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1. Introduction

During the last thirty years equivariant localization played an instrumental role in the derivation of many exact results in 
quantum field theory (QFT), in particular in the context of supersymmetric gauge theories. In QFT equivariant localization is 
based on a clever combination of the supersymmetry transformations with BRST symmetry in such fashion that the resulting 
transformations are interpreted as the equivariant differential on the space of fields. In our previous work [6] we proposed 
a framework for the treatment of such theories within the equivariant extension of the Batalin-Vilkovisky (BV) formalism. 
In the present paper we continue to study this extension and discuss the equivariant partial BV integration (equivariant BV 
push-forward) map. Our main examples will be four-dimensional gauge theories.

We observe that the BV description of Yang-Mills (YM) theory given by Costello in [12] can be obtained restricting the 
BV action of Donaldson–Witten (DW) theory ([6], [8], [9], [13]) to a BV submanifold. Both theories can be recast in the AKSZ 
formulation, provided that, in the case of YM, one allows in the source a differential graded algebra (dga) A that is not the 
external algebra of differential forms. The BV push-forward map from DW theory to YM theory corrects the Costello’s BV 
YM action by terms that in the abelian case involve the zero modes of the ultraviolet (UV) fields but in the non abelian 
case are packed in a full perturbative expansion in the YM fields. In the equivariant case, we perform the explicit BV push-
forward map in the case of abelian theory and obtain an effective action that is non-local and satisfies the equivariant 
master equation. From a geometrical point of view we can see this result as a non-local homological generalization of the 
Cartan calculus.

The paper is organized as follows: in Section 2 we recall basic notions within the BV formalism and the AKSZ con-
struction of the solution of the classical master equation. We give the formal definition of the BV push-forward map and 
list its formal properties. In Section 3 we summarize the equivariant extension of the BV formalism and the corresponding 
equivariant version of the AKSZ construction. We define formally the equivariant analog of the BV push-forward map and 
discuss its properties. In Section 4 we define the 4d AKSZ theory to which we refer as the Donaldson–Witten (DW) theory. 
We discuss different formulations of this theory. In Section 5 we discuss the BV formulation of Yang–Mills (YM) theory and 
its relation to the DW theory. We briefly discuss the application of the BV push-forward map to the abelian DW theory. 
In Section 6 we introduce the equivariant extension of DW AKSZ theory. For the case of abelian DW theory we describe 
explicitly the equivariant BV push-forward map. The final result is a non-local deformation of abelian YM theory which 
satisfies the equivariant master equation. This provides a non-local Cartan calculus on the dg algebra A. We summarize the 
paper and discuss the open questions in Section 7. Technical details regarding the Hodge decomposition and the relevant 
properties of the operators are collected in Appendix A.
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2. Overview of BV formalisms

2.1. BV

The BV formalism was introduced in [3–5] to study the (in)dependence of the partition function (or, more generally, 
expectation values of observables) from the gauge fixing. In this setting, the space of fields is extended to an odd symplectic 
manifold (for bookkeeping, it is convenient to have an additional Z-grading with the symplectic form having degree −1; in 
this paper, we assume that the parity is the modulo two reduction of the integer degree). The action is extended to a BV 
action S (of degree 0) satisfying the quantum master equation

1

2
{S, S} − ih̄�S = 0. (1)

Here { , } denotes the BV bracket, i.e., the odd Poisson bracket defined by the odd symplectic structure, and � is the BV 
Laplacian. The latter is a second-order differential operator which in Darboux coordinates p1, . . . , pn, q1, . . . , qn (the parity 
of each p being opposite to that of the corresponding q) with respect to the standard Berezinian density μstand = dnq dn p
takes the form � = ∂

∂ pi

∂

∂qi .

The first theorem of the BV formalism states that, if f = �g and L is a Lagrangian submanifold on which the integral of 
g converges, then∫

L

f μ
1
2
stand = 0.

Here μ
1
2 denotes the half-density associated to μstand. Its restriction to a Lagrangian submanifold is canonically a density.
stand

2
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This fact implies the central theorem of the BV formalism which states that, for a family Lt of Lagrangian submanifolds 
smoothly depending on t ,

It :=
∫
Lt

f μ
1
2
stand

is constant, under the assumptions that � f = 0 and that for each t the integral converges. In fact, one can show that

d

dt
It =

∫
Lt

(�(ψ̇ f ) + ψ̇� f )μ
1
2
stand =

∫
Lt

ψ̇� f μ
1
2
stand,

where we have used the previous theorem. Here ψ̇ describes the variation of the gauge fixing. If � f = 0, we get the result. 
For applications in physics, one considers f = e

i
h̄ S , and S is called the BV action.

The application in field theory then consists in replacing the ill-defined integral on the reference Lagrangian L0, which 
naively describes the original divergent integral times a vanishing integral over the ghosts, with a well-defined integral over 
some nearby Lt (gauge fixing).

The formalism can actually be extended globally to an odd symplectic manifold M. In this case, the definition of the 
BV Laplacian requires the choice of a Berezinian density μ such that the resulting differential operator squares to zero. 
Alternatively, one can observe [14,15] that there is a canonical Laplacian � acting on half-densities. For every half-density 
σ of the form �τ and every Lagrangian submanifold L on which τ is integrable, one has∫

L

σ = 0. (2)

Moreover, for every half-density σ satisfying �σ = 0, one has that

It :=
∫
Lt

σ

is constant, under the assumption that for each t the integral converges. Typically, one chooses σ of the form e
i
h̄ Sσ0 with 

σ0 a reference half-density satisfying �σ0 = 0. More generally, we have

d

dt
It =

∫
Lt

ψ̇ �σ , (3)

where ψ̇ describes the variation of the gauge fixing.
In field theory, all this has to be regularized, as we are in an infinite-dimensional context, so neither the integral against 

μ
1
2
stand nor the BV Laplacian are defined. For the considerations in the present paper, it is enough to ignore the BV Laplacian, 

i.e., to assume that S satisfies the classical master equation

{S, S} = 0. (4)

The integral is on the other hand understood in perturbation theory around a nondegenerate Gaussian (the choice of gauge 
fixing achieves this goal).

2.2. AKSZ

The AKSZ formalism [2] is a general procedure to construct solutions of the classical master equation (4) (one checks a 
posteriori, by restriction to the variables of degree 0 what physical theory it describes).

The construction, in d dimensions, requires an odd symplectic manifold Y , with exact symplectic form ωY = dθY of 
degree d −1, endowed with a solution SY (of degree d) of the associated classical master equation. Given a closed d-manifold 
	d (our space–time), to these data one associates the odd symplectic manifold M = Map(T [1]	d, Y ) and a BV action S
satisfying the classical master equation.

We present the construction explicitly for Y a finite-dimensional vector space and θY = pi dqi . In this case, M has 
Darboux coordinates determined by the superfields Pi s and Qi s, each of which is a sum of differential forms on 	d of all 
degrees: if a superfield corresponds to a target variable of degree n, then its k-form component is assigned degree n − k. 
The odd symplectic form on M is then defined by

ω =
∫

δPi ∧ δQi , (5)
	d

3
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where in each summand the integral selects the d-form. The BV action is defined as

S =
∫
	d

(PidQi + SY (P,Q)). (6)

Remark 2.1. A typical gauge fixing in an AKSZ theory is obtained as follows. One picks a Riemannian metric g and defines 
the codifferential d† (see Appendix A). Then one defines Lg as the Lagrangian submanifold obtained by requiring each 
differential form in the superfields to be in the image of d†.

2.3. BV push-forward

The central theorem of the BV formalism can be extended to partial integration (BV pushforward).1

Namely, given a product M = MI R × MU V of odd symplectic manifolds to which we refer as UV and IR respectively 
and with total BV Laplacian � = �I R + �U V , one has, for every half-density σ on M satisfying �σ = 0 and for a family 
LU V ,t of Lagrangian submanifolds of MU V , that

σI R(t) :=
∫

LU V ,t

σ

defines a family of half-densities σI R (t) on MI R satisfying �I RσI R = 0 for every t . Moreover, d
dt σI R is �I R -exact; in view 

of (2), this change of σI R is irrelevant in the BV formalism.
These results are obtained from the BV theorems we have listed above. In fact,

�I RσI R(t) =
∫

LU V ,t

�I Rσ =
∫

LU V ,t

�σ −
∫

LU V ,t

�U V σ = −
∫

LU V ,t

�U V σ = 0,

where we have used (2) on MU V . Similarly, by (3) on MU V ,

d

dt
σI R(t) :=

∫
LU V ,t

ψ̇ �U V σ .

Therefore,

d

dt
σI R(t) =

∫
LU V ,t

ψ̇ �U V σ =
∫

LU V ,t

ψ̇ �σ − �I R

∫
LU V ,t

ψ̇ σ , (7)

which yields the result if �σ = 0.

Typically, we have reference half-densities σ0 on M and σ0,I R on MI R , and σ = e
i
h̄ Sσ0. In this case, we write σI R =

e
i
h̄ Seffσ0,I R and call Seff the effective action.

For applications in field theory (in particular, in this paper), the odd symplectic manifolds are affine spaces (with a 
given choice of global Darboux coordinates), and the reference half-densities are the standard ones. The effective action is 
computed in perturbation theory around nondegenerate Gaussians.

3. Overview of equivariant BV formalisms

3.1. Equivariant BV

In [6] an equivariant version of the BV formalism was introduced. The first observation was that, if the quantum master 
equation is violated,

1

2
{S, S} − ih̄�S =: T �= 0, (8)

then one still has the central theorem for BV integrals and BV pushforwards if one restricts oneself to integrating on 
Lagrangian submanifolds on which T vanishes (we call them T -Lagrangian submanifolds); see Section 3.2.

1 We follow the terminology of [10] and refer to its Section 2.2 for more details. To the best of our knowledge, the BV pushforward was first used in 
[11]. It was then realized by A. Losev that it can be used to define Wilsonian renormalization in a BV compatible way; this was first put to use, in the case 
of B F theories, in P. Mnëv’s thesis [17]. It was then extensively used by K. Costello [12] to study the renormalization of gauge theories.
4
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In particular, the case of the extension of an AKSZ theory to the Cartan model for equivariant cohomology was consid-
ered. Namely, one starts with an infinitesimal action of a Lie algebra on the space–time 	d . We denote by {va} the vector 
fields corresponding to some basis (ea) and introduce degree-two variables ua . One can then define the modified action

Seq = S + ua Ŝιva
, (9)

where S is as in (6), and

Ŝιva
=

∫
	d

Pi ιva Qi (10)

with ιva denoting the contraction operator and ̂ιva its extension to the space of fields. It then follows that

1

2
{Seq, Seq} + ua S L̂va

= 0, (11)

where

S L̂va
=

∫
	d

Pi Lva Qi (12)

with Lva denoting the Lie derivative with respect to va and L̂ va its extension to the space of fields. Assuming �S = 0 and 
� Ŝιva

= 0,2 we get

T = −ua S L̂va
. (13)

It follows that Lg as in Remark 2.1 is a T -Lagrangian submanifold if the metric g is invariant.
In this paper, we consider a variation on this theme. Namely, we consider a BV theory (specifically, abelian Yang–Mills in 

Costello’s BV formulation, see Chapter 6 in [12]) which is based on a generalized AKSZ construction. Since the source algebra 
admits Lie derivatives Lva and so has lifts L̂ va to the space of fields, we look for an action which satisfies (11) with S L̂va

as in (12). However since there is not a standard Cartan calculus in the source and in particular no contraction vector field 
ιva , we cannot use the solution as in (9). We will rather obtain a solution to (11) that has essentially the same properties 
as the one above; in particular, Lg is a T -Lagrangian submanifold for every invariant metric g . On the other hand, we will 
obtain a generalized Cartan calculus that includes a new definition { Ŝιva

, } of the contraction operator together with higher 
operations, in a way that is compatible with the theory at hand.

3.2. Equivariant BV push-forward

Suppose S satisfies (8), i.e.,

� f =
(

i

h̄

)2

T f

with f = e
i
h̄ S . Consider the half-density σ = f σ0, with σ0 a reference �-closed half-density. We then have

�σ =
(

i

h̄

)2

T σ .

We now perform the BV pushforward with the extra assumption that T = T I R + TU V with T I R and TU V functions on MI R

and MU V respectively. The half-density σI R(t) on MI R defined by the pushforward along a TU V -Lagrangian LU V ,t on 
MU V then satisfies

�I RσI R(t) =
∫

LU V ,t

�σ =
(

i

h̄

)2 ∫
LU V ,t

(T I R + TU V )σ =
(

i

h̄

)2

T I R

∫
LU V ,t

σ ,

i.e.,

�I RσI R(t) =
(

i

h̄

)2

T I R σI R(t),

2 Both conditions are reasonable, as, formally, � on these functionals corresponds to taking the trace on �•(M) of operators of degree different from 
zero.
5
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which shows that the relation is well-behaved under BV-pushforward (with the above assumptions).
As for deformations of the TU V -Lagrangian submanifold, a direct computation using (7) simply yields

d

dt
σI R(t) = −

(
i

h̄

)2

T I R

∫
LU V ,t

ψ̇ σ − �I R

∫
LU V ,t

ψ̇ σ .

In view of (2), the �I R -exact term is irrelevant in the BV formalism. As the other term is proportional to T I R , it is also 
irrelevant, since we are going to consider only T I R -Lagrangian submanifolds for the further gauge fixing.

If we now apply this to the equivariant BV case where T is defined by (13) and MI R and MU V are based on AKSZ 
superfields, we see that the assumptions are satisfied and that the effective theory is precisely as described at the end of 
Section 3.1. Namely, for the effective theory we still have

Seff
L̂va

=
∫
	d

Pi Lva Qi

where now the P’s and Q’s are the superfields on MI R . On the other hand, Seff
ι̂va

will in general have a very complicated, 
nonlocal expression.

4. BV formalism for DW

In this section we describe the AKSZ construction [2] for a four-dimensional field theory to which we refer as the 
Donaldson-Witten (DW) theory since upon the appropriate gauge fixing it can be reduced to the standard cohomological 
field theory described by Witten in [18]. This DW BV theory has been discussed previously in [6,8,9,13]

Let g be a finite dimensional quadratic Lie algebra with the Lie bracket [ , ] and with the invariant metric 〈 , 〉. Consider 
the graded vector space

g[1] ⊕ g[2] , (14)

which is equipped with the symplectic structure of degree 3

ω = 〈δc, δφ〉 , (15)

where c is the coordinate of degree 1 and φ is the coordinate of degree 2. We can introduce the Hamiltonian function of 
degree 4

� = 1

2
〈φ,φ〉 + 1

2
〈φ, [c, c]〉 , (16)

which generates the following odd vector field

qc = φ + 1

2
[c, c] , (17)

qφ = [c, φ] , (18)

such that q2 = 0. Following the standard AKSZ construction [2] we can define the space of maps

MDW = { T [1]	4 −→ g[1] ⊕ g[2] } , (19)

where 	4 is a 4–manifold. Denoting by C and � the superfields of degree 1 and 2, respectively, the BV symplectic form is 
defined as

ωDW =
∫

T [1]	4

d4xd4θ δCa ∧ δ�bηab (20)

and the AKSZ action as

S DW =
∫

T [1]	4

d4xd4θ

(
〈�,dC〉 + 1

2
〈�,�〉 + 1

2
〈�, [C,C]〉

)
. (21)

The BV transformations are

δC = dC + � + 1

2
[C,C] , (22)

δ� = d� + [C,�] . (23)
6
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We adopt the following convention for the expansion of superfields in terms of differential forms

C = c0 + c1 + c2 + c3 + c4 , (24)

� = φ0 + φ1 + φ2 + φ3 + φ4 . (25)

The BV symplectic structure can then be written as

ωDW =
∫
	4

(δc0 ∧ δφ4 + δc1 ∧ δφ3 + δc2 ∧ δφ2 + δc3 ∧ δφ1 + δc4 ∧ δφ0) , (26)

and the action (21) reads

S DW =
∫

〈φ0,dc1 c3〉 + 〈φ1,dc1 c2〉 + 〈φ2, F (c1)〉 + 〈φ3,dc1 c0〉

+〈φ0, φ4〉 + 〈φ1, φ3〉 + 1

2
〈φ2, φ2〉 + 〈φ0, [c0, c4]〉

+1

2
〈φ0, [c2, c2]〉 + 〈φ1, [c0, c3]〉 + 〈φ2, [c0, c2]〉 + 1

2
〈φ4, [c0, c0]〉 (27)

where dc1 = d + [c1, ] and F (c1) = dc1 + 1
2 [c1, c1]. Restricting to the physical (i.e. degree 0) fields

S DW |cl =
∫

〈φ2, F (c1)〉 + 1

2
〈φ2, φ2〉 , (28)

where upon the integration of φ2 we obtain the standard topological term − 1
2

∫
F (c1)

2 on which the original treatment of 
the DW theory is based.

The 4D AKSZ action (21) can also be encoded in the following space

T [1]	4 ⊕R[−1] −→ g[1] , (29)

where we denote θ ’s as odd coordinates on T [1]	4 and ξ as an odd coordinate on R[−1]. The new superfield is written in 
terms of old as follows

A = ξ� + C (30)

The symplectic structure is

ωDW =
∫

T [1]	4⊕R[−1]
d4xd4θdξ δAa ∧ δAbηab (31)

and the AKSZ action becomes

S DW =
∫

T [1]	4⊕R[−1]
d4xd4θdξ

(
〈A, (d + ∂

∂ξ
)A〉 + AAA

)
(32)

and it reduces to (21). It is a Chern-Simons action with source the dg-manifold (T [1]	4 ×R[−1], D + ∂/∂ξ) and degree −3
integral 

∫ = ∫
d4xd4θdξ ; the dga of global functions is then (�(	4)[ξ ], D + ∂

∂ξ
). The underlying complex can be described 

as

�0(	4) �1(	4) �2(	4) �3(	4) �4(	4)

�0(	4) �1(	4) �2(	4) �3(	4) �4(	4)

(33)

where the horizontal arrows denote de Rham differential d and the diagonal arrows denote ∂/∂ξ . The field components are 
defined by expanding the superfield A along the following basis of local coordinates (as a �0(	4)-module)

ξ , degree − 1

1 , θ iξ , degree 0

θ i , θ iθ jξ , degree 1

θ iθ j , θ iθ jθkξ , degree 2

θ iθ jθk , θ1θ2θ3θ4ξ , degree 3

θ1θ2θ3θ4 , degree 4 .
7
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5. BV formalism for YM

Let us introduce a metric on 	4 and let us decompose the two form components in self-dual and anti-self-dual forms as

φ2 = φ+
2 + φ−

2 , c2 = c+
2 + c−

2 . (34)

If we denote with

MI R = {c−
2 = c3 = c4 = φ0 = φ1 = φ−

2 = 0} (35)

and

MU V = {c0 = c1 = c+
2 = φ+

2 = φ3 = φ4 = 0} (36)

we see that MDW is decomposed in the direct product of symplectic manifolds

MDW = MI R ×MU V , (37)

where the symplectic forms read as

ωI R =
∫
	4

(
δc0 ∧ δφ4 + δc1 ∧ δφ3 + δc+

2 ∧ δφ+
2

)
, (38)

and

ωU V =
∫
	4

(
δc−

2 ∧ δφ−
2 + δc3 ∧ δφ1 + δc4 ∧ δφ0

)
. (39)

As in Sections 2 and 3 we are using the subscripts I R and U V that stand for infrared and ultraviolet respectively.
Restricting S DW to MI R (i.e., setting to zero φ−

2 , c−
2 , φ1, c3, φ0 and c4 in (27)) we get

S I R ≡ S DW |MI R =
∫

〈φ+
2 , F (c1)〉 + 〈φ3,dc1 c0〉 + 1

2
〈φ+

2 , φ+
2 〉 + 〈φ+

2 , [c0, c+
2 ]〉 + 1

2
〈φ4, [c0, c0]〉 . (40)

It is crucial to observe that we obtain the same formula if we restrict S DW to MI R ×LU V , where LU V is the Lagrangian
submanifold of MU V defined by φ0 = φ1 = φ−

2 = 0 (i.e. keeping c−
2 , c3 and c4 different from zero). It is easy to see that this 

implies that

{S I R , S I R} = 0 . (41)

By restricting (40) further to the physical (i.e. degree 0) fields we get

S I R |cl =
∫
	4

〈φ+
2 , F (c1)〉 + 1

2
〈φ+

2 , φ+
2 〉 ≡ S f o

Y M

that is the first order formulation of the Yang-Mills action. Upon the integration of φ+
2 we obtain the standard Yang-Mills 

action (up to topological term). This proves that S I R is a BV extension of the Yang-Mills action; we are going to prove that 
it coincides with Costello’s solution in Chapter 6.2.1 of [12]. A similar result can be found also in [9].

5.1. Costello’s formulation of Yang-Mills

Let us consider now the Chern-Simons formulation of S DW written in (32). The restriction to MI R imposes constraints 
to the superfield (30) so that S I R is not anymore in the AKSZ form; let us see how it can still be put in this form.

Let us consider A0 = {ω + (ν+
2 + ν3 + ν4)ξ} that is a dg-subalgebra of (�(	4)[ξ ], d + ∂

∂ξ
) together with its dg-ideal 

I0 = {ω−
2 + ω3 + ω4} (recall that ν+

2 ∧ ω−
2 = 0). The quotient dga

(A = A0/I0,d + ∂

∂ξ
) (42)

encodes the following complex

�0(	4) �1(	4) �2+(	4)

�2+(	4) �3(	4) �4(	4)

(43)
8
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where the horizontal map is the de Rham differential (composed with the projection to self dual forms in degree 1 and to 0
in degree 2 of the upper line) and the diagonal one is the identity. Analogously, the algebra structure is the wedge product 
composed with the same projections when it involves forms of the upper line. By inspection we check that in (40) there is 
no difference if we assume that forms are multiplied according to this exotic ring structure instead of just with the wedge 
product. We then showed that also (40) is an AKSZ solution of the master equation (4) with target g[1] and with source 
the (spec of the) dg-algebra (A, d + ∂

∂ξ
) endowed with the degree −3 integral 

∫ :A →R defined as∫
(ω + νξ) =

∫
	4

ν .

A local basis of A (as a �0(	4)-module) is

1 , degree 0 (44)

θ i , π+(θ iθ j)ξ , degree 1

π+(θ iθ j) , θ iθ jθkξ , degree 2

θ1θ2θ3θ4ξ , degree 3

where π+ is the projection on self-dual two forms. We can summarize by saying that

S I R =
∫

〈A, (d + ∂

∂ξ
)A〉 + AAA , (45)

where now A is expanded along the local basis (44) and the product is taken in A. This CS solution of the master equation 
for Yang-Mills was first introduced in Lemma 2.1.1 of [12]. In the following sections we will refer to (A, d + ∂

∂ξ
) as the 

Costello dg-algebra.
The extension of the AKSZ construction to the case when the source dg algebra is not locally freely generated (and so is 

not the algebra of functions on a dg manifold) has been discussed in [7].

5.2. BV-pushforward

The decomposition (37) defines also the (trivial) fibration MDW →MI R where we interpret

I R ≡ {c0, c1, c+
2 , φ+

2 , φ3, φ4} ∈ MI R (46)

as infrared fields and

U V ≡ {c−
2 , c3, c4, φ0, φ1, φ

−
2 } ∈ MU V (47)

as ultraviolet fields. We are then in a position to define the BV pushforward of the topological DW theory to the sector of 
the physical YM fields.

Let us decompose the full BV action (27) as

S DW = S I R + SU V + Smixed

where

SU V =
∫

〈φ0,dc3〉 + 〈φ1,dc−
2 〉 + 1

2
〈φ−

2 , φ−
2 〉 + 1

2
〈φ0, [c−

2 , c−
2 ]〉 (48)

and

Smixed =
∫

〈φ0, [c1, c3]〉 + 〈φ1,dc1 c+
2 〉 + 〈φ1, [c1, c−

2 ]〉 + 〈φ−
2 , F (c1)〉

+〈φ0, φ4〉 + 〈φ1, φ3〉 + 〈φ0, [c0, c4]〉 + 〈φ1, [c0, c3]〉
+〈φ−

2 , [c0, c−
2 ]〉 + 1

2
〈φ0, [c+

2 , c+
2 ]〉〉 . (49)

In order to perform the vertical integration it is necessary to separate the UV fields in cohomology and fluctuations, by 
using the Hodge decomposition of forms. Let us define

c = c̃ + h φ = φ̃ + σ (50)

where h ≡ {h−
2 , h3, h4} = P (c), σ ≡ {σ0, σ1, σ−

2 } = P (φ) are harmonic forms (P denotes the projection to harmonic forms) 
and c̃, φ̃ denote the fluctuations. We call σ , h the zero modes; they are colored in red because, like the IR fields, they are 
9
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not integrated out and must be treated as external fields. (The reader is referred to the web version of this article for more 
transparent formulae using colors.) The zero modes symplectic form reads∫

(δσ0 ∧ δh4 + δσ1 ∧ δh3 + δσ−
2 ∧ δh−

2 ) .

The gauge fixing is now imposed on the UV-fluctuations by choosing a Lagrangian submanifold LU V defined by

c̃4 = φ̃−
2 = 0 , c̃3, φ̃1 ∈ Imd† , (51)

where d† denotes the codifferential. The effective action is now defined by

e
i
h̄ Seff =

∫
LU V

e
i
h̄ S DW .

Let us analyze the abelian case first. The explicit computation is postponed to the next section where the more general 
equivariant case will be analyzed. We anticipate here that in the non equivariant abelian case the only corrections to (40)
come from the UV zero modes contributions, i.e.

Seff = S I R +
∫

〈σ0, φ4〉 + 〈σ1, φ3〉 + 1

2
〈σ−

2 ,σ−
2 〉 (52)

where the last terms come from the evaluation of (48) and (49) on zero modes. Since all remaining fields are red, we 
suppressed the coloring. The abelian YM-BV differential is corrected to

δc0 = σ0, δc1 = dc0 + σ1, δc+
2 = π+dc1 + φ+

2 (53)

δφ+
2 = 0, δφ3 = dφ+

2 , δφ4 = dφ3

The UV zero modes are not integrated out so far and so they survive as dynamical variables. In particular we have

δσ0 = δσ1 = δσ−
2 = 0

δh−
2 = σ−

2 , δh3 = Pφ3 , δh4 = Pφ4 . (54)

By construction δ satisfies

δ2 = 0 .

Remark 5.1. It is easy to check that the effective action (52) is the CS action (45) with the replacement A → A + h + ξσ , 
where h = h−

2 + h3 + h4 and σ = σ0 + σ1 + σ−
2 are the superfields encoding the UV zero modes. The homological vector 

field d + ∂
∂ξ

is encoded in the following complex that is an enlarged version of (43)

�0 �1 �2+ ⊕ H2− H3 H4

H0 H1 �2+ ⊕ H2− �3 �4

d π+d⊕0

i i

d⊕0

id

d

P P (55)

where i denotes the embedding of de Rham cohomology into differential forms as harmonic forms.

Remark 5.2. The calculation of Seff for non-abelian theory involves all orders in the perturbation theory and will be dis-
cussed in a future paper.

6. Equivariant BV pushforward map

In the previous section we have constructed 4d DW theory as the standard AKSZ theory with the source being T [1]	4
and the target g[1] ⊕ g[2]. Let us consider now a vector field v ∈ �(T 	4) (possibly a complete one whose flux defines a 
group action) and let us consider the equivariant extension of the ASKZ action as described in Section 3.

Borrowing the notation from the previous section, the equivariant AKSZ action is defined on the same space of fields 
MDW as

Seq−DW = S DW + Ŝιv =
∫

d4xd4θ

(
〈�,dv C〉 + 1

2
〈�,�〉 + 1

2
〈�, [C,C]〉

)
, (56)
T [1]	4

10
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where dv = d + ιv is the (Cartan) equivariant differential and

Ŝιv =
∫

T [1]	4

d4xd4θ 〈�, ιv C〉 (57)

is the hamiltonian defining the lift ̂ιv of the contraction vector field ιv to MDW . For the clarity of forthcoming formulas 
here we suppress the formal variable u and assume that we have just one v , in the final result is easy to restore ua and va . 
This action satisfies the equivariant master equation

1

2
{Seq−DW , Seq−DW } = −S L̂v

, (58)

where

S L̂v
=

∫
T [1]	4

d4xd4θ 〈�, Lv C〉 (59)

is the hamiltonian defining the lift ̂Lv of Lv to MDW . In components Seq−DW is given by

Seq−DW = S DW +
∫

〈φ1, ιv c4〉 + 〈φ2, ιv c3〉 + 〈φ3, ιv c2〉 + 〈φ4, ιv c1〉 (60)

where the component expression of S DW is given in (27).
Let us choose now a metric on 	4 invariant under Lv and consider the splitting MDW = MI R ×MU V defined in (37). 

The restriction Seq−DW to MI R does not satisfy the equivariant master equation (58) (since the lift ̂ ιv to MDW of the 
contraction operator ιv ∈ Der(�(	4)[ξ ]) does not restrict to MI R ). In other terms, the invariance of the metric guarantees 
that MI R inherits from MDW the ̂Lv action but not the Cartan complex for equivariant cohomology.

Remark 6.1. We saw in Section 5.1 that the infrared action S I R , which is a BV extension of Yang-Mills, is an AKSZ action by 
itself with source the dg algebra A defined in (42). It is natural then to look for the definition of the Cartan complex for 
equivariant cohomology on A and then lifting it to MI R . It is easy to check that while the Lie derivative Lv ∈ Der(�(	)[ξ ])
descends to Der(A), the same is not true for ιv ∈ Der(�(	)[ξ ]). So there is not a natural notion for the contraction operator.

We are going instead to compute the BV push-forward map for Seq−DW to the space MI R ; by construction the effective 
action will satisfy the equivariant master equation.

The general non-abelian theory would require the full perturbation theory. At the same time in the abelian case the 
calculation can be carried out exactly still being non-trivial. Thus from now on we switch to the abelian equivariant DW 
theory.

Borrowing the notations from the previous section we can split the abelian Seq−DW as follows

Seq−DW = S I R + SU V + Smixed (61)

with {c0, c1, c+
2 , φ+

2 , φ3, φ4} ∈MI R

S I R =
∫ (

φ+
2 dc1 + φ3dc0 + 1

2
(φ+

2 )2 + φ3ιv c+
2 + φ4ιv c1

)
(62)

and {c−
2 , c3, c4, φ0, φ1, φ−

2 } ∈MU V

SU V =
∫ (

φ0dc3 + φ1dc−
2 + 1

2
(φ−

2 )2 + φ1ιv c4 + φ−
2 ιv c3

)
(63)

and

Smixed =
∫ (

φ1dc+
2 + φ−

2 dc1 + φ0φ4 + φ1φ3 + φ3ιv c−
2 + φ+

2 ιv c3
)

(64)

We stress that we use the Lv -invariant metric to define all fields.
We decompose the UV fields as in (50) by using the Hodge decomposition with respect to the invariant metric. We then 

define the Lagrangian submanifold LU V as follows

c̃4 = φ̃−
2 = 0 , c̃3, φ̃1 ∈ Im d† , (65)

and by construction LU V is invariant under the action of Lv . Before imposing the conditions c̃3, φ̃1 ∈ Im d† explicitly let us 
rewrite a bit S I R , SU V and Smixed assuming just that c̃4 = φ̃− = 0. Assuming the decomposition (50) SU V is written as
2

11
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SU V =
∫ (

φ̃0dc̃3 + φ̃1dc̃−
2 + 1

2
(σ−

2 )2 + φ̃1ιvh4 + σ−
2 ιv c̃3 + σ1ιvh4 + σ−

2 ιvh3

)
(66)

and Smixed as follows

Smixed =
∫ (

φ̃1dc+
2 + φ̃0φ4 + σ0φ4 + φ̃1φ3 + σ1φ3 + φ3ιv c̃−

2 + φ3ιvσ
−
2 +φ+

2 ιv c̃3 + φ+
2 ιvh3

)
. (67)

We are going to integrate out only the blue fields {φ̃0, ̃c3, φ̃1, ̃c−
2 } and the red fields (IR fields and UV zero modes) are 

treated as external. Therefore it is useful to identify S0 as containing only quadratic terms in the blue fields

S0 =
∫ (

φ̃0dc̃3 + φ̃1dc̃−
2

)
=

∫ (
1

2
φ̃0dc̃3 + 1

2
c̃3dφ̃0 + 1

2
φ̃1dc̃−

2 + 1

2
c̃−

2 (π−d)φ̃1

)
, (68)

where π± are the projectors on �2± , S1 as containing the linear terms in the blue fields

S1 =
∫ (

φ̃0φ4 − c̃3(ιvφ+
2 + ιvσ

−
2 ) + φ̃1(φ3 + dc+

2 + ιvh4) + c̃−
2 ιvφ3

)
(69)

and new S̃ I R containing only red fields (including UV zero modes)

S̃ I R =
∫ (

φ+
2 dc1 + φ3dc0 + 1

2
(φ+

2 )2 + φ3ιv c+
2 + φ4ιv c1 + 1

2
(σ−

2 )2

+σ1ιvh4 + σ−
2 ιvh3 + σ0φ4 + σ1φ3 + φ3ιvσ

−
2 + φ+

2 ιvh3
)

, (70)

so that Seq−DW = S0 + S1 + S̃ I R . It is convenient to write the quadratic form appearing in S0 as

1

2

(
φ̃0 c̃3 φ̃1 c̃−

2

)
⎛
⎜⎜⎝

0 d 0 0
d 0 0 0
0 0 0 d
0 0 (π−d) 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

φ̃0
c̃3

φ̃1

c̃−
2

⎞
⎟⎟⎠ (71)

where the wedge product is assumed. Analogously the integrand in S1 is written as

(
φ̃0 c̃3 φ̃1 c̃−

2

)
(1 − P )

⎛
⎜⎜⎝

φ4

−ιvφ+
2 − ιvσ

−
2

φ3 + dc+
2 + ιvh4

π−ιvφ3

⎞
⎟⎟⎠ (72)

where the wedge product is assumed and (1 − P ) is the project outside of harmonic forms (cohomology). The claim is that 
the quadratic form in (71) is non degenerate once the gauge fixing conditions (65) are taken into account so that the UV 
integration is well defined. This will be discussed in the next subsection.

6.1. Integration of UV sector

The canonical way to restrict fields to LU V in (65) is by adding a trivial sector of auxiliary fields. Indeed, let us add 
(ϕ, ϕ∨, η, η∨) with degϕ = −2, degϕ∨ = 1, degη = −1 and degη∨ = 0, with ϕ being (even) zero form (ϕ∨ is top form) 
and η being (odd) zero form (η∨ top form). The BV symplectic form in UV sector is now

ω̃U V =
∫ (

δφ̃−
2 ∧ δc̃−

2 + δφ̃1 ∧ δc̃3 + δφ̃0 ∧ δc̃4 + δϕ ∧ δϕ∨ + δη ∧ δη∨)
(73)

and the BV action is extended to

Seq−DW +
∫ (

ϕ∨η + η∨Lvϕ
)

. (74)

The new fields contain zero modes that must be decoupled from fluctuations, as we did for the UV fields. It is easy to 
see that zero modes decouple and so they can be ignored in the following. The extra term in the action just modifies the 
quadratic term (68) in UV fields

S ′
0 = S0 +

∫ (
ϕ∨η + η∨Lvϕ

)
(75)

The following gauge fixing fermion (with Lv invariant metric)

� =
∫

ϕ̃(d � φ̃1) (76)
12
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defines the following LU V

c̃4 = 0 , φ̃−
2 = 0 , η̃∨ = 0 , c̃3 = �dϕ̃ , ϕ̃∨ = d � φ̃1 . (77)

Evaluating the quadratic part (75) of the action we obtain

S ′
0|LU V =

∫ (
φ̃0d � dϕ̃ + φ̃1dc̃−

2 + d � φ̃1η̃
)

. (78)

Introducing the inner product ( , ) as in (91) we can rewrite it in the following matrix form

S ′
0|LU V = 1

2
(x, Dx) (79)

where x = (φ̃0, ϕ̃, φ̃1, ̃c−
2 , η̃) ∈ V ≡ (1 − P ) 

(
�0 ⊕ �0 ⊕ �1 ⊕ �2− ⊕ �0

)
and D : V → V is defined as

D =

⎛
⎜⎜⎜⎜⎝

0 −� 0 0 0
−� 0 0 0 0

0 0 0 −d† d
0 0 −π−d 0 0
0 0 d† 0 0

⎞
⎟⎟⎟⎟⎠ (80)

The differential operator D is by construction self-adjoint and invertible, its inverse being as follows

D−1 =

⎛
⎜⎜⎜⎜⎝

0 −�−1 0 0 0
−�−1 0 0 0 0

0 0 0 −2�−1d† �−1d
0 0 −2π−�−1d 0 0
0 0 �−1d† 0 0

⎞
⎟⎟⎟⎟⎠ . (81)

In order to check it, one has to use the properties (102) and the explicit definition of � on zero forms.
Next the restriction of the linear term S1 in (69) to LU V gives

S1|LU V =
∫ (

φ̃0φ4 − �dϕ̃(ιvφ+
2 + ιvσ

−
2 ) + φ̃1(φ3 + dc+

2 + ιvh4) + c̃−
2 ιvφ3

)
, (82)

that can be written as

S1|LU V = (x,a)

with a ∈ V being

a = (1 − P )
(
�φ4,−d†ιv(φ+

2 + σ−
2 ),− � φ3 + d†c+

2 − �ιvh4,−π−ιvφ3,0
)

.

Combining these terms together we have the following structure

(S ′
0 + S1)LU V = 1

2
(x, Dx) + (x,a) = 1

2
(x + D−1a, D(x + D−1a)) − 1

2
(a, D−1a)

so that, after integrating out the fields in UV sector, we obtain

Seff = S̃ I R − 1

2
(a, D−1a) ,

with S̃ I R defined in (70). Upon integration we also obtain the field independent determinants which however depend on 
the metric. In our consideration we ignore those determinants, but for physical discussions (e.g., like metric dependence 
etc.) they do play an important role. Since we are left with red fields, IR fields and UV zero modes, from now on we stop 
the color marking of the fields. After some computations one gets the following effective BV action for the IR fields

Seq-eff =
∫ (

φ+
2 dc1 + φ3dc0 + 1

2
(φ+

2 )2 + σ0φ4 + σ1φ3 + +1

2
(σ−

2 )2

φ3ιv c+
2 + φ4ιv c1 + σ1ιvh4 + σ−

2 ιvh3 + φ3ιvh−
2 + φ+

2 ιvh3 (83)

−φ4 K ιv(φ
+
2 + σ−

2 ) − 2(φ3 + ιvh4)Kπ−ιvφ3 − 2c+
2 dKπ−ιvφ3

)
.

By construction it satisfies the equivariant master equation (58) with
13
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Seff
L̂va

=
∫ (

φ4Lv c0 + φ3Lv c1 + φ+
2 Lv c+

2 + σ0Lvh4 + σ1Lvh3 + σ−
2 Lvh−

2

)
By putting v = 0 one recognizes the non equivariant effective action in (52) which coincides, up to zero modes, with the 

BV extension of abelian Yang-Mills theory. We can say then that (83) is an equivariant extension of the abelian Yang-Mills 
BV theory.

We can read off the equivariant BV transformations for IR fields

δeqc0 = ιv c1 + σ0 − K ιvφ+
2 − K ιvσ

−
2 (84)

δeqc1 = dc0 + σ1 + ιvh−
2 + ιv c+

2 − 2K (π−ιvφ3) − 2ιv(π−Kφ3) + 2ιv(π−dK c+
2 ) − 2ιvπ

−K ιvh4

δeqc+
2 = π+(

dc1 + φ+
2 + ιvh3 − ιv(Kφ4)

)
δeqφ

+
2 = π+(

ιvφ3 − 2dK (π−ιvφ3)
)

δeqφ3 = dφ+
2 + ιvφ4

δeqφ4 = dφ3

and for UV zero modes

δeqσ0 = −2P ιv Kπ−ιvφ3 + P ιvσ1 (85)

δeqσ1 = P ιvφ
+
2 + P ιvσ

−
2

δeqσ
−
2 = Pπ−ιvφ3

δeqh−
2 = π− P ιv(−Kφ4 + h3) + σ−

2

δeqh3 = P (φ3 + ιvh4)

δeqh4 = Pφ4

The reader, with a straightforward but tedious calculation, can check that δeq satisfies

δeq
2 = −L̂v . (86)

Remark 6.2. The invariant metric defining the UV gauge fixing is arbitrary. In the computation of (84) we implicitly assumed 
that it is in the same conformal class of the metric defining the IR space (or equivalently the YM theory). There is then a 
family of equivariant extensions parametrized by invariant metrics that are conformally equivalent to the metric used for 
the definition of the YM action. From the general discussion of subsection 3.2 it follows that they give equivalent extensions 
of abelian YM.

There are terms in δeq that are quadratic in the vector field v . Restoring the formal parameter u of degree 2, one can 
expand δeq in powers of u and get

δeq = δ + uδ−1 + u2δ−3 . (87)

From (86) they satisfy the following relations

δ2 = 0 ,

δδ−1 + δ−1δ = Lv ,

δδ−3 + δ−3δ + δ2−1 = 0 , (88)

δ−1δ−3 + δ−3δ−1 = 0 ,

δ2−3 = 0

The first two lines are the standard Cartan relations that make us to interpret δ−1 as the contraction operator; the third 
lines state that δ−1 squares to zero only up to ad(δ). This is an instance of the dgla introduced in [1] to build differential 
models of equivariant cohomology and was used in the BV context in [16].

Remark 6.3. Analogously to Remark 5.1 we can read from (84) and (85) the equivariant differential on the enlarged Costello 
complex (55). We can organize it as

deff
u = d+1 + ud−1 + u2d−3 , (89)
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where d+1 is the degree 1-differential described in (55). The operation d−1 lowers the degree by 1 and can be summarized 
by the following diagram

�0 �1 �2+ ⊕ H2− H3 H4

H0 H1 �2+ ⊕ H2− �3 �4

ιv ιv (1+2π−dK )⊕ιv π+ιv⊕π− P ιv P ιv

P ιv P ιv⊕P ιv

−(K ιv⊕K ιv ) −2(Kπ−ιv+ιvπ
− K )

π+(ιv−2dKπ−ιv )⊕π− P ιv
ιv

−(π+ιv K⊕Pπ−ιv K )

The last operation d−3 (the terms quadratic in v) lowers the degree by 3 and the only non-trivial operations are given by 
the following diagram

�0 �1 �2+ ⊕ H2− H3 H4

H0 H1 �2+ ⊕ H2− �3 �4

−2ιvπ
− K ιv

−2P ιv Kπ−ιv

By construction we know that

(deff
u )2 = (d+1 + ud−1 + u2d−3)

2 = uLv , (90)

so that we have the same generalized Cartan calculus as in (88).

Remark 6.4. Due to the dependence on the homotopy operator K , the equivariant operator deff
u is not a derivation. This can 

be checked on the Costello complex ignoring the contribution of zero modes. As a consequence, the effective action (83)
has non zero bracket with the cubic term 

∫
A3 so that the equivariant extension of the non abelian case cannot be obtained 

by the sum of (83) and the cubic term. The only possible approach is the computation of the BV-pushforward, which will 
involve all orders in perturbation theory. Due to degree considerations the general structure of δeq is the same as in (87), 
with δ being the effective BV differential defined by the (non equivariant) BV pushforward.

7. Summary

In this paper we considered two four dimensional BV theories: DW theory associated to BV manifold MDW and YM 
theory based on BV manifold MI R (see the text for the definitions). There exists a formal push-forward map from MDW

to MI R and thus on general ground we expect that the two theories are quasi-isomorphic at the level of observables. For 
example, a local simple observable in one theory can be mapped into something complicated and non-local in another 
theory. We do not know how much this formal statement is useful for actual calculations in one of the theories. In this 
paper we have performed the BV push-forward map for the case of abelian theories, and in the case of equivariant theory we 
obtain non-local corrections to the BV YM action. The equivariant extension of the BV formalism was originally introduced 
in [6] and in this setting upon an appropriate gauge fixing the residual BRST symmetries should realize the equivariant 
differential on the space of fields (or some version of equivariant differential). Such residual BRST symmetries may allow to 
perform the exact calculations for some theories and for some specific observables. Thus we hope that these new structures 
presented here can be useful for the calculations in the same fashion as the equivariant considerations help calculate the 
ordinary integrals of the closed differential forms. But this requires further study.

Another interesting result of this work is the homological generalization of Cartan calculus with the explicit constructions 
in terms of non-local operators. This structure requires further study and better understanding both at the level of the formal 
properties and at the level of concrete examples. It would be interesting to see if any of the standard considerations for the 
equivariant cohomology and equivariant localization can be generalized to this new setting.

Data availability

No data was used for the research described in the article.
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Appendix A. Hodge decomposition and relevant operators

In this appendix we collect the relevant properties of the Hodge decomposition and the related differential operators. All 
formulas are written for a 4d closed manifold 	4. Let d be the de Rham operator. We pick up the metric and introduce the 
inner product on differential forms

(α,β) =
∫

α ∧ �β , (91)

where � is the Hodge star operator with the property

�2ωr = (−1)rωr , (92)

where ωr ∈ �r(	4). We define the adjoint operator d† for the de Rham differential

(α,dβ) = (d†α,β) (93)

with the explicit definition given by

d† = − � d � . (94)

Next we define the Laplace operator

� = dd† + d†d , (95)

which is a self-adjoint operator �† = �. The Hodge decomposition for �r corresponds to the decomposition into three 
orthogonal spaces

�r = (Im d) ⊕ (Im d†) ⊕ (Harmr) , (96)

where (Harmr) = (ker �) stands for harmonic forms which can be identified with the de Rham cohomology. We denote 
by P the projector on (Harmr) and by (1 − P ) the projector to (Im d) ⊕ (Im d†). Away from (Harmr) the Laplace operator 
is invertible, thus whenever we write �−1 we assume that it is defined only on the (1 − P ) space. The operator �−1 is 
self-adjoint (�−1† = �−1) and we have the following obvious properties

[d,�] = 0 , [d†,�] = 0 , [d,�−1] = 0 , [d†,�−1] = 0 ,

where the relations with �−1 understood only for the (1 − P ) space. It is convenient to define the homotopy operator

K =
∞∫

0

dt e−t�d† , (97)

which is defined everywhere and satisfies the property

Kd + dK = 1 − P . (98)

If understood correctly K can be expressed as follows

K = �−1d† . (99)

On two forms we have the following projectors

π± = 1

2
(1 ± �) , (100)

which splits �2 = �2+ ⊕ �2− into self-dual and anti-self-dual two forms correspondingly. We have the following useful 
properties

π±� = �π± , π±�−1 = �−1π± (101)

and

�π± = 2π±dd†π± . (102)

Assume that 	4 admits the action of a vector field v (typically coming from some group action). On the differential 
forms v acts via the Lie derivative
16
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Lv = dιv + ιvd , (103)

where ιv is contraction of v with a differential form. We pick an invariant metric g such that Lv g = 0. In this case we have 
the following properties

[Lv ,d] = 0 , [Lv ,d†] = 0 , [Lv ,�] = 0 , (104)

and thus Lv preserves the subspaces in the corresponding Hodge decomposition. Moreover we have the following property

L†
v = −Lv . (105)
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