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Phase-space representations are a family of methods for dynamics of both bosonic and fermionic systems,
that work by mapping the system’s density matrix to a quasiprobability density and the Liouville-von Neumann
equation of the Hamiltonian to a corresponding density differential equation for the probability. We investigate
here the accuracy and the computational efficiency of one approximate phase-space representation, called the
fermionic truncated Wigner approximation (fTWA), applied to the Fermi-Hubbard model. On a many-body 2D
system, with hopping strength and Coulomb U tuned to represent the electronic structure of graphene, the method
is found to be able to capture the time evolution of first-order (site occupation) and second-order (correlation
functions) moments significantly better than the mean-field, Hartree-Fock method. The fTWA was also compared
to results from the exact diagonalization method for smaller systems, and in general the agreement was found
to be good. The fully parallel computational requirement of fTWA scales in the same order as the Hartree-Fock
method, and the largest system considered here contained 198 lattice sites.
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I. INTRODUCTION

Since its discovery [1], graphene has become an extremely
rich arena for research, both from fundamental science as well
as for practical applications [2,3]. The electronic structure of
graphene (and graphite) predates the experimental observation
of graphene with a broad margin [4,5], where the initial efforts
were based on tight-binding electronic structure theory. Since
these early efforts many studies have been published (see e.g.,
Ref. [6]), with results of the electronic structure that do not
deviate significantly from the early results [4,5]. One of the
most interesting aspects of the electronic structure of graphene
is the linear dispersion relation around the so called Dirac
point K at the Brillouin zone boundary, with its peculiar con-
sequences for Klein tunneling [7,8] and half-integer quantum
Hall effect [1]. The unique electronic properties of graphene
around the Fermi level has opened for possible applications in
electronics and spintronics (see e.g., Refs. [9,10]).

The valence band states that have attracted most attention
are the so called π and π∗ states, that represent occupied
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and unoccupied electron states of undoped graphene. These
states are composed of pz orbitals centered at each C atom.
These states are weakly bonding, and the strong chemical
bonds of graphene come instead from sp2 hybrids (composed
of s, px, and Py orbitals of each C atom) that build up a
strong network of σ bonds (see e.g., Ref. [11]). The σ bonds
form a three directional geometry of covalent bonds, that fit
perfectly with the hexagonal, bipartite honeycomb lattice of
graphene [8]. Since the present paper is focused on graphene,
we will only consider this two-dimensional crystal structure,
but we note that the formalism presented here is general and
is not exclusive to hexagonal 2D lattices.

The energy bands corresponding to the σ bonds are far
below the Fermi level, and are from a transport point of view
rather uninteresting. This produces a rather interesting sce-
nario in graphene, where the basic electronic structure close to
the Fermi level (a few electron volts on either side of the Fermi
level) of the bipartite graphene system can be described by
tight-binding theory with one orbital (pz) per atomic site. We
will utilize the simplicity of the orbital structure of the π and
π∗ states in this paper, by investigating the electronic structure
using tight-binding theory, including on-site correlations, as
described by the Hubbard model (see Sec. II). This allows
to study a typical many-body, model Hamiltonian, with the
advantage of its ability to describe a real, physical system.

The dynamical properties of the electronic structure of
graphene is the main focus of this investigation, and we
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have employed several approximations to do this, they are:
the Hartree-Fock (HF) method, exact diagonalization (ED)
as well as the fermionic truncated Wigner approximation
(fTWA) [12]. Of these the ED method is exact but only
tractable for small systems because of its exponential scaling,
while the other two represent approximations described and
analyzed below. It is noteworthy that the fTWA method is the
least frequently investigated approximation, when it comes to
electronic structure theory, and we will for this reason put
special emphasis on this method. The basic equation describ-
ing the quantum dynamics here is the Liouville-von Neumann
equation of the density matrix, and we detail below the differ-
ent technical aspects of its solution, comparing in particular
the time evolution of the occupation numbers and second-
order correlation functions.

II. THE MICROSCOPIC HAMILTONIAN

In this paper, we consider the Hubbard-Fermi Hamiltonian,
written in the second quantization formalism,

Ĥ = −
∑
i, j,σ

ji j ĉ
†
iσ ĉ jσ +

∑
i, j

ui j ĉ
†
i↑ĉi↑ĉ†

j↓ĉ j↓, (1)

where ji j is the hopping interaction of pz orbitals between
sites i and j, σ is the particle’s spin, while ui j is the interaction
between two particles of opposite spins situated on sites i and
j. Furthermore, ĉ is an annihilation operator and ĉ† a creation
operator. In this article we only numerically consider hopping
between neighbor sites and with equal potentials: ji j = J if
i and j are neighbors, and in addition we limit the work to
a system with on-site interaction: ui j = U if i = j. In the
present paper we chose J = U = 1. The Hamiltonian (1) is
a good representation of the electronic structure of graphene
around the Fermi level, according to the discussion of the
introduction. Hence this Hamiltonian has been used in several
instances to simulate the energy dispersion of a graphene layer
(see e.g., Refs. [13] and [14]).

III. FERMIONIC TRUNCATED WIGNER
APPROXIMATION

Phase-space representations are a family of methods that
have already demonstrated their ability to model the dynamic
of many-body bosonic systems. They work by mapping the
system’s density matrix to a quasiprobability density and the
Liouville-von Neumann equation of the Hamiltonian to a cor-
responding density differential equation for the probability.
More recently, phase-space methods have been adapted to
model fermionic dynamics. They are especially useful for
2D and 3D systems for which DMRG (density matrix renor-
malization group), and alike methods, are less successful.
We focus here on the computational efficiency of one ap-
proximate phase-space representation, called the fermionic
truncated Wigner approximation (fTWA), and apply it to the
Fermi-Hubbard model Eq. (1).

We start by providing a brief introduction to fTWA. In
phase-space representations, we formulate the problem via
an expansion of the density operator ρ̂ over an overcomplete

operator basis �̂(λ) [15–17],

ρ̂(t ) =
∫

W (λ, t )�̂(λ)dλ, (2)

where the expansion “coefficients” W (λ) constitute a qua-
sidistribution over generalized complex phase-space variables
λ. The Liouville-von Neumann equation that describes the
density operator dynamic is then mapped into a partial dif-
ferential equation (PDE) of the Wigner function W (for more
details see Appendix A 3). In the Wigner-Weyl representation,
phase-space variables are mapped to symmetrized operators,
which leads to a PDE containing only odd-order derivatives.
In particular, the PDE for the Wigner function has no diffusion
term (second-order derivative). The time-dependent quantum
operators Ô(t ) are mapped to their Weyl symbols OW and
evaluated in the Heisenberg representation [18],

〈Ô(t )〉 =
∫

W (λ, t )OW (λ)dλ. (3)

The truncated Wigner approximation (TWA) is the practi-
cal implementation of the Wigner method. It here relies on two
approximations: The high-order derivative terms (third-order
and above) of the PDE are truncated, and the initial density
is chosen to represent the two first moments (average and
covariance). We use a Gaussian distribution, similar to what
was done in Ref. [18]. Hence the Wigner function dynamics
is found by computing trajectories of deterministic differential
equations whose initial conditions are drawn from a Gaussian
probability density.

Because of the anticommuting property of fermionic op-
erators, they cannot directly be represented by complex
numbers, so to adapt the Wigner representation to fermions,
we choose to map phase-space variables to bilinear opera-
tors [12,18],

Ê
jσ j

iσi
≡ 1

2 (ĉ†
jσ j

ĉiσi − ĉiσi ĉ
†
jσ j

),

Ê jσ j ,iσi ≡ ĉ†
jσ j

ĉ†
iσi

, Ê jσ j ,iσi ≡ ĉ jσ j ĉiσi . (4)

Here, letters i and j label site indices and σi labels the particle
spin. In a system with constant particle number, we only use
Ê iσi

jσ j
, and we call ρiσi, jσ j its corresponding complex phase-

space variable. We also consider in this article that electrons
will not flip their spin, which is a reasonable assumption since
the spin-orbit coupling in graphene is very weak [8]. For
this reason we can limit the representation to only same-spin
phase-space variables ρi jσ . The observable values are recov-
ered using their Weyl symbol and Eq. (3), for example, the
occupation operator and the doublon operators are linked to
statistical averages of phase-space variables,

〈ĉ†
iσ ĉ jσ 〉 = ρi jσ + δi j/2,

〈ĉ†
iσ ĉ†

jσ ĉ jσ ĉiσ 〉 = ρiiσ ρ j jσ + 1
2 (ρiiσ + ρ j jσ ) + 1

4 , (5)

see Appendix A 3 for details. The line above the symbols in
Eq. (5) denotes stochastic averages. The time evolution of the
quantum system is then given by a first-order PDE for W ,
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which provides differential equations for ρi jσ [18],

∂

∂t
ρi jσ = i

∑
k

(
j jkρikσ − jkiρk jσ

+ (uki − uk j )

(
ρkkσ̄ + 1

2

)
ρi jσ

)
, (6)

where the hopping j jk and Coulomb repulsion uki are defined
in Eq. (1). From a practical point of view, W (ρ, t ) is repre-
sented by a set of independent realizations of Eq. (6), called
trajectories, whose initial condition are distributed respecting
the moments in (5).

If the initial condition is a thermal state in a diagonal
basis with site occupations niiσ , we can compute the first and
second moments (mean and covariance) between phase-space
variables to generate an initial Gaussian density with the same
moments, which gives

if i = j ρiiσ (0) = niiσ (0) − 1
2 ,

and if

i �= j ρi jσ (0) = ξi jσ

√
niiσ + n j jσ − 2niiσ n j jσ

2
, (7)

where ξi jσ is from a complex normal distribution, with ξ jiσ =
ξ ∗

i jσ . Again, we outline details of the calculations further in
Appendix A 3.

In this article the Hamiltonian (1) is time independent.
However, time dependence in, e.g., an external potential is
straightforward to implement in fTWA, and appears as ex-
plicit time-dependent terms in Eq. (6), just as they appear
in the corresponding mean-field method (below). We have
numerically evaluated fTWA against the other computational
methods used in this article also for time-dependent Hamilto-
nians (not presented here).

A. Exact diagonalization and Hartree-Fock

For the evaluation of the ED dynamics, we compute step by
step the general solution of the time-dependent Schrödinger
equation,

|	(t )〉 = |	0〉 e
i
h̄ Ĥt , (8)

using the Krylov subspace projection technique implemented
in the expokit package [19]. For details of these calculations
we refer to Appendix B 1.

To obtain the mean-field dynamics, we use the Heisenberg
equation of motions to compute the dynamic of the num-
ber operators n̂i jσ . Then we map their factorised averages
to the variables of the mean-field method 〈n̂i jσ 〉 → ni jσ , see
Appendix A for details. We recover the same differential
equations that are found for the phase-space variables ρi jσ ,
as shown in [20]. Without the initial noise (ξi jσ = 0), Eqs. (6)
and (7) provide the same results as the Hartree-Fock mean-
field method.

IV. RESULTS

Below we present the results for two examples, we start
with a small systems where a comparison between differ-
ent theoretical methods can be made (exact diagonalization,

FIG. 1. Illustration of one of the two dominating pure states of
the ground state of the Hamiltonian [Eq. (1)]. Here we consider a
10 sites Fermi-Hubbard model with half filling. The geometry is
composed of two perfect hexagons of equal side lengths. This state
was used as initial condition for the quantum dynamics calculations.
In blue, the spin-down sites, in red the spin-up sites. The second most
dominating state is the spin symmetry of this one, i.e., a state where
all electrons have flipped their spin (and blue and red colours have
been interchanged in the figure).

fTWA and Hartree-Fock), then we study a larger system on
which the exact diagonalization method is unable to give a
result.

A. Small graphene systems

We first study the accuracy of the fTWA method on a small
graphene-like few-body system. The system is composed of
ten sites organized in two hexagonal cells, see Fig. 1, which
makes it large enough to be interesting and small enough to
compute numerical solutions with the exact diagonalization
method. The system is assumed to be electronically half-filled,
which means that there are as many particles as there are sites.
We also consider a system with equal amount of spin-up as
spin-down electrons. For the initial condition, we choose the
p-particles Fock-space vector with the largest overlap to the
ground state, where each site is filled with either a spin-up
or spin-down particle, see Fig. 1. We motivate this choice
further in Appendix B 2. The time evolution with the fTWA
method has been computed with 105 trajectories, and until
t = 5, a choice that was made so that one can see when all
methods considered here start to deviate from each other.
Regardless of the number of sites in the system or the number
of trajectories chosen to represent the density, the density’s
variance is observed to be approximately 0.3, so the error on
first moment averages is roughly

√
0.3/ntraj.

B. Evolution of occupations, first-order moments

The first measure used to compare the methods is the time
evolution of site occupations, niiσ (t ). We show in Fig. 2 the
occupation of spin-up particles on sites 1 and 5, respectively
n11↑ and n55↑. We see that the occupations computed with
the Hartree-Fock method deviate from the exact solution (the
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FIG. 2. Dynamics of site occupations for spin-up particles on
sites 1 (n11) and 5 (n55). The solid (blue) curves show the fTWA
dynamics, the dashed (black) ones show the exact diagonalization
dynamics, the dashed-dotted (red) ones the Hartree-Fock dynamics.
For the occupation, the HF dynamic starts to deviate from the ED at
t 
 1, while the fTWA dynamic starts to deviate from the ED solu-
tion at around t 
 3. Parameters are U = J = 1 and 105 trajectories.

ED method) at t 
 1 and that the occupations computed with
fTWA starts to deviate later, at t 
 3. We stress that the only
computational cost to achieve this improvement is that the cal-
culation is repeated, in parallel, for the different trajectories.

Note that the computation times of both HF and fTWA
methods scale quadratically with the system size, and the
fTWA method is here correct for approximately three times
longer. Here, using 105 trajectories in the fTWA method, the
statistical error is negligible, hidden behind the width of the
line. Hence, the deviation comes entirely from the truncation
possible from the approximation of the initial density [18]
in the formalism of the method, and is not due to statistical
uncertainty. We also note an improvement on the long term
dynamics. When t → ∞ the occupation stabilizes at niiσ 

0.5 for all sites and spins (data not shown). This result is
recovered by the fTWA method, but not by the HF one that
oscillates uncontrollably.

C. Evolution of correlations, second-order moments

One advantage of phase-space methods, like fTWA, is their
ability to give information on the dynamics of higher-order
moments, like second-order correlation functions, even for
large system. The correlation function between two sites i,
j and spins σ1, σ2, here denoted g(2)

iσ1, jσ2
, can be seen as the

effect the presence of a spin-σ1 particle on site i has on the
probability to have a spin-σ2 particle on site j. The explicit
formulas are, in the Schrödinger picture for ED,

g(2)
iσ1, jσ2

(t ) = 〈ĉ†
iσ1

ĉ†
jσ2

ĉiσ1 ĉ jσ2〉
〈ĉ†

iσ1
ĉiσ1〉〈ĉ†

jσ2
ĉ jσ2〉

, (9)

FIG. 3. Dynamics of correlation functions between neighbor
sites, here g(2)

1↑,2↑ and g(2)
1↑,4↑. The different curves represent the same

methods and parameter values as described in Fig. 2.

and in the Heisenberg picture with the fTWA phase-space
variables,

g(2)
iσ1, jσ2

(t ) = ρiiσ ρ j jσ + (ρiiσ + ρ j jσ )/2 + 1/4

(ρiiσ + 1/2)(ρ j jσ + 1/2)

= (ρiiσ + 1/2)(ρ j jσ + 1/2)

(ρiiσ + 1/2)(ρ j jσ + 1/2)
. (10)

For the mean-field Hartree-Fock approximation we use
Wick’s theorem, see Eq. (A4) in Appendix A 2.

In Fig. 3, we plot the correlation between the spin-up parti-
cle on site 1 and the spin-up particles on the two neighboring
sites, 2 and 4, see Fig. 1 for the geometry. The correlation
computed with fTWA is essentially the same as that of ED,
until approximately t 
 2 where it starts to deviate visibly.
This happens earlier than for the occupation, shown in Fig. 2.
At t 
 0, we observe that the correlation functions computed
with fTWA does not tend precisely to its theoretical value,
Eq. (C7), of g(2)

1↑,2↑ = 0.5. The quantitative difficulties fTWA
has to compute correlations involving initial empty sites are
known for bosons [21], the calculations made in Appendix C
expose the same problem for the present Hamiltonian. In
principle, these results can be improved by adding more tra-
jectories or using projection methods.

In Fig. 4, we plot the correlations between the spin-up
particle on site 1 and the spin-up particles on distant sites,
6 and 10, see again Fig. 1 for the geometry. We observe that
the fTWA results starts to deviate from data obtained by ED,
at a time between t 
 2 and t 
 3. We also observe in Fig. 4
that the time for a correlation to appear between two sites,
i.e., when g(2) deviate from unity, depends on the increasing
distance between those two sites.

In the case of different spins correlations, like e.g., g(2)
i↑,i↓,

the second term in Eq. (A4) is zero. As a consequence HF
gives a constant, g(2) ≡ 1, and cannot be used for compar-
isons. However, fTWA gives accurate results for short times,
as we have explored numerically in comparisons with ED for
small systems.
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FIG. 4. Dynamics of correlation functions between distant sites,
here g(2)

1↑,6↑ and g(2)
1↑,10↑. The different curves represent the same meth-

ods and parameters values as described in Fig. 2.

D. Large-time correlation functions

To investigate if the fTWA is also able to model the long
term values of correlation functions, we computed the fTWA
results of g(2)

1↑,2↑ for systems of different size, n = 4, 6, 10, 198
sites, until t = 50 (note that we did not plot other correlations
for clarity, but they all tend to the same limits). The results are
shown in Fig. 5, and we see that the correlation tends to the
limits that correspond to equal probability for particles, see
the explanation and examples in Appendix C 3. Correlations
between all the other pairs of different sites and same-spin
particles have the same limit. For n = 4, 6, 10, the fTWA
results were compared with exact diagonalization.

FIG. 5. Long-time fTWA dynamics for correlations between
spin-up particles on sites 1 and 2, g(2)

1↑,2↑, for systems of different
size, n = 4, 6, 10, 198. The horizontal (black) lines represent the
limit (t → ∞) values of correlation function gathered in table II, we
recover the values of formula (C11) for all cases.

TABLE I. Average value of double occupations 〈n̂i↑n̂i↓〉, for dif-
ferent values of the interaction parameter U and the two methods,
ED and fTWA. Here computed on the 10-sites system at t = 10.

U 1 2 5 10

〈n̂i↑n̂i↓〉 ED 0.21 0.18 0.098 0.036
fTWA 0.23 0.20 0.10 0.040

E. Influence of particle-particle interaction

Until now, we used the parameter values J = U = 1. When
the system has stabilized, U has little influence on the oc-
cupations 〈n̂iσ 〉, while it more strongly affects on the double
occupation 〈n̂i↑n̂i↓〉. Indeed, when the on-site interaction pa-
rameter U increases, the probability to find two particles on
the same site decreases. Here the HF mean-field method can-
not capture the double occupation, see Wick’s theorem (A4),
but fTWA can. In Table I we report the average of double
occupations 〈n̂i↑n̂i↓〉 on the 10 sites of the system, at t = 10,
i.e., when the occupations have stabilized, for different values
of U . We observe that fTWA gives accurate values, compared
to ED, of large-time double occupation.

V. FTWA ON A LARGE SYSTEM

Now that we have shown the ability of fTWA to efficiently
model small Fermi-Hubbard systems, by a direct comparison
to data from exact diagonalization, we study a substantially
larger system, that is far out of reach for exact diagonaliza-
tion. We compute the dynamics of fermions described by
the Hamiltonian of Eq. (1) on a graphene-like system with
a honeycomb structure involving 198 sites, see the overall
geometry in Fig. 6. In this figure the value of the magneti-
zation, mi = nii↑ − nii↓, is shown for four time frames of the
calculation. At t = 0, the sites are filled with either a spin-
up electron or a spin-down electron, represented by red and
blue circles in Fig. 6, respectively. This represents a starting
state similar to that considered in Fig. 1. For the subsequent
times, the dynamics is such that the magnetization at each
site approaches zero (nii↑ 
 nii↓ 
 0.5), representing an equal
occupation of spin-up and spin-down electrons. This is seen
most clearly in Fig. 6 by the purple color of all sites at t = 3.
This result is consistent with experimental data of graphene
at equilibrium conditions, that are known to reflect an equal
occupation of spin-up and spin-down electrons [2].

For a more accurate view of the dynamics, we have plotted
in Fig. 7 the occupation of spin-up electrons on sites 36
and 48, n36↑ and n48↑, i.e., from sites in the middle of the
system. Within the short time of the simulation, effects of
the boundary of the 198 atom cluster play little role, and the
system appears infinite, as reflected in the visible symmetry
between n36↑ and n48↑ in Fig. 7. This symmetry breaks at
later times, around t 
 4. Note that the data in Fig. 7 contains
results from HF and fTWA calculations and that for short
simulation times (t � 3) we find very similar occupations for
the two approaches, in contrast to the example in Fig. 2 that
considered a smaller system. The size of the system gives the
site interactions a more predominant role, which we expect
makes HF and fTWA better approximations of the real particle
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FIG. 6. Four different frames from the dynamics of the magnetic moment mi = nii↑ − nii↓ for times t = 0, 1, 2, 3. Sites in red have mi = 1,
one spin-up particle, sites in blue have mi = −1, one spin-down particle. Sites in purple have mi = 0. For larger times we see that the magnetic
moments all stabilize to mi 
 0, when the system tends to nii↑ = nii↓ 
 0.5. Parameters are U = J = 1 and 105 trajectories.

dynamics, but clearly ED is out of reach for comparisons.
Also, for longer simulation times, the HF method gives highly
oscillatory results, as shown in Fig. 7, which is not the case for
the fTWA method.

Similar to the smaller system, we also study for the
198 atom system the correlation functions between different
sites. We picked a central site, numbered 36, to be a repre-
sentative one (see the arrow in the t = 0 subplot in Fig. 6),
and followed the correlation functions with one of its nearest
neighbors as well as with further distant sites, see the geom-
etry in Fig. 8. In Fig. 9 we show the correlation functions of

FIG. 7. Dynamics of site occupation for spin-up particles on sites
36 and 48 for a 198 atom cluster. Data obtained by HF given by
dashed red curves and fTWA full blue curves.

spin-up particles with a near neighbor site, g(2)
36↑,45↑(t ). The

correlation for the three neighbors are initially very similar
because of local symmetries in the large system, where edge
effects of the cluster play a lesser role. We recognize the
short-time limit (t → 0), where g(2)(0) = 2/3, because each

FIG. 8. Zoom in on the 198-sites Fermi-Hubbard system, of
Fig. 6, at t = 0. The sites in red starts with a spin-up particle,
e.g., n36↑(0) = 1, and the blue ones starts with a spin-down particle,
e.g., n48↓(0) = 1. We will follow the correlation function of spin-up
particles between the site 36 and one of the three closest neighbors
(blue lines) in Fig. 9. Then between site 36 and three distant sites
(red lines) in Fig. 10.
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FIG. 9. Dynamics of correlation functions between neighbor
sites, here the site 36 and a neighbor, site 45. Data obtained by HF
given by dashed red curves and fTWA full blue curves.

site has three neighbors, see the derivation in Appendix C, and
the deviation from the initial value that we saw in the smaller
system, in Fig. 3. For longer time scales the data in Fig. 9
approach a value close to one, that only depends on the total
number of sites, see Appendix C 3. Again one may note large
oscillations with the HF method for longer times.

In Fig. 10 we have plotted the correlation functions be-
tween the site numbered 36 and its neighbors at longer
distance, see Fig. 8 for the geometry. Note that our choice
of sites is such that they are initially filled with electrons
of the same spin orientation, which means that at t = 0 the
correlation function is one. We can observe from Fig. 10 that
the further away two sites are, the longer it takes before g(2)

starts to deviate from unity.

FIG. 10. Dynamics of correlation functions between distant sites,
here the site 36 and sites 46, 56, 68, see Fig. 8. Data obtained by HF
given by dashed red curves and fTWA full blue curves.

VI. CONCLUSIONS

In this paper we have studied the quantum dynamics of
the electronic structure of graphene-like systems, using an
electronic Hamiltonian that allows for hopping and one-site
Coulomb repulsion. The analysis is focused on the electron
states close to the Fermi level, and are hence limited to pz or-
bitals of spin-up or spin-down character centered on each site
of a honeycomb lattice site. This allows to study the dynam-
ics of an electronic Hamiltonian that includes the minimum
interactions to represent a realistic system, i.e., the electron
hopping and on-site Coulomb repulsion.

We have in this investigation compared three methods
with which to solve the time evolution of the electronic sys-
tem; the exact diagonalization technique, the Hartree-Fock
(HF) approximation, and the fermionic truncated Wigner ap-
proximation (fTWA). In comparing the three approaches for
smaller graphene-like systems we conclude that fTWA repro-
duces the results of exact diagonalization, for significantly
longer times compared to HF, and for this reason we have
focused on fTWA for larger systems. Previous works of fTWA
have focused on long-range interactions [12], but mean-field
and phase-space representation methods have larger diffi-
culties to model on-site interactions because of the more
predominant role of quantum effects. Under those conditions,
fTWA demonstrates a net improvement over mean-field meth-
ods. As shown here, the evolution of site occupations agrees
well with exact results, for a period that is three times longer
for fTWA compared to HF (see Fig. 2), and its long-time
behavior is also quantitatively recovered. The second-order
correlation functions are also found to be well approximated,
both on short-time dynamics (Figs. 3 and 4) and long-time
dynamics (Fig. 5).

In this investigation we have studied a 2D honeycomb
lattice, with focus on pz orbitals and their electronic struc-
ture in an ambition to model the time dynamics of graphene.
Although the investigation has focus on technical aspects on
how to best and most expediently perform these calculations,
we can draw some conclusions concerning physical proper-
ties. A basic test that our model passes is that we start each
calculation with an electronic configuration representing an
antiferromagnetic state (see e.g., Fig. 1) but the Hamilto-
nian evolves this state to one that has equal populations on
both lattice sites of the bipartite honeycomb lattice, which
is consistent with experiments. Also, when comparing large
and small systems, our results show that smaller systems
exhibit larger fluctuations in e.g., the correlation function,
compared to larger ones. This is also something that in general
is consistent with previous investigations and should be mea-
surable when comparing the electronic structure of graphene
and (smaller) graphene flakes. Experiments focusing on K-
edge x-ray absorption spectra could resolve this possibility.
In addition, the results here shine light on the time-scale of
the dynamics. For instance, we observe from Fig. 10 that
the further away two sites are, the longer it takes before the
correlation function deviates from unity. Again, spectroscopic
data, e.g., using pump-probe experiments, could confirm this
finding, although it is certainly a challenge.

We conclude finally that the improvements of fTWA over
mean-field methods come with an acceptable computational
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cost. A fTWA computation scales as O(n2) with the number
of sites n, similar to the HF computation. It needs, however,
multiple repetitions of computations (trajectories) to average
upon. This cost is manageable on a single computer for the
systems studied here and embarrassingly parallelizable for
larger systems.
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APPENDIX A: DERIVATION OF DIFFERENTIAL
EQUATIONS FOR THE QUANTUM DYNAMICS

In this Appendix, we outline some of the details needed for
the computations described in the main text. In the following,
the indices written as Greek letters are pairs of position and
spin, α = (a, σa).

1. Heisenberg equation of motion

In the Heisenberg picture, the operators are time dependent
and evolve according to the differential equation

d

dt
Â = i[Ĥ, Â]. (A1)

Hence for a Fermi-Hubbard Hamiltonian described in Eq. (1)
with symmetric electron-electron interactions uαβ = uβα , the
differential equation of a bilinear operators like ĉ†

α ĉβ is

∂

∂t
ĉ†
α ĉβ = i

∑
μ

(( jβμĉ†
α ĉμ − jμα ĉ†

μĉβ )

+ (uμα − uβμ)ĉ†
α ĉ†

μĉμĉβ ). (A2)

This differential equation for the number operators cannot be
solved directly in practice, and we need to invoke approxima-
tions to obtain differential equations for complex numbers.

2. Mean-field approximation

In the Hartree-Fock approximation, the many-body wave-
function is described as a product of one-body wave-
functions, hence the system is always a single Slater
determinant. That allows us to reduce the description of the
electrons to a single-particle density matrix with

nαβ ≡ 〈ĉ†
α ĉβ〉. (A3)

For the two-body operators, we use Wick’s theorem [20,22],

〈ĉ†
α ĉ†

β ĉγ ĉδ〉 ≡ nαδnβγ − nαγ nβδ . (A4)

Which gives the differential equation for the single-particle
density matrix,

∂

∂t
nαβ = i

∑
μ

(( jβμnαμ − jμαnμβ )

+ (uμα − uβμ)(nαβnμμ − nαμnμβ )). (A5)

In the Hamiltonian (1), no term allows the particle’s spin
to flip, ( jαβ = jabδσaσb) so variables representing spin-flip are
always null and are neglected. Moreover, the electron-electron
interaction is only between opposite-spin particles, uαβ =
uabδσaσ̄b . We denote ni jσ = niσ, jσ , and Eq. (A5) then becomes

∂

∂t
ni jσ = i

∑
l

( j jlnilσ − jlinl jσ + (uil − ul j )nllσ̄ ni jσ ). (A6)

These are the Hartree-Fock differential equations, as pre-
sented in Ref. [20].

3. Fermionic truncated Wigner approximation

The fTWA is one of the phase-space representation meth-
ods, where we use a distribution to describe the electrons
density matrix and map operators averages to the distribu-
tion’s moments. For the fTWA in systems with constant
number of particles, we can choose the symmetrically ordered
one-body operator Êα

β we defined in Eq. (4) and map it to
the phase-space variables ραβ . First-order and second-order
moments of the phase-space variable distribution are linked
respectively to one-body and two-body operators,

ραβ =
∫

W (ρ)ραβdρ = 〈
Êβ

α

〉
,

ρ∗
αβρμν =

∫
W (ρ)ρ∗

αβρμνdρ = 1

2

〈
Êα

β Ê ν
μ + Ê ν

μÊα
β

〉
. (A7)

From those equations we can find the links between first- and
second-order stochastic averages of phase-space variables and
quantum operators in, e.g., Eq. (5).

To obtain the equations of motion of the phase-space dis-
tribution, we follow the work of Polkovnikov [18,23]. Here a
Jordan-Schwinger mapping from the fermionic operators Ê
to pair-bosonic operators was introduced, then the bosonic
truncated Wigner approximation formalism can be applied. It
was shown that the equation of motion for the phase-space
variables ραβ are determined by the Poisson brackets

∂

∂t
ραβ = i{ραβ, HW } = i

∑
γ δ

f (α, β, μ, ν, γ , δ)
∂HW

∂ρμν

ργ δ ,

(A8)

with f being the structure constants of the bilinear operators,[
Êα

β , Êμ
ν

] =
∑
γ δ

f (α, β, μ, ν, γ , δ)Êγ

δ

= δμβ Êα
ν − δαν Êμ

β . (A9)

In the expression above, HW is the Hamiltonian in the ραβ

variables

HW = −
∑
i, j,σ

ji jρi jσ +
∑
i� j

ui j

(
ρii↑ + 1

2

)(
ρ j j↓ + 1

2

)
,

(A10)
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which gives us the differential equation (6).
We may not be able to reproduce all exact initial Wigner

function with all high-order moments, but within the accuracy
of the truncation, the two first moments are sufficient. So we
approximate W (ρ, 0) with a Gaussian distribution having the
same first- and second-order moments (mean and covariance).
From the relations (A7) we compute the covariance between
phase-space variables,

cov(ρ∗
αβ, ρμν ) = ρ∗

αβρμν − ρ∗
αβρμν

= 1
2 〈ĉ†

β ĉα ĉ†
μĉν + ĉ†

μĉν ĉ†
β ĉα〉 − 〈ĉ†

β ĉα〉〈ĉ†
μĉν〉

= 1
2 (ñμαnβν + ñβνnμα ),

(A11)

with ñαβ = δαβ − nαβ . In a diagonalizing basis, nαβ = 0 if
α �= β, so the only nonzero terms are

cov(ρ∗
αβ, ραβ ) = 1

2 (ñααnββ + ñββnαα )

= 1
2 (nββ + nαα − 2nββnαα ).

(A12)

Hence we arrive at Eq. (7) for the random starting point of
trajectories.

APPENDIX B: EXACT DIAGONALIZATION

1. Exact diagonalization basis

In Eq. (8) describing the wave-function evolution, |	(t )〉
is written in a finite basis |ψi〉 of Slater determinants of p
particles,

|	(t )〉 =
∑

i

bi(t ) |ψi〉 , (B1)

|ψi〉 = ĉ†
α1,i

ĉ†
α2,i

...ĉ†
αp,i

|0〉 . (B2)

If our system has n sites and p particles, we need Cp
n = n!

p!(n−p)!
basis functions, which explains the impossibility to model
systems of more than 20 sites on a standard computer.

2. Analysis of the ground state

As initial condition for the dynamics, we are looking for a
position eigenstate that has the largest overlap with the ground
state of the Hamiltonian (1). In Fig. 11, we have plotted a
representation of the ground state |	gs〉 = ∑

i bi |ψi〉. On the
x axis are the indices of the N-particle Hilbert basis vectors
and on the y-axis are the coordinates of the ground state in this
basis, bi. We find two vectors that stand out with bi 
 −0.05,
the first one is the initial condition we have chosen, see Fig. 1,
the other one is its spin symmetric state.

When we let the dynamics evolve, we have found that
the density on all sites tends to 0.5 for large times. The cor-
responding t → ∞ wave-function is a broad distribution of
all N-particle Hilbert space vectors, |	(t )〉 → ∑

i bi(∞) |ψi〉
with |bi(∞)|2 
 1/N .

APPENDIX C: DERIVATION OF ASYMPTOTES
OF CORRELATION FUNCTIONS

1. Short-time limit of correlations

We here show that the fTWA equations and the ini-
tial conditions leads to the correct values of the correlation

FIG. 11. Ground-state representation of the Fermi-Hubbard sys-
tem with 10 sites, five spin-up and five spin-down particles. If
|	gs〉 = ∑

i bi |ψi〉, the x axis represents the N-particle Hilbert space
vector indices i in a given order, and the y axis represents the value
of the coefficients of those basis vectors bi. We have chosen the
first basis vector with the larger absolute coordinate, bi 
 −0.05, as
initial condition for the dynamics reported in the main text.

functions for neighbor sites in the short-time limit. Lets
compute g(2)

1↑,2↑(0), i.e., the correlation of spin-up particles
between site 1 and site 2 in a system like in Fig. 1 when t → 0.
From Eq. (10) we have,

g(2)
1↑,2↑ = 〈(ρ11↑ + 1/2)(ρ22↑ + 1/2)〉

〈ρ11↑ + 1/2〉〈ρ22↑ + 1/2〉 . (C1)

In this Appendix, the brackets 〈...〉 denote stochastic av-
erage. From the initial conditions, we can first derive the
first-order approximation of the off-diagonal terms ρ12↑, ρ21↑,
ρ23↑, and ρ32↑,

∂

∂t
ρ12↑ = i

∑
k

( j2kρ1k↑ − jk1ρk2↑) + iuρ12↑(ρ11↓ − ρ22↓)

= i( j12(ρ11↑ − ρ22↑) + j32ρ13↑ − j14ρ42↑)

+ iuρ12↑(ρ11↓ − ρ22↓) .

Now, since at t = 0, n11↑(0) = n33↑(0) = 1, n22↑(0) =
n44↑(0) = 0, and ρ13↑(0) = ρ42↑(0) = 0, see the initial con-
ditions (7) for the system in Fig. 1, we have

d

dt
ρ12↑(0) = −iu

ξ12↑√
2

+ i j12.

Hence, for the short-time dynamics, i.e., for t = ε  1,

ρ12↑(ε) = ξ12↑√
2

+
∫ ε

0

d

dt
ρ12↑dt

= ξ12↑√
2

+
∫ ε

0

(
d

dt
ρ12↑

∣∣∣∣
t=0

+ O(t )

)
dt

= ξ12↑√
2

+ i j12ε − iu
ξ12↑√

2
ε + O(ε2) .
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In the same way, we obtain

ρ21↑(ε) = ξ21↑√
2

− i j12ε + iu
ξ21↑√

2
ε + O(ε2),

ρ23↑(ε) = ξ23↑√
2

− i j32ε + iu
ξ23↑√

2
ε + O(ε2),

ρ32↑(ε) = ξ32↑√
2

+ i j32ε − iu
ξ32↑√

2
ε + O(ε2). (C2)

With these expressions, we can derive approximations of
ρ11↑ and ρ22↑ with a second-order accuracy in t . For arbitrary
t , we have

d

dt
ρ11↑ = i

∑
k

( j2kρ1k↑ − jk1ρk1↑) + iuρ11↑(ρ11↓ − ρ11↓)

= i j12(ρ12↑ − ρ21↑) + i j14(ρ14↑ − ρ41↑) .

Hence, for t = ε  1, we can insert the off-diagonal terms of
Eq. (C2),

i
d

dt
ρ11↑(ε)

= j12

(
ξ ∗

12↑√
2

−i j12ε+iu
ξ ∗

12↑√
2

ε−ξ12↑√
2

−i j12ε + iu
ξ12↑√

2
ε

)

+ j14

(
ξ ∗

14↑√
2

−i j14ε+iu
ξ ∗

14↑√
2

ε−ξ14↑√
2

−i j14ε+iu
ξ14↑√

2
ε

)

+ O(ε2)

= i j12

ξ12↑ − ξ ∗
12↑√

2
− 2 j2

12ε + u j12

ξ12↑ + ξ ∗
12↑√

2
ε

+ i j14

ξ14↑ − ξ ∗
14↑√

2
− 2 j2

14ε + u j14

ξ14↑ + ξ ∗
14↑√

2
ε + O(ε2)

= − j12η
(2)
12↑ − 2 j2

12ε + u j12η
(1)
12↑ε − j14η

(2)
14↑ − 2 j2

14ε

+ u j14η
(1)
14↑ε + O(ε2)

= − j12η
(2)
12↑ − j14η

(2)
14↑ + ( − 2 j2

12 − 2 j2
14 + u j12η

(1)
12↑

+ u j14η
(1)
14↑

)
ε + O(ε2) ,

such that

ρ11↑(ε) = 1

2
+

∫ ε

0

d

dt
ρ11↑dt

= 1

2
− (

j12η
(2)
12↑ + j14η

(2)
14↑

)
ε − (

j2
12 + j2

14

)
ε2

+ u

2

(
j12η

(1)
12↑ + j14η

(1)
14↑

)
ε2 + O(ε3) . (C3)

and in the same way

ρ22↑(ε) = − 1

2
+ (

j12η
(2)
12↑ − j32η

(2)
23↑

)
ε + (

j2
12 + j2

32

)
ε2

− u

2

(
j12η

(1)
12↑ + j32η

(1)
23↑

)
ε2 + O(ε3). (C4)

We now obtain from Eqs. (C3) and (C4) first the denomi-
nator of g(2)

1↑,2↑,

〈
ρ11↑ + 1

2

〉〈
ρ22↑ + 1

2

〉
= 〈

1 − (
j12η

(2)
12↑ + j14η

(2)
14↑

)
ε − (

j2
12 + j2

14

)
ε2 + u

2

(
j12η

(1)
12↑

+ j14η
(1)
14↑

)
ε2

〉〈(
j12η

(2)
12↑ − j32η

(2)
23↑

)
ε + (

j2
12 + j2

32

)
ε2

− u

2

(
j12η

(1)
12↑ + j32η

(1)
23↑

)
ε2

〉 + O(ε3)

= 〈
j12η

(2)
12↑ − j23η

(2)
23↑

〉
ε + (

j2
12 + j2

23

)
ε2 − u

2

〈
j12η

(1)
12↑

+ j32η
(1)
23↑

〉
ε2 + ( − 2 j2

12

〈
η

(2)
12↑

〉2 + 2 j12 j23
〈
η

(2)
12↑

〉〈
η

(2)
23↑

〉
− j14 j12

〈
η

(2)
14↑

〉〈
η

(2)
12↑

〉 + j14 j23
〈
η

(2)
14↑

〉〈
η

(2)
23↑

〉)
ε2 + O(ε3).

Here η
(1)
i j and η

(2)
i j are independent real white noises, so

when we take the limit of large number of trajectories ntraj,

〈
ρ11↑ + 1

2

〉〈
ρ22↑ + 1

2

〉 −−−−→
ntraj→∞

(
j2
12 + j2

23

)
ε2 . (C5)

For the nominator of the correlation formula (C1), we have
from Eqs. (C3) and (C4),

〈(
ρ11↑ + 1

2

)(
ρ22↑ + 1

2

)〉

= 〈(
1 − (

j12η
(2)
12↑ + j14η

(2)
14↑

)
ε − (

j2
12 + j2

14

)
ε2

+ u

2

(
j12η

(1)
12↑ + j14η

(1)
14↑

)
ε2

)((
j12η

(2)
12↑ − j23η

(2)
23↑

)
ε

+ (
j2
12 + j2

23

)
ε2 − u

2

(
j12η

(1)
12↑ + j32η

(1)
23↑

)
ε2)

〉 + O(ε3)

= 〈(
j12η

(2)
12↑ − j23η

(2)
23↑

)
ε + (

j2
12 + j2

23

)
ε2 − u

2

(
j12η

(1)
12↑

+ j32η
(1)
23↑

)
ε2 − (

j2
12(η(2)

12↑)2
)
ε2 + (

j12 j23η
(2)
12↑η

(2)
23↑

− j14 j12η
(2)
14 η

(2)
12↑ + j14 j23η

(2)
14↑η

(2)
23↑

)
ε2

〉 + O(ε3)

= 〈
j12η

(2)
12↑ − j23η

(2)
23↑

〉
ε + (

j2
12 + j2

23

)
ε2

− u

2

(
j12η

(1)
12↑ + j32η

(1)
23↑

)
ε2

− j2
12

〈(
η

(2)
12↑

)2〉
ε2 + (

j12 j23
〈
η

(2)
12↑η

(2)
23↑

〉 − j14 j12
〈
η

(2)
14↑η

(2)
12↑

〉
+ j14 j23

〈
η

(2)
14↑η

(2)
23↑

〉)
ε2 + O(ε3)

= (
j2
12 + j2

23

)
ε2 + 〈

j12η
(2)
12↑ − j23η

(2)
23

〉
ε − j2

12

〈(
η

(2)
12↑

)2〉
ε2

− u

2

〈
j12η

(1)
12↑ + j32η

(1)
23↑

〉
ε2 + (

j12 j23
〈
η

(2)
12↑η

(2)
23↑

〉

− j14 j12
〈
η

(2)
14↑η

(2)
12↑

〉 + j14 j23
〈
η

(2)
14↑η

(2)
23↑

〉)
ε2 + O(ε3) .

Here again, because ηa
i jσ are independent real white noises,

we have for the limit of large number of trajectories,

〈(
ρ11↑ + 1

2

)(
ρ22↑ + 1

2

)〉
−−−−→
ntraj→∞

(
j2
12 + j2

23

)
ε2 − j2

12ε
2 = j2

23ε
2 . (C6)
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Which, combining (C5) and (C6), gives us

g(2)
12 (ε) −−−−→

ntraj→∞

(
j2
23

)
ε2(

j2
23 + j2

12

)
ε2

,

g(2)
12 (0) = 1

1 +
(

j12

j23

)2 . (C7)

Before we converge the noises η to 0, the leading terms
in the fraction (C1) are in O(ε). They determine the value of
g(2)(0) when the number of trajectories is too small. Hence the
difficulties to have an accurate value of g(2)(0), see Fig. 3, and
the need for more trajectories.

2. General version of short-time correlation

In the center of the graphene, the sites have three neigh-
bors. We write a generalization of Eqs. (C3) and (C4) for an
arbitrary number of neighbor sites,

ρ11↑(ε) = 1

2
−

∑
i

(
j1iη

(2)
1i↑ε − j2

1iε
2 + u

2
j1iη

(1)
1i↑ε2

)

+ O(ε3) ,

ρ22↑(ε) = − 1

2
−

∑
i

(
j2iη

(2)
2i↑ε + j2

2iε
2 − u

2
j2iη

(1)
2i↑ε2

)

+ O(ε3) .

Which leads to a generalization of Eq. (C7)

g(2)
12 (0) =

(∑
i j2

2i

) − j2
12∑

i j2
2i

. (C8)

TABLE II. Limit (t → ∞) values of correlation function for
system of different sizes n.

n 4 6 10 198

g(2)
i, j

2
3 0.8 8

9 0.995

If the site 2 has three neighbors (or in the case of Fig. 8 the
site 36), and all hopping interactions j are equals, we find
g(2)

12 (0) = 2/3, see Fig. 9.

3. Large-time correlation functions

The correlation between site i and site j, g(2)
i j , can be un-

derstood as the effect of the knowledge of the presence of a
particle on site i on the probability to find a particle on site j,

g(2)
i, j = P(ni = 1|n j = 1)

P(ni = 1)
. (C9)

For p particles in a Fermi-Hubbard system of n sites, when the
probability density is totally spread on all sites, we express the
probability with the binomial coefficients Cp

n = n!
p!(n−p)! ,

P(n j = 1) = Cp−1
n−1

Cp
n

, P(n j = 1|ni = 1) = Cp−2
n−2

Cp−1
n−1

. (C10)

For a half-filled system, p = n/2, P(nj = 1) = 1/2, such
that Eq. (C9) becomes

g(2)
i, j = 2

Cn/2−2
n−2

Cn/2−1
n−1

. (C11)

We give in Table II some examples of results from (C11)
for systems of different sizes, and compare it with numerical
results in Fig. 5.
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