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performs the matching to next-to-leading order. This includes two-loop thermal corrections to scalar and 
Debye masses as well as one-loop thermal corrections to couplings. DRalgo also allows for integrating 
out additional heavy scalars. Along the way, the package provides leading-order beta functions for 
general gauge-charges and fermion-families; both in the fundamental and in the effective theory. Finally, 
the package computes the finite-temperature effective potential within the effective theory. The article 
explains the theory of the underlying algorithm while introducing the software on a pedagogical level.
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1. Introduction

The origin of Baryon asymmetry [1] in the universe remains obscure. As such, much powder has been spent throughout past decades to 
find a sound explanation of this asymmetry [2–5]. Amongst the suggested mechanisms, the one based on the electroweak phase transition 
– electroweak baryogenesis – stands out. In this mechanism, generating a baryon asymmetry requires a first-order phase transition, which 
proceeds by nucleating true-vacuum bubbles. This provides a departure from thermal equilibrium, which is necessary to generate a baryon 
asymmetry [6]. While the Standard Model (SM) has no strong first-order transition on its own [7–9], its extensions can contain myriads 
of them. For new field content to trigger a strong first-order phase transition, their masses have to be around the electroweak scale, and 
their interaction with the SM Higgs cannot be too feeble. Beyond-the-Standard-Model (BSM) theories that exhibit such transitions provide 
a direct target for many future-generation colliders [10,11]. Furthermore, thermal phase transitions can, perchance, generate gravitational 
waves that are observable by next-generation space-based detectors such as LISA [12], DECIGO [13], Taiji [14] and BBO [15]. These waves 
might open a fresh window into the early universe – and the underlying quantum field theory.

The interplay between BSM phenomenology and gravitational waves is among the most actively studied topics in the high-energy-
physics literature [16–26]. This interplay requires solid understanding of thermodynamic properties of different models. It has been long 
known that determining thermodynamics in theories with non-Abelian gauge fields is challenging because of the Linde problem [27]. In 
short, there are non-perturbative effects arising from massless vector-bosons: these infrared (IR) effects can only be captured by lattice 
simulations [28]. Despite this, leading-order perturbation theory is frequently used as an approximation. However, it has been pointed out 
that such leading-order studies contain large theoretical uncertainties, due to slow convergence of perturbation theory [21,29–31].

Dimensional reduction [32,33] offers a way to overcome these challenges. In this framework, ultraviolet (UV) modes – related to non-
zero Matsubara modes in the imaginary time formalism – are integrated out. The resulting effective field theory (EFT) [34,35] describes 
IR, or long wavelength zero modes, living in three spatial dimensions (3d) (cf. also [36–38]). The 3d EFT can be simulated on a lattice and 
hence by-pass the Linde problem [28,39]. Dimensional reduction can also be viewed as a systematic scheme for thermal resummations, 
used purely within the realm of perturbation theory [30]. To leading order, dimensional reduction is equivalent to resummation via 
thermal masses. Concretely, the effective potential, that describes the free energy of thermal plasma, is commonly given in a schematic 
form [29]

V eff � V T =0 + V T + V daisy . (1.1)

Here, V T =0 is the Coleman-Weinberg zero-temperature contribution, which is often augmented with the effective potential at one-loop 
level. Namely, V T is the thermal correction at one-loop (commonly in the high-temperature expansion) and

V daisy � − T

12π

[
(m2 + �T )

3
2 − (m2)

3
2

]
. (1.2)
2
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Here m2 represents a field-dependent mass and �T ∼ g2T 2 is a one-loop thermal correction. It is the first term in eq. (1.2) that imple-
ments the resummation.1 This resummed mass, for zero Matsubara modes arises from thermal corrections due to non-zero Matsubara 
modes. Physically, this corresponds to thermal screening: UV modes in the plasma screen IR modes. In eq. (1.1) all contributions are 
evaluated at one-loop order, which means that only masses are resummed. However, at high temperatures, the perturbative expansion 
is controlled by g , rather than g2 as in a zero-temperature loop expansion. Dimensional reduction makes it possible to systematically 
include higher order resummations, in particular two-loop thermal masses and one-loop resummation of couplings and fields which are 
also affected by thermal screening. Hence, dimensional reduction can be used to include important next-to-leading order thermal effects. 
In particular, renormalization-group (RG) improvements require two-loop computations at high temperatures [29,31]; these are straight-
forward to implement in the 3d EFT approach [30].

To date there are sundry studies using dimensional reduction in electroweak theories [21,22,24,26,30,34,36–38,40–43]. For similar 
studies in hot QCD, see [44,45]. Still, many models remain to be studied within the dimensional-reduction framework [46–49].

Along with this article, we launch the Mathematica package DRalgo to implement dimensional reduction automatically for user-
defined models. This package calculates parameters in the 3d EFT. For example, DRalgo calculates two-loop thermal masses, effective 
couplings, and beta functions. The package also allows users to integrate out heavy scalars and temporal (Debye) scalars. Furthermore,
DRalgo can be used to compute the two-loop thermal effective potential within the effective theory. Subsequently, the 3d EFT matching 
relations can be implemented to lattice Monte Carlo simulations. The Algorithm 1 illustrates this pipeline. The goal of this pipeline is to 
compute thermodynamic properties of phase transitions, such as the critical temperature and the latent heat.2 This package can be applied 

Algorithm 1 DRalgo algorithm outline in alignment with fig. 2 of [50]. The use of lattice resources is indicated as an optional path. The 
functions PerformDRhard[], PerformDRsoft[] and CalculatePotentialUS[] are part of DRalgo.

Input: Four-dimensional Lagrangian L4d with parameters {c1, . . . , cn}, temperature T , physical parameters, heavy masses M
Start: Initialize model
Call PerformDRhard[] {

for all ci ∈ {c1, . . . , cn} do
Compute 4-dimensional β-functions β(ci)

Compute ci,3d(T , M) by integrating out non-zero Matsubara modes
end for
Compute thermal (Debye) masses mD,i(T , M)

Compute couplings that involve temporal vector fields
}
Output/Input: Three-dimensional soft Lagrangian L3d with parameters {c1,3d, . . . , cn,3d}
Call PerformDRsoft[] {

for all ci,3d ∈ {c1,3d, . . . , cn,3d} do
Compute 3-dimensional β-functions β3d(ci,3d)

Compute c̄i,3d(T , c1,3d, . . . , cn,3d) by integrating out massive temporal scalars
end for

}
Output: Three-dimensional ultrasoft Lagrangian L̄3d with parameters {c̄1,3d, . . . , ̄cn,3d}
if Lattice resources then

Compute lattice continuum relations to construct Llattice
3d

Monte Carlo simulation
else

Call CalculatePotentialUS[] {
Compute effective potential V 3d

eff(m
2
i,3d) up to two-loops

}
end if
Compute thermodynamic parameters Tc, L/T 4

c

to models previously studied in the electroweak and dark-sector phase-transition literature.
Dimensional reduction can also be used to study dynamical systems close to equilibrium. In particular, systems that evolve on a 

characteristic time scale t ∼ (g4T )−1 can often be described by a Langevin equation [51–53]; in this case the dimensionally reduced 
potential appears in the equations of motion.

The remainder of this article is organised as follows. Section 1.1 briefly introduces dimensional reduction and matching relations. 
Section 3 explicates the front-end of the package, its installation, and gives a tutorial based on the Abelian-Higgs model. Section 2 reviews 
theory and computations in the back-end of the package. Section 4 illustrates additional features by implementing a two-Higgs doublet 
model. In section 6, we discuss future prospects and possible updates of the package. Finally, appendix A displays the computation of 
thermodynamical observables using the output of DRalgo for the Abelian-Higgs model.

1.1. Prologue: dimensional reduction at next-to-leading-order

At leading order (LO) scalars obtain familiar one-loop thermal masses, while temporal (longitudinal) scalars get Debye masses. At next-
to-leading order (NLO) couplings are resummed, and scalars receive two-loop thermal masses. DRalgo also calculates two-loop Debye 
masses. Corrections at NLO are particularly important due to large logarithms. The idea with dimensional reduction is to render some 

1 The second ∼ T m3 term in eq. (1.2) removes double counting; the same contribution is included V T but with unresummed mass. This term is related to the Matsubara 
zero-mode contribution.

2 The critical temperature, Tc, is defined by �V 3d
eff (Tc) = 0, where �V 3d

eff (Tc) denotes the energy-difference between two phases. The strength of the transition depends 

on the latent heat, L, which is given by L = T �V 3d + T 2�
dV 3d

eff
dT , where � ≡ (. . .)high−T − (. . .)low−T denotes the difference between the high- and low-temperature phase.
eff

3
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logarithms (ln μ̄
T ) small by matching at a high energy (μ̄ ∼ T ). The remaining logarithms can then be resummed by RG-evolution within 

the EFT.
Phase transitions often occur below the Debye-mass scale. In such cases temporal scalars can also be integrated out. Thus effectively 

removing large logarithms of the form ln mD
μ̄ , where mD is a Debye mass. This second EFT is said to live at the ultrasoft scale, which is 

characterised by energies of O(g2 T ). In summary,3 the hard scale corresponds to energies E ∼ T ; the soft scale corresponds to energies 
E ∼ gT ; and the ultrasoft scale corresponds to energies E ∼ g2T .

To illustrate next-to-leading order dimensional reduction, we consider a schematic model with scalar mass parameter μ2 , scalar quartic 
coupling λ, and gauge coupling g . Given the power counting μ2 ∼ g2T 2, λ ∼ g2, the matching of the mass parameter is

μ̄2
3 =

tree-level

μ2 +
1-loop

#g2T 2

O(g2)

+
1-loop

#g2μ2 +
2-loop

#g4T 2

O(g4)

+O(g6)

+
1-loop

#g2mD

O(g3)

+
2-loop

#g4

O(g4)

+O(g5) , (1.3)

where the first line (with even powers of g) results from the first step, and the second line (with odd power of g) from second step of 
the dimensional reduction. In practice, full O(g4) contributions are included. Going to higher orders, requires a three-loop computation 
for both steps of the dimensional reduction. The situation is similar for the coupling:

λ̄3 =
tree-level

T λ

O(g2)

+
1-loop

#g4

O(g4)

+O(g6)

+
1-loop

# g4

mD

O(g3)

+
2-loop

# g6

m2
D

O(g4)

+O(g5) . (1.4)

In practice for the coupling, O(g4) pieces are neglected since their numerical effect is small (despite being formally of the same order). 
These contributions arise during the second step of the dimensional reduction at two-loop. Pursuing higher order, requires a two-loop 
computation for the first step, and a three-loop computation for the second step of the dimensional reduction.

In perturbation theory the definition of 3d EFT parameters is accompanied with a perturbative computation of the effective poten-
tial [30]:

V 3d
eff = V 3d

tree︸︷︷︸
O(g2)

+ V 3d
1-loop︸ ︷︷ ︸
O(g3)

+ V 3d
2-loop︸ ︷︷ ︸
O(g4)

+O(g5) . (1.5)

Instead of expanding the result in terms of 4d parameters of the parent theory, resummed couplings and masses are kept along. This im-
proves the overall convergence as the result is less sensitive to the renormalization scale [54,55]. The order O(g5) requires a computation 
at three-loop level [56–58].

Dimensional reduction from a zero-temperature EFT perspective
It is instructive to consider the same physics from a standard EFT perspective. In particular, for equilibrium observables we can, 

analogous to Kaluza-Klein theories [59], view thermal corrections as an infinite tower of heavy particles. To see the connection with 
dimensional reduction, we consider a theory with one light and one heavy scalar in Euclidean spacetime:

L = 1

2
(∂μφ)2 + 1

2
(∂μ	)2 + 1

2
m2φ2 + 1

2
M2	2 + 1

4
κφ2	2 + 1

4!λφ4 . (1.6)

Imagine now that there exists a hierarchy M2 � m2. This is a well-known situation, and when calculating scattering processes one 
encounters large corrections to m2 scaling as κM2 – analogous to the hierarchy problem. As well as large logarithms in the form ln μ̄2

M2 or 

ln μ̄2

m2 . One of these logarithms will then be large regardless the choice of the RG-scale μ̄.

Using thermal masses is equivalent to using a resummation4 m2 → m2 + aκM2. This resummation does, however, not solve our prob-
lems of large logarithms. Therefore, calculations, even with thermal masses, are sensitive to the RG-scale. The situation is much improved 
by using an EFT. Therein, the logarithms ln μ̄2

M2 are rendered small by matching at the scale μ̄Match ∼ M , and the remaining logarithms 

ln μ̄2

m2 are taken care of by RG-evolution in the low-energy theory [60].
Once the scalar field 	 has been integrated out, the resulting EFT is of the form

Leff = 1

2
(∂μφ)2 + 1

2
m2

eff φ
2 + 1

4!λeff φ
4 . (1.7)

3 Some literature [34] interchangeably refers to the hard scale as superheavy, the soft scale as heavy, and the ultrasoft scale as light.
4 This can also be viewed as a temperature-dependent renormalization δT m2 such that m2 = m2 + δT m2 [24].
4
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To leading order m2
eff = m2 + aκM2, and λeff = λ. While at NLO

δm2
eff = κ2M2

(
b + c ln

μ̄2
Match

M2

)
, (1.8)

δλeff = κ2
(

d + e ln
μ̄2

Match

M2

)
, (1.9)

where b, c, d, e are numerical coefficients. It is precisely these kind of corrections that appear in the dimensionally reduced theory.
Finally, to do calculations in the IR, we should run the couplings within the EFT from μ̄Match ∼ M down to μ̄IR ∼ meff. This way, all 

large logarithms are eliminated and perturbative convergence is improved.
When studying equilibrium phenomena it is common to use the imaginary-time formalism. Because fermions and bosons are (anti-)pe-

riodic functions with respect to imaginary time in this formalism, it is possible to expand the fields in a fourier series [61]

φ(τ , x) = T
∞∑

n=−∞
φn(x)eiωnτ , ωn =

{
ωB

n = 2nπ T (bosons)

ωF
n = (2n + 1)π T (fermions)

, n ∈Z , (1.10)

where ωB
n and ωF

n are known as Matsubara modes. So at large temperatures we effectively have an infinite tower of heavy particles with 
masses M2

n = [
(2n + σ)π T

]2
for all integers n 
= 0, and σ = 0(1) for bosons(fermions). Hence, the high-temperature matching scale is 

μMatch ∼ T and the low-energy scale is μ2
IR ∼ g2T 2. Since we are describing equilibrium (static) processes, there is no time dependence – 

the degrees of freedom of the EFT are static and live in three dimensions.

2. Theory behind the scenes: dimensional reduction of a generic model

In this section, we dig deeper into the theory and computations in the back-end of the software. The implementation for dimensional 
reduction of a generic model is based on tensor-notation [62–66] that separates Lorentz algebra from group algebra. The Lorentz algebra 
is hard-coded, with contractions done by FeynCalc [67,68] and FORM [21,69], while the group-structure is provided by the user.

2.1. Lagrangian in the 4d fundamental theory

Consider a general Lagrangian in Minkowski spacetime with mostly-plus metric: gμν = diag(−1, 1, 1, 1), 
{
σμ,σ ν

} = −2gμν . In terms 
of the functional-integral measure and the action S , the partition function is Z = ∫

D eiS . Correspondingly, the sigma matrices are defined 
as

σμ =
(
1,σ i

)
, σμ =

(
−1,σ i

)
, (2.1)

where σ i are Pauli matrices.
To write down the Lagrangian, in a flattened form, we employ a basis where all scalars and vectors are real. In addition, all fermions 

are composed of two-component Weyl-spinors [70]. The most general, four dimensional, Lagrangian in Minkowski space is [35,62,63]

L = −1

2
Ri(−δi j∂μ∂μ + μi j)R j − 1

4
F a
μν F μν,aδab − 1

2ξa
(∂μ Aa,μ)2

− ∂μηa∂μηa + iψ†
I σ

μ∂μψ I − 1

2
(M I J ψIψ J + h.c.) +Lint , (2.2)

Lint = −λi Ri − 1

3!λi jk Ri R j Rk − 1

4!λi jkm Ri R j Rk Rm − 1

2
(Y iI J RiψIψ J + h.c)

+ ga
I J Aa

μψ
†
I σ

μψ J − ga
jk Aa

μR j∂
μRk − 1

2
ga

jn gb
kn Aa

μ Aμ,b R j Rk − gabc Aμ,a Aν,b∂μ Ac
ν

− 1

4
gabe gcde Aμa Aνb Ac

μ Ad
ν + gabc Aa

μηb∂μηc , (2.3)

where Lint is the interaction Lagrangian and Fμν = i
g [Dμ, Dν ] is the field strength tensor with the corresponding gauge coupling g . In this 

notation, the field Ri denotes a real scalar-field with scalar-index i. In the Standard Model, i corresponds to the Higgs, neutral Goldstone, 
and real/imaginary component of the charged Goldstone. Further, the field Aa

μ corresponds to a real vector-field with vector-index a, the 
field η is a ghost-field and the field ψI is a Weyl-spinor with fermion-index I . In addition, μi j denote (squared) scalar masses, and MI J

fermion masses. Repeated indices are always summed over irrespective of their vertical placement.
Above we denoted YiI J as Yukawa couplings, λi jkl as scalar quartic, λi jk as scalar cubic, and λi as scalar tadpole couplings. The gauge 

couplings ga
jk are (anti-symmetric) representation matrices. For example, for an adjoint scalar-representation in SO(3) ga

jk = εajk . The 
abbreviation h.c. stands for the hermitian conjugate. The vertical placement of fermion indices is important; e.g. M I J = M∗

I J . We refer 
to [70] for further details.

In the dimensional-reduction step, hard modes with masses ∼ π T are integrated out. This is done by matching the fundamental 
Lagrangian above to the effective Lagrangian living in three-dimensions. To avoid large logarithms this matching should be performed 
close to μ̄ = π T where μ̄ is the RG-scale. This three-dimensional Lagrangian does not contain fermions. Moreover, in the dimensional-
reduction step the temporal component of vectors – represented by temporal scalar fields in the EFT – obtain Debye masses, as well as 
thermally generated interactions with other scalars.
5
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The matching is straightforward using Euclidean signature. This is achieved by redefining

AM,a
0 ≡ i AE,a

0 , σ M
i = −iσ E

i , t = −iτ , ∂M
0 = i∂E

0 , (2.4)(
∂μR ∂μR

)
M = (

∂μR ∂μR
)

E , /DM = i/DE ,
{
σμ,σ ν

}
E = 2δμν , (2.5)

where quantities are denoted either in Minkowskian (M) or Euclidean (E) metric. Henceforth, we suppress these subscripts and implicitly 
assume an Euclidean metric.

With the above redefinitions, the partition function is defined as ZE = ∫
D e−SE with the most general tree-level Lagrangian in Eu-

clidean signature

L = 1

2
Ri(−δi j∂μ∂μ + μi j)R j + 1

4
F a
μν F μν,aδab + 1

2ξa
(∂μ Aa,μ)2

+ ∂μηa∂μηa + ψ
†
I σ

μ∂μψ I + 1

2
(M I J ψIψ J + h.c.) +Lint , (2.6)

Lint = λi Ri + 1

3!λi jk Ri R j Rk + 1

4!λi jkm Ri R j Rk Rm + 1

2
(Y iI J RiψIψ J + h.c.)

+ iga
I J Aa

μψ
†
I σ

μψ J + ga
jk Aa

μR j∂
μRk + 1

2
ga

jn gb
kn Aa

μ Aμ,b R j Rk + gabc Aμ,a Aν,b∂μ Ac
ν

+ 1

4
gabe gcde Aμa Aνb Ac

μ Ad
ν − gabc Aa

μηb∂μηc . (2.7)

All Lorentz indices are contracted using the Euclidean metric δμν = diag(+1, +1, +1, +1). The Feynman rules for the vertices are

Ri R j Rk Rl : −λi jkl , (2.8)

Ri R j Rk : −λi jk , (2.9)

Ri : −λi , (2.10)

RiψIψ J : −YiI J , (2.11)

ψIψ J Aa
μ : −iga

I J σμ , (2.12)

Ri R j Aa
μ : iga

i j(p + q)μ , (2.13)

Aa
μ Ab

ν Ac
ρ : igabc Tμνρ , (2.14)

Aa
μ Ab

ν Ac
ρ Ad

σ : −Gabcd
μνρσ , (2.15)

ηaηb Ac
μ : igabc pμ , (2.16)

Ri R j Ab
μ Ab

ν : δμν

(
ga

in gb
nj + ga

jn gb
ni

) ≡ δμν Hab
ij , (2.17)

where Gabcd
μνρσ and Tμνρ are defined in [63]. Since we only focus on the matching, only the symmetric phase is relevant and vacuum 

expectation values are not introduced. The propagators are

〈Ri(p)R j(q)〉 = δi jδ(p + q)

p2
,

〈Aa
μ(p)Ab

ν(q)〉 = δabδ(p + q)

p2
Pμν(p) ,

〈ηa(p)ηb(q)〉 = δabδ(p − q)

p2
,

〈ψI (p)ψ J (q)〉 = δI J δ(p − q)ipμσμ

p2
, (2.18)

where all momenta are incoming by convention and

Pμν(p) = δμν − (1 − ξ)
pμpν

p2
, (2.19)

where ξ is the corresponding gauge parameter which for our investigations in Landau gauge is set to ξ = 0. All the Lorentz structure is 
contained in the vertices, and the generalized coupling constants take care of the group structure.

To do the matching we need to renormalize our theory. The matching can, and will, introduce kinetic mixing. To allow for this, we 
express the bare (b) fields and scalar masses as

Ri(b) = Z 1/2
i j R j , μi j(b) = Zμ

i j = μi j + δμi j , Aa
μ(b) = Z 1/2

ab Ab
μ , ψI(b) = Z 1/2

I J ψ J . (2.20)

By construction all propagators should be diagonal at tree-level, to wit

Z 1/2 Z 1/2 = δi j + δZij , Z 1/2
ac Z 1/2 = δab + δZab . (2.21)
ik kj cb

6
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Fig. 1. Diagrams contributing to the thermal scalar masses. A wiggly line denotes gauge bosons, a black line scalar particles, and a directed black line fermions. A black dot 
represents corresponding counterterms.

Assumed size of masses and couplings
For the current problem there are three energy scales: π T , gT , and g2T . Denoted as the hard, soft, and ultrasoft scale, respectively. 

In DRalgo it is assumed that all scalar (fermion) masses scale as gT or g2T . If, on the contrary, some masses would be hard, then 
they should formally be integrated out together with high-temperature modes.5 After hard modes are integrated out, it is up to the user 
whether soft-scale (gT ) fields are integrated out as well. By default all temporal scalars have masses of this order, but some models might 
also have additional scalars with soft masses. For the couplings, DRalgo assumes that all quartics and cubics scale as g2. This scaling is 
chosen so that scalar masses of O(gT ) can be integrated out safely [24].

In summary, DRalgo assumes the following scaling

λi jkl ∼ g2 , λi jk ∼ g2 , λi ∼ g2 ,

μi j ∼ g2T 2 , MI J ∼ gT , YiI J ∼ g , ga
I J ∼ ga

i j ∼ gabc ∼ g . (2.22)

It is of course possible to consider smaller couplings and masses than those above.

2.2. Lagrangian in the 3d effective theory

The three-dimensional theory is of the form

L = 1

2
Ri(−δi j∂μ∂μ + μi j)R j + 1

4
F a
μν F μν,aδab + 1

2ξa
(∂μ Aa,μ)2

+ ∂μηa∂μηa + 1

2
∂μ Aa

0∂
μ Aa

0 + 1

2
μab

D Aa
0 Ab

0 +Lint , (2.23)

Lint = hi Ri + 1

3!hijk Ri R j Rk + 1

4!hijkm Ri R j Rk Rm

+ ga
jk Aa

μR j∂
μRk + 1

2
ga

jn gb
kn Aa

μ Aμ,b R j Rk + gabc Aμ,a Aν,b∂μ Ac
ν

+ 1

4
gabe gcde Aμa Aνb Ac

μ Ad
ν − gabc Aa

μηb∂μηc + 1

2
gace gbed Aa

μ Aμ,b Ac
0 Ad

0

+ 1

4!λ
abcd
A Aa

0 Ab
0 Ac

0 Ad
0 + 1

4
g0

ab
i j Aa

0 Ab
0 Ri R j + gabc

0 Aa
μ Ab

0∂
μ Ac

0 , (2.24)

where Lorentz indices range between μ, ν = {1, . . . , 3}. In renormalizing the fields, we define

Z 1/2
ik Z 1/2

kj = δi j + δZ3,i j , Z 1/2
ac Z 1/2

cb = δab + δZab
3 , Z 1/2

ac,L Z 1/2
cb,L = δab + δZab,L

3 . (2.25)

Here, the term δZab,L
3 corresponds to temporal vectors. The propagators of this theory are as in eq. (2.18) in three dimensions with the 

absence of the fermionic propagator and the inclusion of the temporal-vector propagator

〈Aa
0(p)Ab

0(q)〉 = δabδ(p + q)

p2
. (2.26)

The counterterm Feynman rules are the same as above, barring the new temporal-vector diagram

Aa
0 Ab

0 : −p2δZab,L
3 − δμab

D . (2.27)

2.3. Matching

Self-energies and general n-point correlations are calculated both in the original 4d theory and the effective 3d theory. The 3-
dimensional parameters are chosen, or matched, to give the same correlators as the original theory [30,34].

One-loop thermal scalar masses
We start with the matching for scalar masses. For the matching we assume to be in a regime of soft or ultrasoft external momenta 

p ∼ gT or p ∼ g2T . The corresponding diagrams at one-loop level are illustrated in Fig. 1. In their computation, we need the master 
integrals [71]

5 This will be implemented in future versions of DRalgo.
7
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I4b
α = ∑∫

Q

1

[Q 2]α =
(

μ̄2eγE

4π

)ε

2T
[2π T ]d−2α

(4π)
d
2

�
(
α − d

2

)
�(α)

ζ2α−d , (2.28)

I4 f
α = ∑∫

{Q }

1

[Q 2]α =
(

μ̄2eγE

4π

)ε

2T
[2π T ]d−2α

(4π)
d
2

�
(
α − d

2

)
�(α)

(
1 − 2d−2α

)
ζ2α−d , (2.29)

where ζs = ζ(s) is the Riemann zeta function. The d-dimensional bosonic integral measure is defined as

∑∫
Q

≡ T
∑
qn

(
μ̄2eγE

4π

)ε ∫
ddq

(2π)d
, (2.30)

while for fermions the summation is written as �
∫

{Q } . We set d = 3 −2ε with Euclidean four-momenta Q 2 = q2
n +q2 = [

(2n +σ)π T
]2 +q2, 

and σ = 0(1) for bosons(fermions).
The first diagram in Fig. 1 gives

Dij
1 = −1

2
λi jnn I4b

1 , (2.31)

where the factor of 1
2 is the symmetry factor, −λi jnn is the Feynman rule, and

I4b
1 = T 2

12
+O(ε) . (2.32)

The zero Matsubara mode is here ignored. The reason for this is that the zero Matsubara mode corresponds to soft momenta, and should 
not be integrated out. Conversely, since the n = 0 mode exists both in the EFT and the parent theory, this contribution cancels in the 
matching. The second diagram is likewise (neglecting higher ε terms)

Dij
2 = 1

2
Haa

ij dI4b
1 , dI4b

1 = T 2

4
, (2.33)

where we used the shorthand notation for Hab
ij from eq. (2.17).

The remaining diagrams give

Dij
3 = i2 ga

in ga
nj

3

(4π)2εb
p2 , Dij

4 = 1

2
λi jnl μnl

1

(4π)2εb
. (2.34)

The first diagram contains the external momentum is p, and the last diagram is the contribution from a scalar-mass insertion. With the 
assumed power-counting (2.22), this contribution is formally of higher order. Finally, there is the fermion loop

Dij
5 = 1

2

(
Y iI J Y jI J + YiI J Y jI J )[− T 2

12
− p2 1

(4π)2ε f

]
. (2.35)

The second coupling-constant term above is the hermitian conjugate. Also, above we use εb and ε f to denote ε poles, albeit with some 
additional factors. They are defined in [30,34], and are

1

εb
= 1

ε
+ Lb,

1

ε f
= 1

ε
+ Lf, (2.36)

where Lb and Lf depend on the 4d-renormalization scale (μ̄) as well as the temperature (T ) [30,34]. They are

Lb= ln
( μ̄2

T 2

)
+ 2γE − 2 ln(4π) , Lf= Lb+ 4 ln(2) , (2.37)

where γE is the Euler-Mascheroni constant.
To perform the matching, we demand∫

d4x〈Ri R j〉4d = T −1
∫

d3x〈Ri R j〉4d =
∫

d3x〈Ri R j〉3d . (2.38)

At leading order, 3d fields are rescaled by a factor T −1/2. Next, consider the self-energies. One finds(−δZij p2 − δμi j − μi j + �(0)i j + p2�′(0)i j
)

4d = (−δZ3,i j p2 − δμ3,i j − μ3,i j
)

3d , (2.39)

where �i j(p) = (D1 + · · · + D5)i j . To avoid confusion we added a subscript 3 to three-dimensional quantities.
Here −δZij p2 − δμi j are 4d counterterms, and cancel all ε poles. The matching gives

μ3,i j = μi j − �(0)i j , δZ3,i j = δZij − �′(0)i j . (2.40)

In this step all the Lorentz structure is stripped away, leaving mere group-theory factors.
8
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Fig. 2. Diagrams contributing to the thermal corrections to the scalar quartics. Indices correspond to the line notation in Fig. 1.

One-loop scalar quartics
Next, we consider scalar quartics. Before calculating the actual diagrams, it is useful to look at what happens on the 3d side. The 

relevant terms in the Lagrangian are

Ri R j Rk Rl hi jkl . (2.41)

There are two contributions to the matching. First, the coupling constant, h, receives contributions from different loop orders

hijkl = h0
i jkl + h1

i jkl + . . . (2.42)

Second, as shown in the previous section, 3d fields are renormalized. In terms of the scalar counterterm, δZ3,i j , this renormalization is (to 
leading order) Ri(b) = Ri + 1

2 δZ3,i j R j . Combined, these considerations imply that the contribution from the 3d side is

〈Ri R j Rk Rl〉3d = −h0
i jkl − h1

i jkl

− 1

2

(
δZ3,imh0

mjkl + δZ3, jmh0
imkl + δZ3,kmh0

i jml + δZ3,lmh0
i jkm

)
. (2.43)

In the 4d theory, the first and second diagrams give

Dijkl
1 = 1

2

(
λi jnmλnmkl + λiknmλnmjl + λilnmλnmkj

) 1

16π2εb
, (2.44)

Dijkl
2 = 1

2

(
Hab

ij Hab
kl + Hab

ik Hab
jl + Hab

il Hab
kj

)[
3

(4π)2εb
− 1

8π

]
. (2.45)

Finally, the fermion contribution is

Dijkl
3 = 1

2

(
YiI J Y j J K YkK L Y lLI + ( jkl)

) 1

(4π)2ε f
+ h.c. (2.46)

where the terms ( jkl) contain all permutations over indices j, k, l.
The matching is performed by demanding∫

d4x〈Ri R j Rk Rl〉4d = T −1
∫

d3x〈Ri R j Rk Rl〉4d =
∫

d3x〈Ri R j Rk Rl〉3d . (2.47)

In the light of the discussion at the beginning of this section, this implies

T
(
−λi jkl + �i jkl

)
= −h0

i jkl − h1
i jkl

− 1

2

(
δZ3,imh0

mjkl + δZ3, jmh0
imkl + δZ3,kmh0

i jml + δZ3,lmh0
i jkm

)
. (2.48)

The renormalized sum of the diagrams above was denoted as �i jkl = (D1 + D2 + D3)i jkl and one finds

h0
i jkl = T λi jkl, (2.49)

h1
i jkl T

−1 = −1

2

(
δZ3,imλmjkl + δZ3, jmλimkl + δZ3,kmλi jml + δZ3,lmλi jkm

)
− �i jkl , (2.50)

where δZ3,km was given in the previous section.

Higher loop levels
When performing dimensional reduction at NLO, two-loop contributions are required for scalar thermal masses. Here, we do not show 

details of the two-loop computation, as they are analogous to the one-loop computation presented above. Naturally the number of required 
diagrams is larger. Due to the use of integration-by-parts identities (IBP) [72–74] it can be shown that to the given order, the two-loop 
master sum-integrals factorize into the one-loop master integrals given in eqs. (2.28) and (2.29). While this streamlines the computation 
at NLO significantly, contributions at higher orders are non-factorizable. Nonetheless, DRalgo also implements a generic computation of 
two-loop thermal masses and other 3d parameters at NLO.
9
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2.4. Beta functions and anomalous dimensions

DRalgo calculates beta functions and anomalous dimensions by renormalizing 4d parameters (cf. [64–66]). As an example, consider 
the scalar sector. We have renormalized our fields and couplings as

Ri(b) = Z 1/2
i j R j =

(
δi j + 1

2
δZij

)
R j , (2.51)

Ri(b)R j(b)Rk(b)Rl(b)λi jkl(b) = Ri R j Rk Rl
(
λi jkl + δλi jkl

)
μ̄2ε . (2.52)

On the 4d side, we assume the MS scheme, so δZij , δμi j , and δλi jkl are chosen to only cancel ε poles.
We demand that bare parameters are independent of the RG-scale μ̄. To leading order in ε , we find (t = log μ̄)

∂tλi jkl = −2ελi jkl , ∂tδZij = −2εδZij. (2.53)

Using this we can find the anomalous dimensions by demanding that ∂t Ri(b) = 0:

=⇒ ∂t Ri = ε Zij R j ≡ γi j R j , (2.54)

where we have introduced the anomalous dimension γi j . Then, the quartic beta function is determined by

0 = μ̄−2ε∂tλi jkl(b) = 2ε
(
λi jkl + δλi jkl

) + ∂tδλi jkl + ∂tλi jkl ,

=⇒ ∂tλi jkl = −2ελi jkl + 2εδλi jkl . (2.55)

Where we have used ∂tδλi jkl = −4εδλi jkl; which follows from counting powers of couplings in δλi jkl . We identify 2εδλi jkl with the beta 
function for λi jkl .

This beta function can be written in an equivalent form by writing the counterterm, for λ, as the sum of a bare term and field 
renormalization:

δλi jkl = λ̄i jkl + 1

2

(
δZimλmjkl + δZ jmλimkl + δZkmλi jml + δZlmλi jkm

)
. (2.56)

Using this one finds

∂tλi jkl = −2ελi jkl + 2ελ̄i jkl − (γ λ)(i jkl) , (2.57)

where the last term denotes all possible contractions between one index of λi jkl and one index of γi j . Other beta functions are calculated 
analogously.

All gauge beta functions in DRalgo are defined with couplings squared, viz. ∂t g2 . Conversely beta functions for masses, scalar couplings, 
and Yukawa couplings are defined as linear in the parameters, i.e. ∂tλ and so forth. These conventions are also shown in the DRalgo
output.

In the 3-dimensional theory only scalar masses have non-zero beta functions.

3. Installation and running

This section explains how to install DRalgo and presents a tutorial based on the Abelian-Higgs model.

3.1. Installation

The current version of DRalgo, 1.0, is installed by placing all the source files either in the applications folder $UserBaseDirec-
tory/Applications or running Mathematica from the package root directory ./DRalgo.

The required source files are outlined in Fig. 3. To create model files, DRalgo uses functions from GroupMath [75]; see [75] for 
its installation. This tutorial uses GroupMath Version 1.1.2 but GroupMath is not required for the dimensional reduction itself. If a 
model file is already available, it can be loaded independently of GroupMath (cf. sec. Q.1). Since GroupMath is an external package, any 
use of the model-creation features in DRalgo should be accompanied by a citation of [75].

To load DRalgo from the Mathematica folder $UserBaseDirectory/Applications, the following commands need to be exe-
cuted:

SetDirectory[NotebookDirectory[]];
$LoadGroupMath=True;
<<DRalgo`

Subsequently, we demonstrate the definition of models, the dimensional reduction, and the calculation of the two-loop effective potential. 
All steps are mirrored in the accompanying ./examples/ah.m.
10
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DRalgo

DRalgo.m ...........................................................................................................................package file
Debye.m .........................................................................................Creates and organizes temporal scalars
EffPot.m ........................................................................Computation of the effective potential in the EFT
HardToSoft.m .........................................................................................................Matching hard to soft
SoftToUS.m .....................................................................................................Matching soft to ultrasoft
ModelCreation.m ............................................................................................................Creating a model
examples/..............................................................................................................Model example library

ah.m.....................................................................................................................Abelian-Higgs model
sm.m...........................................................................................................................Standard Model
xsm.m.............................................................................................Standard Model and one real scalars
2xsm.m............................................................................................Standard Model and two real scalars
cxsm.m.........................................................................................Standard Model and one complex scalar
2hdm.m............................................................................................................Two-Higgs Doublet model
3hdm.m..........................................................................................................Three-Higgs Doublet model
htm.m.....................................................................................Standard Model and one real SU(2) triplet
SU5.m..............................................................................................................................SU(5) model
LRSymmetric.m...............................................................................................Left-Right symmetric model
WessZumino.m............................................................................................................Wess-Zumino model
smZp.m......................................................................................................Standard Model and Z ′-bosons

README.md

LICENSE

Fig. 3. Outline of the structure of DRalgo. The most relevant files for this article are highlighted. Specific models are discussed in sec. 3 for ah.m and sec. 4 for 2hdm.m.

3.2. Model implementation

As an example, we consider the Abelian-Higgs model with the Euclidean Lagrangian

L = 1

4
Fμν F μν + (

Dμφ
)† (

Dμφ
) + V (φ,φ†) , (3.1)

V (φ,φ†) = m2φ†φ + λ
(
φ†φ

)2
, (3.2)

where the covariant derivative is Dμ = ∂μ − ig1Yφ Aμ and the corresponding field-strength tensor is Fμν = ∂μ Aν − ∂ν Aμ . Here, the field 
Aμ is an U(1) gauge field with gauge coupling g1 and φ is a complex scalar field charged under U(1) with general charge Yφ .

The zero, or temporal, component of the vector field receives a thermally induced mass in the 3d theory. This temporal scalar trans-
forms as a singlet under U(1) and has a Lagrangian

Ltemporal = 1

2
(∂i A0)

2 + 1

2
μsqU1A2

0 + 1

4!λVLL[1]A4
0 + 1

2
λVL[1]A2

0φ
†φ , (3.3)

where indices i ∈ {1, . . . , d} are spatial. Here, μsqU1 is the temporal-scalar Debye mass (squared), λVLL[1] is the self-interaction cou-
pling, and λVL[1] is the portal coupling to φ. The notation above is aligned with the systematic notation of DRalgo. For earlier studies 
of this model in the literature, we refer to [36–38,76,77].

To create a model in DRalgo, we have to specify the gauge group and the scalar representation. In DRalgo this is done via

Group={"U1"};
CouplingName={g1};
RepAdjoint={0};
Higgs={{Yφ},"C"};
RepScalar={Higgs};
RepFermion={};

Here, the adjoint (vector) representation is trivial for the Abelian Higgs model. In the definition of the Higgs scalar {{Yφ},"C<R>"}, Yφ

denotes the gauge charge. One additional argument is passed depending on if the scalar has a real (R) or a complex (C) representation. In 
this simple example, fermions are absent and the corresponding bracket is empty. While not relevant for this model, note that fermions 
are never part of the 3d EFT Lagrangian as they are integrated out during the first step of the dimensional reduction. The model-input 
from the gauge sector is generated with the command

{gvvv,gvff,gvss,λ1,λ3,λ4,μij,μIJ,μIJC,Ysff,YsffC}=
AllocateTensors[Group,RepAdjoint,CouplingName,RepFermion,RepScalar];

The tensors listed above have the following correspondence
11
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gvvv structure constants
gvff vector-fermion trilinear couplings
gvss vector-scalar trilinear couplings

λ1 scalar tadpole couplings
λ3 cubic couplings
λ4 quartic couplings

μij scalar-mass matrix
μIJ, μIJC fermion-mass matrices

Ysff, YsffC Yukawa couplings

and their purpose is described in depth in sec. 2. By default all these tensors, except for the gauge ones, are empty. While their order on 
the left hand side of AllocateTensors is fixed, the above naming of {gvvv,...,YsffC} is arbitrary.

The next task is to specify the scalar potential. Let us start with the mass matrix. There is only one allowed term: φφ† . This term is 
selected via

InputInv={{1,1},{True,False}};
MassTerm1=CreateInvariant[Group,RepScalar,InputInv][[1]]//Simplify;
VMass=msq*MassTerm1; (* corresponds to a term 1

2 m2φφ† *)
μij=GradMass[VMass];

To understand the syntax, recall that we defined our scalar as RepScalar={Higgs}. Then {1,1} specifies that we are after a term 
with two (RepScalar[[1]]) φ fields. For general models, the index 1 can be replaced by any index in RepScalar as defined by the 
user. In addition, {True,False} specifies that we are after the φφ† term and conversely {True,True} corresponds to a φφ term. 
The latter term, however, is not allowed in this example due to gauge invariance. Since this example exhibits merely one U(1) invariant 
combination of φ and φ†, we specify [[1]] in the CreateInvariant output.

For the quartic tensor only one possible term arises, namely (φφ†)2. We already created a (φφ†) term above, which can be reused to 
find the quartic:

VQuartic=λ*MassTerm1^2;
λ4=GradQuartic[VQuartic]

To see how quartic and mass terms are composed of scalar-field components, one can inspect the variables VMass and VQuartic.
This completes the model implementation, and we now have all ingredients to do the dimensional-reduction step.

3.3. Running the dimensional-reduction algorithm

First we need to load the model with the command

ImportModelDRalgo[Group,gvvv,gvff,gvss,λ1,λ3,λ4,μij,μIJ,μIJC,Ysff,YsffC,Verbose->False];

Since the gauge group was previously defined, the corresponding Debye masses are automatically generated and named. The option
Verbose->False disables all progress messages.

The actual dimensional reduction is performed with the command

PerformDRhard[];

This calculates all thermal masses, effective couplings, β-functions and anomalous dimensions. For example, gauge and scalar couplings 
are given by

PrintCouplings[]{
g13d2 → g2

1 T − g4
1LbT Y 2

φ

48π2 , λ3d→ T (g4
1 Y 4

φ (2−3Lb)+6g2
1 Y 2

φλLb+2λ(8π2−5λLb))

16π2

}

where the output is a replacement rule. The variables Lb and Lf are given in eq. (2.37), and depend on the 4d-renormalization scale (μ̄) 
as well as the temperature (T ) [30,34]. Further information about the functional basis of the effective parameters is collected in sec. Q.11. 
The corresponding definitions of constants, along with other shorthand notations, are shown with the command

PrintConstants[]

The above RG-scale μ̄ is the hard matching scale, and should be chosen as μ̄ ∼ T to avoid large logarithms.6 Effective mass parameters 
are divided into scalar and temporal-scalars. The scalar masses are given by

PrintScalarMass["LO"]
PrintScalarMass["NLO"]

6 In DRalgo the renormalization scales are denoted by μ = μ̄ for the hard scale and μ3= μ̄3 for the soft scale.
12
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Here, the LO command prints tree-level masses together with one-loop thermal contributions; the NLO command prints two-loop thermal 
masses. By default these NLO masses contain the running from the matching scale (μ̄) to an arbitrary 3d scale (μ̄3).7 The resulting Debye 
masses are displayed by

PrintDebyeMass["LO"]
PrintDebyeMass["NLO"]

Mixed temporal-scalar couplings (to NLO) are printed with

PrintTemporalScalarCouplings[]

Such temporal-scalar couplings are denoted as λVLL[a] for V 4 couplings, λVVSL[a] for V 2 S couplings and λVL[a] for V 2 S2 couplings, 
where S represents scalar fields and V temporal scalar fields. The index ‘a’ systematically labels all linearly independent terms.

The coefficient of the unit operator [35], or the hard-mode contribution to the symmetric-phase pressure, is given by

PrintPressure["LO"]
PrintPressure["NLO"]
PrintPressure["NNLO"]

Here, LO corresponds to one-loop, NLO to two-loop, and NNLO to three-loop level. The LO result describes the pressure of an ideal gas, 
and is given by PLO(T ) = N π2

90 T 4, where N represents the number of degrees of freedom. For the Abelian Higgs model N = 4 with 2 from 
the photon and 2 from the complex scalar.

DRalgo also provides anomalous dimensions and beta functions in the parent 4d theory; see sec. 2.4. Beta functions are printed with 
the command

BetaFunctions4D[]

Next, to find anomalous dimensions we first need to specify for which particles we want them. As DRalgo stores everything in tensor 
form, we need to find the positions of all particles

PosScalar=PrintScalarRepPositions[];

To determine the anomalous dimension of e.g. ScalarRep[[1]], we would write

AnomDim4D["S",{PosScalar[[1]],PosScalar[[1]]}]

See sec. Q.4 for how to obtain anomalous dimensions for vector-bosons and fermions.

3.4. Integrating out temporal scalars

Temporal scalars are often heavy compared to the fields driving the phase transition, and can be integrated out [30,34]. It should be 
stressed that this is a user-dependent optional step. The resulting EFT is said to describe ultrasoft physics. The command is

PerformDRsoft[{}];

Couplings at the ultrasoft scale are given by

PrintCouplingsUS[];

And effective scalar masses are given by

PrintScalarMassUS["LO"];
PrintScalarMassUS["NLO"];

Finally, β-functions for the ultrasoft masses are provided with the command

BetaFunctions3DUS[];

In the 3-dimensional theory only scalar masses have non-zero beta functions.
This concludes our tutorial of the dimensional reduction of the Abelian-Higgs model.

7 There are different ways to express the NLO masses. We refer to sec. Q.11 for further details.
13
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3.5. Two-loop effective potential

Once the model is loaded, we can calculate the effective potential. This can be done by the user, either in the soft or the ultrasoft 
theory. Alternatively, DRalgo can calculate the effective potential in the ultrasoft theory. First, we need to create field-dependent masses 
which requires to specify a vacuum expectation value direction:

DefineNewTensorsUS[μij,λ4,λ3,gvss,gvvv];
φvev={0,φ}//SparseArray;
DefineVEVS[φvev];

Here the vacuum expectation value is in the second, imaginary, Higgs component.
For the calculation to proceed, all mass matrices must be diagonal. If not, an error message is printed and it is up for the user to 

diagonalize the matrices; see section Q.16 for an example. For the model at hand, the mass matrix is diagonal, which the user can confirm 
by printing the field-dependent masses

FieldMasses=PrintTensorsVEV[]

The effective potential is calculated via

CalculatePotentialUS[]

The results are given by

PrintEffectivePotential["LO"]
PrintEffectivePotential["NLO"]
PrintEffectivePotential["NNLO"]

Here, LO refers to the tree-level, NLO to the one-loop, and NNLO to the two-loop effective potential. Note that all results are given in 
Landau gauge. In the (two-loop) NNLO part, the renormalization scale is denoted by μ3= μ̄3.

This completes the first tutorial on quick installation and running. Output from the 3d EFT matching relations can be implemented 
either to non-perturbative lattice codes, or perturbative analyses in terms of the effective potential. While such implementations are 
left to the user, appendix A displays how to interface DRalgo output in a Mathematica implementation that determines selected 
thermodynamic quantities for the Abelian-Higgs model.

4. Implementing beyond the Standard Model theories

In this section, we demonstrate the use of DRalgo for BSM theories based on the example of the Two-Higgs doublet model (2HDM).

4.1. Two-Higgs doublet model with fermions

Consider the 2HDM potential [78,79]

V (φ1, φ2) = m2
1φ1φ

†
1 + m2

2φ2φ
†
2 − (m2

12φ1φ
†
2 + h.c.) + λ1(φ1φ

†
1)

2 + λ2(φ2φ
†
2)

2

+ λ3(φ1φ
†
1)(φ2φ

†
2) + λ4(φ1φ

†
2)(φ2φ

†
1) + λ5

2

[
(φ1φ

†
2)

2 + (φ2φ
†
1)

2
]

+
{[

λ6(φ1φ
†
1) + λ7(φ2φ

†
2)

]
(φ

†
1φ2) + h.c.

}
. (4.1)

The scalars are SU(2) doublets with hypercharge Yφ = 1. This means that the covariant derivative is given by8

Dμφ1,2 =
(
∂μ − ig1

Yφ

2
Bμ − ig2

τ a

2
Aa

μ

)
φ1,2 , (4.2)

where τ a are Pauli matrices. We further assume that all Standard-Model fermions are present, and consider Yukawa interactions of the 
form

LYuk = yiqLφ
†
i qR + h.c. (4.3)

We define the group structure and scalar representations via

Group={"SU3","SU2","U1"};
RepAdjoint={{1,1},{2},0};
HiggsDoublet1={{{0,0},{1},1/2},"C"};
HiggsDoublet2={{{0,0},{1},1/2},"C"};
RepScalar={HiggsDoublet1,HiggsDoublet2};
CouplingName={g3,g2,g1};

8 We use the convention that (φ1φ
†
1) = (φ

†
1φ1) = φ I

1φ
†,I
1 , where I = 1, 2.
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All representations are specified according to their Dynkin coefficients (see e.g. [75,80,81]). For example, gauge bosons transform as (1, 1), 
or an octet, under SU(3). Next we need to create the fermions. Let us start by creating a single generation

Rep1={{{1,0},{1}, 1/6},"L"}; (*qL*)
Rep2={{{1,0},{0}, 2/3},"R"}; (*uR*)
Rep3={{{1,0},{0},-1/3},"R"}; (*dR*)
Rep4={{{0,0},{1},-1/2},"L"}; (*�L*)
Rep5={{{0,0},{0},-1},"R"}; (*eR*)
RepFermion1Gen={Rep1,Rep2,Rep3,Rep4,Rep5};

In the definition of a fermion representation {{{1,0},{1},Y/2},"L<R>"} the last argument depends on if the fermion left-handed 
(L) or right-handed (R) and Y is the corresponding hypercharge. For the Standard Model, we have

Yq = 1

3
, Yu = 4

3
, Yd = −2

3
, Y� = −1 , Ye = −2 . (4.4)

The above notation identifies Rep1 as the left-handed quark doublet, Rep2 as the right-handed up-quark and so forth. The extra factor 
of 1

2 for hypercharges in the definition of e.g. Rep1 arises from the definition of the covariant derivative similar to eq. (4.2).
Additional fermion-families can be added by grouping multiple instances of RepFermion1Gen together:

RepFermion3Gen={RepFermion1Gen,RepFermion1Gen,RepFermion1Gen}//Flatten[#,1]&;

where the number of generations is chosen to be nf = 3. When creating Yukawa interactions the user decides which index contains which 
family. For example, above we stacked all generations after each other in RepFermion3Gen. Hence, in RepFermion3Gen indices 1–5 
correspond to the first generation, indices 6–10 to the second, and indices 11–15 to the last. Thus the user could use index 1, 6, or 11 as 
the top quark. An alternative way to add an arbitrary number of fermion families nf is given in sec. Q.9.

Next, to create the tensors, we write

{gvvv,gvff,gvss,λ1,λ3,λ4,μij,μIJ,μIJC,Ysff,YsffC}=
AllocateTensors[Group,RepAdjoint,CouplingName,RepFermion3Gen,RepScalar];

The mass terms in the potential in eq. (4.1) are

V (φ1, φ2) ⊃ m2
1φ1φ

†
1 + m2

2φ2φ
†
2 − (m2

12φ1φ
†
2 + h.c.) , (4.5)

and due to the presence of two Higgs doublets, we need to specify the doublet for each term:

InputInv={{1,1},{True,False}}; (*φ1φ
†
1*)

MassTerm1=CreateInvariant[Group,RepScalar,InputInv][[1]]//Simplify;

InputInv={{2,2},{True,False}}; (*φ2φ
†
2*)

MassTerm2=CreateInvariant[Group,RepScalar,InputInv][[1]]//Simplify;

InputInv={{1,2},{True,False}}; (*φ1φ
†
2*)

MassTerm3=CreateInvariant[Group,RepScalar,InputInv][[1]]//Simplify;

InputInv={{2,1},{True,False}}; (*φ2φ
†
1*)

MassTerm4=CreateInvariant[Group,RepScalar,InputInv][[1]]//Simplify;

The mass matrix is then generated by the GradMass[] command:

VMass=(
+m1*MassTerm1
+m2*MassTerm2
-(m12R+I*m12I)(MassTerm3)
-(m12R-I*m12I)(MassTerm4)
);

μij=GradMass[VMass]//Simplify;

We allowed m2
12 to be complex, with real part m12R, and imaginary part m12I. For the scalar quartics in eq. (4.1) the corresponding part 

of the potential is

V (φ1, φ2) = λ1(φ1φ
†
1)

2 + λ2(φ2φ
†
2)

2 + λ3(φ1φ
†
1)(φ2φ

†
2)

+ λ4(φ1φ
†
2)(φ2φ

†
1) + λ5

2

[
(φ1φ

†
2)

2 + (φ2φ
†
1)

2]
+

{[
λ6(φ1φ

†
1) + λ7(φ2φ

†
2)

]
(φ

†
1φ2) + h.c.

}
, (4.6)

for which we already created all the building blocks. Thus, the quartics can be constructed as

QuarticTerm1=MassTerm1^2; (*(φ1φ
†
1)2*)

QuarticTerm2=MassTerm2^2; (*(φ2φ
†
2)2*)

QuarticTerm3=MassTerm1*MassTerm2; (*(φ1φ
†
1)(φ2φ

†
2)*)
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QuarticTerm4=MassTerm3*MassTerm4; (*(φ1φ
†
2)(φ2φ

†
1)*)

QuarticTerm5=(MassTerm3^2+MassTerm4^2); (*(φ1φ
†
2)2 + (φ2φ

†
1)2*)

QuarticTerm6=MassTerm1*MassTerm3+MassTerm1*MassTerm4; (*(φ1φ
†
1)

[
(φ1φ

†
2) + (φ2φ

†
1)

]
*)

QuarticTerm7=MassTerm2*MassTerm3+MassTerm2*MassTerm4; (*(φ2φ
†
2)

[
(φ1φ

†
2) + (φ2φ

†
1)

]
*)

Consequently, the quartic tensor itself is defined as

VQuartic=(
+λ1H*QuarticTerm1
+λ2H*QuarticTerm2
+λ3H*QuarticTerm3
+λ4H*QuarticTerm4
+λ5H/2*QuarticTerm5
+λ6H*QuarticTerm6
+λ7H*QuarticTerm7
);

λ4=GradQuartic[VQuartic];

For simplicity, we assumed above that λ5H, λ6H, and λ7H are real. One can allow for complex couplings by adding them, and their 
conjugates, directly in QuarticTerm6 and QuarticTerm7. To create a complex coupling λ6H, we would write

QuarticTerm6=(λ6HR+I*λ6HI)*MassTerm1*MassTerm3+(λ6HR-I*λ6HI)*MassTerm1*MassTerm4;

For Yukawa couplings, we only consider the top-quark coupling. If we choose the first family to contain the top-quark, then a Yukawa 
term ∼ φ†qLuR would involve fermion representations number 1 and 2. When defining a Yukawa interaction, representations should be 
specified in the order: scalar, first fermion, second fermion. With this in mind, the Yukawa coupling of the first Higgs doublet is9

InputInv={{1,1,2},{False,False,True}}; (*φ
†
1qL uR*)

YukawaDoublet1=CreateInvariantYukawa[Group,RepScalar,RepFermion3Gen,InputInv][[1]]//Simplify;

Here, {1,1,2} specifies

First Higgs doublet × Left-handed top-quark × Right-handed top-quark ,

and {False,False,True} specifies that the Higgs and left-handed quarks are conjugated. The coupling to the second Higgs doublet is

InputInv={{2,1,2},{False,False,True}}; (*φ
†
2qL uR*)

YukawaDoublet2=CreateInvariantYukawa[Group,RepScalar,RepFermion3Gen,InputInv][[1]]//Simplify;

The complete Yukawa tensor is

Ysff=-GradYukawa[yt1*YukawaDoublet1+yt2*YukawaDoublet2];

For the sake of generality, we assumed that both Higgs doublets couple to the top-quark. Note that this is not allowed for a realistic model 
due to flavor-changing-neutral-current constraints.

Finally, assuming that the Yukawa couplings are real, we can define

YsffC=Simplify[Conjugate[Ysff//Normal],Assumptions->{yt1>0,yt2>0}]//SparseArray;

Above we did not consider Yukawa couplings between different generations but such couplings can be added. To wit, when we defined
RepFermion3Gen we put the first generation on indices 1–5; the second on indices 6–10; and the third on indices 11–15. To define 
a coupling between, e.g. the left-handed top quark (assumed to reside in generation 1) and the right-handed charm quark (assumed to 
reside in generation 2), we would write

InputInv={{1,1,7},{False,False,True}};
YukawaTopCharm=CreateInvariantYukawa[Group,RepScalar,RepFermion3Gen,InputInv]//Simplify;

With the model implementation complete, all dimensional-reduction commands are identical to those of the Abelian-Higgs model. We 
refer to [82–84] for earlier results in the literature.

Integrating out temporal scalars
For the Abelian-Higgs case in sec. 3 we only had one scalar field, whereas with the 2HDM we have two. When integrating out temporal 

scalars (cf. sec. 3.4), we have two options. First, all scalars are light and we have two active, dynamical doublets. Second, one doublet is 
heavy and is integrated out when going from the soft to the ultrasoft scale. The following commands can be used after the reduction from 
the hard to the soft scale have been performed i.e. PerformDRhard[];

9 Here we assume that the top quark resides in the first generation. This has nothing to do with how the top-quark is usually placed in the third generation. Rather, we 
here place it in the first for simplicity as normally only the top-quark has a sizeable Yukawa coupling.
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For the first case, the corresponding command is

PerformDRsoft[{}];

For the second case, we assume that the second doublet is heavy. It can then be integrated out via

PerformDRsoft[{5,6,7,8}];

To understand the above syntax, note that the indices of all representations are given by

PosScalars=PrintScalarRepPositions[];

So the second Higgs doublet resides at PosScalars[[2]]=5;;8.
There is one complication when integrating out one of the Higgs doublets. Namely, generally the two doublets mix through the m2

12
term. For a complete treatment the mass matrix needs to be diagonalized before the heavy doublet can be integrated out. This lies beyond
DRalgo and is an optional step for the user. Instead, the code by default assumes that m2

12 is small – of O(g2 T ) in power counting – 
and performs the diagonalization perturbatively to first order in m2

12.

5. Miscellaneous features

In this section, we discuss specific features of the software on a case-by-case basis.

5.1. User-options and features

Lower-order dimensional reduction for speed
The user has several options to control what is calculated and how the code operates. For example, if the model has many degrees of 

freedom, the user might wish to save running-time and only calculate one-loop thermal masses and couplings. This works by specifying
Mode->1 when loading the model

Group={"U1"};
ImportModelDRalgo[Group,gvvv,gvff,gvss,λ1,λ3,λ4,μij,μIJ,μIJC,Ysff,YsffC,Mode->1];

The default is Mode->2, in which case everything is calculated to NLO. And for the most bare-bone/fast option select Mode->0; in this 
case only one-loop thermal masses are calculated.

5.2. Model-treatment in the code

DRalgo works by factorizing all group and Lorentz algebra. The Lorentz algebra is hard-coded while the group algebra is supplied by 
the user. All particles are indexed by the order they appear. If the user has an SU(3) × SU(2) model with gauge bosons, the vectors in 
the SU(3) group have 8 components, while those of the SU(2) group have 3. The code indexes these components by a = (

8α
SU(3), 3

β

SU(2)

)
. 

Therein, α runs from 1–8, β from 1–3, and a from 1–11. For example, the Debye mass tensor μab
D stores the information of both groups. 

For most cases this mass tensor is diagonal.
The scalars are treated differently since DRalgo only deals with real scalar components. For example, a complex scalar 	 is rewritten 

	 = 1√
2

(φ + iψ). Hence the scalar indices would in this case be i = (φ, ψ). Further, the scalar-mass matrix is stored as μS,i j . For example, 
a m2φ2 mass term resides at μS,11. Consider now a complex representation with n scalar components labelled by I, J . In a complex 
basis vector-scalar-scalar trilinear couplings are of the form Aμ

(
Ga

I J ∂
μ	I	

∗
J + Ga,∗

I J ∂μ	∗
I 	 J

)
, where Ga

I J are representation matrices. 

To convert to a real basis each scalar component is split as 	I = 1√
2

(φI + iψI ).10 The components are then reordered with the real 
components first: i = (φI , ψI ), so i = 1, . . . , 2n. If we call the scalars in the real basis ϕi , our vector-scalar-scalar trilinear couplings 
become

Aμga
i j∂

μϕiϕ j , ga
i j =

(
Im(Ga

I J ) Re(Ga
I J )

−Re(Ga
I J ) Im(Ga

I J )

)
. (5.1)

Thus, ga
i j is automatically antisymmetric under i ↔ j.

As an example, consider a U(1) theory with a complex scalar. The vector-scalar-scalar coupling is ig Aμ

(
∂μ		∗ − ∂μ	∗	

)
. In a real 

basis 	 = 1√
2

(φ + iψ), this becomes

g Aμ∂μ (φ,ψ)

(
0 1

2− 1
2 0

)(
φ

ψ

)
, and gij = g

(
0 1

2− 1
2 0

)
. (5.2)

10 Such a Cartesian basis is useful as all scalar-vector trilinear couplings are automatically anti-symmetric.
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5.3. Frequently asked questions

Below, we discuss various questions and problems the user might have encountered.

Q.1. How to save and load my model?
Saving and loading a model is straightforward with DRalgo built-in functions. Once a model is created, and loaded with Import-

ModelDRalgo (see the .m files in the example folder), it can be saved by writing

SaveModelDRalgo[ModelInfo,"<modelname>.txt"],

Here, ModelInfo is a string and should contain information about the authors, DRalgo version, and citations to relevant articles. See 
./examples/ah.m or ./examples/2hdm.m for some examples. To load the model write

{Group,gvvv,gvff,gvss,λ1,λ3,λ4,μij,μIJ,μIJC,Ysff,YsffC}=LoadModelDRalgo["<modelname>.txt"];

The loaded model can be your own, or perhaps one of the provided DRalgo model repository. We also encourage you to make your 
own models available for the community which is possible by submitting the model file via the Issue Tracker on https://github .com /DR-
algo /DRalgo. The model will then be verified and added to the model repository. When submitting a model, please refer to a paper or 
explicitly write out the Lagrangian in an accompanying notebook.

Q.2. How do I order semi-simple groups?
If the user-defined model contains multiple groups, the groups and corresponding representations must be ordered as: SO(n), SU(n), 

SP(n), G2, F4 E6, E7, E8, U(1). For example, if the user has a model with gauge group G = SU(5) ⊗ SO(10) ⊗ E6 ⊗ U(1), the model-input 
should be defined as

Group={"SO10","SU5","E6","U1"};

The internal order of groups is not restricted. Hence, for a group such as G = SU(3) ⊗ SU(2), the following definitions are equivalent

Group={"SU3","SU2"};
Group={"SU2","SU3"};

Q.3. How do I check that my model is anomaly free?
Once you have defined your model, the anomaly-free condition is that

Table[Tr[(a.b+b.a).c],{a,gvff},{b,gvff},{c,gvff}]

vanishes identically. Since this condition is not automatically fulfilled for general, non-numeric, U(1) charges, it is the responsibility of the 
user to choose U(1) charges such that all anomalies cancel.

Q.4. How do I calculate anomalous dimensions?
First find the position of all representations:

PosScalar=PrintScalarRepPositions[];
PosVector=PrintGaugeRepPositions[];
PosFermion=PrintFermionRepPositions[];

All anomalous dimensions are then found via

Table[AnomDim4D["S",{i,j}],{i,PosScalar},{j,PosScalar}]
Table[AnomDim4D["V",{i,j}],{i,PosVector},{j,PosVector}]
Table[AnomDim4D["F",{i,j}],{i,PosFermion},{j,PosFermion}]

For more details regarding anomalous dimensions and beta functions cf. sec. 2.4.

Q.5. Temporal scalar mixing
In most models the temporal-scalar masses are diagonal. However, in cases with multiple U(1) groups there can be mixing. In such a 

case, the code automatically recognizes this. For example, if the group is

Group={"U1","U1","U1"};

the code creates the mixed U(1) masses with the convention that μU1Mix1 is the mixing between groups 1 and 2, μU1Mix2 is the 
mixing between groups 1 and 3, and μU1Mix3 is the mixing between groups 2 and 3. These masses are displayed with the PrintDe-
byeMass command. See the ./examples/SMZp.m for an example.
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Q.6. What if I miss some couplings?
By default DRalgo assumes that the user has defined all couplings allowed by symmetry in their 4d theory. The code runs even 

though some couplings are missed. For example, consider the 2HDM with scalar potential as in eq. (4.1) but without λ6 and λ7 couplings. 
For a φ1 ↔ φ2 symmetric model no λ6/λ7-type scalar quartic couplings are induced. However, if the model breaks this symmetry by e.g. 
a Yukawa sector, then λ7 and λ6 couplings are generated at one-loop. In this case DRalgo would still calculate these induced couplings; 
with the crux that only the λ1, . . . , λ5 couplings are printed by the PrintCouplings[] command, while the induced λ7 and λ6
couplings must be found manually via the PrintTensorDRalgo[] command. In addition, DRalgo automatically alerts the user with 
a message if some new couplings are generated at one-loop. This is a cross-check that no couplings are forgotten.

Q.7. Can I run DRalgo without specifying the representation?
For general groups no. However, it is possible for the user to specify arbitrary (non-numeric) U(1) charges. With non-numeric charges 

the code does not check that various quartic or Yukawa terms are allowed. Hence, it is the responsibility of the user to ensure gauge 
invariance.

Q.8. How large representations can I use?
In principle any group and representations can be used. In practice the code slows down for huge representations. The code has been 

tested on general models with ∼100–200 components in a given representation. For example an SO(10) model with a 120-dimensional 
scalar. Since DRalgo was purposely written to deal with any quartic and Yukawa sector, these are often the bottlenecks. If the user wants 
to omit two-loop contributions, significantly larger representations are possible. Further still, if the user only wants one-loop thermal 
masses, almost any model (within reason) can be run in quick order.

Q.9. Can I include an arbitrary number of fermion generations?
Yes, take for example the 2HDM. As described in sec. 4.1, a single family of SM fermions is defined via

Rep1={{{1,0},{1}, 1/6},"L"}; (*qL*)
Rep2={{{1,0},{0}, 2/3},"R"}; (*uR*)
Rep3={{{1,0},{0},-1/3},"R"}; (*dR*)
Rep4={{{0,0},{1},-1/2},"L"}; (*�L*)
Rep5={{{0,0},{0},-1},"R"}; (*eR*)
RepFermion1Gen={Rep1,Rep2,Rep3,Rep4,Rep5};

Defining Yukawa and scalar couplings proceed as before, and the model is loaded with

ImportModelDRalgo[Group,gvvv,gvff,gvss,λ1,λ3,λ4,μij,μIJ,μIJC,Ysff,YsffC,Verbose->False];

The user can then define nf = nF fermion families by writing11

PosFermion=PrintFermionRepPositions[];
FermionMat=Table[{nF,i},{i,PosFermion}];
DefineNF[FermionMat]

These commands should be used before running

PerformDRhard[];

Adding nf fermion families in this way does not add new Yukawa or scalar couplings as the extra (nf − 1) families only have gauge 
interactions. To define cross-family Yukawa couplings, one should follow the procedure in sec. 4.1.

Q.10. How do I compare with the literature?
Most outputs from DRalgo can directly be compared with the literature. For temporal scalars this requires some care. For example, if 

the original 4d theory has a SU(2) triplet, then two types of A2
0�

2 couplings are allowed:

L3d ⊃ κ1(Aa
0 Aa

0)(�
a�a) + κ2(Aa

0�
a)2 . (5.3)

DRalgo does not distinguish between these two terms since its output is stored in the form 1
4! Aa

0 Ab
0�

c�dλabcd
K . To compare with the two 

parametrizations, the user can rewrite the κ1/κ2 basis in tensor form. To this end, it is necessary to additionally define the relevant terms 
of the effective model and compare to its Lagrangian. This procedure is analogous to creating the fundamental model where invariants can 
be compared using the command CompareInvariants[]. See the htm.m file for a worked example of the Higgs triplet model (HTM).

The matching of all possible allowed operators in the EFT is automatic in DRalgo. This way also previously disregarded effective 
coefficients can be determined. One example is a L3d ⊃ κTr C3

0 B0 operator in the Standard Model. Here, C0 is the gluon (temporal) 
field, and B0 is the temporal hypercharge field. The output from DRalgo gives κ ∝ (2Yq + Yd + Yu). See eq. (4.4) for the corresponding 
hypercharges and the 2hdm.m example file for the full expression

11 This adds nF copies of all fermions.
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Q.11. What is the functional basis used in the matching?
In addition to the variables Lb and Lf defined in eq. (2.37), two-loop diagrams also contain factors of

c= 1

2

(
ln

(8π

9

)
+ (ln ζ2)

′ − 2γE

)
, (5.4)

where ζs = ζ(s) is the Riemann zeta function and (ln ζs)
′ = ζ ′(s)/ζ(s). By default DRalgo uses the relations ln(2π) − (ln ζ2)

′ =
1 − γE + (ln ζ−1)

′ and 1 + (ln ζ−1)
′ = 12 ln A, where A is the Glaisher-Kinkelin constant. It is possible to convert the output of

DRalgo to the conventions of [34] by using the replacement rule Log[Glaisher]->-1/12(Lb+2cplus-EulerGamma), where
cplus=(c+Log[3T/μ]). This rule is implemented as PrintGenericBasis[] in DRalgo.

Q.12. How do I define scalar cubic operators?
Scalar cubics are created analogously to quartics. Consider for example a SU(2) theory with a scalar doublet φ and a singlet S . We can 

then create the cubic operator (φφ†)S via

InputInv={{1,1,2},{True,False,True}}; (*φφ† S*)
CubicTerm1=CreateInvariant[Group,RepScalar,InputInv][[1]]//Simplify;
VCubic=λC*CubicTerm1;

The corresponding tensor is defined with the command

λ3=GradCubic[VCubic];

Tadpoles are defined analogously. See the 2xsm.m file for a worked example with two real scalars.

Q.13. Do I need to define tadpoles?
If tadpoles are allowed by symmetry we encourage the user to define them – even if they are absent at tree-level.

Q.14. How do I define Dirac and Majorana masses?
Fermion masses are defined analogously to scalar masses. We stress that DRalgo only works with Weyl fermions. For example, assume 

a theory with two Weyl fermions ψ1 and ψ2. The following terms are then possible

m1ψ1ψ1 + m2ψ2ψ2 + mDψ1ψ2 + h.c. (5.5)

Where the first two terms are Majorana masses, and the third is a Dirac-type mass. These masses can be defined in DRalgo via

InputInv={{1,1},{True,True}}; (*ψ1ψ1*)
MassTerm1=CreateInvariantFermion[Group,RepFermion,InputInv][[1]]//Simplify;
InputInv={{2,2},{True,True}}; (*ψ2ψ2*)
MassTerm2=CreateInvariantFermion[Group,RepFermion,InputInv][[1]]//Simplify;
InputInv={{1,2},{True,True}}; (*ψ1ψ2*)
MassTerm3=CreateInvariantFermion[Group,RepFermion,InputInv][[1]]//Simplify;

The mass matrix is given by

FermionMasses=1/2*m1*MassTerm1+1/2*m2*MassTerm2+mD MassTerm3;
μIJ=GradMassFermion[FermionMasses];
μIJC=SparseArray[Simplify[Conjugate[μIJ]//Normal,Assumptions->{m1>0,m2>0,mD>0}]];

See the WessZumino.m notebook for a worked example.

Q.15. What if a model has �1γ5�2 terms?
Since DRalgo only uses Weyl fermions, the inclusion of other fermionic bilinear operators requires some extra work. One example is 

the operator �1γ5�2 which can be expanded in Weyl spinors

�1 =
(

ψ L
1

ψ R
1

)
, �2 =

(
ψ L

2

ψ R
2

)
, (5.6)

such that

�1�2 = ψ R
1 ψ L

2 + ψ L
1 ψ R

2 , (5.7)

�1γ5�2 = −ψ R
1 ψ L

2 + ψ L
1 ψ R

2 . (5.8)

These terms can then be implemented in DRalgo as explained in earlier examples.
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Q.16. My mass matrix is not diagonal. Is the effective potential still calculable?
Yes, it is still possible to calculate the effective potential, just not in general. It is up to the user to diagonalize the mass matrix. But once 

done, the user has two choices. First, diagonalization-matrices can be given to DRalgo. Second, the user can do all the diagonalization 
themselves and reload the model. The first option is quick, but becomes protracted if the diagonalization is complicated or needs to be 
done perturbatively.

Consider for example the Standard Model. As before, field-dependent masses can be created via

DefineNewTensorsUS[μij,λ4,λ3,gvss,gvvv];
φvev={0,0,0,φ}//SparseArray;
DefineVEVS[φvev];
PrintTensorsVEV[];

To diagonalize the vector-bosons, we first need to extract the field-dependent mass-tensor:

MassMatrix=PrintTensorsVEV[];
VectorMass=MassMatrix[[2]]//Normal;
VectorEigenvectors=FullSimplify[

Transpose[Normalize/@Eigenvectors[VectorMass[[11;;12,11;;12]]]],
Assumptions->{g1>0,g2>0,φ>0}];

DVRot={{IdentityMatrix[10],0},{0,VectorEigenvectors}}//ArrayFlatten;
DSRot=IdentityMatrix[4];
RotateTensorsUSPostVEV[DSRot,DVRot];

After this the effective-potential calculation proceeds as before.

Q.17. Can DRalgo handle non-renormalizable operators?
Currently no. This feature will be implemented in future versions.

Q.18. How do I define complicated scalar potentials?
For most cases, scalar quartics can be easily defined using the examples above. For non-standard representations, the model-building 

tools in DRalgo might differ by a basis change from other conventions in the literature. Let us take an example, a SU(5) model with 
an adjoint scalar. Commonly this scalar is written as 	 = 	a T a where T a are traceless hermitian matrices satisfying Tr T a T b = 1

2 δab . The 
most general (quartic) potential is

V 1 = δ1(Tr	2)2 + δ2Tr	4 . (5.9)

By default DRalgo uses GroupMath, which defines its invariants differently to those above. In fact, the two scalar quartic operators 
given in GroupMath can be linear combinations of those above. Thus, the result from DRalgo would be in the form

V 2 = λH inv1(	
4) + λS inv2(	

4) , (5.10)

where the invariants inv1,2 are the output from the CreateInvariant command. Fortunately, it is quite easy to find the relations 
between the V 1 and the V 2 basis. To do so, first, rewrite everything in tensor form

V 1 = 1/4!λ1,i jkl	i	 j	k	l , (5.11)

and likewise for the DRalgo output

V 2 = 1/4!λ2,i jkl	i	 j	k	l . (5.12)

Since λ1 and λ2 are defined in different bases, we want to compare invariants. Here we only need three:

λi jklδi jδkl , λi jklλi jkl , λi jnmλnmklλkli j . (5.13)

Comparing the invariants one finds

λH = 1

960

√
23

14
(130δ1 + 47δ2) , λS = − 5

64

√
13

42
(2δ1 − δ2) . (5.14)

The above procedure works for any representation as long as the user can write the quartic operator from DRalgo in their preferred 
form. See SU5.m for a concrete example.

Q.19. Can I use dimensionally reduced theory for calculating nucleation rates?
Certainly. The user can use the effective theory and directly find the bounce in the 3d. To first approximation the nucleation rate is 

e−S3d , where S3d is the bounce action in the dimensionally reduced theory. See [85] for the original work, and [76,86–88] for recent 
examples.

Q.20. Can I study GUT models with DRalgo?
Most GUT models can be readily studied with DRalgo. However, for models with large representations the running-time rises rather 

rapidly. The bottleneck is not the complexity of e.g. the scalar potential but rather the size of the representations of particles. For example,
DRalgo rapidly handles the general Pati-Salam, SU(5), 3HDM, or left-right symmetric model – even with 20–30 free parameters in the 
potential. See SU5.m, 3hdm.m, and LRSymmetric.m for explicit implementations.
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Q.21. How much RAM does DRalgo require?
The required RAM is negligible for most models. However, for models with 50–100 dimensional representations, the requirements start 

to rise. And for said scenario around 1 GB of RAM is required. If the package drains too much RAM, it is recommended to not include 
two-loop contributions.

Q.22. How should I report possible bugs?
We are grateful if any bugs are reported. We kindly ask users to supply both a short description and a Mathematica file describing 

the error. These reports and attached files can be provided via the Issue Tracker on https://github .com /DR-algo /DRalgo.

6. Outlook

High-temperature field theory is pestered by large radiative corrections, which compromises perturbative calculations. In effect, per-
turbation theory needs to be reorganized in terms of thermal resummations. While at leading order only thermally corrected masses are 
required, new contributions to couplings arise at higher orders. In addition, there are currently several different schemes for incorporating 
thermal masses – all depending substantially on the renormalization scale.

As an effective field theory, dimensional reduction by-passes these issues. The ultraviolet sector of the theory is controlled by a 
matching computation and the infrared sector is resummed to all orders. Indeed, as discussed in this paper, using a three dimensional 
EFT unambiguously resums masses and couplings. Using the framework is simple from a practical standpoint since three-dimensional 
theories are super renormalizable. Concretely, only mass parameters are RG-scale dependent and their beta functions are exact at two-
loop level. This property not only allows for a straightforward perturbative treatment, but also provides an attractive framework to a 
non-perturbative lattice study of the 3d EFT since in the effective theory relations between continuum and lattice parameters are exact at 
two-loop level [89].

Hitherto, dimensional reduction has been used sparsely. With this paper and the associated software, we aim to change this by au-
tomating the EFT construction. In summary, DRalgo calculates all effective couplings and masses in the effective theory, the leading-order 
beta functions both in the 4d parent and 3d effective theory, as well as the effective potential within the EFT. This facilitates studying 
models with dimensional reduction and requires merely three-dimensional calculations that are analogous to zero-temperature computa-
tions. Since the effective theory is fully bosonic, the perturbative calculation can be compared with lattice simulations. This has one clear 
benefit as a large number of fundamental 4d theories can map into the same effective theory given the mass hierarchy of the additional 
scalars. Not only does the lattice provide an invaluable cross-check, but pre-existing simulations can be reused and applied to new BSM 
theories.

In conclusion, gravitational waves have opened up a new gateway to the early universe, and particle physics stands at its threshold. 
Upcoming experiments are fast approaching both at future particle colliders and gravitational wave observatories. It is therefore important 
to control theoretical uncertainties at unprecedented precision. In this venture, dimensional reduction is the tool of choice, and DRalgo
its harbinger.
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Appendix A. Interfacing DRalgo output

In this appendix, we collect additional material that is not part of the package itself.

A.1. From 3d effective theory to thermodynamics

A possible interface between the output of DRalgo, in the 3-dimensional theory, and the determination of thermodynamic quantities is 
implemented in ./examples/ah-thermo.m. This implementation comes with a disclaimer: we present a simplified algorithm suitable 
for the simple case of the Abelian-Higgs model (cf. eq. (3.1)) but this is not part of the package itself. We encourage users to implement 
their own numerical minimisation routines for thermodynamics optimized for individual models. The algorithm given here is not gauge 
invariant and should be used with discretion.

The Algorithm 2 illustrates our implementation. In the simplified algorithm ah-thermo.m the loop over 4-dimensional variables ci
22
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Algorithm 2 The DRalgo algorithm output is interfaced in ./examples/ah-thermo.m with functions solveBetas[], DRstep[]
and Veff3d[], which are called by findThermo[].

Input: Four-dimensional theory parameters ci ∈ {c1, . . . , cn} and scale factor X
for all ci ∈ {c1, . . . , cn} do

Call findThermo[X,ci] {
Call ci(μ̄) = solveBetas[ci]
for all Ti ∈ {Tmin, . . . , Tmax} do // e.g. binary search

Fix T -dependent RG-scale: μ̄ = Xπ T
Call ci,3d = DRstep[T,μ̄,ci]
Minimize the effective potential by NMinimize[Re[Veff3d[φ,ci,3d]]]

end for
Return {Tc , φc/Tc , L/T 4

c }, based on degenerate minima.
}

end for
Output: Thermodynamics as function of {c1, . . . , cn}
Export the data
Plot by Python: .examples/ah-thermo-python-plots/plot.py

Fig. 4. Thermodynamics of the Abelian-Higgs model as function of λ (cf. eq. (3.1)) at fixed g2 = 0.42 and M = 100 as obtained in ./examples/ah-thermo.m. Both M
and T are in arbitrary units of mass. The RG-scale is varied at the edges of the interval μ̄ = (0.5 . . .2.0)π T . While the curves are barely discernible, this showcases that the 
scale-dependence is indeed a higher-order effect once at full NLO dimensional reduction. The additional RG-scale of the 3d EFT is not varied in the plots.

contains only a single λ and for simplicity and faster running time M = 100 and g2 = 0.42 are fixed. Here, M is the Higgs mass in arbitrary 
units related to the MS mass parameter by the tree-level relation μ2 = −M2/2. The critical temperature Tc is defined from the condition 
that the effective potential at the broken minimum vanishes since the potential at the symmetric minimum at the origin is normalized to 
zero. To find this condition, we use an elementary binary search.

As an indicator of the transition strength, we also output the value of the background field at the critical temperature, φc/Tc, that 
describes the discontinuity of the minima at Tc. Since φc/Tc is gauge-dependent, it should not be given physical meaning but used as a 
rough indicator that correlates positively with the phase transition strength. This strength can be defined in terms of the released latent 
heat at the critical temperature Tc

L = T �p′ = T �
dV 4d

eff

dT
= T 2�

dV 3d
eff

dT
, (A.1)

where p′ is the derivative of the pressure with respect to temperature and � ≡ (. . . )low-T − (. . . )high-T denotes the difference between the 
broken and symmetric phase. The T -derivative is approximated as a finite difference dT = 0.1. The symmetric-phase part does not con-
tribute here since we normalized the effective potential to zero at all T at the origin. For a commented documentation of the technicalities 
of this implementation see directly the source ah-thermo.m.

The described perturbative determination is done in Landau gauge with ξ = 0 in eq. (2.19) and the results for Tc and L/T 4
c are gauge-

dependent. Despite this simple user-friendly example, a recipe for a more sophisticated, gauge-invariant determination can be found in 
e.g. [90] (cf. refs. therein). The final output data for thermodynamics is
stored in ./examples/ah-thermo-python-plots/*.dat,
plotted in ./examples/ah-thermo-python-plots/plot.py, and shown in Fig. 4.

We encourage DRalgo users to develop and optimize their individual implementations for algorithms to determine thermodynamic 
properties. While including efficient algorithms for determining thermodynamics is conceivable for future versions of DRalgo, in the 
current version 1.0 these features are not implemented in the package itself.
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