PDs. The past decade has witnessed tremendous progress and interest in emerging PDs
built from 2D materials, and the key to the success is their unique structural, electrical,
optical, mechanical, and thermal properties. The 2D material-based PDs have shown
applications in broadband detection, high sensitivity detection, polarization sensitive
light detection, and so on. However, there are still some challenges in achieving high-
performance PDs, such as growing high-quality 2D materials, achieving higher quantum
efficiency, and effectively separating the photogenerated electron–hole pairs. Several
strategies have been demonstrated to effectively address those issues: (1) create devices
with new architectures such as grating and antennas to enhance the interaction between
optical and 2D materials; (2) improve the synthesis technique to produce high-quality
2D materials; and (3) employ surface encapsulation or doping, modification, and other
techniques to enhance the performance of PDs. In a word, to fully harness the features of
2D materials, further work is required to comprehend their pristine characteristics and the
physical process that dominates photodetection.

5. Outlook

PDs based on 2D materials show great potential for future development and applica-
tion in various fields. Firstly, due to their unique properties, such as large surface-to-volume
ratio and high carrier mobility, 2D material-based PDs may achieve higher sensitivity and
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resolution than traditional detectors. Secondly, 2D material-based PDs may offer wider
spectral ranges due to their tunable bandgap and broad absorption spectrum, which may
lead to new applications in the areas of spectroscopy, astronomy, and telecommunications.
Moreover, the ultrathin nature of 2D materials may allow for lower power consumption
and smaller size, as well as compatibility with flexible and transparent substrates. These
advantages can enable applications in wearable devices, Internet of Things (IoT), and other
portable electronics. Finally, PDs based on 2D materials may be integrated with other
devices, such as transistors, memory cells, and sensors, to create multifunctional systems.
Overall, the continued progress in the field of 2D material-based PDs holds great promise
for a wide range of applications in fields such as communications, sensing, and imaging,
and it is expected to have a significant impact on many areas of science and technology. We
believe that 2D materials will be extensively employed in the optoelectronic field in the
near future through improving device design and material engineering.
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