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a b s t r a c t 

In this paper, we propose and analyze an attack detection scheme for securing the physical layer of a net- 

worked control system (NCS) with a wireless sensor network against attacks where the adversary replaces 

the true observations with stationary false data. An independent and identically distributed watermark- 

ing signal is added to the optimal linear quadratic Gaussian (LQG) control inputs, and a cumulative sum 

(CUSUM) test is carried out using the joint distribution of the innovation signal and the watermarking 

signal for quickest attack detection. We derive the expressions of the supremum of the average detec- 

tion delay (SADD) for a multi-input and multi-output (MIMO) system under the optimal and sub-optimal 

CUSUM tests. The SADD is asymptotically inversely proportional to the expected Kullback–Leibler diver- 

gence (KLD) under certain conditions. The expressions for the MIMO case are simplified for multi-input 

and single-output systems and explored further to distil design insights. We provide insights into the 

design of an optimal watermarking signal to maximize KLD for a given fixed increase in LQG control 

cost when there is no attack. Furthermore, we investigate how the attacker and the control system de- 

signer can accomplish their respective objectives by changing the relative power of the attack signal and 

the watermarking signal. Simulations and numerical studies are carried out to validate the theoretical 

results. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of European Control Association. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Large distributed networked control systems (NCS) are getting 

eployed in various sectors such as manufacturing units, trans- 

ortation systems, power systems, robotics, etc. [38] . Such cyber- 

hysical systems (CPS) consist of embedded software, processors, 

ireless network, and other physical components. Along with their 

nnumerable advantages, there is an increasing concern regarding 

afety and security. In the past, there have been several incidents 

f attack on CPS, e . g ., the Stuxnet attack [22] , the attack on the

ewage systems in Australia [1] , the attack on the Davis-Besse nu- 

lear power plant in Ohio, USA [5] . Attacks on such systems can 

ause loss of production, financial loss, a threat to human safety, 

tc. Securing CPS is a great challenge and it relies on both infor- 

ation security measures and system-theoretic approaches [35] . 
� This work is supported by The Swedish Research Council under grants 2017- 

4053 and 2018-04396, and by the Swedish Foundation for Strategic Research. 
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n general, the cyber layer is secured by employing various infor- 

ation security measures such as cryptography and digital water- 

arking to ensure the secure transmission and trustworthiness of 

ata. However, information security measures alone cannot ensure 

he safety of the physical layer of the system, and they need to 

e complemented with system-theoretic approaches [35] , for ex- 

mple, with such an approach studied in this manuscript. 

There are two different attack strategies such as deception at- 

ack and denial of service (DoS) attack that adversaries usually ap- 

ly to attack the physical layer of CPS [28,36] . In the DoS attack, 

he attacker makes the data unavailable possibly by jamming the 

ireless network [37] . On the other hand, under the deception at- 

ack, the adversary feeds the NCS with false data either by replac- 

ng or distorting the true observations and/or the control inputs 

28,38] . In one scenario, the attacker records the true observations 

or a while and feeds the system with the recorded data along with 

ome harmful exogenous inputs to remain stealthy. Such an attack 

trategy is called a replay attack [28] . In another class of deception 

ttacks, also known as additive attacks or false data injection at- 

acks, attackers add attack signals to the true observations or con- 

rol signals [29,52] . 
l Association. This is an open access article under the CC BY-NC-ND license 
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In this paper, we study a class of deception attacks where the 

ttacker replaces the sensor measurements with fake observations 

hich are statistically similar to the true measurements, which 

e call measurement replacement attacks in general. A well- 

stablished methodology to achieve this is to transmit the fake 

bservations with a significantly stronger power than the sensor 

easurements. Therefore, the receiver in the wireless control sys- 

em decodes the fake data as opposed to the true measurements 

ince the received signal-to-interference and noise ratio is much 

arger for the fake measurements. Such measurement replacement 

ttacks are also known as sensor spoofing attacks [25,50,51] , often 

revalent in GPS systems. In all the attack strategies, the attacker’s 

bjective is to make the system unstable or force the system to 

perate at a state outside its desired normal behaviour, and at 

he same time to remain stealthy as long as possible to cause 

aximum damage [28,37,38] . 

.1. Related work 

Several different approaches are found in the literature to 

ecure CPS from attacks on the physical layer. In one approach, 

he security of the NCS is improved by designing attack resilient 

tate estimators which can estimate the true states with bounded 

rrors even if there is an attack [8,11,13] . In [7,33] , the authors

ave studied different attack strategies which will be useful to 

esign more resilient defence strategies. The defence strategies 

mployed for attack detection can be broadly classified into two 

roups, i . e ., passive and active. In the passive attack detection 

cheme, the innovation signal is normally used as a residue signal 

ith different statistical tests to detect attacks [14,30,34] . The 

assive detection schemes, in general, have an unsatisfactory prob- 

bility of detection in the presence of noise and uncertainties. To 

ddress this problem, a data-driven residual generator is designed, 

nd actuator attacks are detected by solving an H 2 /H ∞ 

mixed 

ptimization problem in [24] . 

On the other hand, active attack detection schemes add physical 

atermarking signals to the control inputs to improve the prob- 

bility of detection at the expense of an increased control cost 

10,19,26–28,38] . Our paper follows this approach to design a de- 

ection scheme for measurement replacement-type deception at- 

acks. The idea of physical watermarking is analogous to digital 

atermarking, which is used to authenticate the actual owner of 

igital content. In [27] , the process of detecting a replay attack by 

dding a random Gaussian and independent and identically dis- 

ributed (iid) watermarking signal to the linear quadratic Gaussian 

LQG) control inputs is introduced. The statistics of the innovation 

ignal changes in the presence of an attack, which is detected by 

 properly designed χ2 detector. The method is then improved in 

26] by optimizing the watermarking signal power, and in [28] by 

eneralizing the method and find the optimum watermarking sig- 

al in the class of Gaussian stationary processes. The χ2 based de- 

ection scheme is also studied for continuous-time systems in [48] . 

n the literature, there are attack detection schemes other than χ2 , 

uch as in [38] , authors design two residue signals whose time av- 

rages will converge to some finite values when the system is un- 

er attack and demonstrate the method under a laboratory setup 

n [19] . The method is further generalized by considering the sys- 

em model with a non-Gaussian process and observation noise in 

39] . Stealthy false data injection attacks are detected using phys- 

cal watermarking, and a non-linear auxiliary system in [15] . The 

roblem of false data injection attacks in the presence of packet 

rop is studied in [47] by the design of a joint Bernoulli-Gaussian 

atermarking. In [49] , the authors studied the design of com- 

letely stealthy FDI attacks and the necessary design conditions. 

he authors have also shown how an attacker can estimate the re- 

uired parameters to launch such an attack from the input-output 
2 
ata. In [10] , the authors reduce the increase of control cost by 

esigning a periodic watermarking signal. In the context of sensor 

poofing attacks, a secure trajectory planning problem is studied 

n [25] , where the true signal from the Global Navigation Satellite 

ystem (GNSS) is replaced by the false position data from the at- 

acker’s system. In [23] a measurement replacement type stealthy 

ttack mechanism on remote state estimation is studied. Most of 

he reported methods in the literature apply detection methods 

ased on a large window of data samples and do not specifically 

ddress the problem of sequential quickest detection of attacks in 

PS. 

In this paper, we have studied the problem of quickest se- 

uential attack detection. The research on quickest change detec- 

ion can be traced back several decades [40] . We have taken the 

on-Bayesian approach of quickest change point detection where 

he change point or the attack point is unknown but determinis- 

ic as studied extensively in [17,21,42–44] . In [44] , it is assumed 

hat the data before and after the change point is iid. However, 

n our problem, the test data does not remain iid after the attack 

ut is assumed to be stationary. To facilitate our analysis, we adopt 

he results in [17,21,42,43] , which show that, under certain con- 

itions, the cumulative sum (CUSUM) test provides the quickest 

hange detection, i . e ., it minimises the supremum of the average 

etection delay (SADD) for a fixed upper limit on the average run 

ength (ARL) to a false alarm for the general non-iid case. Since it 

s uncertain how long the system will be operational (especially 

n the case of an attack), the probability of false alarm (PFA) may 

ot be a practically useful metric in this scenario [16,46] . Further- 

ore, the SADD asymptotically converges to the inverse of the 

xpected value of the Kullback—;Leibler divergence (KLD) for the 

on-iid case, provided certain conditions are satisfied [17] . Note 

hat KLD is an important and widely used measure of the dispar- 

ty of two distributions, i . e ., post- and pre-attack distributions of 

he test data for our study. In our subsequent analysis, we refer to 

he CUSUM test using the conditional distribution for the non-iid 

ase as the optimal CUSUM test. If the CUSUM test is performed 

sing the unconditional distributions for the non-iid data, then we 

ention it as a sub-optimal CUSUM test. The latter may be appli- 

able when the analytic form of the conditional distributions may 

e intractable. 

.2. Motivations and contributions 

For the safety and security of CPS, it is of paramount impor- 

ance to detect the attack with minimum possible delay to min- 

mize the damage, thus favouring quickest sequential detection 

ased methods. The watermarking based detection techniques re- 

orted in [10,28,38] are not specifically designed for the quick- 

st detection of attacks. Thus we will here focus on the design 

nd analysis of the quickest sequential detection of measurement 

eplacement-type deception attacks, similar to Li and Ye [23] , Liu 

t al. [25] , Yılmaz and Arslan [50] , Zhang et al. [51] , by applying

atermarking to the control inputs while keeping the system per- 

ormance within a prescribed safety limit as recommended by the 

esilience requirements of CPS under attacks [6] . We consider a lin- 

ar NCS where the attacker can hijack the sensor nodes and feed 

 stationary random process as fake measurement data to the esti- 

ator. The time of the attack is unknown but deterministic. The 

lant is controlled by a LQG controller, which receives the esti- 

ated states from a Kalman filter (KF). The controller adds a sta- 

ionary but iid watermarking signal to the optimal control inputs 

nd performs a CUSUM based test on the joint distribution of the 

nnovation signal and the watermarking signal for the attack de- 

ection. We reported a preliminary study on this method for the 

calar case applying sub-optimal CUSUM test, in [37] . In the cur- 

ent paper, we extend the work in [37] significantly by considering 
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Table 1 

Notations. 

Symbol Description 

IR n The set of n × 1 real vectors 

IR m ×n The set of m × n real matrices 

A T Transpose of matrix or vector A 

N (μ, �) Gaussian distribution with mean μ and variance �

{ ·} ∪ { ·} Union of two sets 

� ≥ 0 � is positive semi-definite matrix 

� > 0 � is positive definite matrix 

x a,k , u n,k , etc. k th instant value of the corresponding variable 

[ ·] i j i th row and jth column element of a matrix 

λγ ,i , λe,i , etc. i th element of the corresponding vector 

| · | Determinant of a matrix or absolute value of a scalar 

tr(·) Trace of a matrix 

{ X } k −1 
1 { X i : 1 ≤ i ≤ k − 1 } 
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Fig. 1. Schematic diagram of the system during normal operation. 
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ore generalized system models, in-depth analysis of the optimal 

USUM test for the non-iid data, and provide extensive numerical 

imulations. Our main contributions are as follows. (i) We design 

 sequential quickest change detection test based on the CUSUM 

tatistics that minimises the SADD subject to a lower bound on the 

RL between two consecutive false alarms. To this end, we utilize 

he joint distribution of the innovation signal and the watermark- 

ng signal resulting in an increase in the KLD (and hence in a re-

uction in average detection delay), unlike some of the previous 

orks which consider only the innovation signal. We also present 

 sub-optimal sequential detection technique that is useful where 

he optimal CUSUM test may not be tractable. (ii) We derive ex- 

ressions of the expected KLD for the optimal CUSUM test and KLD 

or the sub-optimal case. An analysis of the behaviour of the KLD 

ith respect to the watermarking signal power and attack signal 

ower is performed, and some structural results are presented. (iii) 

e optimise the watermarking signal variance for a multi-input 

nd single-output (MISO) system that maximises the expected KLD 

optimal CUSUM test) or KLD (sub-optimal CUSUM test) subject to 

n upper bound on the increase in LQG control cost. Note: The pro- 

osed approach can be applied to detect a replay attack with a 

ew modifications, as reported in [32] . Additionally, stealthy addi- 

ive attacks [52] can also be detected with the proposed sequential 

ttack detection mechanism by using an additional non-linear aux- 

liary system [15] . A detailed analysis of this approach is currently 

nder investigation. 

.3. Paper organization 

The organization of the remaining part of the paper is as fol- 

ows. Section 2 describes the system model with the LQG con- 

roller and the attack strategy adopted for the paper. The mecha- 

ism of adding watermarking, the CUSUM test, and the associated 

etection delay are explained in Section 3 . All the theorems and 

emmas associated with multi-input and multi-output (MIMO) and 

ISO systems are provided in Section 4 . The optimization tech- 

ique to maximize the KLD by finding a proper watermarking sig- 

al variance is also illustrated in Section 4 . We present numerical 

esults in Section 5 to validate the theory. Section 6 concludes the 

aper. 

.4. Notations 

We have used capital bold letters, e . g ., A , B , etc. to specify

atrices and small bold letters, e . g ., x , y , etc. to specify vec-

ors, unless specified otherwise. Some special notations are given 

n Table 1 . 
3 
. System and attack model 

This section discusses the system model during the normal op- 

rations and under attack, and the attack strategy of the adversary 

onsidered in this paper. 

.1. System model during normal operations 

We consider the following structure of the NCS, see Fig. 1 for a 

chematic diagram of the complete system during the normal op- 

ration, 

 k +1 = Ax k + Bu k + w k . (1) 

ere x k ∈ IR 

n and u k ∈ IR 

p are the state and input vectors at the k th

ime instant respectively, whereas w k ∈ IR 

n ∼ N (0 , Q ) is an iid pro-

ess noise. A ∈ IR 

n ×n , B ∈ IR 

n ×p , and Q ∈ IR 

n ×n . Q ≥ 0 . Furthermore,

 k = Cx k + v k (2) 

here y k ∈ IR 

m is the sensor output or the observation vector at 

he k th time instant. Here C ∈ IR 

m ×n , and v k ∈ IR 

m ∼ N (0 , R ) is the

id measurement noise. We assume, R > 0 . The noise vectors v k 
nd w k are mutually independent, and both are independent of the 

nitial state vector, x k 0 . The observations y k are sent to the state 

stimator over a wireless network. We assume the system is sta- 

ilizable and detectable. We also assume that the system has been 

perational for a long time, thus the system is currently at steady 

tate. 

The Kalman filter (KF) uses the received sensor measurements 

nd the input signal information, and estimates the states as fol- 

ows. 

ˆ 
 k | k −1 = A ̂

 x k −1 | k −1 + Bu k −1 (3) 

ˆ 
 k | k = 

ˆ x k | k −1 + K γk (4) 

here ˆ x k | k −1 = E[ x k | �k −1 ] and 

ˆ x k | k = E[ x k | �k ] are the predicted

nd filtered state estimates respectively. E[ ·] denotes the expected 

alue and �k is the set of all measurements up to time k . The in-

ovation γk and steady state Kalman gain K are given by 

k = y k − C ̂

 x k | k −1 (5) 

 = PC 

T 
(
CPC 

T + R 

)−1 
(6) 

here P = E 
[
(x k − ˆ x k | k −1 )(x k − ˆ x k | k −1 ) 

T 
]

is the steady state error 

ovariance. P is the solution to the following algebraic Riccati 

quation 

 = APA 

T + Q − APC 

T 
(
CPC 

T + R 

)−1 
CPA 

T . (7) 

The control input u k is generated by minimizing the following 

nfinite horizon LQG cost 

 c = lim 

T →∞ 

E 

[ 

1 

2 T + 1 

{ 

T ∑ 

k = −T 

(
x 

T 
k Wx k + u 

T 
k Uu k 

)} ] 

(8) 
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Fig. 2. Schematic diagram of the system under attack. ȳ k = y k if k < ν, ̄y k = 

z k otherwise . 
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here W ∈ IR 

n ×n and U ∈ IR 

p×p are positive definite diagonal 

eight matrices. The optimum input appears as a fixed gain lin- 

ar control signal given by 

 

∗
k = L ̂ x k | k (9) 

 = −
(
B 

T SB + U 

)−1 
B 

T SA (10) 

here S is the solution to the following algebraic Riccati equation, 

 = A 

T SA + W − A 

T SB 

(
B 

T SB + U 

)−1 
B 

T SA . (11) 

.2. Attack strategy and changes in system model 

The attack strategy of the adversary considered in this paper 

s discussed here. We assume that the attacker has the following 

nowledge about the system. 

1. The attacker knows the system parameters A , B , C , Q , and R ,

and also the control policy, i . e ., L . 

2. The attacker’s system has sufficient energy to overpower the 

sensor nodes and make the wireless control receiver success- 

fully decode the false measurements instead of the true sensor 

data. 

3. The attacker does not have access to the control signal or the 

controller. 

Note that in the information security literature, it is common 

o assume that the adversary has full knowledge of the system pa- 

ameters and protocols according to the notion of “security with- 

ut obscurity” also known as Kerckhoffs’s principle, which essen- 

ially assumes that “the enemy knows the system” [41] . The at- 

acker’s knowledge of the system is a sensible assumption since 

he adversary can cause maximum damage under such a situa- 

ion, which is essential to detect as fast as possible. However, even 

hough we assume the adversary has complete knowledge of the 

ystem, to launch the measurement replacement attack, the at- 

acker mainly uses the knowledge of the distribution of the true 

bservation, as discussed below. 

emark 1. Assumption 3 has been incorporated because the con- 

rol signal or controller is typically harder to access or manipulate 

han sensors, which are often more exposed and may be more eas- 

ly accessible to an attacker. For instance, the measured plant may 

ave moving parts, and sensors may not be directly attached to 

he plant, thus necessitating wireless sensing and communication 

f measurements. On the other hand, the control signal or the con- 

roller can be physically protected, for example, by being located 

nside a secure control room or only being accessible through se- 

ure communication channels. This assumption allows us to focus 

n the security of sensors and measurements transmitted to the 

ontroller. However, it is important to note that this assumption 

ay not always be true, and protection against attacks on the con- 

rol signal or controller should also be considered. Our attack de- 

ection methods can be adapted to address this, but it in not in the 

cope of the current paper, see Remark 3 for an example. 

The objective of the adversary is to cause harm to the system 

y replacing the true sensor measurements y k by fake observa- 

ions z k , and at the same time remain stealthy. The adversary can 

chieve such a goal by overpowering the wireless sensor nodes. 

he measurement replacement type attacks studied in this paper 

re also called sensor spoofing attacks. Under the spoofing attack, 

he attacker sends the fake measurement signal to the receiver 

ith a significantly higher power than he sensor nodes. As a result, 

he receiver accepts the fake measurements as legitimate while 

ejecting the true measurements from the sensor nodes [25,50] . 
4

igure 2 shows a schematic diagram of the system under attack. 

he system is assumed to be normal till the time k < ν , and the

ttacker replaces the true observation y k by the fake observation 

 k at a deterministic but unknown time instant k = ν , and keeps 

n sending the fake observation for k ≥ ν . A similar attack strategy 

s also studied in [23] , where the stealthiness of the attack signal 

 k is evaluated in terms of the KLD between the distributions of 

he fake and true observations as follows, 

 ( f z , f y ) = E z 

[
f z ( z k ) 

f y ( y k ) 

]
. (12) 

ere f z (·) and f y (·) denote the distributions of the fake and true 

bservations, respectively. E z [ ·] means the expectation is taken 

ith respect to the distribution of the fake data. 

To summarize, the attacker’s objective is to replace the true 

easurement y k with fake data z k , which must appear statistically 

imilar to y k to remain stealthy, and at the same time to cause 

amage. In general, for linear control systems, the measurement 

ector y k can be modelled as an autoregressive process. However, 

n this paper, we have adopted the following simple fake observa- 

ion generator model using only a first-order Gauss-Markov autore- 

ressive process to mimic the sensor measurements, which sat- 

sfies both the requirements of an attack signal, stealthiness and 

amage quality. 

 k = A a z k −1 + w a,k −1 , (13) 

here z k ∈ IR 

m , and w a,k ∼ N (0 , Q a ) is the iid noise vector at the

 th time instant. Q a ∈ IR 

m ×m and Q a ≥ 0 . The stealthiness of the at-

ack signal z k , i . e ., D 

(
f z , f y 

)
(12) , can be varied by selecting differ-

nt values of A a and Q a . In addition to that, since the true mea-

urement y k is stationary, the attacker will keep the fake mea- 

urement z k stationary by taking the initial covariance of z k as 

 zz (0) � E 
[
z k z 

T 
k 

]
to remain stealthy, where E zz (0) is the solution 

o the following Lyapunov equation, 

 zz (0) = A a E zz (0) A 

T 
a + Q a . (14) 

The estimated states from the Kalman filter, ˆ x F , take the follow- 

ng form when the system is under attack, i . e ., k ≥ ν , 

ˆ 
 

F 
k | k −1 = A ̂

 x 

F 
k −1 | k −1 + Bu k −1 (15) 

ˆ 
 

F 
k | k = 

ˆ x 

F 
k | k −1 + K ̃

 γk (16) 

 k = z k − C ̂

 x 

F 
k | k −1 . (17) 

t is the same Kalman filter as given in (3) –(7) with the true obser-

ation y k replaced by the fake data z k . So, the defender does not 

eed to change anything for the Kalman filter during the attack. 

The attacker can break open the feedback loop while masking 

he system trajectories from the Kalman filter by following the 

escribed attack model. Such a capability is particularly danger- 

us in systems that are open-loop unstable, as seen in the fol- 

owing example. For illustration, the true and estimated states, i . e ., 

 k and ˆ x k | k , respectively, of System-A, which is open-loop unsta- 

le, is plotted in Fig. 3 , when the system is under attack from the

ime instant k = 500 . See the model parameters of System-A from 
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Fig. 3. True and estimated states of System-A. 
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ppendix H . The closed-loop system becomes unstable soon after 

he attack. In other words, Fig. 3 shows that the attack model in 

13) can make the closed-loop system unstable for an open-loop 

nstable system, which may cause a significant amount of damage 

o CPS, thus illustrating the severity of such an attack model and 

emonstrating the need for the quickest attack detection mecha- 

ism to limit the damage. 

emark 2. If an attacker replaces only a subset of the true mea- 

urements with fake data, the attack signal can be modelled as, 

 

s 
k = S a z k + ( I n − S a ) y k , (18) 

here z k and y k are given by (13) and (2) , respectively. Here the

i th element of the diagonal matrix S a will be 1 if the attacker

hooses to replace the i th measurement, and 0 otherwise. It can 

e easily shown that under the attack model (18) , the innovation 

ignal still remains dependent on the watermarking signal, simi- 

ar to the full measurement replacement attacks. Thus, we can ap- 

ly Theorem 1 or Corollary 1.1 to detect the attack after evaluating 

he mean and variance of the after-attack innovation signal. How- 

ver, a detailed discussion on such partial measurement replace- 

ent attacks is not included in the paper due to space constraints. 

dditionally, under replay attacks, the attacker commonly replaces 

ll the observations with previously recorded data to mask the ef- 

ect of the injection of exogenous signals to the true control inputs 

28,38] . In [32] , we have discussed how such replay attacks can be

odelled by (13) and detected by the proposed sequential attack 

etection method. 

emark 3. As mentioned in the introduction, there are several 

ther kinds of FDI attack models, such as stealthy data injection 

ttacks studied in the literature [52] . A well-studied approach is to 

dd an auxiliary system to the existing networked control system, 

hich will not allow the attacker to remain stealthy [15] . Once 

he stealthiness is broken, we can apply the sequential detection 

echanism studied in this paper for attack detection. A detailed 

iscussion on such an attack detection mechanism is beyond the 

cope of the current article and is a topic of future research. 

. Physical watermarking based defence mechanism and delay 

n detection 

This section proposes the physical-watermarking-based sequen- 

ial attack detection scheme and discusses the delay in the detec- 

ion process in different subsections. We perform the following hy- 

othesis testing to detect the presence of the attack. 

• H 0 : No attack. Estimator receives the true observation y k 

• H 1 : Attack. Estimator receives a fake observation z k , 

5 
We design a sequential algorithm that minimizes the average 

elay (SADD) in detecting an attack (choosing H 1 when H 1 is true) 

ubject to a lower bound on the ARL between false alarms (choos- 

ng H 1 when H 0 is true), see Section 3.4 . We need the following

nformation for the proposed detection scheme, the desired lower 

hreshold of ARL, i . e ., ARL h , the models of the test data generation

rocess under H 0 and H 1 , and the test data. 

.1. Selection of test data 

The innovation signals ( (17) and (5) ) under attack and no at- 

ack contain different information. Therefore, the innovation signal 

s the natural selection of information source for hypothesis test- 

ng. The probability density functions (PDF) of γk and 

˜ γk are de- 

oted as f γk 
( ̄γk ) and f ˜ γk 

( ̄γk ) respectively, where γ̄k = γk before at-

ack, and γ̄k = ̃

 γk after attack. Both the distributions f γk 
( ̄γk ) and 

f ˜ γk 
( ̄γk ) are stationary in nature. The probability of attack detection 

ill increase if the KLD i.e., D 

(
f ˜ γk 

, f γk 

)
, between the two distribu- 

ions f ˜ γk 
( ̄γk ) and f γk 

( ̄γk ) under H 1 and H 0 increases [42] , 

 

(
f ˜ γk 

, f γk 

)
= 

∫ 
IR m 

f ˜ γk 
( ̄γ ) log 

f ˜ γk 
( ̄γ ) 

f γk 
( ̄γ ) 

d ̄γ . (19) 

he adversary will always try to remain stealthy by keeping the 

LD low and thus cause maximum damage to the system. There- 

ore, the task of the control system designer is to maximize the 

LD, thus making it difficult for the attacker to remain stealthy. 

isturbances and measurement noise create uncertainty which 

avours the adversary. 

.2. Physical watermarking 

A well-adopted technique to detect attacks on the control sys- 

em is to add a watermarking signal, as described above [28,38] . 

he control designer thus adds a random watermarking signal e k 
o the optimal LQG control input u 

∗
k 
, see (20) . The actual values of

he watermarking signal will only be known to the controller and 

ot to the attacker. However, the attacker may know the statistics 

f the watermarking signal. 

 k = u 

∗
k + e k (20) 

here u 

∗
k 

is the optimal input (9) , e k ∼ N (0 , �e ) is an iid process,

nd �e ≥ 0 , and possibly non-diagonal matrix. In the literature, e k 
s also taken to be a stationary Gauss-Markov process by some re- 

earchers. However, for our work, we assume it to be iid. The addi- 

ion of e k provides a means to the controller to check the authen- 

icity of the measurement signal fed to the system. The distribution 

f the innovation signal will change substantially if the true mea- 

urement y k , which is correlated to e k −1 , is replaced by z k , which

s independent of e k −1 , even if the attacker knows the statistics of 

 k . 

Detection of the attack as early as possible is of utmost im- 

ortance to reduce the damage. The optimal Neyman-Pearson (NP) 

est [28] and the asymptotic test [38] reported in the literature for 

he attack detection do not address the challenge of earliest de- 

ection. To this end, we have adopted a non-Bayesian sequential 

etection scheme [42] to detect the attack at the earliest time in- 

tant. It is assumed the attack takes place at a deterministic but 

nknown point in time. Instead of using the innovation signals γk 

nd 

˜ γk alone, we use the joint distributions of γk and e k −1 , and 

 k and e k −1 for the test. We show the simulation results in the 

ection 5 that such a choice reduces the detection delay. The in- 

ovation signal during normal operation of the system and under 

ttack will take the following forms (21) and (22) , respectively, 

k = y k − C ̂  x k | k −1 

= CA 

(
x k −1 − ˆ x k −1 | k −1 

)
+ Cw k −1 + v k , (21) 
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 k = z k − C ̂  x 

F 
k | k −1 

= z k − C ( A + BL ) ̂ x 

F 
k −1 | k −1 − CBe k −1 . (22) 

t is evident from (21) and (22) that the innovation signal during 

he normal operation of the system will be uncorrelated with the 

atermarking signal. However, on the contrary, the innovation sig- 

al will be correlated with the watermarking signal during the at- 

ack. 

.3. Detection delay 

We use the average delay in the attack detection and the av- 

rage run length to a false alarm as the metrics to measure the 

erformance of the defence strategy. Here we adopt the theory of 

symptotic optimality of the CUSUM test when the signal before 

nd after the change (attack) may not be iid [42] . We start this

ection by introducing the definitions of relevant terms as follows. 

Average Detection Delay (ADD) : ADD is defined as 

DD ( ν) � E ν [ T H 1 − ν| T H 1 > ν] (23) 

here E ν [ ·] is the expectation taken with respect to the PDF under 

ttack, when the attack start point is ν . The attack start point ν
s assumed to be unknown but deterministic in nature, whereas 

he random variable T H 1 is the attack detection point in time or, 

n other words, the time instant of selecting Hypothesis H 1 by a 

ypothesis testing algorithm. 

Supremum Average Detection Delay (SADD) : SADD is defined 

s 

ADD � sup 

1 ≤ν< ∞ 

E ν [ T H 1 − ν| T H 1 > ν] . (24) 

verage Run Length (ARL) : ARL is defined as 

RL � E ∞ 

[ T H 1 ] (25) 

here E ∞ 

[ ·] is the expectation taken with respect to the PDF when

here is no attack, i . e ., ν = ∞ . ARL represents the average time be-

ween two false alarms. 

Ideally, we would like to have a detection scheme that will min- 

mize ADD for any value of ν for a fixed threshold on ARL. How- 

ver, such a detection scheme does not exist [42] . We can only 

nd a procedure that will minimize the worst-case ADD over all 

, i . e ., SADD, for a fixed threshold on ARL. As per the theory pre-

ented in [42] , CUSUM is one such procedure. The CUSUM pro- 

edure is asymptotically minimax in the sense of minimizing the 

orst case ADD, i . e ., SADD, for all ν > 0 , as ARL h → ∞ , and the

inimum SADD is 

ADD ∼ log (ARL h ) 

I 
(26) 

here I is a finite positive real number, ARL h is the threshold on 

RL, ARL ≥ ARL h , provided the following three conditions are satis- 

ed [42] : 

) 
1 

n 

λν
ν+ n 

P ν−−−→ 

n →∞ 

I, (27) 

i) sup 

0 ≤ν< ∞ 

ess sup P ν

{ 
M 

−1 max 
0 ≤n<M 

λν
ν+ n ≥

(1 + ε) I| �ν} −−−→ 

M→∞ 

0 , ∀ ε > 0 , and (28) 

ii) sup 

0 ≤ν<k 

ess sup P ν
{

n 

−1 λk 
k + n < I(1 − ε) | �ν

}
−−−→ 

n →∞ 

0 , 

∀ 0 < ε < 1 and k ≥ 0 (29) 
6

here P ν indicates the probability after the change and M is a pos- 

tive integer variable. Equation (27) implies that the left hand side 

ill converge to I in probability under P ν . Here �ν is the set of 

ll observations up until the change point ν . The variable λν
ν+ n is 

efined as 

ν
ν+ n � 

n + ν∑ 

k = ν+1 

log 
f ν,k 

(
X k | { X } k −1 

1 

)
f ∞ ,k 

(
X k | { X } k −1 

1 

) (30) 

here X k is the observation at the k th time instant and { X } k −1 
1 = 

 

X i : 1 ≤ i ≤ k − 1 } . In (30) , f ν,k (·|·) and f ∞ ,k (·|·) are the PDFs of the 

bservations at the k th time instant for an attack starting at ν and 

ithout an attack, respectively. 

For the case of attack detection using the joint distributions of 

nnovation and watermarking signals, 

ν
ν+ n = 

n + ν∑ 

k = ν+1 

log 
f ˜ γk , e k −1 

(˜ γk , e k −1 | { ̄γ } k −1 
1 , { e } k −2 

1 

)
f γk , e k −1 

(˜ γk , e k −1 | { ̄γ } k −1 
1 , { e } k −2 

1 

) (31) 

here f ˜ γk , e k −1 
(·|·) and f γk , e k −1 

(·|·) are the joint conditional dis- 

ributions of the innovation signal at the k th time instant 

nd watermarking signal at (k − 1) th time instant for the at- 

ack and no attack cases, respectively. { ̄γ } k −1 
1 = { γi : 1 ≤ i < ν} ∪ 

 ̃

 γi : ν ≤ i ≤ k − 1 } . The data ( γk , ˜ γk and e k −1 ) satisfy the mean er- 

odicity theorem because of their stationarity property. The pre- 

iously mentioned three conditions are satisfied under the mean 

rgodicity property of the data, and we can say I converges to the 

xpected value of the KLD between f ˜ γk , e k −1 
(·|·) and f γk , e k −1 

(·|·) as 

 → ∞ [17] . In other words, 

 → 

1 

n 

n + ν∑ 

k = ν+1 

log 
f ˜ γk , e k −1 

(˜ γk , e k −1 | { ̄γ } k −1 
1 , { e } k −2 

1 

)
f γk , e k −1 

(˜ γk , e k −1 | { ̄γ } k −1 
1 , { e } k −2 

1 

) , 
s n → ∞ , which converges to the following form, 

 

[ ∫ 
IR m + p 

log 
f ˜ γk , e k −1 

(˜ γk , e k −1 | { ̄γ } k −1 
1 , { e } k −2 

1 

)
f γk , e k −1 

(˜ γk , e k −1 | { ̄γ } k −1 
1 , { e } k −2 

1 

)
f ˜ γk , e k −1 

(˜ γk , e k −1 | { ̄γ } k −1 
1 , { e } k −2 

1 

)
d γ d e 

]
= E 
[
D 

(
f ˜ γk , e k −1 

, f γk , e k −1 
| { ̄γ } k −1 

1 , { e } k −2 
1 

)]
. (32) 

ere, the expectation is taken over the joint distribution of 

 ̄

γ } k −1 
1 , { e } k −2 

1 . 

.4. Optimal and sub-optimal CUSUM tests 

The following CUSUM test will minimize the SADD asymptoti- 

ally. The controller decides on hypothesis H 0 or H 1 based on the 

ollowing test, 

H 0 : Selected, when gd k < log (ARL h ) 

H 1 : Selected, when gd k ≥ log (ARL h ) , 

here the CUSUM statistics gd k is evaluated as 

d k = 

max 

( 

0 , gd k −1 + log 
f ˜ γk , e k −1 

(
γ̄k , e k −1 | { ̄γ } k −1 

1 , { e } k −2 
1 

)
f γk , e k −1 

( ̄γk , e k −1 ) 

) 

(33) 

here γ̄k = γk before attack, and γ̄k = ̃

 γk after attack, and 

ADD 

∗ → 

log (ARL h ) 

E 
[
D 

(
f ˜ γk , e k −1 

, f γk , e k −1 
| { ̄γ } k −1 

1 , { e } k −2 
1 

)] , 
as ARL h → ∞ . (34) 
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ere, the threshold ARL h is a design parameter, which needs to be 

et by the system engineer from the detailed knowledge of the sys- 

em and its vulnerabilities. A detailed study on the threshold selec- 

ion for the CUSUM algorithm can be found in [20] . Since before 

he attack the innovation signal γk and the watermarking signal 

 k −1 both are iids, and also independent to each other, the uncon- 

itional distribution is used in the denominator of (33) . For certain 

ases, the closed-form expressions for the conditional distributions 

ay not be found analytically, or it may be computationally too 

omplex. Under such scenarios, the following sub-optimal CUSUM 

est can be carried out using the unconditional distributions for 

equential attack detection, 

 k = max 

(
0 , g k −1 + log 

f ˜ γk , e k −1 
( ̄γk , e k −1 ) 

f γk , e k −1 
( ̄γk , e k −1 ) 

)
. (35) 

nder the assumption that the system has been operating un- 

er a sufficiently long time, the joint distributions of the inno- 

ation and watermarking signal converge to their stationary dis- 

ributions. Therefore, in what follows, we use only the station- 

ry PDFs for the sub-optimal case. Under the sub-optimal CUSUM 

est, the SADD will converge as follows, since I (26) converges to 

 

(
f ˜ γk , e k −1 

, f γk , e k −1 

)
. 

ADD → 

log (ARL h ) 

D 

(
f ˜ γk , e k −1 

, f γk , e k −1 

) , as ARL h → ∞ . (36) 

he test statistics g k is compared with the threshold log (ARL h ) as 

efore. 

.5. Problem statement 

The main problem to be addressed is threefold as follows. 

1. The first task is to derive the expressions of the log-likelihood 

ratios, log 
f ˜ γk , e k −1 

(
γ̄k , e k −1 | { ̄γ } k −1 

1 
, { e } k −2 

1 

)
f γk , e k −1 ( ̄γk , e k −1 ) 

and log 
f ˜ γk , e k −1 

( ̄γk , e k −1 ) 
f γk , e k −1 ( ̄γk , e k −1 ) 

, 

needed to implement the optimal (33) and sub-optimal 

(35) CUSUM tests, respectively. The optimal CUSUM test solves 

the following optimization problem. 

min 

T H 1 

SADD , s.t. ARL ≥ ARL h . 

2. The second task is to derive the analytical expressions 

of the KLDs, E 

[ 
D 

(
f ˜ γk , e k −1 

, f γk , e k −1 
| { ̄γ } k −1 

1 , { e } k −2 
1 

)] 
and 

D 

(
f ˜ γk , e k −1 

, f γk , e k −1 

)
, under the optimal and sub-optimal CUSUM 

tests, respectively, to find asymptotic performance limits of 

SADD as ARL → ∞ , see (34) and (36) . 

3. The third task is to find an optimal watermarking covariance 

matrix �e that solves the following optimization problem, 

min 

�e 

KLD , s.t. 	LQG ≤ J, 

where, 	LQG is the increase in the LQG control cost due to the 

addition of the watermarking (in the case of no attack), and J is 

a user defined threshold. Note that maximization of the KLD is 

equivalent to minimization of the asymptotic SADD (34) . 

. Main results 

We derive the expressions of the probability distributions, KLD 

nd 	LQG to evaluate the performance of the proposed detector 

nalytically. We first state the results for the general MIMO sys- 

ems in Section 4.1 , and then simplify the theorems for the MISO 

ystems in Section 4.2 to acquire better structural understanding. 

he technique to optimize the �e to minimize SADD for a given 

pper bound on the 	LQG is illustrated in Section 4.3 . 
7

.1. Multiple input multiple output systems 

We perform the following optimal CUSUM test to detect data 

eception attacks as stated in Theorem 1 . 

heorem 1. The optimal CUSUM test to detect the deception attack 

iven by (13) will take the following form, 

d k = max 

( 

0 , gd k −1 + log 
f ˜ γk 

(
γ̄k | { ̄γ } k −1 

1 , { e } k −1 
1 

)
f γk 

( ̄γk ) 

) 

, (37) 

here γ̄k = γk before attack, and γ̄k = ̃

 γk after attack , 

˜ γk | { ̄γ } k −1 
1 , { e } k −1 

1 

}
∼ N 

(
μ˜ γk | { ̄γ } k −1 

1 , { e } k −1 
1 

, �˜ γk | { ̄γ } k −1 
1 , { e } k −1 

1 

)
, 

˜ γk | { ̄γ } k −1 
1 , { e } k −1 

1 
= 

A a z k −1 − C ( A + BL ) ̂  x 

F 
k −1 | k −1 

− CBe k −1 , k ≥ ν

A a y k −1 − C ( A + BL ) ̂ x k −1 | k −1 − CBe k −1 , k < ν
(38) 

˜ γk | { ̄γ } k −1 
1 , { e } k −1 

1 
= Q a , and (39) 

k ∼ N 

(
0 , �γ

)
, 

γ = CPC 

T + R . (40) 

roof. The proof of Theorem 1 is provided in Appendix A . �

Therefore, the optimal CUSUM test utilising the conditional dis- 

ributions of the innovation signals before and after an attack is 

erformed employing Theorem 1 . The innovation signal γk before 

n attack is iid, and independent of the watermarking signal e k −1 . 

herefore, the unconditional distribution is used in (37) for γk . On 

he other hand, the innovation signal after an attack ˜ γk is de- 

endent on its previous values and watermarking signal values. 

herefore, the conditional distribution of ˜ γk is used in (37) , and 

he derived conditional mean and covariance are given in (38) - 

39) . The conditional variance is time-invariant. However, the con- 

itional mean is changing for every time step depending on the 

revious measurement, estimated state and watermarking signal 

alues. 

emark 4. The likelihood ratio in (37) will be evaluated using the 

nnovation signal γ̄k from the Kalman filter. γ̄k = γk if k < ν , and 

t will change automatically to γ̄k = ̃

 γk if k ≥ ν without any inter- 

ention from the defender. Similarly, y k and ˆ x k −1 | k −1 will change 

o z k and ˆ x F 
k −1 | k −1 

, respectively, after the attack, as given in (38) . 

owever, the attacker plays an active role by replacing the true 

bservation y k by the fake data z k at k ≥ ν . 

If we ignore the dependency of ˜ γk on its past values, we can 

implify the CUSUM test as stated in Corollary 1.1 . However, under 

uch an assumption, the CUSUM test will not remain optimal. 

orollary 1.1. The sub-optimal CUSUM test using the unconditional 

istributions to detect the deception attack given by (13) will take the 

ollowing form, 

 k = max 

(
0 , g k −1 + log 

f ˜ γk , e k −1 
( ̄γk , e k −1 ) 

f γk , e k −1 
( ̄γk , e k −1 ) 

)
, (41) 

here γ̄k = γk before attack, and γ̄k = ̃

 γk after attack , (42) 

e,k = 

[
γ T 

k , e 
T 
k −1 

]T ∼ N 

(
0 , �γe 

)
, 
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here �γe 
= 

[
�γ 0 m ×p 

0 p×m 

�e 

]
, and (42) 

 e,k = 

[˜ γ T 
k , e 

T 
k −1 

]T ∼ N 

(
0 , �˜ γe 

)
, 

here �˜ γe 
= 

[
�˜ γ −CB�e 

−�e B 

T C 

T �e 

]
. (43) 

roof. The proof of Corollary 1.1 is provided in Appendix B . �

Therefore, for the sub-optimal CUSUM test, the unconditional 

nd asymptotically stationary distributions of γk and 

˜ γk are used. 

uch a test can be applied when designing the optimal CUSUM 

est is intractable, e . g ., replay attack detection as discussed in [32] .

lso, for the optimal CUSUM test, the conditional mean needs to 

e evaluated at every time step, which increases the computational 

omplexity compared to the sub-optimal CUSUM test. 

emark 5. Both the test statistics gd k and g k will be close to zero

uring the normal operation, and they will gradually increase after 

he attack on average over time. 

To perform the sub-optimal CUSUM test as stated in 

orollary 1.1 , we need to evaluate the value of the covariance ma- 

rix of the innovation signal after the attack, ˜ γk . We can derive the 

alue of �˜ γ using the following lemma. 

emma 1. The covariance matrix �˜ γ of the innovation signal ˜ γ after 

he attack will take the following form, 

˜ γ = E zz (0) − C (A + B L ) E xz (−1) 

− [ C (A + B L ) E xz (−1) ] 
T + CB�e B 

T C 

T 

+ C (A + BL ) �x F z (A + BL ) T C 

T 

+ C (A + BL ) �x F e (A + BL ) T C 

T , (44) 

here E xz (−1) = 

∞ ∑ 

i =0 

A 

i KA 

i +1 
a E zz ( 0 ) (45) 

nd E zz (0) = E 
[
z k z 

T 
k 

]
. �x F z and �x F e are the solutions to the follow- 

ng Lyapunov equations, 

 �x F z A 

T − �x F z + KE zz (0) K 

T + A E xz (−1) K 

T 

+ 

(
A E xz (−1) K 

T 
)T = 0 , and (46) 

 �x F e A 

T − �x F e + ( I n − KC ) B�e B 

T ( I n − KC ) 
T = 0 . (47) 

ere A = ( I n − KC ) ( A + BL ) , which is assumed to be strictly stable. I n 
s a identity matrix of size n × n . 

roof. The proof of Lemma 1 is provided in Appendix C . �

The analytical formula to derive the value of the unconditional 

ariance �˜ γ of the innovation signal ˜ γ under an attack as pro- 

ided in Lemma 1 shows that �˜ γ depends on the attacker’s signal 

ower, the watermarking signal power, and a few other system pa- 

ameters. Furthermore, in addition to the sub-optimal CUSUM test, 

˜ γ is also needed for the derivation of the SADD under the opti- 

al and sub-optimal CUSUM tests. 

emark 6. Since A is assumed to be strictly stable, the Lyapunov 

quations of (46) and (47) will have unique solutions. If A and A a 

re not diagonalizable, then E xz ( −1 ) can be evaluated numerically 

y taking a large number of terms for the summation of (45) until 

he rest of the terms become negligible. 
8 
emark 7. In order to use the quickest detection scheme, the 

re and post-change pdfs must be known, which implies a pri- 

ri knowledge of A a and Q a , and may be impractical in a real-

stic setting. In such a case, A a and Q a can be estimated simul- 

aneously with the proposed detection scheme from the received 

utput (true or fake). Such a parameter estimation scheme can op- 

rate before and after the attack. However, before the attack, the 

stimates of A a and Q a will represent the healthy plant model. The 

stimates obtained can be then used simultaneously in the sequen- 

ial attack detection algorithm. In the following Section 4.2.2 , we 

ave discussed a simple scheme to estimate A a and Q a from the 

eceived observations for a MISO system. A more detailed analysis 

f simultaneous parameter estimation and sequential attack detec- 

ion algorithms is beyond the scope of the current manuscript. 

We can derive a closed-form formula for E xz (−1) (45) , which is 

sed in Lemma 1 , provided A and A a are diagonalizable, as given 

n the following corollary. 

orollary 1.2. With the assumption that A and A a are diagonalizable, 

 xz (−1) will take the following form 

 xz (−1) = U A T a U 

−1 
a A a E zz (0) . (48) 

ere U A is the eigenvector matrix of A , see (49) . �A = 

iag 
[
λA , 1 λA , 2 · · ·

]
is the eigenvalue matrix of A with the eigen- 

alues on its main diagonal. U a is the eigenvector matrix of A a , see 

50) . �a = diag 
[
λa, 1 λa, 2 · · ·

]
is the eigenvalue matrix of A a with the 

igenvalues on its main diagonal. 

 = U A �A U 

−1 
A . (49) 

 a = U a �a U 

−1 
a . (50) 

The i jth element of the T a matrix is as follows 

 

T a ] i j = 

[ T ] i j 

1 − λA ,i λa, j 

, (51) 

nd T = U 

−1 
A KU a . (52) 

roof. Proof of Corollary 1.2 is provided in the Appendix D . �

We evaluate the performance of the proposed attack detection 

echnique in terms of SADD, which is inversely proportional to the 

xpected KLD under the optimal CUSUM test and inversely propor- 

ional to the KLD under the sub-optimal CUSUM test, see (34) and 

36) . The expected KLD under the optimal CUSUM test and the KLD 

nder the sub-optimal CUSUM test can be derived using the fol- 

owing theorem. 

heorem 2. The expected KLD under the optimal CUSUM test 

E 

[ 
D 

(
f ˜ γk 

, f γk 
| { ̄γ } k −1 

1 , { e } k −1 
1 

)] )
, and the KLD under the sub-optimal 

USUM test 
(
D 

(
f ˜ γk , e k −1 

, f γk , e k −1 

))
will be as follows, 

 

[
D 

(
f ˜ γk 

, f γk 
| { ̄γ } k −1 

1 , { e } k −1 
1 

)]
= 

1 

2 

{
tr 
(
�−1 

γ �˜ γ

)
− m − log 

| Q a | 
| �γ | 

}
, and (53) 

 

(
f ˜ γk , e k −1 

, f γk , e k −1 

)
= 

1 

2 

{
tr 
(
�−1 

γ �˜ γ

)
− m − log 

| �˜ γ − CB�e B 

T C 

T | 
| �γ | 

}
. (54) 

roof. The proof of Theorem 2 is provided in Appendix E . �

Theorem 2 implies that the expected KLD and the KLD under 

he optimal and sub-optimal test, respectively, are largely depen- 

ent on the unconditional variances of the innovation signals �γ
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C
x 
nd �˜ γ before and after an attack. They also depend on a few sys- 

em and noise parameters. Furthermore, by subtracting (54) from 

53) , we get the difference between the expected KLD and the 

LD to be log 
| �˜ γ −CB�e B 

T C T | 
| Q a | , which corresponds to the optimal- 

ty gap between the optimal and sub-optimal CUSUM tests. From 

A.2) , exploiting suitable independence properties of the involved 

andom processes, it can be shown that �˜ γ − CB�e B 

T C 

T ≥ Q a . By 

igenvalue comparison of the positive semidefinite matrices �˜ γ −
B�e B 

T C 

T and Q a , we can say | �˜ γ − CB�e B 

T C 

T | ≥ | Q a | , which 

nsures the optimality gap is positive. 

Instead of taking the joint distribution of the innovation sig- 

al and the watermarking signal, if the optimal CUSUM test is per- 

ormed using the conditional distribution of the innovation signal 

nly, then the expected KLD will take the form of (55) , which can

e derived following the similar steps given in the Appendix A and 

ppendix E . An investigation of the KLD expression reveals that the 

umerator can be described as negative conditional differential en- 

ropy, which increases with further conditioning with respect to 

he watermarking signal, and the denominator (due to the Gaus- 

ian property of the distribution of the innovations) can be de- 

cribed as the conditional variance which decreases with further 

onditioning, thus resulting in the optimal KLD being larger than 

he expected KLD in (53). 

The increase in KLD results in quicker attack detection on av- 

rage due to (26) . A detailed mathematical proof of this argument 

as been omitted due to the space constraints. 

 

[
D 

(
f ˜ γk 

, f γk 
| { ̄γ } k −1 

1 

)]
= 

1 

2 

{
tr 
(
�−1 

γ

(
�˜ γ − E μ − E 

T 
μ

))
−m − log 

| �˜ γk | { ̄γ } k −1 
1 

| 
| �γ | 

}
, (55) 

here �˜ γk | { ̄γ } k −1 
1 

= Q a + ( A a C − C ( A + BL ) ) G ( A a C − C ( A + BL ) ) 
T + CB�e B 

T C T ,

 = 

k −1 ∑ 

i =2 

( A + BL ) 
i −1 B�e B 

T 
[
( A + BL ) 

i −1 
]T 

, and (56) 

 μ = ( A a C − C ( A + BL ) ) 

k −1 ∑ 

j=1 

j+1 ∑ 

i =2 

( A + BL ) 
i −1 KE γ e ( j − i + 1 ) B 

T 

×
[
( A + BL ) 

j−1 
]T 

[ ( A a C − C ( A + BL ) ) ] 
T + ( A a − C ( A + BL ) K ) 

×
k −1 ∑ 

j=1 

E γ e ( j ) B 

T 
[
( A + BL ) 

j−1 
]T 

[ ( A a C − C ( A + BL ) ) ] 
T 
, (57) 

 γ e ( j ) = 

{
−C ( A + BL ) A 

j−2 ( I n − KC ) B�e if j > 1 

0 otherwise. 
(58) 

From the SADD expression in (34) and the expected KLD ex- 

ression given in Theorem 2 , we can say that SADD will be a fi-

ite quantity even without the watermarking, provided �˜ γ � = �γ . 

n other words, attacks can be detected without watermarking, 

ut the detection delay will increase since the expected KLD re- 

uces as �e → 0 . In the numerical results section, we have shown 

ow SADD increases as 	LQG → 0 , which is equivalent to �e → 0 . 

s discussed before, the addition of watermarking also increases 

he control cost. The increase in the control cost during the nor- 

al system operation for the system model and the watermarking 

cheme considered in this paper is quantified in the following the- 

rem. 

heorem 3. The increase in the LQG cost ( 	LQG ) over the optimal 

QG cost, when there is no attack, due to the addition of the water- 

arking signal is related to the watermarking signal covariance ma- 

rix �e as follows, 

LQG = tr ( H�e ) (59) 
9 
here H = B 

T �L B + U (60) 

nd �L is the solution to the Lyapunov equation 

 

A + BL ) 
T �L ( A + BL ) − �L + L T UL + W = 0 . (61) 

roof. The theorem can be proved easily using Theorem 2 from 

o et al. [28] , considering the iid watermarking as a special case 

f the hidden Markov model (HMM). �

emark 8. Since the closed loop system ( A + BL ) is stable, the 

yapunov equation of (61) will have a unique solution. 

Theorem 3 indicates the increase in the LQG control cost due to 

he addition of the watermarking, i . e ., 	LQG is a linear function of

he elements of the covariance matrix �e of the added watermark- 

ng. The matrix H in (59) is dependent on the plant and controller 

arameters. Since the plant and the controller are assumed to be 

ime-invariant, H will be a constant matrix during the steady-state 

peration of the system. Therefore, the increase in the LQG con- 

rol cost is linear with respect to the covariance matrix, �e , of the 

atermarking signal. 

.2. Multiple input single output systems 

In this subsection, a simplified case of the MIMO system, i . e ., 

he MISO system is studied to get better structural understanding 

nd insights. Lemma 2 provides the expressions for the expected 

LD and KLD under the optimal and sub-optimal CUSUM tests, re- 

pectively, which are the simplified version of the KLD expressions 

rovided in Theorem 2 . The following attack model is assumed for 

he MISO system, which is a special case of the stochastic linear 

ttack model given in (13) , 

 

[
z 2 k 

]
= σ 2 

z , and 

 

[
z k z k −k 0 

]
= ρk 0 σ 2 

z , ρ < 1 . (62) 

herefore, A a = ρ , and Q a = 

(
1 − ρ2 

)
σ 2 

z . 

emma 2. For a MISO system, the expected KLD 

 

[ 
D 

(
f ˜ γk 

, f γk 
| { ̄γ } k −1 

1 , { e } k −1 
1 

)] 
under the optimal CUSUM test, 

nd the KLD D 

(
f ˜ γk , e k −1 

, f γk , e k −1 

)
under the sub-optimal CUSUM test 

ill be as follows, 

 

[
D 

(
f ˜ γk 

, f γk 
| { ̄γ } k −1 

1 , { e } k −1 
1 

)]
= 

1 

2 

{
σ 2 ˜ γ

σ 2 
γ

− 1 − log 
(1 − ρ2 ) σ 2 

z 

σ 2 
γ

}
, and (63) 

 

(
f ˜ γk , e k −1 

, f γk , e k −1 

)
= 

1 

2 

{
σ 2 ˜ γ

σ 2 
γ

− 1 − log 
σ 2 ˜ γ − CB�e B 

T C 

T 

σ 2 
γ

}
(64) 

here the attack model is given by (62) . σ 2 
γ and σ 2 ˜ γ are the scalar 

ariances of the innovation signals γk and ˜ γk before and after the 

ttack, respectively. Hence, 

2 
γ = CPC 

T + R , and (65) 

2 ˜ γ = M z σ
2 
z + tr ( M e �e ) (66) 

here R and M z are scalar quantities. M z and M e will take the fol- 

owing forms, 

 z = 1 − 2 C ( A + BL ) ( I n − ρA ) 
−1 K ρ+ 

 ( A + BL ) �z 
F ( A + BL ) 

T C 

T , and (67) 
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A

 e = B 

T ( I n − KC ) 
T �e 

x F ( I n − KC ) B + B 

T C 

T CB (68) 

here �z 
x F 

and �e 
x F 

are the solutions to the Lyapunov equations, 

 �z 
x F 
A 

T − �z 
x F 

+ KK 

T + A [ I n − ρA ] 
−1 KK 

T ρ

+ 

[
A [ I n − ρA ] 

−1 KK 

T ρ
]T = 0 , (69) 

nd 

 

T �e 
x F A − �e 

x F + ( A + BL ) 
T C 

T C ( A + BL ) = 0 

espectively. (70) 

urthermore, 	LQG coincides with Theorem 3 . 

roof. (63) and (64) can be derived directly by replacing the vari- 

bles from (53) and (54) by their MISO system counterparts. There- 

ore, only the derivation of σ 2 ˜ γ is provided in Appendix F . �

.2.1. Some structural results and their implications 

The expected KLD (63) and the KLD (64) from Lemma 2 are 

onvex functions in σ 2 
z . The convexity can be proved by taking 

he first and second derivative of (63) and (64) with respect to 

2 
z . The minimum value of the KLD will be achieved for σ ∗2 

z = 

σ 2 
γ

M z 

nd 

σ 2 
γ −tr ( ( M e −B T C T CB ) �e ) 

M z 
for the optimal and sub-optimal tests, re- 

pectively. Therefore, we can conclude the KLD is not always in- 

reasing with the attacker signal power σ 2 
z ; it depends also on the 

ower of the watermarking signal for the sub-optimal test. How- 

ver, σ ∗2 
z for the optimal test does not depend on the watermark- 

ng signal power. In fact, the attacker can modify σ 2 
z to σ ∗2 

z to 

educe the KLD which in turn reduces the probability of detec- 

ion. On the other hand, the control system designer can choose 

r 
((

M e − B 

T C 

T CB 

)
�e 

)
≥ σ 2 

γ for the sub-optimal case, so that the 

LD will always increase with the attacker signal power. How- 

ver, under the optimal test, the control system designer can not 

o much to avoid this situation. On the other hand, for the sub- 

ptimal test, the attacker needs to know �e to derive σ ∗2 
z . 

.2.2. Estimation of A a and Q a for a MISO system 

As given in (62) , for a MISO system, A a = 

E[ z k z k −1 ] 

σ 2 
z 

, and Q a =
1 − A 

2 
a ) σ

2 
z . Therefore, we need to estimate the variance σ 2 

z and 

he correlation E[ z k z k −1 ] from the received observations recur- 

ively. There are several recursive variance estimation algorithms 

vailable in the literature. However, we have used the following 

imple method [4] , 

ˆ 2 z,k = B z ̂  σ 2 
z,k −1 + 

1 − B z 

C z 
z 2 k , (71) 

ˆ 2 zz,k = B z ̂  σ 2 
z,k −1 + 

1 − B z 

C z 
z k z k −1 , (72) 

ere, ( ̂ ·) denotes the estimated quantity. σ 2 
zz,k 

= E[ z k z k −1 ] . 0 < B z <

 , and C z is used to reduce the bias in the estimated quantity. We

stimate A a and Q a from the beginning using the received obser- 

ations y k or z k and use the estimates for the CUSUM test. How- 

ver, as stated before, the estimates of A a and Q a will represent 

he healthy plant model before the attack. In Fig. 10 , we have com-

ared the ADD between the situations with known and estimated 

 a and Q a in the numerical results section. 
10 
.3. Optimum watermarking signal for MISO systems 

By increasing the watermarking power �e , we can improve the 

LD, but at the same time, it also increases the control cost, i . e .,

LQG becomes larger. Therefore, we want to find the optimal �e , 

ay �∗
e , which will maximize the KLD subject to an upper bound 

n 	LQG . The optimization problem is formulated as follows, 

ax 
�e 

E 
[
D 

(
f ˜ γk 

, f γk 
| { ̄γ } k −1 

1 , { e } k −1 
1 

)]
or 

ax 
�e 

D 

(
f ˜ γk , e k −1 

, f γk , e k −1 

)
(73) 

.t. 	LQG ≤ J (74) 

e ≥ 0 (75) 

here J is a user choice. The positive semi-definite �e matrix can 

e decomposed by the eigenvalue decomposition as 

e = V e �e V 

T 
e , (76) 

here V e is the orthonormal eigenvector matrix and �e is the di- 

gonal eigenvalue matrix. If we assume that V e is known apriori, 

hen we only need to find the optimum �e which is a diagonal 

atrix. The optimization problem is simplified using the following 

heorem. 

heorem 4. The optimum diagonal �e that will maximize the ex- 

ected KLD under the optimal CUSUM test or the KLD under the sub- 

ptimal CUSUM test subject to 	LQG ≤ J will have only one non-zero 

lement on its main diagonal. 

roof. The proof of Theorem 4 is provided in Appendix G . �

In the light of Theorem 4 , we search for the optimum �e in the

lass of rank one positive semi-definitive matrices of the following 

orm 

e = λe v e v 
T 
e , (77) 

here λe is the non-zero eigenvalue and v e is the corresponding 

igenvector. We modify (77) to represent it in the following form 

e = v λv T λ, where v λ = 

√ 

λe v e . (78) 

inally, the optimization problem becomes, 

ax 
v λ

E 
[
D 

(
f ˜ γk 

, f γk 
| { ̄γ } k −1 

1 , { e } k −1 
1 

)]
or 

ax 
v λ

D 

(
f ˜ γk , e k −1 

, f γk , e k −1 

)
(79) 

.t. 	LQG ≤ J. (80) 

he optimization problem can be solved using different methods 

uch as the sequential quadratic programming (SQP) [2] , the inte- 

ior point method [12] , etc. However, in this paper, we use a simple

radient descent based algorithm to solve the optimization prob- 

em (79) –(80) for a MISO system as follows. 

For the optimal CUSUM test, using (53), (77) , and (78) , we can

ay that maximization of E 

[ 
D 

(
f ˜ γk 

, f γk 
| { ̄γ } k −1 

1 , { e } k −1 
1 

)] 
with re- 

pect to v λ is the same as maximizing the following function with 

espect to v λ. 

v T 
λ

H KLD v λ
where 

H KLD = B 

T ( I n − KC ) 
T L e ( I n − KC ) B + B 

T C 

T CB 

(81) 

nd L e is the solution to the Lyapunov equation 

 

T L e A − L e + ( A + BL ) 
T C 

T C ( A + BL ) = 0 (82) 
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Algorithm 1 To find optimum �e . 

Initialize: s 0 , K μ, 0 , max _ iteration , and μ = 0 . 

for k = 1 : max _ iteration do 

Find the best solution v ∗temp for the set of equations, ∇ v λ
L (. ) = 

0 and 

∂ 
∂μ

L (. ) = 0 . 

if v T ∗temp Hv ∗temp − J � = 0 then 

μ ← μ + s k 
∂ 

∂μ
L (. ) 

else 

if H s ≥ 0 then 

v ∗
λ

← v ∗temp 

break 

else 

μ ← μ + K μ,k 

(
− ∂ 

∂μ
L (. ) 
)

end if 

end if 

end for 

�e = v ∗
λ

[
v ∗
λ

]T 

4

o

a

t

a

o

a

r

c

5

o

f

A

B

r

m

p

a

w

F  

a

s

5

i

t

t

M

a

L

5

t

c

e

s

ince the matrix A is assumed to be strictly stable, the Lyapunov 

quation of (82) will have unique solution. (81) and (82) can be 

implified further for the system with a relative degree higher 

han one, since CB = 0 . We take the negative of the cost function

o convert the optimization problem into a minimization one. We 

hen derive the Lagrangian, its first and second derivatives. Using 

81) and (59) the Lagrangian can be written in the following form 

 ( v λ, μ) = −v T λH KLD v λ + μ
(
v T λHv λ − J 

)
. (83) 

he first derivatives of L ( v λ, μ) with respect to v λ and μ take the 

ollowing forms 

 v λ L (·) = C c v λ, and (84) 

∂ 

∂μ
L (·) = v T λHv λ − J (85) 

here C c = −2 H KLD + 2 μH . (86) 

he second derivatives of L (·) with respect to v λ, i . e ., the Hessian

atrix H s , becomes 

 s = ∇ 

2 
v λ

L (. ) = C 

T 
c . (87) 

n the other hand, for the sub-optimal CUSUM test, we form the 

agrangian using (64), (68) , and (59) for a MISO system as follows. 

 ( v λ, μ) = −1 

2 

(
M z σ 2 

z + v T 
λ

M e v v λ + v T 
λ

B 

T C 

T CBv λ

σ 2 
γ

)
− 1 

2 

+ 

1 

2 

log 
(
M z σ

2 
z + v T λM e v v λ

)
− 1 

2 

log 
(
σ 2 

γ

)
+ μ

(
v T λHv λ − J 

)
, (88) 

here M e v is the first part of the right hand side of (68) , i . e .,

 e v = B 

T ( I n − KC ) T �e 
x F 

( I n − KC ) B . The first derivatives of L ( v λ, μ) 
ith respect to v λ and μ take the following forms, 

 v λ L (. ) = − 1 

σ 2 
γ

(
M e v v λ + B 

T C 

T CBv λ
)

+ 

M e v v λ

M z σ 2 
z + v T 

λ
M e v v λ

+ 2 μHv λ = C c v λ, and (89) 

∂ 

∂μ
L (. ) = v T λHv λ − J, (90) 

here C c = C ca + v T λM e v v λC cb , (91) 

 ca = 

(
1 − M z σ 2 

z 

σ 2 
γ

)
M e v − M z σ 2 

z 

σ 2 
γ

B 

T C 

T CB + 2 μM z σ
2 
z H , 

nd C cb = 2 μH − 1 

σ 2 
γ

M e v − 1 

σ 2 
γ

B 

T C 

T CB . 

The second derivative of L (·) with respect to v λ, i . e ., the Hessian

atrix H s , becomes 

 s = ∇ 

2 
v λ

L (. ) = C 

T 
ca + 2 M e v v λv T λC cb . (92) 

 primal-dual approach to find the optimum �e is provided in 

lgorithm 1 . 

The step sizes ( s k , K μ,k ) can be derived at every step using the

acktracking algorithm [3] , which ensures the convergence to some 

ocal optima since the Hessian matrices under both the tests are 

ndefinite matrices. Next, we briefly discuss the computational run- 

ime complexity of the proposed detection scheme. 
11
.4. Computational complexity 

The proposed technique is an online method. At run time, we 

nly need to evaluate gd k (37) and compare the test statistics with 

 fixed threshold at each time step. For our problem formula- 

ion, most of the heavy computations, such as matrix inversion 

nd computation of determinants, associated with the evaluation 

f the likelihood ratio (37) can be derived offline since the vari- 

nces are fixed, see (39) –(40) . The most expensive operations at 

untime are a few matrix-vector multiplications with the highest 

omputational complexity of O (np) , see (38) . 

. Numerical results 

In this section, we will illustrate and validate different aspects 

f the theorems and lemmas presented in this paper using two dif- 

erent system models. The two different systems are (i) System-A: 

 second-order open-loop unstable MISO system, and (ii) System- 

: A fourth-order open-loop stable MIMO system. The system pa- 

ameters are provided in Appendix H . System-B is a linearized 

inimum phase quadruple tank system [18] which has been used 

reviously to test a deception attack detection scheme in the liter- 

ture [10] . The model provided in [18] is a continuous-time model, 

hich is discretized with a sampling time of 2s, which is similar to 

ang et al. [10] . In our work, only the level sensor gains have been

re altered to make the magnitude of the product CB numerically 

ignificant. 

.1. Tradeoff between SADD and 	LQG under optimal CUSUM test 

Figure 4 shows the tradeoff between the SADD and the increase 

n the LQG control cost 	LQG for System-A and System-B under 

he optimal CUSUM test (37) . We plot the derived SADD using 

he theory developed in this paper, and the estimated SADD from 

onte-Carlo (MC) simulation, where �e is assumed to be diagonal 

nd all the watermarking signals have equal power. An increase in 

QG cost results in quicker detection. 

.2. Benefit of using the joint distribution 

The choice of the joint distribution of the innovation signal and 

he watermarking signal improves the KLD for a fixed 	LQG value 

ompared to the case where the joint distribution is not consid- 

red. Therefore, we achieve the same SADD at a lower cost. As 

hown in Fig. 5 , the same theoretical SADD can be achieved at 
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Fig. 4. SADD vs. 	LQG plot for System-A and System-B. 

Fig. 5. Comparison of SADD vs. 	LQG plots between the optimal CUSUM detection 

schemes using joint and single distributions for System-A. 

Fig. 6. KLD vs. σ 2 
z plots for System-A. 
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Fig. 7. SADD vs. 	LQG plot for System-A with optimum and non-optimum �e un- 

der optimal CUSUM test. 

Fig. 8. SADD vs. 	LQG plot for System-A under optimal and sub-optimal CUSUM 

tests. 
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g

4% (approx.) reduced 	LQG for System-A between the 	LQG 1 

nd 	LQG 2 points under the optimal CUSUM test. The percentage 

eduction in 	LQG is evaluated as 
	LQ G 2 −	LQ G 1 

	LQG 1 
× 100% . 

.3. Convexity of KLD with respect to σ 2 
z 

Figure 6 shows how the KLD varies with σ 2 
z for System-A un- 

er the optimal and sub-optimal CUSUM tests. The KLD appears to 

e a convex function with respect to σ 2 
z , and the minimum points 

re the same as predicted by our theory, see Fig. 6 . We assume,

LQG = 100 , and �e to be diagonal and both the watermarking 

ignals to have equal power. Figure 6 can also be interpreted as, 

or the selected 	LQG we can detect an attack equally well for a 

mall σ 2 
z as for a significantly larger σ 2 

z . 
12 
.4. Optimum vs non-optimum �e 

We optimize the �e under the optimal test using the method 

n Section 4.3 . Figure 7 shows the SADD vs 	LQG plots using the 

ptimized �e and a diagonal �e with equal signal power under 

he optimal CUSUM test. We plot the derived SADD using our the- 

ry and the estimated SADD from MC simulation for optimized �e 

nd non-optimized �e in the figure. It is evident that optimizing 

e helps in improving SADD for a fixed upper limit on 	LQG . On 

he other hand, we can comment that the same theoretical SADD 

an be achieved at 336% (approx.) reduced 	LQG for System-A be- 

ween the points 	LQG 1 and 	LQG 2 . 

.5. Optimal vs sub-optimal CUSUM 

Figure 8 illustrates the advantage of performing the optimal 

USUM test with conditional PDFs over the sub-optimal CUSUM 

est using the unconditional PDFs for System-A. For both the plots, 

ptimum �e has been used for the corresponding cases. Therefore, 

e can achieve lower SADD for the same 	LQG with the optimal 

USUM test compared to the sub-optimal one. The benefit is larger 

or the lower 	LQG values as per the figure. 

.6. Comparison between the proposed method with known and 

stimated A a and Q a and the optimal NP detector 

We have compared the optimal CUSUM test results for known 

nd estimated A a and Q a with the optimal NP detector based 

ethod reported in [26,28] . The watermarking signal is taken to 

e iid, and the �e is optimized for both the cases. In [28] , the op-

imal NP detector rejects the H 0 hypothesis in favour of H 1 if 

 NP,k ( γk , e k −1 , · · · ) = γ T 
k �

−1 
γ γk 
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Fig. 9. Test statistics under optimal CUSUM test and optimal NP test. 

Fig. 10. ADD vs. 	LQG plot for System-A under optimal CUSUM test with known 

and estimated A a and Q a and optimal NP test. 

w

�

L
T

P

w

α
t  

i

A

w

a

r

t

t

I

A  

a

c

a

d

c

Fig. 11. SADD vs KLD between fake and true observations for System-A. 	LQG = 5 . 
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F

−
(
γk − μNP,k 

)T (
�γ + � f 

)−1 (
γk − μNP,k 

)
≥ η (93) 

here μNP,k = −C 

k ∑ 

i = −∞ 

A 

k −i Be i , (94) 

f = C L f C 

T , and (95) 

 f = AL f A 

T + B�e B 

T . (96) 

he threshold η is estimated by simulation from 

 ∞ 

{ g NP,k (·) ≥ η} = α (97) 

here P ∞ 

denotes the probability under no attack condition, and 

is the threshold on the false alarm rate. The false alarm rate is 

he reciprocal of the ARL [31,45] . For the method in [28] , the ADD

s estimated as 

DD NP = E 
[
inf { k : g NP,k (·) ≥ η} ]. (98) 

Figure 9 illustrates how the test statistics gd k and g NP,k vary 

ith time k under the optimal CUSUM (37) with known A a and Q a 

nd NP tests for two random trial runs. The thresholds for the cor- 

esponding tests are also shown in the figure. When the test statis- 

ics crosses the threshold for the first time that is considered as 

he attack detection point. System-A is used for generating Fig. 9 . 

t should be noted that the CUSUM test minimizes the worst-case 

DD, i . e ., SADD for a fixed lower limit on ARL, which means that

lthough the detection delay may be higher for the CUSUM test 

ompared to the NP detector for a specific random trial, on aver- 

ge, its detection delay, SADD, will always be lower than the NP 

etector. 

Figure 10 shows the trade-off between the ADD and the in- 

rease in 	LQG for System-A under the optimal CUSUM test with 
13
nown and estimated A a and Q a , and the method reported in [28] .

e plot the estimated ADD applying the optimal CUSUM test on 

he simulated data for known and estimated A a and Q a , and the 

stimated ADD applying the test reported in [28] . The attack start 

oint was fixed at ν = 500 . We observe a slightly higher ADD for 

he estimated A a and Q a case compared to the completely known 

ituation. Notably, however, the proposed detection scheme with 

stimated A a and Q a performs better than the optimal NP de- 

ector. ADD NP is 61.5% (approx.) and 45.8% (approx.) higher than 

he ADD from the proposed method with known A a and Q a at 

LQG = 1 . 51 and 	LQG = 7 . 17 , respectively. The difference is eval-

ated as (ADD NP − ADD ) /ADD % . 

.7. SADD vs stealthiness comparison 

In Fig. 11 , we have plotted the SADD from the proposed detec- 

ion scheme with a known attacker system model vs. different de- 

rees of stealthiness of the attack signal using simulated data from 

ystem-A by varying A a and Q a . As discussed before, the stealthi- 

ess is measured by the KLD between the distributions of the fake 

nd true observations, i . e ., D 

(
f z , f y 

)
(12) . It is clear from Fig. 11 that

he proposed detection scheme can detect completely stealthy, i . e ., 

LD = 0 , measurement replacement-type attacks on the NCS. How- 

ver, the detection delay increases with increasing stealthiness, i . e ., 

ecreasing KLD. 

. Conclusion 

We have studied the design of the quickest attack detection 

cheme by adding optimal random watermarking signals, where 

he attacker replaces the true observations by false data, and tries 

o cause damage to the NCS. There is a trade-off between the de- 

rease in SADD and the increase in LQG control cost due to the 

ddition of the watermarking signal. We have shown a strategy to 

nd the optimum watermarking signal variance to minimize SADD 

or a given increase in LQG cost for a MISO system. We found that 

here is a single optimum eigenvalue and direction for the opti- 

al watermarking signal variance. The relative magnitudes of the 

ttack signal and the watermarking signal also play an important 

ole in attack detection or attack stealthiness. The insights pro- 

ided in the paper are useful to design a proper watermarking sig- 

al. The proposed sequential detection scheme can also be applied 

or replay attack detection after a few modifications. We have also 

ompared the optimal CUSUM test with the optimal NP test to de- 

ect a deception attack and found the optimal CUSUM test to be 

uicker. In future, we will extend our sequential attack detection 

cheme to detect other kinds of attacks as well, such as additive 

ttacks, DoS attacks, etc. We will also consider the real-time im- 

lementation of our attack detection scheme in a laboratory setup. 

uture work will also include the formulation of such attach detec- 
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ppendix A. Proof of Theorem 1 

Under the optimal CUSUM test, the likelihood ratio from 

33) can be simplified using the chain rule of probability as 

f ˜ γk 

(
γ̄k | { ̄γ } k −1 

1 , { e } k −1 
1 

)
f e k −1 

( e k −1 ) 

f γk 
( ̄γk ) f e k −1 

( e k −1 ) 
(A.1) 

 e k is iid and stationary, and γk and e k −1 are uncorrelated] 

= 

f ˜ γk 

(
γ̄k | { ̄γ } k −1 

1 , { e } k −1 
1 

)
f γk 

( ̄γk ) 
[provided f e k −1 

( e k −1 ) � = 0 ], 

here γ̄k = γk before the attack, and γ̄k = ̃

 γk after the at- 

ack. The conditional mean ( μ˜ γk | { ̄γ } k −1 
1 

, { e } k −1 
1 

) and covariance 

 �˜ γk | { ̄γ } k −1 
1 

, { e } k −1 
1 

) of ˜ γk are derived as follows. 

The innovation signal under attack from (22) can be written as 

A.2) after replacing z k by (13) , 

 k = w a,k −1 + A a z k −1 − C ( A + BL ) ̂ x 

F 
k −1 | k −1 − CBe k −1 . (A.2) 

pplying (15), (20), (9) in (16) we can write, 

ˆ 
 

F 
k | k = ( A + BL ) ̂ x 

F 
k −1 | k −1 + Be k −1 + K ̃

 γk −1 . (A.3) 

sing (A.3) recursively we get, 

ˆ 
 

F 
k | k = ( A + BL ) 

k −1 ˆ x 1 | 1 

+ 

k −1 ∑ 

i =1 

( A + BL ) 
i −1 

( Be k −i −1 + K ̄γk −i ) 

where γ̄k = γk for k < ν, γ̄k = ̃

 γk otherwise . (A.4) 

pplying (22) and (A.4) in (A.2) we get, 

 k = w a,k −1 + ( A a C − C ( A + BL ) ) 
(
( A + BL ) 

k −2 ˆ x 1 | 1 

+ 

k −2 ∑ 

i =1 

( A + BL ) 
i −1 Be k −i −1 + 

k −2 ∑ 

i =2 

( A + BL ) 
i −1 K ̄γk −i 

) 

− CBe k −1 + ( A a − C ( A + BL ) K ) ̄γk −1 . (A.5) 

ince we have assumed that the system started at k = −∞ , 

nd ( A + BL ) is strictly stable, we can say ( A + BL ) 
k −2 ≈ 0 , and 

A.5) will take the following form 

 k = w a,k −1 + ( A a C − C ( A + BL ) ) 
 

k −2 ∑ 

i =1 

( A + BL ) 
i −1 Be k −i −1 + 

k −2 ∑ 

i =2 

( A + BL ) 
i −1 K ̄γk −i 

) 

− CBe k −1 + ( A a − C ( A + BL ) K ) ̄γk −1 . (A.6) 

herefore, 

˜ γk | { ̄γ } k −1 
1 , { e } k −1 

1 
= E 
[˜ γk | z k −1 , ̂  x 

F 
k −1 | k −1 , e k −1 

]
= A a z k −1 − C ( A + BL ) ̂  x 

F 
k −1 | k −1 − CBe k −1 , and (A.7) 

˜ γk | { ̄γ } k −1 
1 , { e } k −1 

1 
= cov 

(˜ γk | z k −1 , ̂  x 

F 
k −1 | k −1 , e k −1 

)
= Q a . (A.8) 

urthermore, using (21) we obtain E [ γk ] = 0 and 

γk = y k − C ̂

 x k | k −1 = C 

(
x k − ˆ x k | k −1 

)
+ v k , and 

γ = E 
[
γk γ

T 
k 

]
= CPC 

T + R . (A.9) 
14 
ppendix B. Proof of Corollary 1.1 

The covariance matrix ( E 
[˜ γk e 

T 
k −1 

]
) between 

˜ γk (22) and e k −1 is 

valuated as, 

 

[˜ γk e 
T 
k −1 

]
= E 
[
−CBe k −1 e 

T 
k −1 

]
= −CB�e , (B.1) 

ince e k −1 is uncorrelated with z k and 

ˆ x F 
k −1 | k −1 

. 

ppendix C. Proof of Lemma 1 

The variance of the innovation signal ( �˜ γ ) when the system is 

nder attack is derived in this section. Using (22) , and applying the 

nowledge that e k −1 is uncorrelated with z k and 

ˆ x F 
k −1 | k −1 

, we get 

he following expression of �˜ γ , 

˜ γ = E 
[˜ γk ̃  γ T 

k 

]
= E 
[
z k z 

T 
k 

]
− C ( A + BL ) E 

[
ˆ x 

F 
k −1 | k −1 z 

T 
k 

]
−
(
C ( A + BL ) E 

[
ˆ x 

F 
k −1 | k −1 z 

T 
k 

])T + CB�e B 

T C 

T 

+ C ( A + BL ) E 
[ 

ˆ x 

F 
k −1 | k −1 

(
ˆ x 

F 
k −1 | k −1 

)T 
] 
( A + BL ) 

T C 

T . (C.1) 

e first derive the expressions of E 

[ 
ˆ x F 

k −1 | k −1 
z T 

k 

] 
(C.7) and 

 

[
ˆ x F 

k −1 | k −1 

(
ˆ x F 

k −1 | k −1 

)T 
]

(C.10) , and then use them to get the final 

xpression of �˜ γ (C.11) . E 

[ 
ˆ x F 

k −1 | k −1 
z T 

k 

] 
is calculated using (15) –(17) 

nd (20) as follows. First note that 

ˆ 
 

F 
k −1 | k −1 = Kz k −1 + A ̂

 x 

F 
k −2 | k −2 + ( I n − KC ) Be k −2 , 

here A = ( I n − KC ) ( A + BL ) . (C.2) 

e define E xz ( −k 0 ) � E 

[ 
ˆ x F 

k −k 0 | k −k 0 
z T 

k 

] 
, 

= E 
[(

Kz k −k 0 + A ̂

 x 

F 
k −k 0 −1 | k −k 0 −1 

+ ( I n − KC ) Be k −k 0 −1 

)
z T 

k 

]
, [using (110)] 

= KE zz ( −k 0 ) + A E xz ( −k 0 − 1 ) , 

(C.3) 

here e k −k 0 −1 and z k are uncorrelated, and E zz ( −k 0 ) is evaluated 

s follows. 

 zz ( −k 0 ) = E zz ( k 0 ) = E 
[
z k z 

T 
k −k 0 

]
, 

 zz ( −1 ) = E 
[
A a z k −1 z 

T 
k −1 + w a,k −1 z 

T 
k −1 

]
= A a E zz ( 0 ) , 

ecause w a,k and z k are uncorrelated. Similarly, 

 zz ( −2 ) = A a E zz ( −1 ) = A 

2 
a E zz ( 0 ) , and 

 zz ( −k 0 ) = A 

k 0 
a E zz ( 0 ) . (C.4) 

he system matrix A a is assumed to be strictly stable because the 

ttacker will always try to generate fake observations which are 

ounded and will mimic the true observations to remain stealthy. 

or a strictly stable A a , 

 

k 0 
a → 0 , as k 0 → ∞ . 

herefore, E zz ( −k 0 ) → 0 , as k 0 → ∞ . (C.5) 

sing (C.3) and (C.4) , we can write the expression of E xz (−1) as 

 xz ( −1 ) = KE zz ( −1 ) + A E xz ( −2 ) 

= KA a E zz ( 0 ) + A ( KE zz ( −2 ) + A E xz ( −3 ) ) 

after replacing E xz ( −2 ) using (111)] 

= KA a E zz ( 0 ) + A KA 

2 
a E zz ( 0 ) + A 

2 E xz ( −3 ) . (C.6) 

epeating the same technique, E xz ( −1 ) will take the following 

orm, 

 xz ( −1 ) = 

∞ ∑ 

i =0 

A 

i KC a A 

i +1 
a E x a ( 0 ) C 

T 
a . (C.7) 
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 xz ( −1 ) can be evaluated numerically by taking a large number 

f terms for the summation (C.7) , until the rest of the terms 

ecome negligible. E x F x F (0) = E 

[
ˆ x F 

k −1 | k −1 

(
ˆ x F 

k −1 | k −1 

)T 
]

is evaluated 

sing (C.2) as 

 x F x F (0) = K E 
[
z k −1 z 

T 
k −1 

]
K 

T + A E 
[

ˆ x 

F 
k −2 | k −2 z 

T 
k −1 

]
K 

T 

+ 

(
A E 
[

ˆ x 

F 
k −2 | k −2 z 

T 
k −1 

]
K 

T 
)T 

+ A E 

[ 
ˆ x 

F 
k −2 | k −2 

(
ˆ x 

F 
k −2 | k −2 

)T 
] 
A 

T 

+ ( I n − KC ) B E 
[
e k −2 e 

T 
k −2 

]
B 

T ( I n − KC ) 
T 
. (C.8) 

herefore, E x F x F (0) is the solution to the following Lyapunov equa- 

ion, 

 E x F x F (0) A 

T − E x F x F (0) + KE zz (0) K 

T 

+ A E xz (−1) K 

T + 

(
A E xz (−1) K 

T 
)T + 

 

I n − KC ) B�e B 

T ( I n − KC ) 
T = 0 , [(112) used] . (C.9) 

 x F x F (0) is divided into two parts, �x F z and �x F e which are in- 

ependent of the watermarking signal and the fake observations, 

espectively. �x F z and �x F e are the solution to the following Lya- 

unov equations, 

 �x F z A 

T − �x F z + KE zz (0) K 

T + A E xz (−1) K 

T 

+ 

(
A E xz (−1) K 

T 
)T = 0 , 

 �x F e A 

T − �x F e + ( I n − KC ) B�e B 

T ( I n − KC ) 
T = 0 , 

nd E x F x F (0) = �x F z + �x F e . (C.10) 

sing (C.4) and (C.10) , we can rewrite the expression for �˜ γ as, 

˜ γ = E zz (0) − C (A + B L ) E xz (−1) 

− [ C (A + B L ) E xz (−1) ] 
T + CB�e B 

T C 

T 

+ C (A + BL ) �x F z (A + BL ) T C 

T 

+ C (A + BL ) �x F e (A + BL ) T C 

T . (C.11) 

ppendix D. Proof of Corollary 1.2 

We can simplify E xz ( −1 ) with the assumption that both A and 

 a are diagonalizable. If A and A a are diagonalizable, then the i th 

lement of the expression for E xz ( −1 ) , i . e ., A 

i KA 

i +1 
a E zz ( 0 ) , will take

he following form, 

 A �
i 
A U 

−1 
A KU a �

i 
a U 

−1 
a A a E zz (0) [ A and A a replaced 

y eigenvalue decompositions, (49) and (50)] 

= U A �
i 
A T�i 

a U 

−1 
a A a E zz (0) , [ i = 0 , · · · ∞ ] (D.1) 

here T = U 

−1 
A KU a . T a is defined as 

 a � 

∞ ∑ 

i =0 

�i 
A T�i 

a . (D.2) 

he jk th element of the matrix T a will be as follows 

 

T a ] jk = 

∞ ∑ 

i =0 

[ T ] jk λ
i 
A , j λ

i 
a,k = 

[ T ] jk 

1 − λA , j λa,k 

(D.3) 

E 

[ 

1 
2 

( 

tr 

(
�−1 

γ �˜ γk | { ̄γ } k −1 
1 , { e } k −1 

1 

)
− m + 

= 

1 
2 

( 

−m + tr 

(
�−1 

γ �˜ γk | { ̄γ } k −1 
1 , { e } k −1 

1 
+ 

= 

1 
2 

{ 
tr 
(
�−1 

γ �˜ γ

)
− m − log | Q a | | �γ | 

} 
, [ u
15 
here [ . ] jk denotes the jth row and k th column element of a ma-

rix. λA , j and λa,k are the jth and k th diagonal element of the diag- 

nal matrices �A and �a respectively. We assume A and A a to be 

trictly stable, therefore, | λA , j | < 1 and | λa,k | < 1 . | . | denotes the

bsolute value of a scalar. Using (D.3) , we can write 

 xz ( −1 ) = U A T a U 

−1 
a A a E zz (0) . (D.4) 

ppendix E. Proof of Theorem 2 

This section provides the proof of the Theorem 2 under the op- 

imal CUSUM and sub-optimal CUSUM test. The KLDs for both the 

ases are derived using the general expression of KLD between two 

ultivariate normal distributions given in [9] . Using (38), (39) and 

A.2) , and considering that e k and w a,k are uncorrelated with z k 
nd ˆ x F 

k | k , and also with each other, we can write, 

˜ γ = Q a + E 

[ 
μ˜ γk | { ̄γ } k −1 

1 , { e } k −1 
1 

μT ˜ γk | { ̄γ } k −1 
1 , { e } k −1 

1 

] 
. (E.1) 

he expected KLD E 

[ 
D 

(
f ˜ γk 

, f γk 
| { ̄γ } k −1 

1 , { e } k −1 
1 

)] 
under the optimal 

USUM test is derived as follows using [9] , see (E.2) . 

 ̄

γ } k −1 
1 , { e } k −1 

1 

�−1 
γ μ˜ γk | { ̄γ } k −1 

1 , { e } k −1 
1 

− log 

∣∣∣�˜ γk | { ̄γ } k −1 
1 

, { e } k −1 
1 

∣∣∣
| �γ | 

) ] 

 

[ 
μ˜ γk | { ̄γ } k −1 

1 , { e } k −1 
1 

μT ˜ γk | { ̄γ } k −1 
1 , { e } k −1 

1 

] )
− log 

∣∣∣�˜ γk | { ̄γ } k −1 
1 

, { e } k −1 
1 

∣∣∣
| �γ | 

) 

(124)&(39) ] . 

(E.2) 

Similarly, the KLD D 

(
f ˜ γk , e k −1 

, f γk , e k −1 

)
under the sub-optimal 

USUM test will take the following form Duchi [9] , 

1 

2 

( 

log 

∣∣�γe 

∣∣∣∣�˜ γe 

∣∣ − p − m + tr 
(
�−1 

γe 
�˜ γe 

)) 

. (E.3) 

he term log 
| �γe | | �˜ γe | is evaluated as follows, 

�γe 

∣∣ = | �e | 
∣∣�γ

∣∣, [using (42)] (E.4) 

�˜ γe 

∣∣ = | �e | 
∣∣�˜ γ − CB�e B 

T C 

T 
∣∣, [using (43)] . (E.5) 

herefore, log 

∣∣�γe 

∣∣∣∣�˜ γe 

∣∣ = − log 

∣∣�˜ γ − CB�e B 

T C 

T 
∣∣∣∣�γ

∣∣ . (E.6) 

he term tr 
(
�−1 

γe 
�˜ γe 

)
is evaluated using (42) and (43) as, 

 r 
(
�−1 

γe 
�˜ γe 

)
= t r 

(
�−1 

γ �˜ γ + �−1 
e �e 

)
= t r 

(
�−1 

γ �˜ γ

)
+ p (E.7) 

pplying (E.6) and (E.7) in (E.3) , we get the final expression of the 

LD D 

(
f ˜ γk , e k −1 

, f γk , e k −1 

)
under the sup-optimal CUSUM test as 

1 

2 

{
tr 
(
�−1 

γ �˜ γ

)
− m − log 

| �˜ γ − CB�e B 

T C 

T | 
| �γ | 

}
. (E.8) 

ppendix F. Proof of Lemma 2 

This section provides the derivation of the expression of σ 2 ˜ γ for 

he MISO system. The model parameters of the fake measurement 

eneration system (13) ) for the MISO system will be as follows. 

 a = ρ , Q a = 

(
1 − ρ2 

)
σ 2 

z , and E zz (0) = σ 2 
z . (F.1) 



A. Naha, A. Teixeira, A. Ahlén et al. European Journal of Control 71 (2023) 100804 

T

s

E

σ

σ

w

a

�

w

A

�

A

U

a

σ

T

M

w

�

A

F

σ

A

p

�

w

e

w

o

m

m

s

a

T

p

l

p

w  

w

w

A

H

U

w

f

h

b

(

w

M

T

f

T

o evaluate σ 2 ˜ γ , we derive the expression for E xz (−1) for a MISO 

ystem using (45) as 

 xz (−1) = 

∞ ∑ 

i =0 

A 

i KA 

i +1 
a E zz (0) 

= 

∞ ∑ 

i =0 

A 

i K ρ i +1 σ 2 
z , [ E zz ( 0 ) = σ 2 

z , A a = ρ] 

= [ I n − ρA ] 
−1 K ρσ 2 

z , [ A is strictly stable, ρ < 1 ] . (F.2) 

2 ˜ γ will be as follows, 

2 ˜ γ = σ 2 
z − 2 C ( A + BL ) E xz (−1) + CB�e B 

T C 

T 

+ C ( A + BL ) �x F z ( A + BL ) 
T C 

T 

+ C ( A + BL ) �x F e ( A + BL ) 
T C 

T [using (44)] , (F.3) 

here �x F z and �x F e are derived from (46) and (47) respectively 

s follows. 

x F z = �z 
x F 
σ 2 

z (F.4) 

here �z 
x F 

is the solution to the following Lyapunov equation, 

 �z 
x F 
A 

T − �z 
x F 

+ KK 

T + A [ I n − ρA ] 
−1 KK 

T ρ

+ 

[
A [ I n − ρA ] 

−1 KK 

T ρ
]T = 0 . (F.5) 

x F e is the solution to the following Lyapunov equation, 

 �x F e A 

T − �x F e + ( I n − KC ) B�e B 

T ( I n − KC ) 
T = 0 . (F.6) 

sing (F.2) and (F.4) , the expression for σ 2 ˜ γ (F.3) can be rearranged 

s follows. 

2 
γ = 

(
1 − 2 C ( A + BL ) ( I n − ρA ) 

−1 K ρ

+ C ( A + BL ) �z 
x F ( A + BL ) 

T C 

T 
)
σ 2 

z 

+ 

(
C ( A + BL ) �xe ( A + BL ) 

T C 

T + CB�e B 

T C 

T 
)

= M z σ
2 
z + M t (F.7) 

he scalar quantity M t can be rearranged as follows. 

 t = 

( 

∞ ∑ 

t=0 

C ( A + BL ) A 

t ( I n − KC ) B�e B 

T ( I n − KC ) 
T 

×
[
A 

T 
]t 

( A + BL ) 
T C 

T 
)

+ CB�e B 

T C 

T 

= tr 

( 

∞ ∑ 

t=0 

B 

T ( I n − KC ) 
T 
[
A 

T 
]t 

( A + BL ) 
T C 

T C ( A + BL ) 

A 

t ( I n − KC ) B�e + B 

T C 

T CB�e 

)
= tr ( M e �e ) , (F.8) 

here M e = B 

T ( I n − KC ) 
T �e 

x F ( I n − KC ) B + B 

T C 

T CB . (F.9) 

e 
x F 

is the solution to the following Lyapunov equation, 

 

T �e 
x F A − �e 

x F + ( A + BL ) 
T C 

T C ( A + BL ) = 0 . (F.10) 

inally, we can write σ 2 ˜ γ as 

2 ˜ γ = M z σ
2 
z + tr ( M e �e ) . (F.11) 

ppendix G. Proof of Theorem 4 

The covariance matrix of the watermarking signal is decom- 

osed using eigenvalue decomposition as follows, 

e = V e �e V 

T 
e (G.1) 
16 
here V e and �e are the eigenvector matrix and the diagonal 

igenvalue matrix. In this section, we will prove that KLD is convex 

ith respect to the elements of �e for a fixed V e . We formulate the 

ptimization problem as follows. 

ax 
�e 

f ( �e ) = E 
[
D 

(
f ˜ γk 

, f γk 
| { ̄γ } k −1 

1 , { e } k −1 
1 

)]
or 

ax 
�e 

f ( �e ) = D 

(
f ˜ γk , e k −1 

, f γk , e k −1 

)
(G.2) 

.t. 	LQG ≤ J (G.3) 

nd λe,i ≥ 0 , ∀ i. (G.4) 

he proof for the optimal CUSUM case is as follows. 

Observing (53) and (44) , we can say that maximizing the ex- 

ected KLD with respect to �e is the same as maximizing the fol- 

owing portion of the expected KLD expression which is only de- 

endent on �e . 

f ( �e ) = C (A + BL ) �x F e (A + BL ) T C 

T + CB�e B 

T C 

T (G.5) 

here �x F e is given by (47) . Putting the solution of (47) in (G.5) ,

e get, 

f ( �e ) = C ( A + BL ) 

( 

∞ ∑ 

t=0 

A 

t ( I n − KC ) B�e B 

T 

( I n − KC ) 
T 
[
A 

T 
]t 
)
( A + BL ) 

T + CB�e B 

T C 

T 

= tr 
((

B 

T ( I n − KC ) 
T L e ( I n − KC ) B + B 

T C 

T CB 

)
�e 

)
= tr ( H KLD �e ) , (G.6) 

here L e is the solution to the following Lyapunov equation 

 

T L e A − L e + ( A + BL ) 
T C 

T C ( A + BL ) = 0 , and (G.7) 

 KLD = B 

T ( I n − KC ) 
T L e ( I n − KC ) B + B 

T C 

T CB . (G.8) 

sing (G.6) and (G.1) , we can rewrite the cost function as follows 

f ( �e ) = tr 
(
V 

T 
e H KLD V e �e 

)
(G.9) 

hich represents a line in the p dimensional hyperplane. There- 

ore, the cost function is convex in nature. 

The proof for the sub-optimal CUSUM case is as follows. We 

ave replaced all the B matrices by B e where B e = BV e and �e 

y �e to keep the structure of the KLD and σ 2 ˜ γ expressions as 

64) and (66) respectively. 

f ( �e ) = 

1 

2 

(
M z σ 2 

z + 

∑ n 
i =1 [ M eλ] ii λe,i 

σ 2 
γ

)
− 1 

2 

log 

(
M z σ 2 

z + 

∑ n 
i =1 [ M em 

] ii λe,i 

σ 2 
γ

)
(G.10) 

here M em 

= B 

T 
e ( I n − KC ) 

T �e 
x F ( I n − KC ) B e , and 

 eλ = B 

T 
e ( I n − KC ) 

T �e 
x F ( I n − KC ) B e + B 

T 
e C 

T CB e . (G.11) 

he �e 
x F 

is the same as in (F.10) . The first derivative of the cost 

unction with respect to the jth eigenvalue λe, j is as follows, 

∂ 

∂λe, j 

f ( �e ) = 

1 

2 σ 2 
γ

[ M eλ] j j (G.12) 

− 1 

2 

1 

M z σ 2 
z + 

∑ n 
i =1 [ M em 

] ii λe,i 

[ M em 

] j j . (G.12) 

he second derivative of the cost function is as follows, 



A. Naha, A. Teixeira, A. Ahlén et al. European Journal of Control 71 (2023) 100804 

t

w

H  

l

t

t

a

i

t

o

(

n

p

A

S

Q

U

S

A

A

R

 

 

[

[

[

[

[

[

[

[

[

[

[  

[

[

[

[

[

[

[

[

∂ 

∂λe,i 

∂ 

∂λe, j 

f ( �e ) = 

1 

2 

[ M em 

] ii [ M em 

] j j t 
2 
f , and 

 f = 

1 

M z σ 2 
z + 

∑ n 
i =1 [ M em 

] ii λe,i 

(G.13) 

here ∂ 
∂λe,i 

∂ 
∂λe, j 

f ( �e ) is the i jth element of the Hessian matrix 

 s = � 

2 
�e 

f ( �e ) . From (G.13) , it is clear that each column of H s is

inearly dependent on any other column of the matrix. This means 

hat we have all eigenvalues except one to be zero. Therefore, de- 

erminants of all the principle minors of H s are zero. Also, the di- 

gonal elements of H s are non-zero. So, we can conclude that KLD 

s convex in �e . 

Since the cost function under both the tests are convex, the op- 

imum �e , which maximizes the expected KLD or the KLD, will be 

n one of the vertices of the feasible region provided by (G.3) and 

G.4) . That is possible when the optimum �e contains only one 

on-zero element. This property of the convex function over a 

olyhedron set can be proved using Jensen’s inequality. 

ppendix H. System parameters 

For both the systems, ARL h = 10 0 0 . 

ystem-A parameters : 

A = 

[
0 . 75 0 . 2 

0 . 2 1 . 0 

]
B = 

[
0 . 9 0 . 5 

0 . 1 1 . 2 

]
C = 

[
1 . 0 −1 . 0 

]
 = diag 

[
1 1 

]
R = 1 W = diag 

[
1 2 

]
 = diag 

[
0 . 4 0 . 7 

]
σ 2 

z = 10 ρ = 0 . 5 

ystem-B parameters : 

 = 

⎡ ⎢ ⎣ 

0 . 968 0 0 . 082 0 

0 0 . 978 0 0 . 064 

0 0 0 . 917 0 

0 0 0 0 . 935 

⎤ ⎥ ⎦ 

B = 

⎡ ⎢ ⎣ 

0 . 164 0 . 004 

0 . 002 0 . 124 

0 0 . 092 

0 . 060 0 

⎤ ⎥ ⎦ 

C = 

[
5 0 0 0 

0 5 0 0 

]
R = diag 

[
0 . 5 0 . 5 

]
Q = diag 

[
0 . 25 0 . 25 0 . 25 0 . 25 

]
U = diag 

[
2 2 

]
W = diag 

[
5 5 1 1 

]
Q a = diag 

[
5 5 

]
 a = diag 

[
0 . 4 0 . 2 0 . 2 0 . 7 

]
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