

Högskoleingenjörsprogrammet i elektroteknik

Uppsal a universitets l ogotyp

ISRN UTH-INGUTB-EX-E-2023/002-SE

Examensarbete 15 hp

Mars 2023

Home automation using the Internet of Things

Ronghan Wu
Högskol eing enj örspr ogrammet i elek troteknik

Teknisk-naturvetenskapliga fakulteten

Uppsala universitet, Uppsala/Visby

Handledare: Anthon Jonsson Ämnesgranskare: Ping Wu

Examinator: Andrej Savin

Uppsal a universitets l ogotyp

Home automation using the Internet of Things

Ronghan Wu

Abstract

This bachelor’s thesis project is intended to study IoT (Internet of Things) and apply it to an

application in home automation. To this purpose, a prototype has been implemented that can

measure indoor temperature and humidity, display the measurement data on an LCD display,

and then send the measurement data to a cloud server for users to read online. The hardware

of the system consists of a digital temperature and humidity sensor (DHT11), a microcontroller

board (Arduino MKR 1000 Wi-Fi) and an LCD display. The measurement is made with the

sensor under the control by the microcontroller and shown on the LCD display; and at the same

time, the measurement data is sent via Wi-Fi (available on the board) to the cloud server to

display the data on a user interface on the cloud. The low power consumption and low cost as

well as security have been taken into account in the implementation.

The prototype has been tested and evaluated, and it is shown to work well as above mentioned.

Both Arduino IDE and Arduino IoT Cloud platform are strong development tools to extend the

capability and performance for home automation with IoT. Future work can be done on

developing a larger IoT network for home automation, a user-friendly interface for both PC and

mobile devices, and an indicator showing energy consumption and battery life.
Teknisk-naturvetenskapliga fakulteten, Uppsala universitet . U ppsal a/Vi sby . H andledare: Anthon Jonsson, Ämnesgranskare: Pi ng Wu, Exami nator: Andr ej Savi n

iii

Contents

1 Introduction .. 1

1.1 Background .. 1

1.2 Objectives .. 1

1.3 Tasks and scope ... 1

2 Theory ... 2

2.1 Communication protocol ... 2

2.1.1 Application layer ... 2

2.1.2 Transport layer ... 3

2.1.3 Network layer ... 3

2.1.4 Link layer ... 4

2.1.5 Physical layer .. 4

2.2 Internet of Things .. 4

2.2.1 Enabling technologies ... 5

2.2.2 Wi-Fi .. 5

2.2.3 Wireless sensor network .. 6

3 Implementation .. 7

3.1 Overview of the system ... 7

3.2 Hardware components .. 8

3.2.1 Arduino MKR1000 Wi-Fi ... 8

3.2.2 LCD Display Module .. 9

3.2.3 DHT11 digital temperature and humidity sensor ... 10

3.3 Software and development tools .. 11

3.3.1 Arduino IDE ... 11

3.3.2 Arduino IoT Cloud ... 11

3.3.3 Google Drive ... 12

3.3.4 PushingBox ... 12

3.4 Assembly and Execution .. 13

3.4.1 Temperature & Humidity display ... 13

iv

3.4.2 Google Sheets logging system .. 14

3.4.2.1 Google service ... 14

3.4.2.2 Configuring PushingBox ... 14

3.4.2.3 Software development .. 15

4 Result and Discussion ... 16

5 Conclusions and Further Work ... 18

5.1 Conclusion ... 18

5.2 Further development and improvements ... 18

References ... 19

v

Abbreviations

Acronym Definition

API Application programming interface

CoAP Constrained application protocol

HTTP Hypertext transfer protocol

IEEE Institute of electrical and electronics engineers

IoT Internet of Things

IP Internet protocol

IPv4 Internet protocol version 4

IPv6 Internet protocol version 6

LLC Logical link control

LLN Low-power and lossy network

MAC Medium access control

MQTT Message queuing telemetry transport

OS Operation system

TCP Transmission control protocol

UDP User datagram protocol

UI User interface

WPAN Wireless person area network

WSN Wireless sensor network

1

1 Introduction

1.1 Background
In the recent years, home automation has become popular. It is building automation for

home use, also called Smart Home or Smart House. Among the leading brands are, for

instance, Google, Amazon, Apple and Xiaomi. A home automation system could control

lighting, climate, entertainment systems, appliances, and even home security such as access

control and alarm systems. When connected with the Internet, home devices are important

constituent of IoT (Internet of Things). By using IoT, people would be able to monitor and

control local wireless sensor-actuator networks through Internet, by using cloud and edge

computing network anywhere in the world.

While there are many competing vendors, there are only few worldwide accepted industry

standards and the smart home space is heavily fragmented. Each manufacture wants their

own standard for customer stickiness and better profit. This leads to the idea of this this

project to learn and build a suitable home automation system in IoT direction, for users who

are away from home, for example on vacation. In this case, it is usually two things bother

people, home security and watering plants. The system will be able to monitor and configure

the devices in the networks via user interface. And it needs to be easy to expand when

needed.

1.2 Objectives
The objective is to develop a prototype for a simple, low-cost home automation system in

IoT direction. That requires a low cost but sufficiently good performance. A cloud-based

logging system to automatically capture important information has been taken. An

important thing is that devices should be energy efficient to have long enough endurance.

1.3 Tasks and scope
“Home automation using Internet of Things” is a huge topic. This project is conducted only

with the following specific tasks:

• Studying wireless protocols and IoT

• Building a local wireless sensor network

• Setting up for IoT use

• Connecting local wireless network to internet

• Making two-way communications between sensor nodes and end users

• Creating user interface for monitoring and controlling

2

2 Theory

2.1 Communication protocol
Communication protocol is a system of rules and conventions that allows different

communications systems to transmit information via a variety of physical communication

media, e.g., wired or wireless media. [1] The rules can be expressed by algorithms and data

structures. Protocols are structed in layers to form a protocol stack in modern protocol

design, that divides the task into smaller steps, each of which deals with a specific part, and

interacting with other layers in a small number of well-defined ways. It keeps each part of a

protocol to be relatively simple without a combinatorial explosion of cases.

The communication protocols in use on the Internet are called Internet Protocol Suite.

Internet protocol defines the format and the order of messages exchanged between

different communicating entities. It is divided into different layers, and each layer

implements a service. The most common Internet protocol stack includes Application layer,

Transport layer, Network layer, Link layer, and Physical layer.

The OSI model (Open Systems Interconnection model) is a conceptual model from ISO

(International Organization for Standardization) based on experience with networks that

predated the internet for a general communication with strict rules of protocol interaction

and tight layering. It is a 7-layers model which are: Application, Presentation, Session,

Transport, Network, Data Link, and Physical. The functions of each layer communicate and

interact with the layers above and below it. [2]

Meanwhile, in the IoT area, there is no universally agreed architecture. The most common

architecture is five layers: Application layer, Transport layer, Network layer, Link Layer and

Physical layer, which are listed specifically in Table 2.1, and explained in detail in the

following sub-sections.

Layer Protocol

Application HTTP

Transport TCP/UDP

Network IPv4/IPv6

Link Ethernet

Physical Bits “on the wire”

Table 2.1: A typical IoT internet protocol

2.1.1 Application layer
Application layer is the top layer in the 5-layer Internet protocol layer. One of the most

common Application layer protocol people uses every day is Hypertext Transfer Protocol

(HTTP). HTTP is a request-response protocol in the client-server computing model. The client

submits an HTTP to the server, and server provides content, such as HTML files, or functions.

3

2.1.2 Transport layer
Transport layer is for process-process data transfer. It has TCP and UDP, two different kinds

of main protocols. It provides logical communication between app processes running on

different hosts. More than one transport protocol available to apps.

UDP

UDP, the User Datagram Protocol, is a simple but also core protocol in Transport layer. It is

unreliable, has unordered delivery. No-frills extension of “best-effort” IP. No connection

establishment, simple, small header size, no congestion control. UDP segments maybe lost

and delivered out-of-order to app. UDP is suitable for applications such as streaming

multimedia apps, IoT sensor data.

TCP

TCP, the Transmission Control Protocol, is another main protocol in Transport layer. Unlike

UDP, TCP differs in several important features. TCP provides ordered data transfer, re-

transmission, error-checked, flow control, congestion control. Delivery between applications

running on hosts communicating via IP network. TCP is reliable, in-order delivery.

 UDP TCP

Reliability Unreliable Reliable

Data sequening Able Unable

Header size Small Large

Error checking Extensive error checking and
acknowledgment of data

Basic error checking
mechanism using
checksums

Speed Faster Slower

Table 2.2: Comparison of UDP and TCP protocols [3]

2.1.3 Network layer
Network Layer transports segment from sending to receiving host. The two key functions of

Network layer are forwarding and routing: Moving packets from router’s input to

appropriate output; Determining route taken by packets from source to destination. [4]

IP address (IPv4 and IPv6)

Internet Protocol address (IP address) is a numerical address to each device connected to

network. It has two main functions, host or network interface identification, and location

addressing.

Internet Protocol version 4 (IPv4) is the fourth version of the Internet Protocol. It uses a 32-

bit number address, which provides 4,294,967,296 (2^32) unique address. But dude to lots

of addresses are reserved for special use, the IPv4 address has been exhausted at the IANA

level since 2011. This leads to the next generation Internet Protocol version 6 (IPv6).

4

Internet Protocol version 6 (IPv6) is the most recent version of IP, and it was first introduced

December 1995. It increased the address size to 128 bits and can provide 3.403x10^38

(2^128) addresses, which is nearly infinite for the foreseeable future.

 IPv4 IPv6

Size of IP address 32-bit 128-bit

Addressing method Numeric address, separated
by dot (.)

Alphanumeric address,
separated by colon (:)

Check sum Yes No

Packet size 576 bytes and optional
fragmentation

1208 bytes without
fragmentation

Security Depending on applications Internet Protocol Security is
built in

Address configuration Manual or via DHCP
(Dynamic Host
Configuration Protocol)

Autoconfiguration stateless
address using ICMPv6
(Internet Control Message
Protocol version 6) or
DHCPv6

Mapping ARP (Address Resolution
Protocol) to map to MAC
address

NDP (Neighbor Discovery
Protocol) to map to MAC
address

Table 2.3: Comparison of IPv4 and IPv6 protocols [5]

2.1.4 Link layer
Link layer provides a node-to-node data transfer. It detects and possibly corrects errors that

may happen in the physical layer. IEEE 802 divides the link layer into two sublayers: Medium

access control (MAC) layer, and Logical link control (LLC) Layer. Together with 802.3

Ethernet, 802.11 Wi-Fi, and 802.15.4 ZigBee, these are the most common in Link layer.

2.1.5 Physical layer
Physical layer is the first and lowest layer in a five-layer Internet protocol. This layer is where

raw bits stream over a physical transmission medium.

2.2 Internet of Things
The Internet of Things (IoT) is physical objects or groups of such objects with technologies

that connect and exchange data with different devices and systems, over the Internet or

other communication networks. [6] Traditional fields such as embedded systems, control

systems, wireless sensor networks, and automation (both home and building automation),

they enable the Internet of Things collectively and independently. It is often called “smart

home” in the consumer market. Home automation can be based on hubs or platforms that

control devices and applications.

5

There are usually 2 kinds of IoT protocols, 3- and 5-layer architectures. Three-layer is the

most basic one, but when talking about research on IoT, we use more layered architectures

for finer aspects of Internet of Things.

2.2.1 Enabling technologies
There are many technologies and ways to enable IoT. To fulfill the requirements to

communicate between devices, several wired and wireless technologies can do. Different

accessible and range, such as Bluetooth, Zigbee, Wi-Fi, 5G, Ethernet. There are a variety of

communication protocols used for IoT.

Different technologies have different features. Below shows some of the most popular

communication technologies in IoT area:

 Frequency Data Rate Range
Power

Usage
Cost

Bluetooth LE 2.4Ghz
1, 2, 3

Mbps
90 meters Low Low

Zigbee 2.4Ghz 250 kbps 90 meters Low Medium

Z-Wave subGhz 40 kbps 30 meters Low Medium

2G/3G
Cellular

Bands
10 Mbps

Several

kilometers
High High

WirelessHART 2.4 Ghz 250 kbps 90 meters Medium Medium

Wi-Fi
subGhz,

2.4Ghz, 5Ghz

0.1-54

Mbps
<90 meters Medium Low

Table 2.4: Comparison of technologies [7]

The one this project used is Wi-Fi based, due to low cost and easy access.

2.2.2 Wi-Fi
Wi-Fi is a technology for local area networking based on the IEEE 802.11 standard. [8] It is

commonly used for digital devices to exchange data and information by radio waves,

typically for short range. Wi-Fi is one of the most commonly used technology in the world, in

home and smaller office networks to link devices to a wireless router to connect them to the

Internet.

Devices must use a certain common Wi-Fi version. Through the years since the first

generation of Wi-Fi was introduced in 1997, many different versions of Wi-Fi were adopted.

Generation IEEE standard Adopted
Maximum link

rate (Mbit/s)

Radio

frequency

(GHz)

Wi-Fi 6E 802.11ax 2020 574 to 9608 6

6

Wi-Fi 6 802.11ax 2019 574 to 9608 2.4/5

Wi-Fi 5 802.11ac 2014 433 to 6933 5

Wi-Fi 4 802.11n 2008 72 to 600 2.4/5

Wi-Fi 3 802.11g 2003 6 to 54 2.4

Wi-Fi 2 802.11a 1999 6 to 54 5

Wi-Fi 1 802.11b 1999 1 to 11 2.4

Wi-Fi 0 802.11 1997 1 to 2 2.4

Table 2.5: Wi-Fi generations

2.2.3 Wireless sensor network
A wireless sensor network (WSN) is a group of sensors that collect and wirelessly transmit

data to a central location. A WSN is useful in measuring data like temperature, humidity,

sound, light, etc.

A WSN is built of many nodes, which are connected to sensors. Each node has several parts:

micro controller, radio transceiver, power supply (usually battery).

The topology of a WSN can be different, depending on applications. From simple single-hop

network to more advanced multi-hop wireless mesh network. A hop means the number of

nodes that data packet needs to go through to destination. In single-hop network, the data

packet only pass through one router to its destination. In multi-hop networks, data packet

pass through multiple routers. The star network topology, which belongs to single-hop

network. In this project, single-hop network is used.

7

3 Implementation

3.1 Overview of the system
The system consists with 3 main parts, as shown in Figure 3.1. Arduino microcontroller

gathers and process temperature and humidity data from sensor. Sensor value can be

accessed via local LCD display, and red LED lights up if values are not to be expected (Figure

3.2). Then, Arduino sends data to PushingBox API server by using a specific device ID. This

device ID is the key to send data forwards. After that, PushingBox pushes data to Google

Drive, to log data on Google Spreadsheets. User can access logging value through

smartphone or pc from their Google account service.

Figure 3.1: System overview

Figure 3.2: Hardware overview

8

3.2 Hardware components

3.2.1 Arduino MKR1000 Wi-Fi
Arduino MKR1000 Wi-Fi (Figure 3.3: (a) Arduino MKR1000 Wi-Fi board, and (b) its pin layout))

is a basic IoT and pico-network board that combines the functionality of the Arduino MKR Zero

and the Wi-Fi Shield. It is powered by Arm Cortex-Mo 32-bit SAMD21, a powerful and low-

power processor. Also, ATSAMW25 Wi-Fi module focuses on power consumption and power

saving mode. [9]

The technical specifications relevant to the project:

• Digital I/O Pins: 8

• Analog Input Pins: 7 (ADC 8/10/12 bit)

• Analog Output Pins:1 (DAC 10 bit)

• Wi-Fi: ATWINC1500

• I/O Voltage: 3.3V

• Input Voltage (nominal): 5-5.5V

• Memory: 256KB Flash, 32KB SRAM

Figure 3.3: (a) Arduino MKR1000 Wi-Fi board

9

Figure 3.3: (b) MKR1000 Wi-Fi pin layout

3.2.2 LCD Display Module
HD44780 LCD Display (Figure 3.4) is driven by 5V and can display 2x16 characters. A 10k ohm

potentiometer is used to adjust backlight strength for power saving.

Figure 3.4: LCD Display Module

10

3.2.3 DHT11 digital temperature and humidity sensor
DHT11 (Figure 3.5) is a basic, low-cost digital temperature and humidity sensor. It is based

on a capacitive humidity sensor and a thermistor to measure and sends a digital signal on

the data pin. It can measure humidity value for 0-100% with 2-5% accuracy, and

temperature for -40 to 80 ℃ with +-0.5 ℃ accuracy. 2.5 mA max current use during

conversion (while requesting date). The only downside is that it has 0.5 Hz sampling rate,

which means it can only capture data every 2 second. But for home use, it suits very well.

[10]

Figure 3.5: DHT11 temperature & humidity sensor

11

3.3 Software and development tools

3.3.1 Arduino IDE
Arduino IDE (Integrated Development Environment) (Figure 3.6) is Arduino official text

editor for writing code and series monitor. It connects to the Arduino hardware to upload

programs and communicate with them. [11]

Figure 3.6: Arduino IDE layout

3.3.2 Arduino IoT Cloud
Arduino IoT Cloud (Figure 3.7) is an application to make IoT project in a quick, easy and

secure way. It can connect multiple devices to each other and allow them to exchange real-

time data. It can also monitor them from internet by using available user interface, such as

web browser and apps. Arduino IoT Cloud is also fully compatible with Arduino ecosystem.

One can generate a template code in Arduino IoT Cloud and then edit and upload to board

using the web editor. [12]

Figure 3.7: Arduino IoT Cloud widgets in a dashboard

12

3.3.3 Google Drive
Google Drive (Figure 3.8) is a file storage and synchronization service developed by Google.

Google Drive allows users to store files in the cloud, synchronize across devices, and share

files. Google Drive includes Google Docs, Google Sheets, and Google Slides, which are a part

of the Google Docs Editors, permits collaborative editing of documents, spreadsheets,

presentations, and so on. This project will focus on Google Sheets, to store sensor data in

the cloud. [13]

Figure 3.8: Google Drive and its service

3.3.4 PushingBox
Pushing Box (Figure 3.9) is a cloud that can send in-real-time notifications based on API calls.

Combine with Google Drive, it allows data to be palatable to Google Sheets. [14]

The need for using the PushingBox API is to turn HTTP transmitted data into Google

Compliant HTTPS encrypted data.

Figure 3.9: PushingBox used with the Arduino

13

3.4 Assembly and Execution

3.4.1 Temperature & Humidity display
In this project, Arduino IDE is used to edit and upload code. It is viable within few changes,

to convert code to Arduino IoT Cloud to be able to execute more function.

To start, plug the LCD in the breadboard and then connect it to the Arduino MKR 1000 board

by the following schematic. Pin3 is connected with a 10k ohm potentiometer to adjust

backlight strength level for power saving. Then connect the DHT11 sensor to ground and to

+5V and to Arduino board. A red LED is connected to give an alarm light when room

temperature is higher than expected.

To set up code, the DHT library from Adafruit is used. [15] By default, LCD display outputs

Celsius degree, but can also change to Fahrenheit simply by modifying code.

Figure 3.10: Fritzing schematic of entire system, UNO considering as MKR1000

14

3.4.2 Google Sheets logging system

3.4.2.1 Google service
To begin, there are a few steps need to be done.

Signing up a Google account. Then create a new Google Sheets. This spreadsheet will be

populated by DHT sensor values by PushingBox. The device ID (URL key) needs to be copied

and saved, that’s the key in the URL between the “/d” and the “/edit” of the spreadsheet

(Figure 3.11).

Figure 3.11: Device ID (URL key) and Wi-Fi setup

After that, create a Google App Script which will process sensor data and populate the

spreadsheets. The device ID saved previously needs to paste into the correct line in the

Google Script code. Then publish, deploy as a web app.

3.4.2.2 Configuring PushingBox
In the PushingBox, select “Add a Service” and “CustomURL Service”. Root URL would be

Google App Script address saved in the first step. Method chooses “GET”. (Figure 3.12 (a))

After that, creating a scenario for the service. This can be done via “My Scenario”. Using

“GET” method, and list all the sensor data variables need to be posted. Here we want

“humidityData”, “celData”, “fehrData”, “hicData”, and “hifData”, statement begins with “?”

to indicate the method we use is “GET”.

By that, PushingBox can receive sensor value sending from Arduino via Wi-Fi, and then

pushes forwards to Google Drive.

15

Figure 3.12: (a) CustomURL Service settings

Figure 3.12: (b) Scenarios of pushing data to Google Sheets

3.4.2.3 Software development
An addition Arduino library WiFi101 needs to download and update MRK 1000 board with

newest firmware. [16] This is essential otherwise some boards with older firmware may not

read data correctly.

In the coding part, “SPI” library is used, this allows us to set up Wi-Fi connection settings and

also PushingBox API server. Because of free version PushingBox can only send 100

notifications a day, so we want to make the log interval longer enough to cover a whole day,

that would be 15 minutes (90000ms) per logging. “client.connect()” and “client.stop();” need

to be added to make sure connection gate can open properly in each data sending to

PushingBox.

16

4 Result and Discussion
The development of the system in this project resulted in an accuracy sensor data output

and cloud logging system for IoT purposes.

The system consists of a sensor node with Wi-Fi connection ability. The sensor node in this

project is built by Arduino MKR1000 board, DHT11 temperature & humidity sensor, and an

LCD monitor. Temperate and humidity data be captured and shows on LCD monitor. User

can get notification when red LED lights up if temperate is higher than required

temperature. (Figure 4.1) Sensor data send to PushingBox API via Wi-Fi, and converting to

Google Drive compatible form to auto logging every 15 minutes. It is viable to check

connection information and data value through Arduino IDE locally, mostly for testing and

maintain purpose.

Figure 4.1: Finished running project

Arduino coding and internet connection knowledge has been studied. By testing and

comparing with Arduino IoT Cloud, Arduino IDE can do most of the work and can convert

code to Arduino IoT Cloud if further bidirectional interaction is needed. Due to the limited

number of pins on Arduino MKR1000 board and many of the pins used for the LCD monitor,

it can’t connect more devices for more functions.

PushingBox with Google Drive can easily set up a connection to record data. Due to free

version of service can only send 100 pushes each day, logging interval has to be at every 15

minutes, which is not optimal. Within this project goal, it is sufficient for a prototype. (Figure

4.2)

17

Figure 4.2: Sensor data logging on Google Sheets

This single node can be powered by battery for mobile use. Power consumption is not

tested, and can only make an estimation on paper.

18

5 Conclusions and Further Work

5.1 Conclusion
The goal with this project was originally developing a wireless sensor network system with

IoT purposes.

The finished system is a single sensor network node which can communicate with cloud

service through Wi-Fi protocol. The system is built around Arduino MKR1000 board, with

help of PushingBox and Google Drive, together to perform an environment alarming and

logging system. The system performs well with a reasonable Wi-Fi range for home use,

according to MRK1000 Wi-Fi specs.

The system was about to use Zolertia RE-mote, together with Contiki and Ubidots.

Unfortunately, the method was no longer fully supported. Which is the reason why Arduino

was chosen to implement this project.

5.2 Further development and improvements
During the process of this project, some additional ideas and scopes came up for further

development. Due to the time limitation, they will be put for future improvements and

investigation. Some of the thoughts have been pointed out in section 4 Result and

Discussion. These are:

(1) Work with other Arduino board to execute the similar IoT purposes use. Due to the

imitated number of digital input/output pins on MKR 1000 (most pins are used for LCD

monitor), there are limited hardware to connect to make more functions in a single node.

Arduino Uno with Wi-Fi module is a common combination for simple home automation

project for example. They can be even lower cost, and with better compatibility for more

existed project to convert to IoT purposes.

(2) Converting project to Arduino IoT Cloud. During pre-study and testing, Arduino IoT Cloud

has been found a power tool for home automation with IoT purpose. It has an easy and

clean interface for user to be able to interact with their devices. It is compatible with existed

Arduino codes, with minor changes. It is viable to set the project in Arduino IoT Cloud, and

changing required danger temperature via Arduino IoT Cloud phone APP, for example.

(3) Investigate the possibility to find a more energy efficient way to implement current

project purpose. Power consumption during the system running has not been tested. This is

important for user to know how long a battery can last while using portably.

(4) Due to limitation of PushingBox, only 100 notifications can be sent to Google Drive for

logging. Some other API service can be chosen for better possibility to record data more

frequently and easily.

19

References

[1] "Communication protocol," [Online]. Available:

https://en.wikipedia.org/wiki/Communication_protocol. [Accessed 15 May 2023].

[2] "OSI model," [Online]. Available: https://en.wikipedia.org/wiki/OSI_model. [Accessed

15 May 2023].

[3] M. Cook, "TCP vs. UDP: What’s the Difference?," 24 Oct 2017. [Online]. Available:

https://www.lifesize.com/blog/tcp-vs-

udp/#:~:text=TCP%20is%20a%20connection%2Doriented,is%20only%20possible%20wit

h%20TCP. [Accessed 15 Apr 2023].

[4] "Internet Protocol," [Online]. Available:

https://en.wikipedia.org/wiki/Internet_Protocol. [Accessed 15 May 2023].

[5] L. Williams, "IPv4 vs IPv6 – Difference Between Them," 1 Apr 2023. [Online]. Available:

https://www.guru99.com/difference-ipv4-vs-ipv6.html. [Accessed 15 Apr 2023].

[6] "Internet of things," [Online]. Available:

https://en.wikipedia.org/wiki/Internet_of_things. [Accessed 15 May 2023].

[7] "IoT Standards and Protocols," [Online]. Available:

https://www.postscapes.com/internet-of-things-protocols/. [Accessed 13 Jun 2023].

[8] "Wi-Fi," [Online]. Available: https://en.wikipedia.org/wiki/Wi-Fi. [Accessed 15 May

2023].

[9] "MKR 1000 WiFi," Arduino, [Online]. Available: https://docs.arduino.cc/hardware/mkr-

1000-wifi. [Accessed 15 Apr 2023].

[10] "DHT11–Temperature and Humidity Sensor," Components101, 16 Jul 2021. [Online].

Available: https://components101.com/sensors/dht11-temperature-sensor. [Accessed

15 Apr 2023].

[11] "Arduino Integrated Development Environment (IDE) v1," Arduino, [Online]. Available:

https://docs.arduino.cc/software/ide-v1/tutorials/arduino-ide-v1-basics. [Accessed 15

Apr 2023].

[12] "Arduino Cloud," Arduino, [Online]. Available: https://cloud.arduino.cc/how-it-works/.

[Accessed 15 Apr 2023].

[13] "Google Drive," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Google_Drive. [Accessed 15 Apr 2023].

[14] "Pushingbox," [Online]. Available: https://www.pushingbox.com/index.php. [Accessed

15 Apr 2023].

[15] "DHT-sensor-library," [Online]. Available: https://github.com/adafruit/DHT-sensor-

library. [Accessed 15 Apr 2023].

20

[16] "WiFi101," [Online]. Available: https://github.com/arduino-libraries/WiFi101. [Accessed

15 Apr 2023].

