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Abstract Introduction: Immune cells in the tumour microenvironment are associated with

prognosis and response to therapy. We aimed to comprehensively characterise the spatial im-

mune phenotypes in the mutational and clinicopathological background of nonesmall cell

lung cancer (NSCLC).

Methods: We established a multiplexed fluorescence imaging pipeline to spatially quantify 13

immune cell subsets in 359 NSCLC cases: CD4 effector cells (CD4-Eff), CD4 regulatory cells

(CD4-Treg), CD8 effector cells (CD8-Eff), CD8 regulatory cells (CD8-Treg), B-cells, natural

killer cells, natural killer T-cells, M1 macrophages (M1), CD163þ myeloid cells (CD163), M2

macrophages (M2), immature dendritic cells (iDCs), mature dendritic cells (mDCs) and
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plasmacytoid dendritic cells (pDCs).

Results: CD4-Eff cells, CD8-Eff cells and M1 macrophages were the most abundant immune

cells invading the tumour cell compartment and indicated a patient group with a favourable

prognosis in the cluster analysis. Likewise, single densities of lymphocytic subsets (CD4-Eff,

CD4-Treg, CD8-Treg, B-cells and pDCs) were independently associated with longer survival.

However, when these immune cells were located close to CD8-Treg cells, the favourable

impact was attenuated. In the multivariable Cox regression model, including cell densities

and distances, the densities of M1 and CD163 cells and distances between cells (CD8-Treg

eB-cells, CD8-Effecancer cells and B-cellseCD4-Treg) demonstrated positive prognostic

impact, whereas short M2eM1 distances were prognostically unfavourable.

Conclusion: We present a unique spatial profile of the in situ immune cell landscape in NSCLC

as a publicly available data set. Cell densities and cell distances contribute independently to

prognostic information on clinical outcomes, suggesting that spatial information is crucial

for diagnostic use.

ª 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Checkpoint inhibitors are routinely used in different

lines of lung cancer treatment and, for the first time,

provide a chance of long-term survival. However, only a

minority of patients develop a durable response, and

accurate predictors of therapeutic benefits are still

lacking. Concepts that explain these variable responses
include features of tumour cells, such as programmed

death-ligand 1 expression and high tumour mutational

burden, or features of the immune environment with hot

and cold immune phenotypes [1e3]. Unfortunately, the

predictive value of these biomarkers is modest. Strate-

gies aimed at introducing new immune modulatory

agents, either alone or in combination, have been

discouraging so far [4]. This can be explained by the
selection of combinations based on a reductionist

approach rather than a perception that integrates com-

plex cellular interactions in the tumour microenviron-

ment. Thus, a better understanding of the biological

signals that contribute to anti-cancer immunity is ur-

gently needed to optimise clinical diagnostics and sug-

gest new treatment targets.

Limitations of in situ analytical tools have partially
contributed to the reductionist perspective placing T-

cells at the centre of investigations. Immunohistochem-

ical evaluation of T-cell markers indicates that the

amount and location of T-cells imply prognostic infor-

mation [5e7] and are connected to response to chemo-

therapy [8] and immunotherapy [9e11]. However, the

prognostic impact has been generally low and inconsis-

tent [12,13]. It can be speculated that the impact is
attributed to either specific T-cell subsets or other im-

mune cells co-infiltrating the tumour tissue. The coor-

dinated occurrence of immune cells is an intrinsic

feature of the cancer microenvironment and is best

exemplified in the inflamed phenotype of tumours

[14,15]. The strong correlation between immune cell
densities (e.g. cell numbers of CD8-, CD4- or CD20-
positive cells) makes it difficult to determine which im-

mune cells are the drivers of cancer immunity and are of

the strongest clinical relevance. Indeed, many studies

have found that the abundance of other immune cells,

such as plasma cells [16,17], immune suppressive mac-

rophages [18], or myeloid-derived suppressor cells [19],

has a stronger impact on patient survival than the crude

amount of T-cells or cytotoxic T-cells.
Furthermore, there is evidence that not only the

number of cells but also their location and spatial

interaction are of major importance [5,20,21]. T-cells

directly infiltrating the tumour cell nests are likely of

higher relevance than T-cells in the surrounding stroma

or that T-cells interacting with B-cells represent a state

of stronger immune reaction against cancer. These as-

pects have not been adequately addressed when immune
profiles have been characterised in the in situ environ-

ment of cancer. This is in part due to technical limita-

tions with regard to staining techniques, imaging

systems, and computational power to spatially analyse

complex tissue features.

Recent advances in multiplexed staining methods, in

association with novel methods for digital image anal-

ysis, can address these limitations and open opportu-
nities for biologically well-informed high-content

profiling of tumour tissue [22]. New studies have iden-

tified clinically relevant tissue features, such as the di-

versity of the lung cancer immune microenvironment [5],

tertiary lymphoid structures [23,24], and cellular niches

composed of specific subsets of cancer and stroma cells

[14,25]. These efforts have great potential but remain

difficult to execute because of the necessary equipment,
technical and histopathological expertise and tissue

availability.

In this study, we aim to comprehensively describe

the tumour microenvironment of nonesmall cell lung

cancer (NSCLC) by quantification of 13 important

http://creativecommons.org/licenses/by/4.0/
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immune cell subsets and their spatial relations with the

use of a state-of-the-art multiplex immune fluorescence

staining technique and a multispectral image analysis

pipeline.
2. Material and methods

2.1. Patient material

The study population consisted of 359 NSCLC patients

who were surgically treated at Uppsala University
Hospital between 2006 and 2010 [26]. The patient

characteristics are shown in Table 1. Formalin-fixed

paraffin-embedded tumour blocks from resection spec-

imens were used to construct a tissue microarray (TMA)

based on duplicate 1 mm cores, as described previously

[27]. The study was conducted in compliance with the

Declaration of Helsinki and the Swedish Ethical Review

Act (approved by the Ethical Review Board in Uppsala,
#2012/532).

2.2. Molecular analysis

Mutation analysis has been described previously; for

mutation analyses, genomic DNA was extracted from

either fresh frozen or paraffin-embedded cancer tissue
Table 1
Patient characteristics.

n %

Patients 300 100

Age

�70 119 39.7

<70 181 60.3

Gender

Male 149 49.7

Female 151 50.3

Smoking

Smokers 152 50.7

Ex-smokers (>1 year) 113 37.7

Never smokers 35 11.7

Histology

Squamous cell carcinoma 92 30.7

Adenocarcinoma 175 58.3

Large cell carcinoma 24 8.0

Adenosquamous 7 2.3

Sarcomatoid 2 0.7

Stage

IA 117 39.0

IB 72 24.0

IIA 36 12.0

IIB 27 9.0

IIIA 41 13.7

IIIB 0 0.0

IV 7 2.3

Performance status (WHO)

0 178 59.3

1 119 39.7

2 3 1.0

WHO, World Health Organization.
[28]. Targeted deep sequencing was performed with

DNA from 352 of 359 patients using the Haloplex sys-

tem for target amplification (Agilent Technologies,

Santa Clara, USA). The analysis included all coding

exons of 82 lung cancererelated genes (Supplementary

Table 1). Sequencing was performed using 125 bp

paired-end reads on the Illumina HiSeq 2500 platform

(Illumina, San Diego, USA). The reads were mapped to
the reference genome (hg19), and mutations were iden-

tified as described by La Fleur et al. [28]. The tumour

mutational burden (TMB) was estimated by dividing the

number of non-synonymous mutations in a sample by

the size (0.47 Mb) of the sequenced genome.

Corresponding gene expression data were available

for 197 patients obtained from RNA sequencing, as

described in a previous study [29]. RNA was extracted
from fresh frozen tissue and prepared for sequencing

using the Illumina TruSeq RNA Sample Prep Kit v2

with polyA selection. The sequencing was performed

based on the standard Illumina RNAseq protocol with a

read length of 2 � 100 bases. The raw data together with

clinical information are available on the gene expression

omnibus with accession number GSE81089.

2.3. Multiplex immunofluorescence

Multiplex immunofluorescence staining was performed

on 4 mm thick TMA sections that were deparaffinised,

rehydrated and rinsed in distilled H2O. Three panels
were used: a tumour-infiltrating lymphocyte panel

(TIL), including CD4, CD8, CD20, FoxP3 and PanCK;

a natural killer cell/macrophage panel (NK/MP),

including CD3, NKp46, CD56, CD68, CD163 and

PanCK; and an antibody presenting cell panel (APC),

including CD1a, CD208, CD123, CD15, CD68 and

PanCK. The staining procedure was performed in

accordance with an earlier published study [5] based on
the modified Opal Multiplex IHC assay (Akoya, Marl-

borough, USA). Detailed reagent references are pro-

vided in Supplementary Table 2. For each panel, specific

staining protocols were established (TIL, NK/MP, and

APC), including five to six cycles of microwave treat-

ment, primary antibody incubation, and fluorophore

labelling, with a final cycle of DAPI staining and slide

mounting. After staining, the slides were scanned using
the VectraPolaris system (Akoya) at a 2 pixels/mm res-

olution in multispectral mode and analysed in the

inForm software, where spectral unmixing was used to

generate an oligo-layer image with layers corresponding

to the specific staining, 40,6-diamidino-2-phenylindole

(DAPI), and autofluorescence. The inForm software

was used to define tumour and stroma compartments

within each tissue core. The algorithm was trained on
pathologist-annotated samples. Cell segmentation was

based on DAPI nuclear staining. Representative subsets

of the included markers were annotated as either posi-

tive or negative, and the inform software was then
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trained on these to phenotype all other cells accordingly.

The intensity of each marker expression was used to

calculate the thresholds for marker positivity. A

pathologist reviewed each image and curated it with

regard to artefacts, staining defects and necrosis. Tissue

segmentation was also controlled.

Each patient was represented by one to two TMA

cores (1 mm in diameter). When two cores were avail-
able, total cell number and tissue area were used to

compute density scores. When considering distances, the

mean intercellular distances for the separate cores were

used.

Thresholds for marker intensity were calculated in

the R programming environment by GeneVia Technol-

ogies (Tampere, Finland). The distribution of intensities

for representative subsets of the included markers, an-
notated earlier by a pathologist as either positive or

negative, was used to define the thresholds. Probability

density distributions were estimated for each marker by

smoothing the intensity values using Gaussian kernel

estimation, with automatic bandwidth detection using

the density function of the ‘stats’ package in R.

If the intensities of the positive and negative cells did

not overlap, the mean value of the highest intensity of
the negative cells and the lowest intensity of the positive

cells was used as the intensity threshold. If the intensities

did overlap, the intensity value that minimised the

overall classification error based on the probability

density distribution was used instead. For each estab-

lished threshold, true/false positive/negative rates and

the overall classification error were calculated and

controlled. The thresholds were then applied to the raw
output data and used to classify the cell phenotype

(Fig. 1A and B). The cell phenotypes, their tissue co-

ordinates (location) and the main clinical parameters

connected to each case were uploaded at https://doi.org/

10.5281/zenodo.6997517.

2.4. Statistics and bioinformatics

All statistical analyses were carried out in the R pro-

gramming language [30], version 4.2.0. Correlation an-

alyses between immune markers and TMB were

performed using Spearman’s rank correlation. Fisher’s

exact test was used to analyse the association between
immune markers and mutations. Analysis of clinical

parameters in relation to immune infiltrates and differ-

ences in immune cell densities between histological

subtypes was conducted using the Wilcoxon signed-rank

test. Survival analysis was undertaken using univariable

and multivariable Cox regressions. The ‘maxstat’ pack-

age was used to determine maximally selected rank

statistics for the cut-off used to dichotomise distance
metrics and densities. Hierarchical cluster analysis was

performed with Euclidean distance and the complete

method using the ‘ComplexHeatmap’ package (version

2.9.3) for R [31] based on normalised values of immune
cell densities. The stepwise multivariable Cox regression

was performed using the ‘My.stepwise’ package for R

with ‘entry’ and ‘stay’ significance levels at 0.15. Diag-

nostic tests, including the Schoenfeld individual and

global test, dfbetas, deviance residuals and boot-

strapping simulations were performed, finally indicating

a stable model and meeting the proportional hazards

assumption for all but two covariates (density metric
‘CD163’ and distance metric ‘PanCKsingle e M2’).

Distance analyses were carried out using the FNN

package (version 1.1.3) for R. A kd-tree fast k-nearest

neighbour searching algorithm was used to analyse the

distance to the nearest neighbouring cells, and a mean

value of the nearest neighbours was used as a case-

specific metric in further analysis. Notably, this

approach means that for a pair of two different cell
phenotypes, the mean distance is not commutative.

P-values <0.05 were considered significant, and when

performed, the Benjamini-Hochberg procedure was

used for multiple testing adjustment within each histo-

logical group (all NSCLC, adenocarcinoma and squa-

mous cell cancer).

3. Results

3.1. A pipeline to spatially phenotype immune cells in

NSCLC

We established a high throughput workflow that
included (1) mIF staining for T- and B-lymphocytes,

natural killer (NK) cells, macrophages and subsets of

dendritic cells; (2) multispectral scanning; (3) image

curation by a specialist pathologist and machine

learningebased tissue and cell segmentation; (4) careful

data curation and thresholding of marker signals with

subsequent immune cell phenotyping; and (5) spatial

quantification based on marker expression and cell
segmentation (Fig. 1).

Altogether, cancer tissue from 359 NSCLC patients

was stained and analysed in this pipeline, resulting in

core-specific multilayered images consisting of pixels.

Tissue areas with artefacts, necrosis and benign tissue

regions were excluded. Finally, 300 cases with high-

quality staining for all three marker panels remained,

including spatial phenotypes of over 1,300,000 individ-
ual immune cells. Cytokeratin staining with a trainable

deep learning image analysis algorithm was used for

tissue segmentation into tumour and stroma compart-

ments. The expression of different immune markers in

each of the immune panels was combined to allocate

each cell to one of 13 immune cell subtypes, including T-

and B-lymphocytes, macrophages and myeloid cells,

NK-cells, natural killer T-cells (NKT) and dendritic cells
(DCs) (Fig. 1B). An example of a multiplex immuno-

fluorescent image with corresponding tissue segmenta-

tion is shown in Fig. 1A. Each annotated cell was

connected to spatial coordinates; thus, cells can be

https://doi.org/10.5281/zenodo.6997517
https://doi.org/10.5281/zenodo.6997517


Fig. 1. A multiplex-multispectral imaging pipeline. (A) The cohort was compiled on TMAs and stained using multiplex immunofluorescence

(IF) with the tyramide signal amplification (TSA)-based detection method (Opal) and three different antibody panels. Slides were then

scanned using the multispectral VectraPolaris system, and singleplex stains were used to calculate a deconvolution model for optimal

identification of specific markers in the inForm software. Scanned images were annotated and curated by a specialist pathologist, and

machine learningebased tissue and cell segmentation was performed. The data were then exported and further analysed in R. Cut-offs for

positive marker expression were calculated for each individual marker, and cells were annotated based on the combination of marker

expression. (B) Immune phenotyping: Immune cells were annotated based on the markers in three different antibody panels, resulting in

13 different immune phenotypes. The PanCKsingle phenotype represents tumour cells. TMA, tissue microarray.
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assigned to the tumour or the stroma compartment

within the cancer tissue and be related to each other

(distances) spatially (Fig. 1A).

3.2. The immune landscape of NSCLC

Quantification of immune cells revealed cell distribu-

tions, with the majority of immune cells being located in

the tumour stroma and CD4 Eff cells as the most

abundant cell type (Fig. 2A, Supplementary Table 3).

Only iDCs, mDCs and NK-cells were more frequent in
the tumour compartment compared with their stromal

numbers, although with generally low absolute

numbers. There were only minor differences in the im-

mune environment of adenocarcinoma and squamous

cell cancer, with no significant differences after adjust-

ment for multiple testing (Supplementary Table 3).

Correlative analysis revealed that most lymphocyte

subtypes occurred together (Fig. 2B; Supplementary
Table 4aec), indicating that immune cells infiltrated

co-ordinately. Notably, a generally high lymphocytic

infiltration was accompanied by the abundance of M1

macrophages, whereas M2 macrophages were only
Fig. 2. Cell densities and correlation matrix. (A) Boxplots showing comp

NSCLC, adenocarcinoma (AC) and squamous cell cancer (SCC) histo

and third quartiles and whiskers to the largest and smallest value withi

outliers. (B) Cross-correlation between the densities of all immune cell

indicate significance ()P-value <0.05, ))<0.01, )))<0.001). The co

responding to the pie charts for each immune cell pair. NSCLC, none
associated with CD4 Eff and CD8 Eff cells in the stro-

mal area. Furthermore, we observed an unexpected

connection between the abundance of plasmacytoid

dendritic cells and the density of B-cells in the tumour

stroma (Fig. 2B). When correlation analysis was con-

ducted within the main histologic subtypes of NSCLC,

specific associations of NK- and NKT-cells with regu-

latory and effector T-lymphocytes were present in
squamous cell carcinoma but not in adenocarcinoma

(Supplementary Table 4bec). The unsupervised hierar-

chical cluster analysis, including all evaluated immune

cell types, resulted in highly segmented immune clusters

(Supplementary Fig. 1A). A separated group (n Z 37)

was seen, represented by high immune infiltration,

associated with high numbers of M1 macrophages. This

group of patients also showed a prolonged survival in
the multimarker context (log-rank test, P Z 0.0002,

Supplementary Fig. 1B).

When analysing the molecular status, we did not

detect any association between the estimated tumour

mutational burden or any specific mutation and immune

cell infiltration after rigorous adjustment for multiple

testing (Supplementary Table 5aed).
artment-specific cell densities (stroma in blue, tumour in red) in all

logies, with the upper and lower hinges corresponding to the first

n 1.5 times the interquartile range. Points outside the whiskers are

phenotypes in the complete cohort of NSCLC patients. The stars

lour bar at the bottom indicates the strength of correlation, cor-

small cell lung cancer.



Fig. 3. Distances between tumour cells and immune cells in association with patient survival, unadjusted for clinical parameters. Left: The

density plots show the distribution of the mean nearest neighbour distances of tumour cells (PanCKsingle) to immune cell phenotypes.

Right: survival forest plot with boxes indicating hazard ratio and hinged whiskers denoting confidence intervals. P-values were adjusted

for multiple testing.
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3.3. Immune cell infiltration, clinical correlates and

survival

Associations between immune cell infiltrations in stroma

and tumour compartments and dichotomised clinical

parametersdage, performance status, gender, smoking

status, and stagedwere analysed (Supplementary Table
6). No statistically significant associations were found

after adjusting for multiple testing.

In the next step, we analysed immune cell densities in

relation to overall survival. This was done for all

NSCLC cases, for both main histological subtypes and

separately for immune densities in the stroma or cancer

compartment, as well as the total cancer area (Z cancer

stroma area þ tumour cell area). High densities of the
entirety of all annotated immune cells were associated

with longer survival (Supplementary Fig. 2, P < 0.01).

The prognostic impact (hazard ratio [HR]: 0.53;

P < 0.003) was independent of stage, age and perfor-

mance status in the multivariable Cox regression anal-

ysis (Supplementary Fig. 3). Subsequently, we analysed

the prognostic impact for each annotated immune cell

subset. The highest prognostic impact was mainly
demonstrated when densities in the total tumour area

were analysed and not separated in stroma and tumour

compartment (Supplementary Fig. 4). In the complete

NSCLC cohort, a positive association with longer sur-

vival was observed for CD4 Eff, CD4 Treg, CD8 Eff,

CD8 Treg, B-cells, M1 and plasmacytoid dendritic cells

(pDCs; Supplementary Fig. 4), with HRs ranging from

0.44 to 0.65. Most associations were also observed in the
adenocarcinoma and squamous cell cancer subgroups,

although with weaker statistical reliability.
After adjustment for the three main clinical features

(stage, age and performance status), the positive influ-

ence on survival was generally maintained

(Supplementary Fig. 5). Besides stage and performance

status, the stepwise Cox regression model identified CD4
Eff and CD8 Treg as the most important positive

prognostic parameters (Supplementary Fig. 6).

The results indicate that many immune cell subsets

have a favourable prognostic impact independent of

traditional clinical parameters and that this impact is

not restricted to cytotoxic T-lymphocytes.

3.4. Spatial analysis of tumour and immune cells

It is reasonable to predict that not only the quantity but

also the location and interrelation of cells are important

for the efficacy of cancer immunity. Therefore, we

measured the distances between tumour and immune

cells through nearest neighbour analysis. NK- and

NKT-cells could not be analysed because of their low

abundance.
The distribution of the different immune cell subsets

in relation to tumour cells showed two main patterns

(Fig. 3). In particular, CD4 Eff, CD8 Eff, M1

macrophages and pDCs were aggregated in close vicin-

ity to the tumour cells. In contrast, the other immune

cells were more evenly distributed over the area and had

a longer mean distance to the tumour cells. Mature

dendritic cells revealed an opposite pattern with a pre-
dominant distant location.

In the next step, we analysed the impact of the mean

distances between tumour cells and immune cells on

overall survival. The same immune cells that



Fig. 4. Survival based on the density/distance metric, unadjusted for clinical parameters. Survival forest plots showing the density through

distance metric for all panels and all markers in each histology (all NSCLC, AC, and SCC). Boxes indicate hazard ratios and hinged

whiskers indicating confidence intervals. The nearest neighbour analysis does result in different distances depending on which cell is used

as the starting point; therefore, the survival associations of the same cell pairs differ (e.g. CD8 EffeCD8 Treg versus CD8 TregeCD8 Eff).

NSCLC, nonesmall cell lung cancer.
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demonstrated an association with survival based on

densities also showed an association when the mean dis-
tances were analysed (Fig. 3). This can be partially

explained by the fact that distances correlated with den-

sities. Mature dendritic cells were an exception; a longer

distance of these cells to tumour cells was associated with

longer survival. After adjustment for clinical parameters,
only the proximity of CD8 Eff to tumour cells remained

significant in the survival analysis (Supplementary Fig. 7).
When the distances of immune cells to each other

were analysed, we found that closer vicinity of adaptive

lymphocytic subsets to each other (CD4 Eff, CD4 Treg,

CD8 Eff, CD8 Treg and B-cells) were associated with

longer survival (Supplementary Fig. 8). For the
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macrophages and dendritic cell subsets, this relationship

was not as clear. When the distances were adjusted to

the main clinical parameters (stage, performance status

and age; Supplementary Fig. 8), only the proximity be-

tween CD8 Treg and B-cells demonstrated an associa-

tion with longer overall survival.

In the next step, we combined distances and densities

in the survival analysis. Predictably, the ratio of den-
sities to distance increased impact on survival in the

unadjusted (Fig. 4) and adjusted analysis (stage, per-

formance status and age; Supplementary Fig. 9). How-

ever, a remarkable exception was the relation of the

lymphocytic subsets to CD8 Treg cells. Here, the

favourable prognostic impact of lymphocytes was

diminished when the distance to CD8 Treg cells was

accounted for.
To evaluate the interdependency of distances and

densities with regard to survival, we performed a

multivariable stepwise Cox regression analysis,

including all immune cell densities and distances of all

lymphocytic cell subsets together with age, stage and

performance status (Fig. 5). Again, low stage and good

performance status showed a strong impact on survival.

Independently, high densities of CD163 and M1 mac-
rophages were prognostically favourable. However, not

only were pure densities important, but the distances

between immune cells also showed an independent

prognostic impact. Longer patient survival was observed

when CD8 Treg and B-cells, as well as B-cells and CD4

Treg cells, were closer to each other. Also, the closer

CD8 Eff cells were located to tumour cells, the longer

the survival experienced by the patient, notably with the
lowest HR of all selected parameters. Finally, a shorter
Fig. 5. Stepwise multivariable Cox regression including densities and d

formed, including all densities (simple cell phenotype) and distances (h

tumour cells) as well as age, stage and performance status. The dist

because of high numbers of missing data points due to general low cell

<0.15 until reaching a stable model. The results are ordered by z-score.

intervals. NK, natural killer; NKT, natural killer T-cells.
distance between M2 and M1 macrophages was associ-

ated with poor prognosis.

Taken together, these results indicate that both the

densities and the location of the immune cells bear

prognostic information, and both features should be

considered in biomarker studies.

4. Discussion

Based on a unique pipeline, combining multiplex

immunohistochemical staining, spectral scanning, and

advanced image analysis, we were able to quantify and

localise major immune cell classes and their subtypes in

the in situ environment of diagnostic lung cancer tissue.

This analysis not only included traditionally analysed

adaptive lymphocyte populations but also their sub-

types, as well as the NK-cell family, macrophage sub-
types, and the major representatives of dendritic cells.

The ‘flowcytometry-like’ purification of immune cell

subsets by marker expression allows a more balanced

interpretation of the cellular immune reactions, and

correlation analysis gives a better picture of inter-

relations between cells. Furthermore, the spatial map-

ping indicates a distinct distribution and neighbour-

hoods of immune cell subsets, indicating possible
mechanistic interplay. We suggest unique cell parame-

ters, including novel immune subsets and spatial in-

teractions that provide prognostic information,

independent from the strongest clinical parameters.

Finally, we provide a complete data set, including all cell

types with their spatial coordinates, and the clinical and

molecular background data, as publicly available re-

sources for further, more advanced, or more focused
istances. A stepwise multivariable Cox regression model was per-

yphenated pairs of cell phenotype names; PanCKsingle represents

ances for NK-cells, NKT-cells and dendritic cells were excluded

counts. The model was iterated with inclusion and stay criteria of P

Boxes indicate hazard ratio and hinged whiskers denote confidence
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biomarker discovery studies. This first-of-its-kind data

set will supplement existing bulk or single-cell RNA

sequencing that does not provide the topographical

contexture.

There is strong evidence that the type and pattern of

immune infiltrates in the local cancer environment have

a major impact on the individual prognosis and are

associated with response to checkpoint inhibitor ther-
apy. These studies [32e34], with few exceptions [35],

have used immunohistochemistry analysing single or

few immune cell markers based on a semiquantitative

assessment by bright field microscopy. This unidimen-

sional approach does not allow for subclassification of

immune cell types or for a spatial description of cell

relations in their in situ cancer environment. These

limitations were addressed with our automated pipeline,
providing several advantages that extend the description

of immune cell patterns in cancer tissue considerably.

With higher numeric accuracy, as provided in absolute

cell numbers, we confirmed the typical distribution of

lymphocytes and macrophages infiltrating either the

tumour cell compartment (e.g. CD8 Eff cells) or the

surrounding stroma (typically CD4 Eff cells). Here, we

provide data on the distribution of NK-cells and NKT-
cells as well as dendritic cells, all rarely in situ charac-

terised cell lineages. Obviously, low in absolute

numbers, NK-cells predominantly invade tumour nests

and are thus in direct contact with cancer cells. The

typing of dendritic cell subsets was based on three

markers, resulting in three subsets. Notably, while the

mature and immature cells were predominantly located

in the tumour cell area, the pDC lineage was more
evenly distributed over the tumour cell area and stroma.

Tumour-infiltrating pDCs are usually linked to a worse

prognosis in cancer patients; however, with some ex-

ceptions, pDCs are indeed the major type I interferon

(IFN) producers of the immune system, a function that

is crucially linked to enhanced NK-cell cytotoxicity,

Th1 and CD8þ cytotoxic T-cell responses [36]. In line

with this, we demonstrated that the presence of pDCs in
the tumour cell area was associated with longer patient

survival.

In this respect, it should be emphasised that our study

was not designed as a biomarker study. By testing

multiple markers and combinations, the risk of over-

fitting is high, despite our stringent adjustment for

multiple testing. With the lack of an independent vali-

dation cohort, the analyses must be regarded as
descriptive. Still, we believe that many interesting ob-

servations were made.

Most previous studies have shown that in lung can-

cer, the number of cytotoxic T-cells, B-cells, plasma cells

and M1 macrophages are associated with longer sur-

vival [17,24,37,38]. In addition, some studies reveal that

the number of Treg cells and M2 macrophages is asso-

ciated with shorter survival [39]. Considering that the
infiltration of immune cells occurs in a coordinated
fashion, that is, most immune cell types infiltrate

together and cell numbers correlate strongly, it is diffi-

cult to determine the main cellular players. Indeed, our

study confirms that the bulk number of immune cells is

already a strong independent factor for survival. Also,

when each immune cell subset was evaluated separately,

most were linked to better prognosis, including CD4 Eff,

CD4 Treg, CD8 Eff, CD8 Treg, B-cells, M1 macro-
phages and NK-cells as well as pDCs. Thus, even the

‘immune suppressive cells’, such as CD8 Treg revealed a

paradoxically favourable clinical impact in this unbiased

approach. Not until distances were included in the

model, it became clear that not only the amount but also

the spatial location was important. While the pure

density of CD8 Treg cells was associated with an overall

good prognosis, the positive clinical impact was elimi-
nated when they were located close to cancer cells or to

other immune cells.

This regulatory effect may either be a direct negative

effect caused by the CD8 Tregs on the immune envi-

ronment [36] or because the tumour cells induce CD8 T-

cells to upregulate FoxP3 and thus become CD8 Tregs

as a transient state of activation [40]. Although these

findings fit in the perception of immunology, our study
provides, to the best of our knowledge, the first in situ

evidence of this paradoxical relation.

Another interesting observation is that the CD8

Effcell densities in the adjusted analysis and in the

stepwise regression models are not significantly associ-

ated with survival. However, when distances either to

tumor cells, or to other immune cells were incorporated

in the survival analysis, the favourable impact on
prognosis was strong and independent (Figure 4 and

S9). It can be speculated that not all tumour-infiltrating

immune cells are antigen specific and the intimacy to

tumour cells indicate a certain anti-cancer immune

reactivity.

The independent influence of the spatial context is

further illustrated in our stepwise Cox regression model.

In this unconventional approach, we included all den-
sities and distances and found that distinct distances had

a strong and independent impact on survival. For

instance, the M1 and M2 phenotype and function were

obviously not only dependent on their cell densities or

their ratios [41] but also regulated by the topographical

relation of both cell types to each other. Many unex-

pected findings, inconsistent with in vitro and in vivo

models in previous studies, might be explained by the
fact that the spatial tissue context was not adequately

incorporated.

Although our study provides a wealth of data, our

analysis is rather conventional with unidimensional

metrics (density and distance), alone or in combinations.

We did not include more advanced models or methods

that could capture complex patterns, such as cell clusters

or cell networks. For this purpose, advanced computa-
tional approaches, including deep learning models, are
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necessary [42]. This would ultimately create more

powerful classifications of the immune microenviron-

ment, with presumably higher prognostic impact.

However, we refrained from this option at this stage to

remain in an explainable and interpretable

environment where simple distance metrics already

convincingly demonstrate the importance of the spatial

dimension in the immune context. We are aware that
this is just the beginning of a new computational era of

immune profiling and explainable artificial intelligence

approaches have been developed [43]. To apply such

methods or address focused questions, we provide this

data set with all cell phenotypes and cell coordinates as a

publicly available resource for other researchers.

It should be noted that our immune phenotyping is

based on a limited set of markers and might deviate
from the definitions used influorescence-activated cell

sorting (FACS) analysis. Because cells were located in

clusters, and signals from different cell types were

colocalized and overlapping, we had to adapt the

marker-based annotation. For instance, immune cells in

the tumour compartment were often found to overlap

with the ‘PanCK’ marker signal. We are aware of this

compromise but hope to describe this phenotyping
transparently for replication.

Finally, we used TMAs representing only a small area

of the whole tumour. A whole section would be the

preferable tissue resource for this study because tumours

are notoriously heterogenous, including the stroma

contexture with different immune cell patterns. This

implies the risk that we missed immune phenomena with

the approach to focus on centrally located, representa-
tive tumor areas. Nevertheless, many biomarker studies

demonstrated a surprisingly good agreement between

TMA cores and the corresponding whole tissue section

[44e47]. Therefore, we believe that we captured major

characteristics of immune cell infiltration in NSCLC.

In conclusion, the combination of state-of-the-art in

situ analysis methods with advanced tissue imaging

techniques introduces a new dimension to describe the
tumour immune microenvironment in cancer that

translates to more sensitive and accurate information of

clinical relevance. This is not only important for

biomarker studies but also essential for understanding

the biological complexity of cancer immunity to develop

the next generation of immunotherapeutic agents.
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