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This work aims to explore the impact of Digital Twins Technology on industrial manufacturing in the 
context of Industry 5.0. A computer is used to search the Web of Science database to summarize the 
Digital Twins in Industry 5.0. First, the background and system architecture of Industry 5.0 are introduced. 
Then, the potential applications and key modeling technologies in Industry 5.0 are discussd. It is found 
that equipment is the infrastructure of industrial scenarios, and the embedded intelligent upgrade for 
equipment is a Digital Twins primary condition. At the same time, Digital Twins can provide automated 
real-time process analysis between connected machines and data sources, speeding up error detection 
and correction. In addition, Digital Twins can bring obvious efficiency improvements and cost reductions 
to industrial manufacturing. Digital Twins reflects its potential application value and subsequent potential 
value in Industry 5.0 through the prospect. It is hoped that this relatively systematic overview can provide 
technical reference for the intelligent development of industrial manufacturing and the improvement of 
the efficiency of the entire business process in the Industrial X.0 era.

Introduction

The manufacturing industry has transformed rapidly, and man-
ufacturers worldwide face the challenge of improving produc-
tivity. Germany introduced Industry 4.0 in 2011 to improve its 
industrial competitiveness [1–3]. Industry 4.0 is founded on 
the division of industrial development phases. Initially, Industry 
1.0 announced the epoch of the steam engine. Industry 2.0 is a 
revolution of electricity. Industry 3.0 was born as the informa-
tion age, and Industry 4.0 was the age of intelligence that used 
information technology to promote industrial upgrades. The 
Fifth Industrial Revolution (Industry 5.0 or 5IR) is proposed 
by the European Union in 2021 as the Internet and artificial 
intelligence (AI) era in industrial design and manufacturing. It 
considers people orientation, sustainability, and flexibility [4,5]. 
Xu et al. [6] revealed that Industry 4.0 is considered technolo-
gy-driven, while 5IR is value-driven. Mourtzis [7] believed that 
the focus of 5IR should be on the design and development of a 
suitable framework to achieve process optimization based on 
semantic integration through the effective use of big data. 5IR 
is still an industrial vision for developed countries because of 
limited efficiency and productivity. In particular, it strengthens 
the role and contribution of industry to society. 5IR is still a 
future orientation for most enterprises, where the potential of 
the Industry 4.0 era must be fully tapped [8]. Thereby, it helps 
realize the leap from technology to leadership, coordinate 
resources and cross functions, handle the operational intelli-
gence data provided by digitalization, and be more predictable 
to work units and factories.

Emerging technologies are applied in modern industrial 
production [9]. Digital Twins (DT) Technology fully uses data 
such as physical models, sensor updates, and operation history 
to integrate multidisciplinary, multiphysical, multiscale, and 
multiprobability simulation processes. DT can collect various 

physical models' information through simulation technology 
and map a digital virtual twin of the real entities [10–12]. In 
this sense, DT can monitor digital entities and operating indi-
cators in real time. It projects the natural world through data 
accumulation and AI and feeds back the results to the real 
world. Statistics show that 85% of Internet of Things (IoT)-native 
devices use DT to safeguard Information Security. Therefore, 
DT-powered smart city construction has become a research 
hotspot [13,14]. In urban construction, analyzing infrastruc-
ture is the hardcore in the IoT. The existing construction man-
agement fails to consider the dynamic needs of times and 
society. Hence, implementing a DT-powered analysis model 
can promote the infrastructure industry and has a high theo-
retical value.

DT originated in industrial manufacturing [15]. Židek et al. 
[16] believed that DT could visualize the real state of manufac-
turing system as 3-dimensional (3D) simulation with real-time 
implementation. In product research and development, DT can 
virtually model the product that can be verified through simu-
lation experiments. For manufacturing, DT could simulate 
equipment operation and parameter adjustment. Also, DT could 
improve the products' reliability and availability and reduce 
development and manufacturing risks [17,18]. DT was crucial 
in the maintenance phase. For example, continuously collecting 
and analyzing operation data could predict the best time point 
for maintenance. The reference basis of the maintenance cycle 
could be offered [19,20]. Meanwhile, DT served as the reference 
for fault points and probability. DT has substantial enhanced 
benefits and reduced costs in industrial manufacturing, attract-
ing industrial tycoons in a special field [21–23].

At present, the relevant research on the application of 
DT in the industrial field is mainly used for debugging and 
experimenting in the virtual space [24,25] and ultimately 
achieves the best operation effect of the machine and other 
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related content. However, the overall development process and 
summary analysis of the application of DT in industrial man-
ufacturing are relatively rare. To this end, this work conducts 
a comprehensive research on the DT in 5IR. The specific review 
method is as follows. A computer is used to retrieve the core set 
of the Web of Science database. Digital Twins, Industry 4.0, 
Industry 5.0, Man-Machine Integration, Virtual Reality Modeling 
(VRM), etc. are selected as the keywords for retrieval. The search 
results were 1,921 articles. After screening and eliminating 
invalid and duplicate data, a total of 1,435 English articles of 
relevant research in the context of 5IR from 2013 to 2022 were 
finally determined. After further analysis of the title, abstract, 
and full text, 136 relevant documents were finally selected.

In this review study, the overall organizational structure is 
as follows. 5IR Architecture and Its VRM Technology intro-
duces the background and architecture of 5IR and compares 
the additional features of 5IR with previous literature on indus-
trial evolution. On this basis, a review discusses the literature 
related to potential applications in 5IR and key modeling tech-
niques. Application Values of DT in 5IR VRM discusses the 
relevant literature on the application of DT, an emerging tech-
nology, in VRM of 5IR and analyzes the implementation process 
of key technologies. Discussion and Prospect looks forward to 
the potential application value of DT in 5IR and the subsequent 
research direction. Conclusion summarizes the review results 
to provide technical reference and reference for the intelligent 
development of the industrial field.

5IR Architecture and Its VRM Technology

Evolution motivation of Industry 4.0 to 5IR
Until the 18th century, the world entered Industry 1.0, involving 
textile, steam power, steel, cement, chemical, natural gas, glass, 
paper, mining, agriculture, and transportation. The industrial 
revolution's achievement can be seen in agriculture, transpor-
tation, and sustained economic growth. Industry 2.0 began in 
the 19th century. It focused on steel, railway, electrification, machine 
tools, paper, petrochemical, maritime technology, rubber, auto-
mobile, fertilizer, engine, turbines, telecommunications, and 
modern business management. At this stage, separating parts 
production and product assembly has created a new and ef -
ficient mode of mass production. Industry 3.0 saw the popu-
larization of electronic and information technologies. The 
extensive application of electronic and information technology 
has improved the automatic control of the manufacturing pro-
cess. Industry 4.0 was developed with the concept of intelligent 
manufacturing in 2011. Mainly, it aims to maximize productiv-
ity through labor-intensive large-scale production using emerg-
ing technologies [26]. Sharma and Villányi [27] proposed an 
end-to-end 2-way authenticated secure data transmission tech-
nology in the context of Industry 4.0. They found that the tech-
nology ensures the integrity and stability of the entire system 
during the scale-out phenomenon. Besides, the technique has 
the lowest communication overhead, computational cost, and 
round-trip time. Javaid et al. [28] found that Industry 4.0 increases 
production flexibility and enables factories to respond quickly 
to market changes. In addition, the factory control system auto-
matically changes output according to changing utilization rates, 
thereby reducing production costs. Javaid and Haleem [29] 
reasoned that 5IR was the future evolution direction of the 
industrial field, aiming to use human creativity to collaborate 

with efficient and intelligent machines. Figure 1 shows the rev-
olution from Industry 1.0 to Industry 5.0.

The 21st century has witnessed the fast development of state-
of-the-art information technologies such as IoT, cloud com-
puting, big data technology (BDT), mobile Internet, and AI. 
Mourtzis and Doukas [30] illustrated the evolution of manu-
facturing paradigms, their underlying principles, and the link-
ages between them, taking into account each era's remarkable 
technological advances and other sociopolitical reasons. When 
Germany proposed industry 4.0 in 2011 [31,32], the progress 
of information technology was strengthened alongside the 
highly transformative impact brought by digital, data-driven, 
and interconnected industries. Krugh and Mears [33] claimed 
that Industry 4.0 used the cyber-physical system (CPS) to dig-
itize the production supply, manufacturing, and sales. As such, 
it achieved rapid, effective, and personalized product supply. 
Essentially, it fully used CPS to push the manufacturing indus-
try to digital and intelligent transformation. Industry 4.0 was 
believed to have the features of deep integration of the digital 
and physical worlds. Industry 4.0 provided guiding principles 
for European industrial innovation, technological develop-
ment, and digital transformation, which has been recognized 
by the world's major economies [34–36]. Sader et al. [37] believed 
that Industry 4.0 could realize the interconnection of machines 
and make the manufacturing Industry intelligent through mu -
tual control of equipment throughout the life cycle. Industry 
4.0 prioritized process automation, minimizing human inter-
vention in the manufacturing process.

Industry 4.0 stresses system autonomy and raises questions. 
For example, what role should human intelligence play? After 
machines replace people, how should the employment problem 
be solved? Mourtzis et al. [38] regarded 5IR as a framework to 
promote the coexistence of industry and emerging social trends 
and needs and provide a basis for promoting the transition from 
Industry 4.0 to Society 5.0. Liao et al. [39] proposed a DT model 
for cloud-edge device collaboration reliability and communi-
cation efficiency for low-carbon power device management. 

5.0 4.0 3.0 2.0 1.0
Mass

personalization

Mass
production

Electronic products
and IT systems 

Division of labor 

Mechanical
production

1760-
1850

1870-
1900

1950-

Fig. 1. Industrial Revolution from Industry 1.0 to Industry 5.0 (inspired by [34]). 
IT, information technology.
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After experiments, they found that it performed well in terms 
of loss function, communication efficiency, and carbon emission 
reduction. Zhou et al. [40] presented a federated learning-based 
DT framework and a safe and efficient DT-assisted resource 
scheduling algorithm. It was found that the model has excellent 
performance in terms of cumulative iteration delay, DT loss 
function, energy consumption, and lack of access priority in 
the context of 5G edge computing authorization. Zemtsov et al. 
[41] mentioned that the industry could exclude industrial work-
ers from employment while promoting economic prosperity. 
Otherwise, many social problems might arise. Nor should it cause 
great pollution and damage to the environment to affect the health 
of industrial workers and the living environment of human beings. 
Therefore, the decision-makers, technical experts, and policy 
makers discussed 5IR to systematically solve the status of people 
and the environment in industrial production. The current 5IR 
concept utilizes the unique creativity of human experts to col-
laborate with powerful, intelligent, and accurate machines [42]. 
Leng et al. [43] reviewed the development of 5IR and the 3 main 
features of 5IR: people-oriented, sustainability, and flexibility. 
They also constructed a 3D system that realizes the technical, 
realistic, and application dimensions of 5IR structure. Finally, 
they discussed the key enablers of 5IR, future implementation 
paths, potential applications, and challenges of real-world sce-
narios. It is expected that 5IR will combine high-speed and accu-
rate machines with human critical cognitive thinking. Users 
can choose personalized and customized products according 
to their tastes and needs. Kaasinen et al. [44] thought that 5IR 
would significantly improve manufacturing efficiency and cre-
ate multifunctional connections between humans and machines. 
It could realize human–machine interaction and continuous 
monitoring. 5IR improves production quality by offloading 
mechanical tasks with high computational complexity to robots/
machines and introducing human ideas into critical thinking 
assignments.

Connotation and system architecture of 5IR
In April 2021, the European Union put forward the 5IR plan 
with the objectives of sustainable development, people orienta-
tion, and flexible economy. It is believed to optimize Japan's 
Social 5.0 and Germany's Industry 4.0. The 10-year develop-
ment of Industry 4.0 no longer pays attention to the original 
principles of social equity and sustainability. Instead, it empha-
sizes digital and AI-driven technologies to improve production 
scalability and efficiency. Bryndin [45] observed that 5IR offered 
a different perspective and highlighted deep learning and inno-
vative capability in supporting long-term services to humanity 
globally. 5IR, a developing paradigm, has triggered a new indus-
trial revolution. 5IR must comply with internationally recog-
nized standards for full acceptance and high standards. Huang 
et al. [46] found that 5IR was a people-centered solution. 
Cooperative robots would be an integral part of it and give a 
typical application scenario based on cooperative robots. In this 
application scenario, the cooperative robot could perceive the 
position and state of the person through visual means, such as 
cameras, and predict and understand the person's intention by 
watching and learning. When people performed manual opera-
tions, the robots could learn to prepare for the next operation. 
Maddikunta et al. [47] concluded that human beings had great 
potential and should fully exert their creativity, agility, and other 
abilities in the industrial system as an essential production factor. 
In addition, the industry should serve people, the main body of 

industrial creation. Aslam et al. [48] inferred that 5IR shifted 
the center of industrial development back to people. It facilitated 
people's living environment, working environment, personal 
privacy, and social value expression. This was far more than 
productivity improvement and economic growth. Moreover, 
sustainable development, people orientation, and flexibility 
were the key concerns of 5IR.

In terms of technology, Fraga-Lamas et al. [49] revealed that 
5IR seized the promise of advanced digital development, BDT, 
and AI. At the same time, it emphasized the role of these technologies 
in meeting new and urgent needs in industry, society, and the 
environmental landscape. Thus, data and AI-optimized produc-
tion flexibility made the value chain more stable. New technol-
ogies could achieve recycling and sustainability. Akundi et al. 
[50] discovered that the key technologies of 5IR were people- 
oriented solutions and human–computer interaction (HCI). 
They connected the advantages of people and machines. The 
whole system was modeled on the basis of the real-time DT and 
analog system. On the other hand, Zizic et al. [51] noted that 
the network security data transmission, storage, and analysis 
technology were the basics of 5IR. They could handle data and 
system interoperability. Huang et al. [46] thought that the key 
to 5IR was to model the whole industrial system on the basis of 
the real-time DT and analog system. According to the above 
literature review, Table 1 summarizes the definitions of 5IR.

Following the literature overview, this work summarizes the 
connotation of 5IR. 5IR enables production to respect the bound-
aries of the earth and the interaction, coordination, and integra-
tion of people, machines, and things at the knowledge level. As 
such, industrial workers and their interests are placed at the core 
of production to achieve different social goals and economic 
growth. It can provide prosperity steadily and sustainably. 5IR 
reflects the power of industry in achieving social goals other than 
employment and growth by respecting the earth's ecology and 
putting the welfare of industrial workers at the center of the pro-
duction process. It is the cornerstone of stability and prosperity 
[52–54]. Figure 2 shows the architecture of 5IR.

According to the 5IR architecture in Fig. 2, human creativity 
and rapid response to uncertain situations are a crucial part of 
the industrial production process and should be fully explored 
to improve product innovation and quality efficiency.

Man–machine integration in 5IR era
Industry 4.0 integrates the physical and the virtual world 
through CPS and connects people, machines, and equipment 
over the IoT. Zong et al. [55] noted that the physical-virtual 
crossing had realized the horizontal and vertical interconnec-
tion of the entire value chain. It formed a new value network 
and ecosystem from customers to suppliers across the entire 
product life cycle and different functional departments. Value-
added creation was more efficient, personalized, higher-quality, 
service-oriented, more traceable, and more flexible. At the same 
time, it will be connected to production in different ways to 
form an integration chain covering the whole life cycle. 5IR 
will benefit the economy, ecology, and society, the triple bottom 
line of sustainable development. Mehdiabadi et al. [56] believed 
that, like Industry 4.0, 5IR would rely on data, equipment, and 
AI to coordinate commerce and trade. These components all 
depended on memory, similar to the human brain's function-
ing. In fact, memory placed intelligence in AI, providing data 
to run algorithms and the context of actions and reactions.
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An ideal picture in the 5IR era is that operators and robots 
can cooperate in communication on the same workbench, just 
like experienced partners. Traditional industrial robots have 
no "soul". They can guarantee quality and quantity, higher accuracy, 
and greater strength than human beings and can work 24 hours 
without interruption. However, they could only perform repetitive 

actions in a fixed environment [57]. Tyagi and Sreenath [58] 
believed that the CPS used computing, communication, and 
control to manufacture new technologies or next-generation 
engineering systems, which was of great practical significance 
to the development of energy, transportation, environment, 
and medical and other fields. In order to make industrial robots 
adapt to more scenarios and easier to use, this situation is changing. 
For example, a safe and flexible cooperative robot has appeared, 
overcoming the shortcomings of traditional robots and making 
human–machine cooperation smoother.

Ramanathan [59] contended that the Industrial IoT (IIoT) 
in the era of 5IR was a new network infrastructure for the inter-
connection of people, machines, and things. IIoT would promote 
the formation of a brand-new industrial production, manufac-
turing, and service system and support the transformation and 
upgrading of the industrial economy. Figure 3 summarizes the 
architecture of human–machine integration.

As shown in Fig. 3, under the background of 5IR, human 
beings in the architecture of human–machine integration ana-
lyze and perceive the external environment through acquired 
perfect cognitive ability. Their cognitive process forms inten-
tional thinking through the processing of memory layer, inten-
tion layer, decision-making layer, and perception and behavior 
layer. The machine perceives and analyzes the external envi-
ronment through detection data. Its cognitive process depends 
on the target layer knowledge base, task planning layer, and 
perception and execution layer, forming formalized thinking.

Wang et al. [60] proposed that the 3 key technologies behind 
human–machine integration were AI, sensors, and HCI. Of 
these, AI was the brain of the robot and the core of human–
machine integration. Deep learning and reinforcement learning 
in AI have been well applied. The widespread use of AI in the 
manufacturing industry has significantly impacted the manu-
facturing industry. Intelligent machinery, equipment, and new 
management concepts have been promoted [61]. For a mature 
manufacturing mode, the personnel must master the cutting- 
edge technology, and various production equipment must be 
designed with excellent quality. Embedding AI into the man-
ufacturing process enables the robot to be more intelligent and 
flexible and operate autonomously in more complex situations. 
Sensing technology is an integral part of intelligent manufac-
turing. Intelligent sensors enable robots to imitate human sensory 
systems to sense the environment and promote the development 
of human–machine integration [62]. Intelligent devices and 
robots can realize seeing, listening, smelling, or feeling by com-
bining relevant software to understand their environment and 
make corresponding responses intuitively [63,64].

The above research works suggest that the development of 
HCI is the only way to realize the integration of human and com-
puter. In the context of 5IR, interactive technologies, such as 
graphic interaction, visualization technology, animation technol-
ogy, speech recognition, natural language understanding, image 
and video recognition, motion capture, and virtual reality (VR), 
have all given birth to an important direction for the development 
of robots. In other words, strengthening human–machine inter-
action is an integral part of the development of 5IR.

VRM in 5IR
Interdisciplinary and complexity require systematic approaches, 
such as systematic information physical systems. This systematic 
approach must model the interactions of various scales of dynam-
ically interacting systems [65,66]. Modeling is challenging from 

Table 1. Relevant definitions of the connotation of 5IR.

Authors Thesis title Core point

Bryndin [45]

Formation and 
management of 
5IR by systems 
with artificial 
intelligence and 
technological 
singularity

Support industry 
to provide 
long-term 
services for 
humanity globally

Huang et al. [46]

5IR and Society 
5.0—Comparison, 
complementation, 
and co-evolution

People-centric 
solutions

Maddikunta et al. 
[47]

5IR: A survey on 
enabling technolo-
gies and potential 
applications

Human beings 
were a critical 
factor in 
production.

Aslam et al. [48]

Innovation in the era 
of IoT and 5IR: 
Absolute 
innovation 
management 
(AIM) framework

The goal of 
industrial 
development was 
people-centered.

Fraga-Lamas et al. 
[49]

Green IoT and edge 
AI as key 
technological 
enablers for a 
sustainable digital 
transition towards 
a smart circular 
economy: An 5IR 
use case

Recycling and 
sustainability 
through 
technology

Akundi et al. [50]

State of 5IR—Analy-
sis and Identifica-
tion of Current 
Research Trends

Connecting the 
advantages of 
man and machine

Zizic et al. [51]

From Industry 4.0 
towards 5IR: A 
Review and 
Analysis of 
Paradigm Shift for 
the People, 
Organization, and 
Technology

Network security 
data transmis-
sion, storage, and 
analysis

Huang et al. [46]

5IR and Society 
5.0—Comparison, 
complementation, 
and co-evolution

Real-time DT and 
analog system
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all angles. It involves various systems, scales, data, and path depend-
encies generated by different industries and research disciplines 
[67]. It should be emphasized that 5IR also includes sectors other 
than manufacturing, such as life sciences, healthcare, agriculture, 
food, or energy. In addition, the participation of government, 
consumers, and society is the key to the acceptance of 5IR. In 
particular, biotransformation may lead to a new value but may 
not be related to the term industry. Integrating AI into the research 
and design process and the needs of different research disciplines 
in complex systems is necessary. The interrelationship and cau-
sality between multiple variables must be understood as a dynamic 
network that is constantly changing.

Abdel-Basset et al. [68] pointed out that with the continuous 
advancement of intelligent transformation and information 
construction of factories, large-scale simple production line 
enterprises deployed and applied various information systems 

and automation systems. This made the workshop management 
more important, and the requirements for the safety, availability, 
operation, and maintenance management of various equipment 
in the workshop got lower. Liu et al. [69] showed that the tra-
ditional monitoring system and equipment could not meet the 
needs of enterprises. Decentralized monitoring and integrated 
management were imperative for the factory. It could not real-
ize the high-definition display, detail view, and other operations 
of the whole process of information status of the factory, equip-
ment, production, and operation. Nowadays, manufacturing 
enterprises are also aware of the problems in production mon-
itoring management. In other words, the lack of integrated plan-
ning management and decentralized monitoring has brought 
more challenges.

In the past technological revolution, robots and automation 
have incurred paradigm changes in global manufacturing [70,71]. 

Value
dimension

Target
dimension

Tissue
dimension

Complex Networks and Digital Twins

Sustainable Manufacturing

Human Information Physical System

Interconnected Smart Industry

3-System of intelligent system

2-Intelligent system

1-Intelligent unit
1-

2-

3-

4-

Digital industrial systemGreen and sustainablePeople-centeredEconomic growth

Fig. 2. Architecture of 5IR (inspired by [50]). R&D, research and development.
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5IR aims to combine these cognitive computing skills with intel-
ligent human thinking in collaborative operations. Therefore, 
it is conceivable that 5IR will bring about a change in norms 
and a fundamental change in industrial and manufacturing 
methods. Brown [72] observed that 3D digital visualization 
technology could collect, monitor, and analyze the real-time 
information of industrial equipment. These data involved tem-
perature, humidity, rotation speed, vibration, and switch. Under 
normal conditions, alarms could be classified and managed to 
launch the alarm prompt automatically launched and position 
the corresponding equipment of the 3D IoT virtual factory. 
Meanwhile, different audible warnings were accompanied so 
the supervisors could timely capture the operational risks. At the 
same time, it could guide fault handling through 3D dynamic 
mode. The analysis result was transmitted to the manager ter-
minal to display to managers. Then, one 3D page contained 
multiple information visualized by the 3D IoT-3D digital sim-
ulation technology. On this basis, each maintenance personnel 
could manage multiple machines, open up the information 
island, and boost work efficiency.

Cohen and Macek [73] mentioned that the real scene was 
highly restored through 3D simulation technology and a 3D 
digital visualization model of intelligent factory buildings, 
workshop structures, facilities, and equipment. Then, it vividly 
and precisely displayed the organizational relationship of dif-
ferent facilities, equipment shapes, and production processes. 
The digital model also visualized the distribution and operation 
of facilities and equipment and enabled users to browse the 

entire industrial site on the computer. Users interacted just like 
being on the spot. Furthermore, the system bound the equip-
ment 3D model with the basic data to position the equipment 
and query its information. Cheung et al. [74] found that the 
IIoT-based 3D digital visualization could manage the asset 
library in the intelligent equipment association using the 3D 
modeling technique. The 3D modeling was associated with the 
equipment data and production data, where the 2-dimensional 
graphics were combined with the 3D model. The 3D scene 
could review the relevant information of other equipment. In 
the 3D simulation world, the user could accurately check the 
equipment's structure, component composition, and technical 
parameters by interacting with machines. They could compre-
hensively understand and master the equipment structure and 
diagnose and treat equipment faults.

The high-end manufacturing enterprises have felt the value 
of VR technology in industrial digitization. Consequently, the 
VR-based digitalization mode matures [75–77]. VR digital fac-
tory has improved the operation and management mode in the 
traditional manufacturing industry, enabling enterprises' maxi -
mum benefits in production and operation at the lowest man-
agement cost. Zeqiri et al. [78] reasoned that combining VR, 
information technology, and IoT could accurately track each 
link and equipment on the production line in the digital factory. 
On this basis, the production data could be processed in real 
time and visually displayed.

To sum up, in addition to the current factory simulation, 
the functions of the VR digital factory will be further improved 

Human machine integration 

Cognitive 
attribute

Calculation 
attribute

Memory 
layer

Meaning 
layer

Decision making layer

Perception and 
behavior layer

Target 
layer

Knowledge 
base

Task planning layer  

Perception and 
execution layer 

Environment 

Human Machine

Fig. 3. Architecture of human–machine integration (inspired by [125]).
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in the future. Thanks to AI technology and big data algorithms, 
industrial production is fully intelligent, minimizing human 
involvement and allowing factories to function without even 
human involvement. In the future, with the in-depth applica-
tion of VR digital factory system, the HCI function will be 
continuously strengthened, and the new system with intelligent 
management as the core will replace the static computer oper-
ating environment in the past. In addition, the system interface 
has also changed from flat to 3D. Meanwhile, managers can 
intuitively see production scenes and various data information, 
making production management more convenient.

Application Values of DT in 5IR VRM

DT content architecture and key technologies
According to the National Aeronautics and Space Administration, 
DT aims to create virtual twin models of physical entities. Liu 
and Xu [79] proposed a 3-layer cyber-physical production sys-
tem centered on cyber-physical machine tool to illustrate the 
vertical integration of DT systems in various intelligent systems 
at different levels and the field-level horizontal integration of 
manufacturing facilities and resources. Armendia et al. [80] 
explored the application status of DT in CPSs. Stavropoulos and 

Table 2. Comparison of application fields of DT technology in 5IR.

Author Thesis title Core point Application fields

Deng et al. [127]
A systematic review of a Digital Twins 

city: A new pattern of urban govern-
ance toward smart cities

DT was the dynamic presentation of a 
physical entity's past and current 
behaviors or processes in a digital form.

Smart city governance

Yi et al. [128]

Digital Twins-based smart assembly 
process design and application 
framework for complex products and 
its case study

DT was the digital model of physical 
products in virtual space. It contained 
product information from product 
conception to product delisting.

Intelligent manufacturing 
and product assembly

Wang and Luo [129]

A Digital Twins-based big data virtual 
and real fusion learning reference 
framework supported by IIoT toward 
smart manufacturing

DT simulated and integrated multidiscipli-
nary, multiphysical-quantity, multiscale, 
and multiprobability processes. It 
utilized a physical model, sensor update, 
and operation historical information to 
map the object in virtual space and 
reflect its whole life cycle process.

Intelligent manufacturing 
and industrial Internet

Wei et al. [130]
Implementation strategy of physical 

entity for manufacturing system 
Digital Twins

DT was a digital model of a physical entity 
based on a sensor. It could simulate and 
display specific things in the world.

Tool life prediction in 
numerically controlled 
machine tools

Al-Ali et al. [131]
Digital Twins' conceptual model within 

the context of the Internet of things

DT presented physical objects in the 
virtual space digitally. It simulated their 
behavior characteristics in the real 
environment.

Intelligent cloud 
computing platform

Zhuang et al. [132]
The connotation of digital twin, and the 

construction and application method 
of shop-floor digital twin

DT constructed the virtual things in the 
virtual space and was the projection 
relationship between virtual twins and 
their real objects in the physical space. 
The twin models were similar in shape 
and behavior.

Intelligent manufacturing 
and information 
physics systems

Yun et al. [133]

A Novel Digital Twins Architecture with 
Similarity-Based Hybrid Modeling for 
Supporting Dependable Disaster 
Management Systems

DT was a dynamic replica of the whole life 
cycle of an entity or logical object in the 
digital space. It could realize high-fidelity 
digital representation, simulation tests, 
and object state and behavior predic-
tion. It was based on rich historical and 
real-time data and modern algorithms.

Disaster monitoring and 
prediction system

Yang et al. [134]
Application status and the prospect of 

Digital Twins for on-orbit spacecraft

DT digitally established a multidimen-
sional, multidisciplinary, and multiphysi-
cal dynamic virtual model of physical 
entities. It simulated and characterized 
the physical entities' attributes, 
behaviors, and rules in the real environ-
ment.

Aerospace industry
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Mourtzis [81] mapped out the main architectures and applica-
tions of the DT in Industry 4.0 along the lines of manufacturing 
systems, manufacturing processes, and robotics, automation, 
and VR in manufacturing. It turns out that DT enable industry 
to discover physical problems faster, predict outcomes more 
accurately, and ultimately build better products. The virtual 
object can simulate and analyze the physical entity and monitor 
the operation state of the physical entity following the real-time 
feedback information. Further, it improves the simulation anal-
ysis algorithm of the virtual entity according to the collected 
operation data to guide decisions for the subsequent operation 
and improvement of the physical entity. Khan et al. [82] studied 
that the DT network would become the new direction of net-
work planning, operation, management, and operation in the 
future. It would reflect the core value in 4 aspects: topology and 
traffic holography, full life cycle management from equipment 
to networking, real-time closed-loop network control, and net-
work risk and cost reduction.

Zheng et al. [83] researched that the DT-based model was a 
dynamic replica of the whole life cycle of an entity or logical 
object in the digital space. It could achieve high-fidelity digital 
representation, simulation tests, and object state and behavior 
prediction based on rich historical and real-time data and 
advanced algorithm models. Schimanski et al. [84] found that 
integrating DT and lean construction was the key to project 
success. The DT-based industrial construction had 2 production 
lines: digital and logistics. In establishing a virtual model, the 
behavior model must be parameterized to reflect the changes 
in material properties and mechanical properties in parameters. 
The rule model was also parameterized. From the perspective 
of the physical model, in the finite element analysis software, 
the possible parameter changes at the behavior and rule level 
were modularized. A dynamic DT library was established. Table 
2 lists the application areas of DT in 5IR.

DT has a wide range of industrial application scenarios. 
Wu et al. [85] defined DT as an innovative application of inte-
grating a series of technologies, such as perception, transmis-
sion, calculation, modeling, and simulation. Its architecture 
included physical, data, model, and functional layers. The physical 
layer was the objects in the physical world, divided into tangible 
objects such as the human body, objects, and physical space and 
intangible objects such as business processes. The data layer 
was the foundation of DT-based application, consisting of data 
acquisition, transmission, processing, and storage. The model 
layer was the core of DT-based applications, using the mod-
eling and other technologies to represent the digital image of 
real objects. In contrast, the function layer was the direct value 
embodiment of the DT. It stored the simulation results and 
visual services and offered them to business system applica-
tions to meet the needs of various application scenarios.

The mapping relationship of DT is bidirectional. On the one 
hand, based on rich historical and real-time data and advanced 
algorithms and models, the state and behavior of physical 
objects can be reflected in the digital world. On the other hand, 
simulation tests and analysis and prediction in the digital world 
can provide a decision-making basis for the instruction issu-
ance of entity objects and the further optimization of the pro-
duction process. It greatly improves the efficiency of analysis 
and decision-making [86,87]. Ning and Jiang [88] used the 
laboratory scale network physical system platform based on 
industrial communication networks and physical sensors for 
verification and found that both data-driven and model-based 

technologies were considered to be able to capture stealth 
attacks and prevent them. DT can offer the foundation for enter-
prise strategic decision-making through the decision support 
system (DSS). The most practical application of a visual DSS is 
to help users establish DT in the real world.

Sousa et al. [89] used the existing massive amounts of data 
information and visualization techniques to model business 
decision-making. The model could evaluate the current state, 
diagnose past problems, predict future trends, and encourage 
more comprehensive and accurate decision-making for busi-
ness operations. Thus, a perception prediction action-oriented 
intelligent DSS was formed. First, the intelligent DSS used sen-
sor data or data from other systems to determine the current 
state of the target system. Second, the system modeled and 
predicted the possible results under various strategies. Finally, 
an analysis platform was employed to find the optimal strategy 
against the desired goals.

3D visualization modeling of digital factory's  
DT in 5IR
Modeling digitization is the process of digitizing the physical 
world. This process must express physical objects as digital 
models recognized by computers and networks [90,91]. 
Modeling can simplify and model human's understanding of 
the physical world or problems. The purpose or essence of DT 
is to exchange information for energy through digitization and 
modeling. It eliminates the uncertainty of various physical enti-
ties, especially complex systems, with less energy. Therefore, 
establishing a digital model or information modeling technol-
ogy of a physical entity is the source and core technology of 
creating DT. They are also the core of the digitization stage.

Wu et al. [92] proposed that constructing the DT model 
involved a conceptual model and model implementation method. 
Of these, the conceptual model described the architecture of the 
DT system from a macro perspective and presented considerable 
generalization. Model implementation methods, such as mode-
ling language and model development tools, focused on realizing 
the model technically. The related technical methods and tools 
showed a diversified development trend. So far, DT-oriented 
modeling languages like AutomationML, UML, SysML, and XML 
have been developed [93–94]. While some use general model ing 
tools like computer-aided design, more models are based on spe-
cial-purpose tools such as FlexSim and Qfsm.

Various conceptual models have been proposed by scholars, 
which are listed as follows. (a) The micro-kernel DT platform 
architecture based on the simulation database provides support 
for correcting simulation models and more realistic projection 
through the active management of real-time sensor data by the 
simulation database [95]. (b) DT-oriented automatic model 
generation and online simulation. The static simulation model 
is selected as the initial model. The dynamic simulation model is 
automatically generated from the static model based on the data 
matching method, and the simulation accuracy is improved by 
combining multiple models. Finally, the online simulation is 
realized through real-time data feedback. (c) The conceptual 
framework of the DT modeling process includes physical entity, 
data layer, information processing, and optimization layer. On 
this basis, the twin model construction is guided by industrial 
production. (d) The DT modeling based on model fusion 
builds complex virtual entities by combining multiple mathe-
matical simulation models. It proposes a virtual entity calibration 

D
ow

nloaded from
 https://spj.science.org at U

ppsala U
niversity on June 19, 2023

https://doi.org/10.34133/research.0071


Lv 2023 | https://doi.org/10.34133/research.0071 9

method based on anchor points [96]. (e) The implementation 
framework of full-parameter DT divides the DT into 3 layers: 
physical layer, information processing layer, and virtual layer. It 
realizes the upper-layer DT application based on the data acqui-
sition, transmission, processing, and matching. (f) The DT 
5-dimensional model composed of physical entities, virtual enti-
ties, connections, twin data, and services emphasizes the driving 
effect of twin data. The twin data are collected from physical data, 
virtual data, service data, and knowledge of physical devices, 
virtual devices, and services. The application ideas and schemes 
are discussed for the DT 5-dimensional model in many fields 
[97,98]. (g) According to the data acquisition to application, the 
DT model is divided into the data assurance layer, modeling 
and calculation layer, DT function layer, and immersive-experience 
layer. Successively, each layer realizes data acquisition, trans-
mission and processing, simulation modeling, function design, 
and result presentation.

Sun et al. [99] believed that there are 2 differences between 
DT and digital factories in the process industry. First, the focus 
was different. The DT focused on the industrial production line 
and did not involve too many enterprise management levels. 
Second, there were different functions. The process industry 
had many complex physical and chemical reactions in produc-
tion. The construction of its DT involved digital 3D modeling 
and must carry out mechanism or data-driven modeling for the 
process industry. Through the full dimension fitting of the phys-
ical entity, the function of independent operation could be 
achieved to provide a more appropriate solution for the process 
industry. Figure 4 presents DT plus whole process management 
of industrial production and manufacturing.

As shown in Fig. 4, in the 5IR context, the application of DT 
to the whole process management of industrial manufacturing 
mainly includes the data layer, the model layer, and the applica-
tion layer. In the data layer, the data of employees, machines, 
materials, rules, and environment are collected using multi-
protocol and edge computing technologies. In the model layer, 
the whole life cycle of industrial manufacturing is optimized and 
managed, including product design, production rules, manufac-
turing, operation management, and product service processes. 
In the application layer, the whole life cycle of industrial manu-
facturing is intelligent scheduling, fault maintenance, and quality 
tracking. The application layer is mainly responsible for intelligent 
scheduling, fault maintenance, and quality tracking for the whole 
life management cycle of industrial manufacturing.

The professional modeling software outputs the 3D model 
and uses Photoshop and other drawing software to make maps. 
The lighting information is baked into the texture through the 
renderer. Then, the general model format and the baked map 
are output through the model software to complete the 3D model. 
The completed 3D model and map are imported into the visual-
ization platform for debugging. The lighting and environment 
details are simulated in the visualization platform according to 
the equipment site environment. It makes animation and embeds 
a 2-dimensional data board to enrich the scene details and com-
plete the important step of DT creation.

Padovano et al. [100] pointed out that in DT, virtual twin 
modeling was faced with slow speed, low degree of reduction, 
high threshold, low efficiency, and great difficulty in real-time 
visual development driven by physical world data. Catalano et al. 
[101] divided the rapid 3D modeling technology into 2 types. 
One was the 3D modeling based on tilt photography, which 
applied to constructing large-scale environmental models. The 

other was the reverse modeling based on the 3D laser point cloud 
data, which applied to the reverse modeling of single buildings 
and equipment. The core steps of the 3D reconstruction method 
based on tilt photography could be summarized as image acqui-
sition, multiview image adjustment, multiview image dense match-
ing, and texture mapping. Combined with the tilt photography 
3D modeling, point cloud, and Unity real-time 3D rendering 
technology, a virtual DT system was proposed using the Unity 
3D platform. The platform completed the real-time data driving 
and displayed it in Unity 3D. It realized the rapid modeling of 
the virtual twin scene and the visual display driven by the real-
time data of the physical world [102–104].

Through the analysis of the abovementioned scholars' re-
search, it is found that DT shows significant advantages in the 
development of 3D models of smart factories and 3D models of 
smart city parks. DT enables intelligent factory 3D models and 
smart city park 3D models. Intelligent 3D equipment is a 3D 
visualization DT-enabled smart factory built based on 3D mod-
eling and 3D visualization. It uses modern information technol-
ogies, such as physical networks and cloud computing [105,106]. 
3D visual modeling, 3D model, and 3D VR technology are used 
to build a unified organization and management coordination 
framework, business management platform, and external service 
platform. The platform provides innovative management and 
operation services for industrial equipment managers.

Modeling method of DT platform based  
on industrial data
Recently, extensive research is on the theory and methods of 
data mining, generating various data mining tools. However, 
these tools have not successfully processed large-scale multidi-
mensional datasets. Therefore, people use visualization technol-
ogy in data mining and rich visualization methods to express 
multidimensional data intuitively. Then, the unique cognitive 
ability of humans is used to guide the mining process.

Therefore, a new direction has emerged in the industrial big 
data-oriented visual analysis field: visual data mining. Galletta 
et al. [107] used visualization techniques to establish a good 
communication channel between users and data mining sys-
tems. The research enabled users to use their rich industry 
knowledge to regulate and constrain the mining process and 
improve its results. It broke the black box mode of traditional 
mining algorithms and improved users' trust in the mining 
system. In visual data mining technology, the direct interaction 
ability of visualization was the key to the mining process. The 
research on the application form and use method of visualiza-
tion technology in data mining were urgent for visualization 
[108,109]. From the perspective of technical application, phys-
ical modeling is inaccurate in complex system modeling. More 
new-generation AI algorithms will be combined with numer-
ical control machine tools to open up new technical routes. 
Thereby, the stability and accuracy of prediction are improved 
to make the machine tools have better knowledge learning, 
accumulation, and application abilities.

The essence of DT is to use virtual twin modeling to restore 
the physical world scene. The traditional modeling technology 
is slow and low in restoration, while the data-driven real-time 
visualization of the physical world has a high threshold, low 
efficiency, and great difficulty. By comparison, the rapid 3D 
modeling technology can easily help model virtual twin scenes 
and display physical world data [110,111]. Industrial 3D modeling 
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data visualization-based intelligent monitoring system provides 
excellent innovation and development environment through 
intelligent infrastructure and service system. It focuses on the 
industrial visual modeling model. Intelligent industrial data 
visualization-based intelligent monitoring system can quickly, 
accurately, and effectively conduct chemical product debugging 
and information processing. Cao et al. [112] deducted that the 
industrial intelligent monitoring system would provide various 
data visualization support for industrial factories in real time. 
It improved the production efficiency of industrial industries 
and formed an effective aggregation of intelligent industrial 
data visualization with industry as the core.

DT multiview image dense matching can extend the clas-
sical least square matching algorithm to multiview images to 
form collinear conditions. This method is based on the con-
straint of the geometric relationship of the core line. It searches 
the 1-dimensional space on the core line image and combines 
the gray observation equation to calculate the object square 
and pixel coordinates. Texture information of the DT model 
is one key indicator affecting the display effect in the later stage. 
The traditional method uses the camera photos for uniform 
light and orthogonalization. Then, it pastes the processed tex-
ture images on the surface of the 3D model by mapping.

The 3D laser scanning system works like this. It uses the 
transmitter to emit laser pulse signals to the target object. The 
pulse signals are reflected on the object's surface, and the laser 

receiver on the instrument receives the DT. Finally, the distance 
between the target object's surface and the scanner is calculated 
according to the transmission and reception time difference for 
the pulse signals and the propagation speed of the pulse signals. 
The distance between the scanner and the object surface mea-
sured by the scanner and the angle information in the horizontal 
and vertical directions can accurately record the object surface's 
spatial data [113–115]. Then, the high-precision point cloud data 
can be computed. Finally, the reverse 3D model can be recon-
structed using the processed point cloud data.

The project implementation contents and steps can be deter-
mined as per the DT project's functional requirements of the 
digital chemical factories. The whole DT platform framework is 
divided into workshop DT, equipment management and oper-
ation, and maintenance monitoring center [116,117]. (a) The DT 
platform of the workshop is established. The basic application 
model and data content are built by the DT digital chemical 
factory through the modeling platform. The digital model of the 
DT platform is established. The factory-level application's data 
integration and basic functions are built through the DT plat-
form. Thereby, the virtual simulation of the DT platform at the 
factory and equipment levels is completed. Then, it maps the 
production line of the physical entity into the DT model. Then, 
the status of each piece of equipment on the production line is 
controlled in real time. (b) Construction of equipment manage-
ment system. On the basis of the DT platform of the workshop, 

Intelligent planning and 
production scheduling 

Material allocation  
management

Optimization of 
production parameters

Equipment 
maintenance

Fault prediction 
maintenance

Product quality 
tracking

Product design Production planning Manufacturing Operation and 
management Product service

Application 
layer

Model layer Process industry Discrete industry

Data layer Employee data Machine data Material data

Rule data Environmental data

Fig. 4. DT plus whole process management of industrial production and manufacturing (inspired by [126]).
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the life cycle account of the whole factory-level production 
equipment is established through the mapping of the Data Twins. 
With early warning and intelligent notification, relevant personnel 
can be notified through tasks for maintenance. (c) Construction 
of operation and maintenance monitoring center. It induction 
production data board, video monitoring, quality detection, per-
sonnel monitoring, and positioning systems. The production data 
board can visualize the production statistics in real time. Video 
monitoring provides a panorama of the plant area and real-time 
images of key monitoring areas. The quality inspection makes 
comprehensive statistics on such indicators as product abnor-
mality, comprehensive yield, product line yield, single process 
qualification rate, and process defect history.

Enabling technology of DT applied in 5IR
DT have been more widely spread in recent years. Meantime, 
thanks to the development of the IoT, big data, cloud computing, 
AI, and other new-generation information technologies, the 
implementation of DT has become possible. AI can automatically 
perform data preparation, analysis, fusion, and deep knowledge 
mining of twin data without the participation of data experts 
through the intelligent matching optimal algorithm. As such, it 
generates various types of services. With the support of AI tech-
nology, DT can significantly improve the value of data, respon-
siveness, and accuracy of various services and empower various 
vertical industries.

The DT ecosystem can be divided into the basic support 
layer, data interaction layer, model construction and simulation 
analysis layer, common application layer, and industry appli-
cation layer. AI technology is mainly applied in the simulation 
analysis layer. In the simulation analysis layer, how to realize 
value extraction through efficient mining methods in large-
scale data is one of the key problems of DT.

DT-oriented information analysis technology realizes intelli-
gent information analysis and auxiliary decision-making through 
AI intelligent computing models and algorithms and advanced 
visualization technology; it also realizes monitoring and visual-
ization of physical entity operation indicators, automatic opera-
tion of model algorithms, and online preview of physical entity 
future development to optimize physical entity operation. DT 
was first applied in industrial manufacturing and perfectly con-
nected the physical and information worlds. Chen et al. [118] 
reviewed state-of-the-art process analytical technology develop-
ment, process modeling approaches, and data integration 
research. The authors concluded that DT is a key technology 
driving the shift toward agile and intelligent manufacturing. 
Psarommatis and May [117] analyzed the literature on the adop-
tion of a systems approach to zero-defect manufacturing DT and 
is guided by preliminary findings on the lack of structured and 
standardized digital twin application development methods. This 
culminates in a systematic and critical analysis of the answers to 
some fundamental questions in the context of the zero-defect 
manufacturing DT, thus contributing to the knowledge. With 
the continuous development of big data, IoT, and AI technolo-
gies, the form and concept of DT are constantly expanding and 
gradually upgraded to multidimensional and dynamic manage-
ment models and solutions, which also profoundly impact retail, 
education, media, and other fields.

The practical significance of the AI-oriented DT business 
plan is also reflected in the store operation. The store manage-
ment can simulate, verify, and predict the overall life cycle of 
the physical store with the help of historical data, real-time 

data, and algorithm. As such, it can improve the store manage-
ment's sensitivity to market trend changes and assist the man-
agement in making scientific decisions in the supply chain. 
Especially, the logistics field is very suitable for applying DT 
technology for scientific research and innovation. Moshood 
et al. [120] reviewed the deployment issues and technologies 
that support DT in an attempt to assess how DT can be used 
to improve the visibility of logistics supply networks. It was 
found that DT will help companies to develop predictive met-
rics, diagnostics, forecasting, and physical asset descriptions 
for their logistics and can overcome the challenges of imple-
menting DT in the logistics industry. Leal et al. [121] proposed 
an ontology for interoperability assessment to provide a basis 
for the application of DT in manufacturing in the context of 
5IR. DT enables intelligent logistics systems. That is to say, it 
imitates human intelligence, forming the ability of thinking, 
perception, learning, reasoning, and judgment and solving 
some problems in logistics. The potential advantage of DT lies 
in testing various hypothetical situations or establishing a train-
ing and testing environment. It fuses AI and big data to test the 
operation of the logistics system in advance.

Under the framework of traditional supply chain management 
theory, both the optimal order quantity model and the optimal 
replenishment lead time model are based on the decision-making 
of manufacturers, dealers, and retailers to maximize their utili-
zation. The "bullwhip effect" in the supply chain can be eliminated 
through comprehensive supply planning, collaborative planning, 
forecasting, and replenishment [122,123]. However, there is still 
a zero-sum game phenomenon in which the profits of the whole 
supply chain are different. These problems will be solved in the 
twin of the digital supply chain. Defraeye et al. [124] considered 
a DT-empowered supply chain as a DT system in the supply 
chain. It combines prerule techniques (time series and machine 
learning), decision tools (e.g., AI and operations research opti-
mization), and digital word generation techniques to form a 
digital twin-based DS. The DT-enabled supply chain can break 
through the traditional supply chain's response speed and cost 
bottleneck, effectively connecting the upstream and downstream. 
Also, it carries out exemplary management and intelligent deci-
sion based on data movement, improves the efficiency of supply, 
and reduce the cost of supply.

Discussion and Prospect

Discussion
Here, X has 2 meanings. On the one hand, X represents inter-
section. With the advancement of transformation, production 
and consumption need to be integrated in a certain sense. On 
the other hand, X also represents the future and the unknown. 
New technologies, including BDT, AI, blockchain technology, 
and quantum computing, emerge in endlessly. The future will 
be full of infinite possibilities. With the continuous advance-
ment of factory automation and information construction, deploy-
ing and applying various automation systems and information 
systems make workshop management as a product production 
more important. The workload also increases, the requirements 
for collaborative work are higher, and the requirements for 
safety, availability, operation, and maintenance management 
become higher. On the other hand, with the continuous evolu-
tion of the intelligent construction of the factory, it will face 
more challenges due to the lack of unified planning and other 
constraints: the large scale of the factory, scattered deployment 
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of intelligent monitoring equipment, high inspection pressure, 
high labor cost, and inability to find problems in time.

The current factory monitoring lacks a centralized and intu-
itive visual monitoring management platform. The management 
personnel cannot understand the on-site production situation 
and process flow in a real-time, comprehensive, and accurate 
manner. Building a 3D visual DT factory platform is imperative 
on the basis of the above problems. The solution of the DT factory 
is to realize the overall management by integrating 3D visualiza-
tion technology, rapid modeling technology, real-time state mon-
itoring technology, and camera monitoring technology. The 
DT factory platform integrates the 3D high-precision model 
of the workshop, process flow, equipment attributes, real-time 
data of equipment, and plant operation management data. It 
can intuitively display the process flow of the production work-
shop, re  motely control and manage workshop production, and 
improve operation management efficiency. At the same time, 
it provides customers with complete and high-value-added 
product solutions to realize intelligent and fine management 
of enterprises. In Industry X.0 era, DT can be virtual prototypes 
at the design stage, which can be adjusted through simulation 
experiments. Then, it invests in purchasing physical prototypes. 
In addition, designers can quickly simulate the operating con -
ditions by verifying the virtual products and completing the 
virtual design and operation. After service encapsulation, model 
services can be used through service search, matching, sched-
uling, and invocation.

Likewise, a review and analysis of research conducted by 
scholars in related fields in recent years reveals a range of effects 
that DT brings about through its combination with industrial 
manufacturing enterprises. On the design side, DT provides 
the means to achieve the integration of information technology 
and manufacturing and helps companies move at high speed 
toward the path of digital transformation by digitally creating 
highly realistic virtual models of physical objects and simulat-
ing, analyzing, and predicting their behavior. On the produc-
tion side, employees who leverage DT innovation will have the 
ability to expand their engagement with online devices and 
complete work, various business process improvements with 
great continuity and accuracy. DT can validate product or sys-
tem design expectations prior to deployment, improve factory 
productivity, optimize product performance or maintenance 
yards, and integrate complex manufacturing processes to close 
the loop on product design, manufacturing, and intelligent 
service. This shows that DT will become one of the key tech-
nologies for the future development of digital industry.

Development challenges of industrial DT
Under the policy wave of new infrastructure, the traditional man-
ufacturing industry is eager to transform, profit, and expand the 
market through IIoT technology. Two major challenges are faced 
in building the DT technology scene of the factory.

First, from the perspective of traditional computer-aided 
design 3D modeling and VR technology, the modeling work-
load is large, and the cycle is long. It is not easy to expand. At 
present, the 3D laser scanning system is recommended. The 3D 
laser scanning system integrates the laser scanner, digital cam-
era, software, and auxiliary equipment. It can obtain the 3D 
point cloud data and texture (image) data of the target object 
in a noncontact and rapid manner and build a true 3D digital 
model of the scanned object through data processing and 3D 
modeling. There are commercial 3D laser scanning systems 

abroad, but the price is relatively high. Domestic suppliers also 
provide 3D laser scanning modeling services.

Second, data analysis in the factory has a wide range of 
dimensions, including performance, capacity, energy consump-
tion, quality, cost, and efficiency. Each dimension involves many 
links, and data collection and modeling are difficult. In the paint 
spraying quality analysis of the robot arm, the parameters include 
the paint manufacturer, the paint mixture ratio, the ambient 
temperature, and humidity. Additionally, it also covers the moving 
speed of the robot arm, the nozzle pressure, and the flow rate. 
These data are in different links. For example, the paint mixture 
ratio depends on the experience of workers and cannot be accu-
rately quantified, making the modeling and analysis process 
very difficult. The prediction and analysis of product quality 
and production line capacity involve even complicated factors. 
They are closely related to enterprise products and business. 
Therefore, the factory DT construction is a long-term, contin-
uous exploration and accumulation process, and there is no 
shortcut. The factory DT also apply to the process industry, such 
as steel, petrochemical, food, and beverage. The slightly different 
information is based on different industry characteristics.

The third is the construction of the DT network system. 
Under the massive network data, data modeling should not only 
ensure the rich functions of the model but also take into account 
the flexibility and extensibility of the model. Consequently, 
building an efficient and hierarchical basic and functional model 
is more complicated. In the case of high real-time demand, 
model simulation and verification on the DT network will lead 
to the extension of the system running time. Therefore, different 
processing mechanisms must be added in different network 
application scenarios. At the same time, real-time requirements 
will further improve software and hardware performance require-
ments. In addition, the communication network usually has many 
elements, a wide coverage, and a long service time. Therefore, 
DT are bound to be a huge and complex system. Its collection, 
storage, model design, and application will become more com-
plex. The requirements for the software and hardware of the 
system will become higher.

Conclusion
This review comprehensively analyzes the application of DT in 
the 5IR context. It is found that 5IR complements and extends 
the signature features of Industry 4.0. It highlights aspects 
of the determinants that place industry in the European society 
of the future. These are of an economic or technological nature 
and have important environmental and social dimensions. In 
terms of technology, 5IR wants to capture the promise of 
advanced digitization, big data, and AI, emphasizing the role 
these technologies can play in meeting new and urgent needs 
in the industrial, social, and environmental landscape. This 
means using data and AI in production to successively increase 
production flexibility and make the value chain more robust. 
A review and analysis of the literature related to the application 
of DT in VRM in 5IR reveals that DT is a key technology in 
industrial manufacturing. It can create value, reduce time-to-
market, optimize plant equipment and finished product per-
formance, and provide insight that is unmatched by any other 
solution. At the same time, integrating DT should be the next 
inevitable step for global manufacturers as the cost decreases, 
the number of suppliers increases, and the availability of the 
advanced technologies that make up the DT increases. Thereby, 
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DT is superior to traditional data charts for 3D visualization 
and synchronized information transmission and monitoring 
interaction technology. It is gradually being recognized by 
industrial enterprises to help them step into the era of intelli-
gence. The subsequent study will prospect the potential appli-
cation value of DT in 5IR and the subsequent potential value 
to provide research directions for the subsequent development 
of intelligence in the industrial field and industrial manufac-
turing in the era of Industry X.0.
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