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Abstract 

With the world experiencing a rapid increase in the number of cloud devices, continuing to 

ensure high-quality connections requires a reimagining of cloud. One proponent, edge 

computing, consists of many distributed and close-to-consumer edge servers that are hired by 

the service providers. This thesis considers one problem in edge computing, edge user 

allocation, which involves assigning as many users to as few edge servers as possible. This 

problem can be formulated as a constraint satisfaction problem (CSP). With many users and 

edge servers, the complexity of the problem is high, resulting in computationally expensive or 

possibly infeasible calculations using conventional solvers.   

We approach this problem using spiking neural networks. For a spiking neural network supplied 

with sufficient stochastic noise, the distribution of network states converges to a stationary 

distribution expressed in terms of an energy function. By appropriately designing the network, it 

is possible to encode the CSP in a stochastic spiking neural network such that the low energy, 

high probability, states are solutions to the CSP. To maximize the performance of the stochastic 

spiking neural network, the synaptic weights and neuron parameters require adjusting or tuning. 

However, the spiking dynamics of the network preclude computation of traditional derivatives, 

as neurons are governed by discrete and event-based dynamics rather than continuous 

activation functions. The performance of the spiking neural network is also stochastic. This 

means that even a poorly tuned network can return good solutions, and vice versa. 

In this thesis, a stochastic neural network of spiking neurons is designed to solve the edge user 

allocation problem. For this network a new hyperparameter tuner is proposed, combining 

aspects from the explorational artificial bee colony algorithm (ABC) with the exploitation of the 

tree-structured Parzen estimator algorithm (TPE).  This new algorithm, ABC-BA, is designed 

with the aim of both exploring the solution space and exploiting the promising regions. It is also 

designed to be less sensitive to the inherent stochasticity of the stochastic spiking neural 

network. 

The network is tuned and evaluated on four problem sizes: 6, 100, 1000, and 10000 users. 

Results show that the network finds the optimal solution for the smaller problems while finding 

solutions slightly under optimum for the larger ones. While not guaranteeing optimal solutions, 

the stochastic network is, compared with the conventional solver, able to find good solutions for 

the largest problem. The networks with tuned parameters are also tested on unseen problem 

instances, results suggesting that the tuned parameters function well on similarly sized 

problems as the one there are tuned to. 

To evaluate ABC-BA, the developed algorithm is compared against its two parts. The 

experiments suggest that ABC-BA outperforms its building blocks in terms of desirable search 

patterns and parameter performance. An important future research direction is to evaluate 

whether this conclusion holds for other CSP-solving stochastic spiking neural networks. 
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Populärvetenskaplig sammanfattning
I dagens moderna samhälle blir antalet moln och mobila enheter allt fler. För att säkerställa fort-
satt god anslutningskvalité behövs ny tekik, där data och beräkning flyttas närmare användarna.
Detta kan löses med ett större antal servrar, geografiskt utplacerade med delvis överlappande
täckning. Varje användare har då möjligheten att ansluta till en av flertal olika servrar, och i det
uppstår ett problem. Hur ska tilldelningen ske så att antalet tilldelande användare maximeras
samtidigt som antalet använda servrar minimeras?

Ett möjligt tillvägagångsätt för att lösa tilldelningsproblemet är att ta inspiration från vår biolo-
giska hjärna. Hjärnan har tidigare studerats och efterliknats i många olika program och lösningar,
där komplicerade sammankopplingar av neuroner och synapser löser svåra problem. I ”den tredje
generationen” av dessa nätverk tas ännu ett steg närmare vår biologiska inspirationskälla. Genom
att ändra neuronernas beteende från matematiska funktioner till tidsberoende potentialer kan lös-
ningar formas i realtid. De biologiska neuronerna kommunicerar med ”spikar”, korta pulser, som
höjer eller sänker potentialen av andra neuroner. Detta ger namnet spikande neurala nätverk.

Genom att intelligent utforma det spikande neurala nätverket kan en bra lösningen till ovannämnda
tilldelningsproblem tas fram. Inkluderingen av tid i problemlösningen och implementering på
speciell "spikande" hårdvara har visat sig ge enorma förbättringar inom energieffektivitet för
problem likt användartilldelning, med över tusen gånger längre energiförbrukning.

Det uppstår dock nya utmaningar med dessa nätverk. Traditionella metoder för att optimera
prestandan på neurala nätverk fungerar inte på de tidsberoende spikande neurala nätverken. I det
här arbetet presenteras, utöver designen av ett spikande neuralt nätverk, en optimeringsmetod.
Denna metod är anpassad för de spikande neurala nätverkens unika beteende och funktion, varpå
nätverket lösningar förbättras.
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1 Introduction
The number of cloud and mobile-connected devices is growing rapidly. According to Ericsson’s
Mobility Report, it was predicted that there will be around 32 billion such devices by 2023 [1]. To
allow continued high bandwidth and low latency connections a reimagining of cloud was proposed,
edge computing.

In edge computing, online service providers hire edge servers for their services. Edge servers
are geographically distributed with the service-ranges, coverages, of neighbouring servers usually
overlapping, allowing users the possibility to connect to any server that reaches them. This allows
for low latency and high bandwidth connections while also allowing clients to offload intensive
computational tasks to local servers [2].

This thesis considers the problem of effectively assigning users to the local servers. While perhaps
trivial at a glance, maximizing the number of allocated users while minimizing the total amount of
hired servers quickly becomes a complex problem. Especially since each server might, based on its
resource capacity, only serve a finite number of users. The users in turn cannot be allocated to any
server, as some are out-of-range. An example problem and solution can be seen in Figure 1. This
problem can be formulated as a Constraint Satisfaction Problem (CSP) [1]. In this thesis, this
telecommunications-related CSP is approached with an, perhaps, unconventional solver. Here, we
look towards adapting nature’s neural architecture to computing architecture.

(a) Problem (b) Solution

Figure 1: Mock-up allocation problem. Squares and circles represent servers and their coverage and the
dots represent users. Unassigned users are shown as black and assigned users show colour matching their

server.

The famous quote: “If the human brain were so simple that we could understand it, we would
be so simple that we couldn’t” [3], has not stopped humanity from using the brain as a source of
inspiration, trying to mimic its behaviour. The brain not only accomplishes complex tasks but
runs on less than 30W [4]. Established technologies like neural networks draw inspiration from
the complex network of neurons in the brain. However, although their similarity, a big discrepancy
between today’s artificial neural networks (ANN) and the brain is how the neurons function.

A new generation of ANNs called Spiking Neural Networks (SNNs), also tries to incorporate bi-
ologically inspired neurons. In an SSN, the neurons are governed by time- and event-dependent
behaviour, replacing continuous and differentiable activation functions used in current ANNs. The
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inter-neuron communication is facilitated by short pulses, spikes, raising or lowering the membrane
voltage of its synapse-connected neighbours. By carefully designing the network structure, stochas-
tic SNNs have been shown to solve CSPs [4]. While not necessarily outperforming ANNs, when
run on custom hardware these SNN solvers are orders of magnitude more energy efficient [5].

Regardless, the synaptic strengths and neuron parameters of the SNN still need to be adjusted,
tuned, for the SNN to work properly and achieve its optimal performance. And while some of
the neuron and synaptic strengths are implied from the CSP, there still exists plenty of these
hyperparameters that need tuning. This introduced a problem, as traditional approaches such as
backpropagation require information about the derivative and the event-driven nature of SNN neu-
rons does not have a traditionally computable derivate. SNNs can instead be tuned by gradient-free
algorithms such as evolutionary algorithms, Bayesian algorithms, and particle swarm algorithms.
Tuning an SNN is therefore akin to black-box optimization and finding a good tuner/optimizer
vital to the network’s final performance.

1.1 Background
The driving vision behind this thesis work is two-fold. First, the development and incorporation of
these neuromorphic, “brain-like”, algorithms in edge computing represent a possibility for quick and
energy-efficient solutions. It might then be possible to solve problems in a dynamic setting. Second,
by researching and developing a hyperparameter tuner specifically tailored towards stochastic
SNNs, future research into other problems will be sped up. With a proper tuner, the true potential
of any developed stochastic network can be obtained much quicker.

1.2 Related Work
The topic of stochastic spiking neural networks and algorithms tuning them appear underre-
searched. Here, similar work is presented and the novelty of this thesis explained.

The idea of using networks of stochastic spiking neurons to solve constraint satisfaction prob-
lems was originally proposed by Jonke et al. [4]. It has then been applied in solving problems
like Boolean satisfaction and traveling salesman [4], sudoku and map colouring problem [6], and
quadratic unconstrained binary optimization [7].

Especially interesting work was made the prior year by my thesis work predecessor Kim Petersson
Steenari, where stochastic spiking neural networks are introduced for the edge user allocation
problem [8]. Solving the same problem, this thesis uses Petersson’s work as an inspiration for
fundamental conceptual understanding. This includes the motifs and selection variables, although
the motifs are somewhat altered. The novelty of this thesis work is highlighted by an improvement
in computed results.

Automatic hyperparameter tuning of stochastic spiking neural networks has, to the writer’s knowl-
edge, not been attempted prior. All authors in earlier mentioned implementations [4, 6, 7, 8] opt
for manual tuning. Automatic tuning of regular spiking neural networks has been done and shown
to work. Examples of this include Spike-Timing-Dependent Plasticity with reinforcement learning
[9], evolutionary algorithms [10, 11, 12] and swarm-based algorithms [13, 14].

This thesis adapts the artificial bee colony algorithm’s framework. With the artificial bee colony
hyperparameter tuner [15], multiple attempts at improving the algorithm have been researched
and proposed. One example with proposed Bayesian characteristics, and a survey on other ap-
proaches, can be seen in [16]. Three distinct characteristics, modifications of the artificial bee
colony algorithm, are identified and assumed vital for the successful tuning of stochastic spiking
neural networks. These are improved local exploitation, adapting the search based on earlier eval-
uated results, and robustness to the result’s inherent stochasticity. Of these three targets, only
the first is — perhaps implicitly — considered in [16]. Since the second, and especially third,
modifications are very unique requirements stemming from the stochastic spiking neural network,
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the need for a new Bayesian bee algorithm remains. The algorithm proposed in this thesis is a
hybrid scheme between the artificial bee colony algorithm and the tree-structured Parzen estima-
tor algorithm [17]. This hybrid algorithm incorporates Bayesian elements rather differently than
[16] and is created with the three characteristics in mind. It is believed that the two underlying
algorithms cover each other’s weaknesses in hyperparameter tuning stochastic neural networks.

The implementation of the stochastic spiking neural network is done in Intel Lava. Earlier work
in Lava regarding stochastic spiking neural networks and optimization is perhaps best seen in
[7], where quadric unconstrained binary optimization is solved using a stochastic spiking neural
network. Lava is currently being developed and is best understood by reading their documentation
[18].

1.3 Objective
The goal of this thesis work is to implement an SNN that can satisfactorily solve the user allocation
problem of dynamic sizes. The implementation is written such that it can be run and tested on
SNN custom, called neuromorphic, hardware. With a working SNN, we designed and implemented
a tuner that finds parameters that optimize the functionality of the SNN. As a final step the
SNN and the tuned parameters are thoroughly tested, investigating how the performance and
parameters differed for differently sized problems. The thesis work was considered complete when
the following had been achieved:

• A working and implemented stochastic spiking neural network solving the user allocation
problem.

• A functioning hyperparameter tuner that improves the performance of the SNN.

• A study investigating the tuner, SNN, and the obtained parameters.

1.4 Limitations
Despite working towards a complete presentation of both the stochastic spiking neural network
and the hyperparameter tuner, this thesis still contains some limitations in the research.

Starting with the spiking network, while the implementation function properly the thesis makes no
claim presenting this as the best network structure or implementation. No proper research is done
investigating major structural changes or different underlying dynamics governing the neurons.
The network in this thesis is, therefore, a network solving edge user allocation but not necessarily
the best one. Additionally, access to neuromorphic hardware is limited and while theoretically
energy efficient, no test on energy efficiency is done.

Another limitation arose from the large choice of possible hyperparameter tuners. As tuning
stochastic spiking neural networks appears underresearched, the multitude of tuning approaches
for non-stochastic spiking neural networks is investigated. Here, the choice to build upon the bee
colony framework is, while partly motivated, not the only possible approach. The work is therefore
limited, only displaying one working example of stochastic network tuning.

Lastly, as is mentioned throughout the thesis, many of the larger simulations are possibly cut short
by the ever-increasing simulation times. This probably limited the larger problems’ results. While
not displaying bad results, with more computational resources and time, perhaps these results
would have been better.

2 Theory
The following section presents an overview of the underlying theory upon which this thesis is
written. Here, the edge user allocation problem and its mathematical formulation are introduced
followed by a brief introduction to neuromorphic hardware, and lastly the main topic of the
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thesis — stochastic spiking neural networks and how to design and tune them to solve constraint
satisfaction problems.

2.1 Edge User Allocation
Edge computing refers, in telecommunication, to providing applications with computation and
storage close to the end users. Advantages of edge solutions include low latency, high bandwidth,
device processing, data offload as well as trusted computing and storage [2].

The edge user allocation (EUA) problem refers to the allocation of users to edge servers. A user
may be allocated to any server in range that has enough recourses (e.g., memory, and bandwidth)
for that user’s resource demand. Based on this, the service provider has two objectives. Without
overfilling any server, the number of allocated users should be maximized while minimizing the
number of active edge servers. Figure 2 illustrates a trivial example of the EUA problem. It is
easy to see that if each server can accommodate three users, a solution can be found where server
“2” remains inactive.

1

2

3

4

- User

- Server

Figure 2: Illustration of a trivial EUA problem.

2.1.1 Mathematical Formulation of EUA

In earlier work, P. Lai et al. formulated the EUA problem as a variable-sized vector bin packing
(VSVBP) problem [1]. The VSVBP constitutes a constraint satisfaction problem (CSP). Given
an EUA problem with Nu users wishing to be allocated to one of Ns servers, the mathematical
formulation contains two optimization objectives and four constraints. As mentioned earlier, the
two objectives involve maximizing allocated users while minimizing the number of active edge
servers. An edge server is considered active if it has at least one allocated user. These are
mathematically expressed in Equations (1a) and (1b).

For the constraints, the proximity constraint (2b) dictates that a user may never be allocated to
an edge server for which the user is out-of-range. This is formulated such that the distance from
a user to its edge server may never surpass the coverage distance of that server. In this thesis,
the coverage is assumed circular and a connection is always possible within and never possible
outside the coverage. Since each server can only allocate a finite number of users based on the
users’ resource demand and the server’s capacity, the capacity constraint (2a) ensures that no
active server should allocate users for which their combined demand surpass that server’s capacity
(in any resource-type). Lastly, the two remaining constraints, binary value constraint (2d) and
single allocation constraint (2c) govern the allocation variables. As a connection either is active
or inactive, the variable representing that connection should only take binary values. And since
each allocated user should have a unique server connection, the sum of all connection variables

10



belonging to a user should never exceed one. The full mathematical representation is presented
below, Equations (1) and (2) for the objectives and constraints respectively.

max

Nu∑
j=1

Ns∑
i=1

ξij , (1a)

min

Ns∑
i=1

ζi, (1b)

Subject to constraints,

Nu∑
j=1

wjξij ≤ Ciζi, ∀i ∈ {1, . . . , Ns} (2a)

dij ≤ cov(si), ∀i ∈ {1, . . . , Ns};∀j ∈ {1, . . . , Nu} (2b)
Ns∑
i

ξij ≤ 1, ∀j ∈ {1, . . . , Nu} (2c)

ζi, ξij ∈ {0, 1}, ∀i,∀j (2d)

where,

ζi = 1 if server si is active,
ξij = 1 if user uj is allocated to server si,

Ci and wj are the capacity and capacity demand of server si and user uj respectively,
dij is the distance from user uj to server si,

cov(si) is the coverage of server si.

Hence, both server capacity C and user capacity demand w are inferred from the problem and are
known prior to solving. Distance variables d and server coverages cov(s) are also inferred from
the problem’s geographic setting. The variables ξ and ζ are therefore the decision variables of the
problem.

2.2 Spiking Neural Network
Spiking neural networks (SNNs) have been described as the third generation of neural networks
[19]. While all artificial neural networks (ANN) are inspired by the human brain, in traditional
neural networks the behaviour of the neurons is not biologically feasible, using continuous activa-
tion functions. SNNs, therefore, go further, also trying to incorporate biologically-possible neurons
[20].

An SNN is structured similarly to ANNs, a network with arbitrary topology consisting of nodes and
edges. These nodes and edges are denoted as neurons and synapses, highlighting their biological
inspiration. A synapse may be either excitatory or inhibitory, depending on if it excites or inhibits
the post-synaptic neuron. In an SNN the neurons communicate with each other through short
pulses — spikes — facilitated by inter-connecting synapses. Generally, a neuron spikes when its
membrane potential exceeds its voltage threshold. The membrane potential of a neuron is affected
by the incoming spikes, increased with excitatory synapses and decreased with inhibitory. Many
neuron models also incorporate a continuous voltage charge or leak, meaning that the membrane
voltage change without receiving spikes. To avoid indefinite spiking, after a neuron discharges
through a spike the potential is reset to its equilibrium voltage. Information in an SNN is therefore
encoded in time, for instance through the rate or timing of the spikes. Unfortunately, due to this,
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common ANN training methods are not easily implemented. This is further discussed in Section
2.5.

2.2.1 Neuron Dynamics

As mentioned earlier, SNNs employ spiking neurons inter-connected by excitatory or inhibitory
synapses. The underlying dynamics, the inner-working, of the neurons dictate how the neurons
behave. There are many different, biologically feasible, neuron dynamics that have been imple-
mented in SNNs [21]. This thesis work opted for simple activation dynamics, reducing the number
of hyperparameters within the network. The standard neuron includes a leak parameter τ and a
membrane voltage v. The voltage evolves as,

dv

dt
= −1

τ
v(t). (3)

Equation (3) ensures that the membrane voltage tends towards its equilibrium state, with leak
proportional to the membrane potential. The membrane potential of a post-synaptic neuron is
affected by the set of pre-synaptic neurons S according to synaptic weights w. Excitatory and
inhibitory connections are implemented as positive and negative weights respectively. Figure 3
shows the parameters affecting the membrane voltage of a neuron. Here, x(t) and y(t) are the
outgoing spikes from the pre- and post-synaptic neurons, and wij is the synaptic weight from
neuron j to neuron i.

i

1

j

wi1x1(t)

wijxj(t)

vi(t)

VT
τ

yi(t)

Figure 3: Illustration of parameters affecting the membrane potential of post-synaptic neuron i.

Discretizing the simulation time t ∈ [0, T ], at each timestep tk the membrane potential is updated
according to the pre-synaptic spikes and the voltage leak. This, and discretizing Equation (3),
yields the update rules in Equations (4) and (5). These are also visually illustrated in Figure 4.
Thus,

vi(tk+1) =

{
0 +

∑
l∈S wil xl(tk), yi(tk) = 1,

(1− τ−1)vi(tk) +
∑

l∈S wil xl(tk), yi(tk) = 0.
(4)

yi(tk+1) =

{
0, vi(tk+1) < VT ,

1, vi(tk+1) ≥ VT .
(5)

This activation dynamic is deterministic and, as explained in Section 2.4, stochastic behaviour is
essential for the functionality of the SNNs solving CSPs. To introduce stochasticity another acti-
vation dynamic is introduced, solely defined by a Bernoulli distribution with probability constant
pIN . Each timestep these stochastic neuron fire with probability pIN , these spikes increase the
membrane voltage of the post-synaptic neuron by the synaptic strength wIN . The mathematically
described activation function is thus,

yi(tk+1) = Y,

Y ∼ Bern(p).
(6)
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Dynamics defined by Equations (4) and (5) are implemented in the principal neuron group. Neu-
rons governed by Equation (6) are only implemented in the input or noise group, only serving to
stochastically increase the membrane potential of the principal group. An alternative approach is
having the principal neuron spike stochastically, as is done in [4]. It is however believed that these
approaches are equivalent.

Figure 4: Visual representation of neuron dynamic update rules, Equations (4) and (5). The red line
represents the voltage threshold.

2.3 Neuromorphic Hardware
Neuromorphic, or “brain-like”, computing seeks to adapt nature’s neural architecture to computer
architecture. This includes integrated memory-and-computing, fine-grain parallelism, pervasive
feedback and recurrence, massive network fan-outs, low precision, and stochastic computations
[5]. Communication within the architecture is facilitated by sparse spikes.

The SNN-styled computer architecture, with its asynchronous and event-driven processing, has
been shown to massively increase the energy efficiency of computations. [5] presents a comparison
between the energy consumption and time to solution when solving the Latin square CSP on a
CPU and Intel’s neuromorphic hardware Loihi. Visible in [5, Figure 7] the neuromorphic hardware
is orders of magnitude more energy efficient, with Loihi reporting over a thousand times lower
energy than the CPU. When solving CSPs and energy efficiency is important, the potential of
neuromorphic hardware is clear.

All code implementation and simulations throughout this thesis project are made using Intel’s Lava
software framework. Lava is an open-source software framework for developing neuro-inspired
applications and mapping them to neuromorphic hardware [18]. At the time of writing, Lava
supports CPU and Loihi architecture. Unfortunately, as the neuromorphic hardware was not
available for testing all simulations and results presented in this thesis are compiled and run on a
CPU.

The Lava developers are, as of writing, developing a generic CSP SNN solver [22]. A comparison
between a generic and tailored CSP solver is therefore possible in the future.

2.4 Tailoring Stochastic SNNs for Optimization
Jonke et al. [4] propose that a network of stochastic spiking neurons can be utilized in order
to solve constrained optimization problems. The methodology is similar to earlier work using
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Boltzmann machines to solve CSPs [23].

The state of an SNN consisting of N spiking neurons can at any time be represented by an N -
dimensional time-dependent binary vector x⃗(t) = [x1(t), x2(t), . . . , xN (t)]. Here xk(t) represents
whether the k:th neuron spiked within the last timestep. With sufficient noise, stochasticity, in
the system the network converges to an equilibrium distribution of states p(x⃗). This distribution
is then reformulated as the energy function [4],

E(x⃗) = −log
(
p(x⃗)

)
+ C, (7)

where C is an arbitrary constant. The network therefore most often exists in low-energy states.
An SNN can solve CSPs by encoding the problem variables as neurons and designing the energy
function such that low-energy states correspond with viable minimums of the objective function.
At equilibrium the network continuously explores these low-energy states, sampling E(x⃗). Consid-
ering a network N of symmetrically connected neurons, wlk = wkl, and no recurrent connections
wll = 0. It has been shown [4] that the energy function of network N is,

EN (x⃗) = −
N∑

k=1

bkxk − 1

2

N∑
k,l=1

xkxlwkl. (8)

In Equation (8), bk is the bias of neuron k and corresponds with the inherent willingness, or
unwillingness, to spike. In an SNN where excitatory noise is supplied by neurons governed by
Equation (6) this value is strictly positive. This implies that unless inhibited by other neurons,
all neurons fed with stochastic noise eventually spike. This proposed network does however only
allow for second-order dependencies between problem variables, see Equation (8), and for many
CSPs this is insufficient. Jonke et al. [4] proposes that the dependencies between the problem
variables are increased by introducing a set of auxiliary circuits A to the principal network N .
These auxiliary circuits, not constrained by symmetric and non-recurrent connections, serve to
increase variable dependencies and modulate the energy function of the full network. To repeat,
the principal network is the main building block of the network, adhering to the aforementioned
constraints and with a known energy function. The auxiliary networks are added to the principal
network and add dependencies between problem variables and help further shape the energy
function. While the energy function of this combined network is unknown, Jonke et al. [4,
Theorem 1] proves that the energy contributions U of the auxiliary networks are linear and that
the total energy function can be written as a linear combination

EN ,A(x⃗) = EN (x⃗) +
∑
i∈A

Ui(x⃗). (9)

By intelligently constructing motifs of auxiliary circuits, CSP constraints, and dependencies can
be modulated. The SNN then continuously samples states from the energy function and, given
enough time, finds a solution to the CSP [4]. The methodology has been implemented for the
traveling salesman problem [4], Boolean satisfaction problem [4], sudoku problem [6] and map
colouring problem [6].

2.5 Hyperparamter Tuning of Stochastic SNNs
When designing a stochastic SNN for solving CSPs, many of the network parameters get inferred
from the problem description. But often, and especially with the EUA problem, many parameters
still require careful tuning for the SNN to achieve optimal performance. In earlier implementa-
tions [4, 6] of CSP-solving stochastic SNNs, tuning is bypassed by manually finding parameters
that adequately shape the energy function. With valid parameters, the network will, due to the
continuous sampling of the energy function, find the solution given enough time. This works fine
when only one problem instance is considered, but not when solving a whole class of problems with
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limited runtime. Additionally, a good set of parameters for one EUA problem is not necessarily
good for another. It is therefore essential to have a hyperparameter tuner that can optimize the
network by finding parameters that give valid and good solutions within the allotted time.

Compared with regular neural networks, the spiking and event-based nature of SNNs does not
allow for regular training methods such as backpropagation — as no classical derivative can be
calculated. And while there exist SNN-alterations to backpropagation, see for example SpikeProp
[24], they are more often used for feed-forward networks. To obtain a starting point for the
algorithm’s development, the tuning of non-stochastic SNNs is considered. These algorithms are
used as the foundational framework for an extension to stochastic SNNs.

2.5.1 Tuning on Non-Stochastic SNNs

As no earlier work was found regarding the tuning of stochastic SNNs solving CSPs, the focus is
turned to methods of tuning the non-stochastic “regular” SNNs. Note that optimizing network
weights and neuron parameters is typically referred to as training rather than tuning in the case
of regular SNNs. Here, we refer to this as tuning for cohesion. As these experience similar issues,
disregarding stochastic performance, it is believed that the research on tuning regular SNNs can
be used as a starting point when considering stochastic SNNs.

One biologically inspired method to tune SNNs is called spike-timing-dependent plasticity (STDP).
STDP is an online synaptic weight learning rule based on Hebbian learning. It is a biologically
feasible learning method and it is widely believed that synaptic plasticity underlies learning and
information storage in the brain [25]. STDP updates synaptic weights according to tight temporal
correlations between spikes of pre- and post-synaptic neurons. When a neuron spikes, it opens a
learning window W (x) for its pre- and post-synaptic neurons. The synaptic weight wji is then
updated by the spike time difference between the pre- and the post-synaptic neuron, ti and tj
respectively. It has, in combination with reinforcement learning, been used to tune SNNs doing
motor control [9].

Another approach involves applying metaheuristics, nature-inspired algorithms. Genetic evolu-
tionary algorithms have been shown to tune SNNs for tasks such as classification and control
[10, 11, 12]. Swarm-based algorithms have also previously been used to tune SNNs. Examples
include particle swarm optimization (PSO), cuckoo search, ant colony optimization, and artificial
bee colony [13, 14].

2.5.2 Choosing a Hyperparamter Tuner

Looking at other implementations, a key difference is that the EUA network is purposely designed.
Compared to a dense network, each synaptic connection is a vital and understood part of the
network’s function. As such, the tuner is restricted to certain elements. Evolutionary algorithms
that create, heavily change, or break synapses will therefore most likely not work. Similarly, STDP
will probably struggle as there exist multiple positive feedback loops, leading to epileptic behaviour
as synaptic strengths grow indefinitely. The metaheuristics swarm intelligence algorithms are
chosen as they constitute simple, general, and explorational algorithms. These algorithms are also
established, available, and researched. The artificial bee colony algorithm is chosen as the tuner’s
framework. It has previously been implemented to tune SNNs [13] and has desirable qualities
presented in a survey on nature-inspired algorithms for neural networks [26].

2.5.3 Artificial Bee Colony Algorithm

The artificial bee colony (ABC) algorithm is a natured-inspired swarm-based method meant to
mimic the strategy bees use to find food. It was originally proposed by Karaboga in 2005 [15] and
has been applied when tuning spiking neural networks for classification tasks, see [13]. The ABC
algorithm has three types of workers: employed, onlookers, and scouts. The employed bees are all
tied to a food source, parameters, and recruit onlookers to exploit that food source. The better a
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food source appears the more onlookers are recruited. The employed bee applies a greedy selection
process when trying a new food source and internally keeps track of its currently best parameters.
To avoid stagnation, each employed bee has an internal “abandonment counter”, and after a few
iterations of not finding an improvement that food source is considered depleted. The employed
bee then instead becomes a scout bee and randomly chooses new parameters in the parameter
space, resetting its abandonment counter.

Initialization of the ABC algorithm consists of randomly placing nb employer bees. Afterward
follows an arbitrary amount of iterations, each consisting of the employer, onlooker, and scout
phase.

The employer phase involves each employer bee trying new parameters, where those parameters
ρ⃗′i are generated as follows,

ρ⃗′i = ρ⃗i + r(ρjd − ρid), (10)

here ρjd is the d:th element of employer bee j’s parameters, r is a uniformly sampled value and,

j ∈ {1, . . . , N}\i,
d ∈ {1, . . . ,dim(ρ⃗)}.

Greedy selection is then applied and if the new parameters are superior, the abandonment counter
is reset. A fitness score is assigned to each employed bee’s parameters. For a minimization problem
with objective f , the fitness function is

fit(ρ⃗) =

{
1

1+f(ρ⃗) if f(ρ⃗) ≥ 0,

1 + abs(f(ρ⃗)) if f(ρ⃗) < 0.
(11)

To attract onlookers each employed bee gets a probability based on the hive’s total fitness,

pm =
fit(ρ⃗m)∑nb

i=1 fit(ρ⃗i)
. (12)

Each onlooker bee is then assigned to a food source based on the computed probabilities. The on-
looker bees search, evaluate, and apply greedy selection similarly to the employer phase, Equation
(10). This structure ensures good parameters are prioritized for exploitation.

The last step of each iteration is to check whether any employed bee’s abandonment counter is
over a set threshold na. If that is the case, the employer bee’s parameters are randomly reassigned,
and the abandonment counter is reset.

2.5.4 Tree-structured Parzen estimator

Tree-structured Parzen estimator (TPE) is a Bayesian optimization algorithm that uses a tree-
structured model to approximate the likelihood distribution [17]. This is achieved by continuously
saving the result from all tested parameters ρ⃗ and their corresponding score P . After an initial
phase of random sampling, it selects the next set of parameters by fitting two probability density
functions (PDFs) α(ρ⃗) and β(ρ⃗) to the “good” and “bad” parameters of the earlier evaluations.
This good-bad-split is done by setting a predetermined divider quantile γ, obtaining a subsequent
divider score P̂ . By choosing γ and using all earlier evaluations, P̂ is obtained as the value
satisfying p(P < P̂ ) = γ. For the single-objective case, the tree-structured split is trivial. For
multi-objective optimization the split is more complicated, as seen in [27].

p(ρ⃗|P ) =

{
α(ρ⃗) if P < P̂ ,

β(ρ⃗) if P ≥ P̂ .
(13)
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The two PDFs α(ρ⃗) and β(ρ⃗) are approximated using the Parzen kernel density estimator (KDE),
placing kernels at the parameters for each respective PDF. The resulting PDFs’ values at any point
in the parameter space are obtained as the sum of all kernels. These distributions are adaptive,
meaning each iteration, α(ρ⃗) and β(ρ⃗) are updated.

To obtain the next parameters for evaluation, candidates are sampled from the good distribution
α(ρ⃗). From this set of candidates, the parameters maximizing the expected improvement EIP̂ (ρ⃗)

is chosen. Using the the utility function max(P̂ − P, 0) and the likelihood approximation from
Equation (13), the expected improvement is [17],

EIP̂ (ρ⃗) =

∫ ∞

−∞
max(P̂ − P, 0) p(P |ρ⃗) dP

=

∫ P̂

−∞
(P̂ − P )

p(ρ⃗|P )p(P )

p(ρ⃗)
dP

= α(ρ⃗)

∫ P̂

−∞
(P̂ − P )

p(P )

γα(ρ⃗) + (1− γ)β(ρ⃗)
dP

=
α(ρ⃗)

γα(ρ⃗) + (1− γ)β(ρ⃗)

∫ P̂

−∞
(P̂ p(P )− Pp(P )) dP

=
α(ρ⃗)

γα(ρ⃗) + (1− γ)β(ρ⃗)
P̂ p(P < P̂ )

∫ P̂

−∞
−Pp(P ) dP

=
α(ρ⃗)P̂ γ − α(ρ⃗)

∫ P̂

−∞ Pp(P ) dP

γα(ρ⃗) + (1− γ)β(ρ⃗)

∝
(
γ +

β(ρ⃗)

α(ρ⃗)
(1− γ)

)−1

.

(14)

The expected improvement is, as seen above, maximized when minimizing the quotient β(ρ⃗)/α(ρ⃗).
Hence, this quotient is used as a surrogate, working as an approximation of the real function.
When the underlying optimization target is computationally expensive the surrogate can reduce
the number of bad evaluations.

3 Methodology
The methodology section presents how the theory in the earlier section is applied to solve the edge
user allocation problem. It consists of the design for the stochastic SNN and a proposal for a new
network tuner based on the ABC algorithm. Additionally, to validate the results of the SNN, the
EUA problem is reformulated as an integer linear programming and solved with an established
solver.

3.1 Designing an SNN for EUA
To design an appropriate SNN to solve the edge user allocation problem from Section 2.1.1 a
principal network of neurons, governed by Equation (4), is placed in a grid structure. The size
of the grid is Nu ×Ns where Nu and Ns are the number of users and servers respectively. Each
row corresponds with a user and each column a server. Thus, if the neuron in column i and row
j spikes it is interpreted as user j connecting to server i.

Each of the neurons in the principal network receives excitatory spikes with strength wIN from the
input neurons, described by Equation (6), driving the SNN’s search. To guide the network’s state
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towards solutions of the EUA, objective functions and constraints are encoded through motifs and
network structure, shaping the energy function.

3.1.1 Principal Network — Objective Functions

The first objective, to maximize allocations, is ensured by the input neurons. With sufficient
noise, the energy function corresponding to unassigned users is very high. The second objective is
the minimization of active servers. Each column, corresponding to the same server is connected
by symmetric excitatory synapses to a low-threshold neuron, here called utilization neuron, with
synaptic strength wUTIL. This excitatory connection reduces the energy function of the states
where multiple users are allocated to the same server.

The behaviour of the principal network N , just described and visualized in Figure 5, lacks in-
hibitory synapses and will result in epileptic behaviour, that is, all neurons will constantly fire.
As each column is independent and unaffected by the other columns, the symmetric excitatory
connections with the utilization neurons result in every column trying to have all its neurons firing.
The energy minimum is when all neurons are active, which is obtained by considering the energy
function of the principal network, Equation (8), in the case of only excitatory synapses w > 0.

U

P1

- Principal neuron

- Excitatory synapses

I I

I I

Pm

P1 Pm

P

- Input neuronI

- Utilization neuronU

U

Nu

Ns

Figure 5: Principal network; Principal, utilization, and input neurons.

3.1.2 Auxillary Network — Constraints

To change the behaviour of the network, and enforce constraints, auxiliary network motifs are
designed to shape the energy function. The binary value constraint (2d) is inherently enforced
by the neuron’s binary states — active and inactive. Secondly, proximity constraint (2b) is en-
forced by greatly increasing the voltage threshold of the neurons corresponding with out-of-range
connections. These neurons fire incredibly seldom, corresponding with very high energy states.

Both the capacity constraint and the single-allocation constraint, Equations (2a) and (2c), involve
limiting the number of active neurons in the rows and columns of the aforementioned grid struc-
ture. In each row, corresponding with the same user, only one neuron should be active. This is
accomplished with auxiliary winner-take-all (WTA) motifs. In the WTA, the neurons are con-
nected to an auxiliary control neuron with a strong excitatory connection, such that it reaches its
voltage threshold following a single spike. It is then connected back with inhibitory connections,
synaptic strength wWTA. When a neuron within the WTA spikes the control neuron returns in-
hibitory signals so no further spike occurs. Disregarding that the noise encourages the neurons
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to spike (bias), the energy function of the auxiliary WTA circuit containing a subset of principal
neurons K ⊂ {1, . . . , N} is approximated as [28],

EWTA, [K] ≈

{
0,

∑
k∈K xk ≤ 1,

wWTA(
∑

k∈K xk),
∑

k∈K xk > 1.
(15)

Again, the wWTA is the synaptic weight from the control neurons to the principal neurons, xk

represents whether neuron k is spiking, and K is the set of principal neurons belonging to the
WTA.

A

:=
- Principal neuron

- Inhibitory synapses

- Excitatory synapses

P

- Control neuron

P P P

A

WTA

P P P

Figure 6: WTA motif.

Likewise with the capacity constraint, in each column, the energy function is raised for states
where any of the servers’ resource capacities are broken. The synaptic structure is similar to
the WTA but the capacity-control neurons’ dynamic differs, as they should not imminently spike
upon excitation. It should also not spike if excited multiple times by the same neuron. It needs to
distinguish the input coming from different neurons and only spike when enough neurons are active,
i.e., the capacity constraint is violated. Implemented, the capacity neuron has a voltage vector
that is booleanized with a low voltage threshold. When the sum of the dot product between this
booleanized vector and the vector, or matrix, containing information regarding the users’ resource
demand exceed capacity the neuron spikes, inhibiting all neuron corresponding with that server.
This setup ensures that each spike from the principal neuron is translated as a user establishing
a connection with a server, a change to the current state. Each user starts in an unassigned state
but is quickly picked up by any server, and changes server each time a neuron in that user’s row
spikes.

For the capacity neurons, this raises a problem as the neuron only receives information when
a user is assigned to that server but not when a user has been reassigned to another server.
As such, the capacity neurons must communicate their booleanized vectors to all other capacity
neurons whenever they detect a change, that is when they receive a spike from a neuron in the
principal network. When a capacity neuron receives information that a user has been assigned
to another server it discharges the voltage belonging to that user. This structure removes the
capacity neurons’ need for the leak parameter τ , setting τ−1 to zero. And since boolean values are
easily interpreted as spikes, the communication remains facilitated by spikes. For the framework
in which the implementation is made, vector-shaped ports and voltages are possible. If this is not
possible, then all vector-based logic can instead be translated to multiple single-valued neurons
and synapses.

Disregarding the additional complexity to ensure that the capacity neurons function properly, this
additional motif worked like a WTA with multiple winners. Calling this motif C winners-take-all
(CWTA), this auxiliary network’s contribution to the energy function is calculated by adapting
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Equation (15). With the subset K of principal neurons belonging to the CWTA, disregarding the
principal neurons’ inherent willingness to spike, their energy contribution becomes,

ECWTA, [K](x⃗) ≈

{
0,

∑
k∈K xk ≤ C,

wCWTA(
∑

k∈K xk),
∑

k∈K xk > C.
(16)

Here, wCWTA is the synaptic strength of the returning inhibitory spikes from the capacity neuron
to the principal neurons.

3.1.3 Approach for Monitoring Network States and EUA Solutions

As the energy function represents a distribution, the network does not converge to a single state
representing the solution but constantly explore states sampled from the energy function. And
while the state representing the optimal solution might correlate to the lowest point in the energy
function, just the number of low-energies states can make sampling the lowest energy unlikely. For
this reason, a way to detect good solutions is required, introducing a monitor.

The naive approach for a monitoring system is having a continuous reading of the network’s
state. After the simulation the naive monitor goes through and calculates the score of each state,
returning the best state. This is both costly and represents a bottleneck in the computation.
The ideal approach is having an internal logic check for optimal solutions, only once reading
the state or locking the network with inhibitory signals when the optimum is reached. In earlier
implementations this has been achieved with the 3-Boolean satisfiability problem [4] and the Latin
square problem [5]. These two problems are however inherently different since a state fulfilling
the constraints is automatically an optimal solution. For problems like traveling salesman [4]
and, most relevantly EUA, the optimum is not known in advance. And therefore it is not, to the
writer’s knowledge, possible to formulate this kind of logic check. Instead, some kind of monitoring
is required. But to avoid the naive approach, the monitor is implemented to reduce overhead
computations. This is accomplished by exploiting that the aforementioned booleanized vectors in
the capacity neurons already contain the information required to calculate the current score, even
without knowing the current solution. The number of users is equal to the sum of all Boolean
vectors, and the number of active servers equals the number of non-zero Boolean vectors, both
incredibly cheap operations. Computing these allows the monitor to know whether the current
state is a better solution without monitoring the entire network. Then, only when the current
solution represents an improvement does the monitor read the state of the principal network
and save it in memory. Also, any capacity neuron assigned too many users (violated capacity
constraint) inhibited the monitor, ensuring no invalid states are saved in memory. This likely
gives the same results as continuous monitoring of the state, but at a reduction in computations.

3.1.4 Full Network solving EUA

By following the presented methodology, a stochastic SNN is created solving instances of the
EUA problem. The SNN continuously samples states from the energy function distribution and
the monitor detects when the current state is an improvement to the one in memory. When the
simulation time is over, the network returns the current solution in memory. An illustration of
the final network is seen in Figure 7.
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Figure 7: Figure of full network solving the edge user allocation problem.

An approximation of the energy function for the full network gives an idea of how to balance
the weights to obtain the desired distribution. By defining Γ and Λ as the set of neuron sets
belonging to the auxiliary motifs, WTA and CWTA, and assuming that the motifs constitute the
biggest contributor to the auxiliary energy function, the total energy function is approximated
with Equations (8), (9), (15), and (16),

EN ,A(x⃗) ≈ −1

2

N∑
i=1

N∑
j=1

wijxixj +
∑
K∈Λ

EWTA, [K] +
∑
K∈Γ

ECWTA, [K]. (17)

For this thesis work, the hyperparameters are tuned in groups meaning that, for example, all
control neurons’ inhibitory strengths wWTA are numerically equivalent. This is a large general-
ization but serves to keep the number of hyperparameters at a reasonable range. Without this
generalization, the number of hyperparameters for larger SNNs becomes huge. Below, in Table 1,
are all changeable hyperparameters from the implementation presented in this section.

Table 1: List of all SNN hyperparameters.

Variable Description

VP Principal neuron voltage threshold
τP Principal neuron leak parameter
wIN Input neuron excitatory strength
pIN Input neuron spike probability

wWTA Control neuron inhibition strength
wUTIL Utilization neuron excitation strength
wCWTA Capacity neuron inhibition strength
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3.2 Proposed Improvement to ABC
The ABC algorithm, while being simple, intuitive, and proven to solve a multitude of problems
has difficulties with the exploitation of solutions. Also, important for this thesis, the EUA problem
solved with the SNN represents a computationally expensive and timely optimization problem.
The ABC algorithm does not use all earlier evaluations to guide its search, as each employed
bee only stores its best parameters in memory. For the SNN, a lot of information is contained
within the failed evaluations. Some regions of the parameter space completely break the SNN
by shifting the energy function too much, perhaps placing the energy function minima in states
corresponding to constraint-breaking solutions. A tuning algorithm preferably avoids excessive
evaluation of these regions. Additionally, the performance of the SNN is stochastic and ABC has no
real way to deal with or interpreted stochasticity. These observations constitute the three qualities
believed vital for the tuning algorithm’s success. The proposed algorithm is designed to trade some
exploration for local exploitation, better search based on earlier evaluations, and robustness to the
evaluation’s stochastically over- or underperformance. Different ways of improving the exploitation
of the ABC algorithm have been implemented earlier, modifying the bees’ flight, fitness function,
recruitment strategy, etc. These alternatives have been shown to improve the algorithm for certain
problems [16]. However, there is no optimal optimizer and, more importantly, the alteration in
[16] does not fulfill the three aforementioned criteria. Working with a computationally costly and
highly stochastic system differs from deterministic functions evaluated under a millisecond. It is
therefore relevant to develop another Bayesian modification to the ABC algorithm, specifically
for the hyperparameter tuning of CSP-solving stochastic SNN. The proposed modification to the
ABC algorithm changes the behaviour of the onlooker bees, incorporating aspects from the tree-
structured Parzen estimator, presented in Section 2.5.4.

3.2.1 Sortcommings of TPE

The TPE algorithm does greatly increase exploitation and uses a surrogate function built on all
earlier evaluations. However, a shortcoming of TPE is getting stuck in a local minimum, as the
true minimum might have been missed by the initial iterations or if a large part of points building
α(ρ⃗) are clustered around the false minima. This is more apparent when the minima are far
apart, and an example of this is seen in Figure 8. TPE is, contrary to ABC, very exploitative
but less explorational. With only TPE there is too little exploration. TPE exploits promising
regions but tends to get stuck in local minimums, not exploring further. This tendency might be
even more apparent when considering stochastic results, especially early lucky results. Using a
single large surrogate function, getting stuck in a local minimum stops the searching process of
the entire algorithm. The combination with ABC is believed to negate these problems, as the bees
explore and act semi-individually. A single bee “stuck” in a local minimum can escape by other
bees finding equivalent, or better, regions outside the local minimum. The bees are also forced
to abandon a solution after enough iterations without improvement. This also ensures continuous
exploration, even after finding the global minimum.
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(a) Initial distributions (b) Distributions after ∼50 iterations

Figure 8: Example of how the TPE algorithm might get stuck in local minimums

3.2.2 Hybrid Scheme, ABC-BA

The proposed algorithm is fundamentally a hybrid scheme between the ABC and TPE algorithms.
In standard ABC, the onlooker bees search the parameter space with the same strategy as the
employer bees, Equation (10). The exploitation arises from more onlookers being recruited to
better parameters. The modified algorithm, hereafter called ABC-BA, replaces the onlookers with
accountant bees. These accountant bees keep track of all earlier evaluations, trying to find good
parameters locally to the employer bee they are assigned to. This is achieved by continuously
adding the result from all tested parameters ρ⃗ and corresponding computed score P to a dataset
D = {{ρ⃗, P}i}. The accountants, when assigned to an employer bee, splits the larger dataset into
a smaller dataset Dc containing a fraction of the parameters closest to the employer bee’s current
parameters ρ⃗. The size of the smaller dataset can be varied, but all datasets should be created
such that no parameters outside the smaller set Dc are closer (Euclidean distance) than the points
within the set. Thus,

Dc ⊂ D, s.t || ρ⃗− ρ⃗i || ≤ || ρ⃗− ρ⃗j || ∀ρ⃗i ∈ Dc, ρ⃗j ∈ D \ Dc. (18)

With these smaller datasets, unique for each employer bee, the algorithm works with adaptive local
surrogates. These surrogates are built similarly to TPE, Equation 13, but as the dataset is local
the accountant bees will likely select the next parameters from their local region. Then, as the
employer bees move, the “local” region subsequently changes. When an employer bee encounters
a region previously, or currently, local to another employer bee the earlier evaluations of that bee
are used to form the local surrogate, increasing its accuracy. The bees therefore implicitly share
information as all evaluations are added to the dataset D.

To build the local surrogates the, now local, PDFs α(ρ⃗) and β(ρ⃗) are created with the Parzen
estimator KDE. These distributions are fitted to the top γ and bottom (1 − γ) quantiles of Dc

respectively. One can interpret this as the local dataset being split further into good and bad
datasets Dc,α and Dc,β . For the Parzen estimator KDE, Gaussian kernels are used. These kernels
are split into multiple one-dimensional kernels, with a standard deviation in each dimension equal
to the distance to the closest point. That is, in ABC-BA the closest points are calculated separately
for each dimension. The accountant bees use these distributions to sample candidates from the
α(ρ⃗) PDF, similar to TPE. The accountant bee chooses, for each dimension, the sampled value
maximizing the expected improvement, Equation (14). This effectively reduces a d-dimensional
problem to d one-dimension problems. For each one-dimension kernel, upper and lower bounds
are enforced on the standard deviations, keeping the kernels’ shape reasonable. The accountant
bees thus select the next parameters as,
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ρi = argmax
ρi

EIP̂ (ρi) ∀i ∈ {1, . . . ,dim(ρ⃗)} (19)

This splitting of the dimensions appears counterintuitive, losing high-dimensional information.
A rightful concern is wrongfully inferring information of good, or bad, parameters on unseen
parameters. This concern is visualized in Figure 9a, crosses representing regions untruthfully
being considered good. However, due to the uniqueness of using local surrogates, these kernels’
distributions are necessarily close to each other. Then, a possibly more accurate representation is
seen in Figure 9b. Now the crosses bridge the small gap between the two kernels, encouraging the
algorithm to evaluate points between them. This increases local exploration, as the two kernels
might correspond to the same minimum or have the global minimum between them.

ρ1

ρ2

α(ρ1)

α(ρ2)

(a) Global surrogate — distant kernels

ρ1

ρ2

α(ρ1)

α(ρ2)

(b) Local surrogate — close kernels

Figure 9: Visualization of how multiple one-dimensional distributions result in information incorrectly
inferred on unseen points. α(ρ⃗) is the good distribution and its one-dimensional parts are seen along

each axis. Crosses show regions where information is inferred and full-dimensional kernels are shown as
contour plots.

Moving on, after evaluating the chosen parameters on the SNN, the accountant phase is concluded
by adding the computed results to the dataset D. Since the Parzen estimator requires some already
calculated values the accountant phase only starts after a few iterations Inb. The number of samples
drawn from α(ρ⃗) each iteration is a hyperparameter of the accountant bee. If the sample size is
too large, the slight randomness from sampling α(ρ⃗) is lost. Too small and the local surrogate
might return poor parameters. The accountant bee steers the employer bees away from trying
bad parameters and massively increases exploitation, especially when the dataset D has gotten
large. This behaviour is desirable as other alterations of ABC implemented an explicit counter
that increases exploitation at later iterations [16].

Lastly, even with identical parameters the SNN’s performance can vary wildly. To get an idea of
the parameters’ consistency, all runs are made multiple times. Even so, since the EUA objective
function is discrete, multiple parameters might obtain the same score. At the very end when the
algorithm should return the best set of parameters, it chooses the parameters with the highest
score from the region with the densest collection of top-performing parameters. As a small step in
the parameter space is hypothesized not to affect the SNN’s performance, the runs of neighbouring
parameters grant information about the parameters’ consistency. A small region with intermixed
good and bad parameters is then interpreted as a region of inconsistent but lucky parameters.
A region with a dense collection of good parameters then suggests consistent parameters and is
seen favourable when deciding between multiple parameters with the same reported performance.
Pseudo-code of the full ABC-BA algorithm is shown in Algorithm 1.
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Algorithm 1 Pseudo-code for the ABC-BA algorithm
1: Initialize hyperparameters, seen and explained in Table 2
2: Initialize parameter space, number of iterations Iter, and objective function f(ρ⃗).
3: * Initialization phase
4: Employer bees randomly choose a set of parameters and compute score 1

Ic

∑Ic
0 f(ρ⃗)

5: Calculate fitness of each employer bee, Equation 11
6: Add evaluated parameters and computed score to global dataset D
7: for i = 0 : Iter do
8: *Employer Phase
9: for j = 0 : nb do

10: Generate new parameters ρ⃗ with Equation (10) for bee j and compute score 1
Ic

∑Ic
0 f(ρ⃗)

11: Add evaluated parameter and computed score to global dataset D
12: if New parameters are better than current then
13: Apply greedy selection for employer bee j
14: Update fitness of employer bee j, Equation (11)
15: Reset abandonment counter of employer bee j
16: else
17: Increase abandonment counter of employer bee j
18: end if
19: end for
20: Calculate attraction probabilities p, Equation (12)
21: if i ≥ Inb then
22: *Accountant Phase
23: for j = 0 : N do
24: Assign accountant bee j to employer bee k based on attraction probability p
25: Create Dc from d%

nb
of points closest to parameters ρ⃗k (Euclidean distance)

26: Split local dataset Dc into datasets Dc,α and Dc,β based on divider γ, Equation (13)
27: for Datapoint in local datasets Dc,α and Dc,β do
28: Calculate std σ⃗ as the distance to the closest point in each dimension
29: Enforce upper and lower bounds on σ⃗.
30: Place kernel at datapoint in α(ρ⃗) or β(ρ⃗) respectively
31: end for
32: Sample {ρ⃗} from α(ρ⃗)
33: for d = 1 : dim(ρ⃗) do
34: Calculated EI(ρ⃗) of d:th parameter in ρ⃗ for each sample in {ρ⃗}, Equation (14)
35: end for
36: Obtain the new set of parameters ρ⃗ as all parameters with highest EI(ρ⃗)

37: Compute score 1
Ic

∑Ic
0 f(ρ⃗) of new set of parameters

38: Add evaluated parameters and computed score to global dataset D
39: if New solution is better than current then
40: Apply greedy selection for employer bee k
41: Reset abandonment counter of employed bee k
42: else
43: Increase abandonment counter of employer bee k
44: end if
45: end for
46: end if
47: Report currently best parameters, score, and fitness
48: *Scout Phase
49: if Any abandonment counter > na then
50: Re-initialize and reset abandonment counter of that employer bee
51: end if
52: end for
53: Return parameters with the best score in the region densest with good results
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3.3 Obtaining a Reference Solution for EUA
To better understand the performance of the SNN, the edge user allocation problem is also solved
with a conventional solver. Since the problem displays linear characteristics, and since there
exist good solvers for linear optimization, the problem is rewritten and solved with integer linear
programming (ILP).

An integer linear programming problem is defined as,

min f⊺z. (20)

Where the solution vector z is subject to constraints,

Az ≤ b,

Aeq = beq,

lb ≤ z ≤ ub,

zi ∈ Z.

(21)

Here f , beq, b, lb and ub are vectors and A and Aeq are matrices.

Following the definitions given in Section 2.1.1, the solution vector z is built by stacking the binary
user allocation and server usage variables, ξ and ζ. The ordering of ξij is user-wise, starting with
all variables corresponding with the first user. This dimension of this z-vector is thus NuNs +Ns.

z⃗ =

[
ξ⃗

ζ⃗

]
=

[
ξ11, . . . ξ1Ns

, . . . ξNuNs
, ζ1, . . .

]⊺ ∈ RNuNs+Ns×1. (22)

The cost vector f encodes both optimization targets, Equation (1), as the first NsNu elements
reduce cost and the latter increases. It is therefore simply a vector containing differently signed
ones. Namely,

f = [−1,−1, . . . , 1, 1, . . . ]⊺ ∈ RNuNs+Ns×1. (23)

The inequality constraint encodes the capacity constraint, as well as binds the server usage vari-
ables ζ to the user allocation variables — as they are entirely dependent on each other. This is
accomplished by a 2Ns ×NsNu +Ns matrix where the first rows ensure that the sum of variables
representing connections to the same server is less than that server’s capacity. The remaining
rows ensure that the binary server variables are correct, depending on whether a user is allocated
to that server. A looping Ns-diagonal submatrix Ã with ones, effectively stride Nu, is the main
building block of the A matrix. The corresponding vector b is servers’ capacity C⃗ and zero for the
user and server variables respectively.

Ã =


1 0 . . . 1 0 . . . 0
0 1 . . . 0 1 . . . 0
...

. . . . . .
...

0 0 . . . 1 0 . . . 1

 ∈ RNs×NsNu ,

A =

[
Ã 0⃗

Ã −(C⃗ + 1)INs×Ns

]
∈ R2Ns×NsNu+Ns ,

b =

[
C⃗

0⃗

]
∈ R2Ns×1.

(24)

The equality constraint encodes the single-allocation constraint, Equation (2c). When summariz-
ing ξ, each user should only be connected to one server. The matrix Aeq has Nu rows, wherein in
each row the Ns elements corresponding to the same user are non-zero. As the server variables ζ
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do not affect this constraint, the last Ns columns are zero. The vector beq’s elements are one for
all users where at least one server exists within range.

Ãeq =

1 1 . . . 0 0 . . . 0 0
0 0 . . . 1 1 . . . 0 0
0 0 . . . 0 0 . . . 1 1

 ∈ RNu×NsNu ,

Aeq =
[
Ãeq 0⃗,

]
∈ RNu×NuNs+Ns ,

beq = [b1, . . . , bNu
]⊺ ∈ RNu×1,

(25)

where,

bk =

{
1, if ∃j s.t dkj ≤ cov(sj)

0, else.

The last constraint, proximity, seen in Equation (2b) is enforced by setting the upper bound of out-
of-bounds variables to zero. This ensures that these variables are always inactive. Mathematically,

lb = [0, 0, . . . , 0]⊺ ∈ RNUNs+Ns×1,

ub = [b11, . . . , bij , . . . , bNuNs , 1, . . . , 1]
⊺ ∈ RNUNs+Ns×1,

(26)

where,

bij =

{
1, dij < cov(si),

0, else.
(27)

The presented ILP is then solved with Scipy’s optimization packages, in turn using HigHs dual
simplex method [29].

4 Numerical Results
This section presents the numerical results obtained after implementing and hyperparameter-
tuning the stochastic spiking neural network. As mentioned, implementation is done in Intel
Lava, and simulations are compiled and run on a CPU.

The dynamics of the input neurons, Equation (6), are set with probability constant pIN = 0.3 and
synaptic strength wIN = 3.0. These parameters are chosen as they supplied sufficient noise in the
spiking network. Furthermore, results from prior testing show that the dynamics of the principal
neurons and the set of synaptic strengths result in an over-dependent system. E.g., halving the
voltage threshold has the same effect as doubling the synaptic strengths. To reduce redundant
variables, the neuron parameters are set before tuning.

To fairly test and evaluate the performance of both the SNN structure and ABC-BA the following
section is divided into multiple tests. The specific optimization problems are presented in figures,
looking like the example from Figure 2. The hyperparameters of ABC-BA are displayed below in
Table 2
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Table 2: Values of used ABC-BA hyperparameters.

Variable Name Value

nb Number of bees 8
na Trials until abandonment 3
d% Percentage of point used from local dataset 150%
γ Quantile 10%
ni Number of samples from l(x) 5
Inb Iterations without accountant phase 5
Ic Times each parameter is tested 5

σmin Kernel minimum variance 0.05
σmax Kernel maximum variance 5

4.1 Experiment Scenarios
As the designed SNN is made to work on a dynamic problem size, four differently sized problems
are generated. These problems serve as benchmarks for tuning and testing. The four problem
sizes are referenced as small, medium, large, and large+.

The small and medium problem sizes are chosen as they appear in the earlier work [8]. The small
problem consists of six users and four servers where each server has capacity for three users and
the medium problem has 100 users and 10 servers with capacity for 20 users. The generated
problems are visualized and displayed in Figure 10. To achieve the best possible comparison, the
small problem is the identical problem to the one in [8]. This is found by investigating the code
and does explain the uniqueness of that problem’s symmetrical server placement.

(a) Small, specific from [8] (b) Medium

Figure 10: Small and medium-sized benchmark problems. Squares and circles represent servers and their
coverage and the dots represent users.

The large problem is randomly generated with 1000 users and 30 servers, all with a capacity for
75 users. The large+ problem has 10000 users and 50 servers with a capacity for 500 users. These
larger problem sizes are generated as an implementation in the real world probably requires the
network to be able to solve problems of larger sizes. However, perhaps differing from a real-world
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problem, the servers’ placements are too dense and overlapping. This results in a more difficult
problem and is an artifact of the random problem generation. These two larger problems are seen
in Figure 11.

(a) Large (b) Large+, borderline unillustratable

Figure 11: Large and large+ benchmark problems. Squares and circles represent servers and their
coverage and the dots users.

With a larger and more complex problem, the number of possible states increases rapidly, and
likewise the number of low-energy but non-optimal states. Resulting of how the SNN function, by
setting too few simulation steps the SNN will usually not have time to find a solution. This results
in the hyperparameter tuner mistakenly optimizing for parameters that gave quick-to-find sub-
optimal solutions. Too long simulation time is however both a waste of computations and neglect
to reward parameters that are both good and quick to converge. The number of simulation steps
is therefore chosen to reflect the problem size. Summarization of all problem sizes and the decided
number of simulation steps are shown in Table 3.

Table 3: The maximum number of simulation steps and problem sizes used in validation and tuning.

Problem size Number of
simulation step Users Servers Capacity

Small 500 6 4 3
Medium 2000 100 10 20
Large 5000 1000 30 75

Large+ 5000* 10000 50 500
*Limited by long computation time

For these four scenarios, the tuned parameters for the small, medium, large, and large+ problems
are denoted as ps, pm, pl, and pl+ respectively. After running ABC-BA for each problem, the
resulting tuned parameters are
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ps =



wWTA = −6.5

wCTA = −6

wUtil = 5

τP
−1 = 0.1

VP = 8

, pm =



wWTA = −10.6

wCTA = −3.5

wUtil = 4.5

τP
−1 = 0.1

VP = 8

,

pl =



wWTA = −34.1

wCTA = −0.55

wUtil = 1.3

τP
−1 = 0.1

VP = 8

, pl+ =



wWTA = −100.0

wCTA = −1.26

wUtil = 1.40

τP
−1 = 0.1

VP = 8

.

(28)

4.2 Hyperparameter Tuning Convergence
The hyperparameter tuning is done with the proposed ABC-BA algorithm. The used hyperpa-
rameters (of the algorithm) and simulation times are presented in Tables 2 and 3. The tuning is
run on the problems presented in Section 4.1.

As the EUA problem contains two different objective functions, Equations (1a) and (1b) the
optimization is a multi-objective optimization. However, a good set of parameters often succeed
in assigning the users to some servers, at worst doing a random assignment. Usually, only when
the network failed is the number of assigned users less than the total number of eligible users (That
is, users in coverage of at least one server). This results in that the more interesting objective is the
active server minimization, and user maximization only serves to distinguish the worst parameters.
Also, the SNN structure does not allow users to be unassigned, as the noise is excitatory the neurons
always eventually spike. Hence, as the two objective functions do not represent conflicting goals
they are merged into one single objective function. Following the notation from Equation (1) this
new minimization is,

min

−
Nu∑
j=1

Ns∑
i=1

ξij +

Ns∑
i=1

ζi

 . (29)

Following the above discussion, when presenting the score using Equation (29), the interesting
optimization is at the range of Ns. The often much larger Nu mostly serves to heavily punish
the score of parameters that are unable to find a solution with all users. As such, the difference
between parameters scoring, for example, −200 and −30 is less interesting than the difference
between parameters scoring −200 and −204.

Using the ILP reference solver, the optimal score of all except the large+ problem is calculated.
For this size, the problem is no longer solvable with the naive ILP solver, with over a million
decision variables. These optimal scores are shown in Table 4.

Table 4: Optimum score calculated with reference ILP solver, expressed using the objective function in
Equation (29).

Problem size Optimal Score

Small -4
Medium -87
Large -985

Large+ N/A

30



The hyperparameter-tuner is for each problem to run 20 iterations, the rather low iteration count
is a necessity due to the time required to run the SNN. The scores’ convergences over the iterations
are seen in Figure 12 for the small and medium problems and Figure 13 for the two larger problems.
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Figure 12: Convergence over the tuning iterations, the blue line showing the optimal score.

For the two smaller problems the tuner managed to find the optimal score during tuning. For
the small problem, this is found in the first iteration, suggesting that finding a set of parameters
managing this is easy as they are obtained by initial random guessing. It is therefore fair to
contribute this to the SNN internal search capabilities rather than the tuner’s ability to tune the
parameters. For the medium problem, the tuner is shown to work properly, as the score steadily
decreased until finding the optimum at the fifteenth iteration.
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Figure 13: Convergence over the tuning iterations, the blue line showing the optimal score.

For the larger problems, the optimal scores are never found, although showing steady convergence.
For both the problems in Figure 13 it can be argued that the number of iterations should have
been increased, seeing that the score does not converge. This is a fair observation and is primarily,
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and perhaps only, done since the tuning took such a long time for the larger problems. It is also
clear that the larger problems are more difficult to solve, as is expected.

4.3 Validation of the Differently Sized Problems
To evaluate the tuned parameters, seen in Equation (28), each set of parameters is run 100 times
on their respective problem. This displays how the stochasticity affected the SNN’s performance,
and how consistent the results are. Given 100 runs, the variance in the performance is catalogued
better than during tuning when much fewer runs are made.

Starting with the small problem. In [8], the optimal score of two active servers and six assigned
users is found roughly 10% of runs. These results, translated to objective score, Equation (29),
are seen in Table 5. The same problem run on the new SNN with parameters ps found the optimal
score every single run, vastly outperforming the earlier results on this rather trivial problem. These
results are seen in Table 6 for completeness. As mentioned earlier, this great improvement is likely
due to the new SNN, as parameters yielding an optimal score are found by the initial random pick.

Table 5: Results from [8] solving the small problem 100 runs.

Assigned
Users

Active
Servers Score Score - Optimum Occurrence (%)

6 4 -2 2 45
6 3 -3 1 48
6 2 -4 0 7

Table 6: Results when running the small network after tuning.

Assigned
Users

Active
Servers Score Score - Optimum Occurrence (%)

6 2 -4 0 100

Moving to the medium problem, with 100 users and 10 servers. In [8] the network never found
any server reduction at this problem size. While not the identical problem, running the medium
problem 100 times with parameters pm gave the optimal score 99 times. The one other time the
SNN instead found a solution with one more active server, seemingly an unlucky event. Simulated
results from the validation on the medium problem are in Table 7.

Table 7: Results when running the medium network after tuning.

Assigned
Users

Active
Servers Score Score - Optimum Occurrence (%)

92 6 -86 1 1
92 5 -87 0 99

Scaling upwards, the large problem with 1000 users and 30 servers has not been tested earlier
and is therefore only compared against the reference solver. As hinted in the tuning convergence
graph, Figure 13a, the SNN never obtains the optimum solution. It does instead most often find
a solution that has one or two additional active servers, results in Table 8.
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Table 8: Results when running the large network after tuning.

Assigned
Users

Active
Servers Score Score - Optimum Occurrence (%)

999 17 -982 3 2
999 16 -983 2 24
999 15 -984 1 74

Lastly, the large+ problem with 10000 users and 50 servers is run. First, as the optimum can
not be computed with the ILP solver, this column is emitted in Table 9. The results show a very
different-looking performance than for the other problems. Instead of having the best value be the
most common followed by cases of worse performance, these results are spread around the average
performance.

Table 9: Results when running the large+ network after tuning.

Assigned
Users

Active
Servers Score Occurrence (%)

9823 31 -9821 2
9823 30 -9822 2
9823 29 -9823 4
9823 28 -9824 17
9823 27 -9825 30
9823 26 -9826 23
9823 25 -9827 16
9823 24 -9828 4
9823 23 -9829 2

These results differ since they appear more stochastic than earlier results, and probably are. It is
plausible that this results from too short a simulation time and too few iterations. The tuner has
optimized toward parameters that quickly find a tolerable solution, instead of parameters often
finding a good solution. This also explains the incredible discrepancy between the parameters,
looking at Equation 28.

The large randomness in the results is then attributed to dependency on the random initialization,
that is, the state the network is in after converging to the distribution described by the energy
function. This explains the Gaussian appearance of the performance, and a good SNN is not
that dependent on initial noise. This Gaussian shape is seen by plotting the performance, Figure
14. Tiny favouritism is still seen for lower scores, so the network still gives some preference for
lower scores. Following this reasoning, this test might seem invalid. It is however kept as the
performance of these radically different parameters is still interesting.
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Figure 14: Bar plot of results from Table 9, with Gaussian silhouette.

4.4 Robustness
As tuning takes a long time, a tuned set of parameters preferably solve multiple problems. The
worst case is the parameters being overfitted to the specific problem the parameters are tuned
to, and therefore only usable for one problem instance. Robustness is, in this case, defined as
how well the tuned parameters generalize to unseen problems. To evaluate the robustness of the
parameters they are run on different unseen problems, starting with problems having the same
number of users and servers. Five new problems are randomly generated for the small, medium,
and large problem sizes. The performance is presented as the 10-run average of the computed
score minus the optimum score. The large+ parameters and problem size are excluded since the
reference solution is unavailable and because the pl+ parameters do not really work for the problem
they are tuned to. The simulated results are in Figure 10.

Table 10: Robustness results, testing obtained parameters on new problems with the same number of
users and servers. 10-run average.

Average: Score - Optimum

Parameters Number of
simulation step Test 1 Test 2 Test 3 Test 4 Test 5

ps 500 0.0 0.0 0.0 0.0 0.0
pm 2000 0.0 0.0 0.0 0.2 0.1
pl 5000 2.2 146.7 1.8 1.2 1.8

Looking at the presented results in Table 10, the parameters only show slightly worse performance
than reported in Section 4.3, suggesting that the tuned parameters work for multiple problems.
The only true exception is one test of pl, where the average is way larger. This highlights two
things: first, the average gets very skewed by having a couple of failed runs. This happens when the
user maximization objective is unfulfilled and is considered a failed run. Second, having the same
number of users and servers does not guarantee equivalent problems and, consequently, results.
Another metric, server coverage κ, is hereafter introduced as the average number of servers each
user has access to. This adds further insight into the specific problems, not captured by merely
the number of users and servers. As might be interesting, the aforementioned test has a κ = 8.29
while pl is tuned on a problem with κ = 13.13.

Lastly, to further evaluate the robustness, all four sets of parameters are run on unseen problems
of different sizes. The results are all presented in Table 11. The first three rows, separated by a
line, are the exact problems from Section 4.3.
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Table 11: Robustness test results, testing obtained parameters on new problem sizes. 10-run average,
best scores in bold font.

Average Score

Users/
Servers/
Capacity

Number of
simulation step Coverage κ Optimal ps pm pl pl+

6/4/3 500 2.67 -4 -4.0 -4.0 -3.9 -3.9
100/10/20 2000 4.45 -87 -86.2 -87.0 -85.5 -84.9
1000/30/75 5000 13.13 -985 -264.2 -976.6 -983.8 -972.2

50/8/15 2000 2.35 -39 -39.0 -39.0 -39.0 -38.8
100/10/20 2000 5.25 -95 -93.9 -94.0 -93.6 -92.5
200/15/30 3000 4.54 -174 -172.4 -173.9 -173.2 -171.8
500/20/45 4000 5.79 -481 -260.8 -476.9 -439.4 -402.5
600/25/45 4000 4.16 -508 -501.3 -502.0 -506.0 -479.8
1000/30/75 5000 5.81 -858 -847.3 -847.1 -856.2 -855.2
1500/30/100 5000 13.32 -1485 -405.6 -693.7 -1478.3 1470.1
2000/35/100 5000 9.57 -1954 -397.8 -862.4 -1855.6 -1251.4

Again, as was suggested earlier, it seems that the parameters work quite well on problems of
similar sizes. In Table 11, there exists a clear phase transition of which parameters are the best.
And when coverage and problem size is close to the values of the original problem, the parameters
show great performance. From this, it seems possible to obtain a general rule, or set of equations,
that describes good parameters. And in these equations, the coverage κ appears important but
is not the sole deciding parameter, as pl outperformed pm on the 600 users problem. It might be
that the average number of users per server is equally important, or that an average is insufficient
to describe the problem.

Additionally, generally, it seems like the parameters corresponding to the larger problems work
better on the smaller problem than vice versa. On the larger problems, the average-skewing effect
of failed runs is visible. This does not seem to happen for the smaller problems. A possibility is
the excitatory utilization strengths, which for the smaller problems’ are larger. As the network
scales so does the number of neurons connected to the utilization neurons, resulting in more firing.
Too large wUTIL and the network might have a risk of never finding a valid state, always having
overfilled servers. This also explains the opposite effect, as the parameters with low wUTIL give
distributed, suboptimal, but valid solutions.

4.5 Hyperparameter Tuner Comparison
As discussed in Section 3.2, the ABC-BA is developed with the specific SNN-EUA problem in
mind, believing it to be a good optimizer. Looking at the computed results from earlier sections,
the ABC-BA algorithm seems to have worked fine. However, to validate this claim the ABC-BA
algorithm is compared against other tuners. The two that made sense to compare ABC-BA against
are the ABC and TPE algorithm, being the algorithms from which ABC-BA is built. If either of
the parts outperformed the ABC-BA algorithm then the proposed algorithm has to be considered
a failure. This, although trivial at a glance, is more difficult than imagined. The stochastic
behaviour of both the algorithms and the SNN made proper comparison hard. All algorithms can
find a set of parameters yielding good results, but it is important to separate systematic search
from lucky find. The approach is to visualize the parameter space with all tested parameters
marked. This approach will distinguish the lucky guesses, as the visualization gives an insight into
how the final parameters are found.

As the TPE algorithm has not been implemented in isolation, an existing TPE algorithm provided
by the Optuna package [30] is used. This TPE algorithm seems more sophisticated and developed
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than the rudimentary TPE presented in Section 3.2, but the main features should still be the
same.

The evaluation is done on the medium and large problem sizes. Results are presented as the
found parameters, their performance, and a 3D slice of the parameter space with marked trials.
However, as mentioned earlier, the parameters are not evaluated in isolation but in the context of
how the search space looked. Starting with the medium problem, the plotted search spaces are in
Figure 15, and the obtained parameters are

pTPE
m =



wWTA = −14.57

wCTA = −5.35

wUtil = 6.81

τP
−1 = 0.1

VP = 8

, pABC
m =



wWTA = −13.26

wCTA = −3.28

wUtil = 3.67

τP
−1 = 0.1

VP = 8

. (30)

(a) TPE (b) ABC

(c) ABC-BA

Figure 15: 3D slice of parameter space — Medium problem size. Red dots highlighting the top 10% of
results.

Looking at Figure 15, the different search styles of the three algorithms are clear. Unaltered ABC
gave a very sparse and explorative search while TPE almost oppositely seems to heavily exploit
a small region around where it has the best parameters. ABC-BA inherits aspects from both
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its parent algorithms, resulting in multiple smaller clusters of exploitation. The TPE and ABC-
BA clusters are centred in similar regions, although the ABC-BA also explores the surrounding
region. For many continuous objective functions, a small change can represent an improvement.
But in this case, it is assumed that small changes do not alter results for the discrete step-shaped
objective function (at least not as much as the SNN stochasticity). Fine-grained exploitation
might therefore not be as important when tuning the SNN. When imposing a minimum value on
the kernels’ variances the performance of a datapoint is also inferred on the surrounding area.
Also, as seen in Figure 15c, the ABC-BA algorithm’s best points are found on the boundary of the
upper cluster. This cluster is likely an early found local minimum that ABC-BA tried to exploit.
While this might correspond to a good region, finding consistently performant parameters is tricky.
Especially since each parameter is only run a finite number of times. Escaping this and finding
better results outside the clusters is a plus for ABC-BA, as TPE seems stuck in a local minimum.

Evaluating the parameters 100 times, results shown in Table 12, shows that pTPE
m , while seemingly

the most confident managed to find the worst parameters, failed in assigning all users 24 times. It
is however clear that the parameters can give lucky results as good solutions are found in roughly
75% of runs. Running each parameter additional times and this inconsistent solution would have
been detected. ABC found quite good parameters with a consistently good score, but from Figure
15b it looks like it found it by accident. The best parameters are found by ABC-BA, while also
displaying the most favourable search pattern.

Table 12: Results from running the TPE, ABC, and ABC-BA parameters. Medium problem.

Parameters Score Score - Optimum Occurrence (%)

pm -87 0 99
pm -86 1 1

pTPE
m -87 0 15

pTPE
m -86 1 49

pTPE
m -85 2 11

pTPE
m -84 3 1

pTPE
m -11 76 1

pTPE
m -8 79 1

pTPE
m -7 80 2

pTPE
m -6 81 2

pTPE
m -5 82 6

pTPE
m -4 83 2

pTPE
m -3 84 6

pTPE
m -2 85 4

pABC
m -87 0 14

pABC
m -86 1 86

The same tests and comparisons are done for the large problem. The found parameters are in
Equation (31), the visualized search spaces in Figure 16, and the parameters’ performance in Table
13.

Looking at Figure 16, the algorithms display similar behaviour as when tuning the medium prob-
lem. ABC still seems completely random, almost looking identical to the search in Figure 15b.
TPE again has one large cluster and ABC-BA has several small. This time the TPE algorithm
displays a much broader distribution, probably resulting from the algorithm finding several good,
but spaced, parameters before going into deeper exploitation. The best parameters that TPE
found are not in the center of the cluster, instead being the red dot left of the cluster (in Figure
16a). It is this upper-left region that ABC-BA exploits, as seen in Figure 16c.

37



Comparing performance, the parameters found by TPE and ABC-BA are very similar and there-
fore show very similar performance. The ABC-BA does give a slightly more consistent score, which
makes sense seeing that it exploited the region while TPE seems “lucky” in obtaining parameters
from that region. ABC gave the worst result, finding parameters that consistently found subpar
solutions.

pTPE
l =



wWTA = −35.54

wCTA = −0.43

wUtil = 1.32

τP
−1 = 0.1

VP = 8

, pABC
l =



wWTA = −11.44

wCTA = −3.12

wUtil = 2.71

τP
−1 = 0.1

VP = 8

. (31)

(a) TPE (b) ABC

(c) ABC-BA

Figure 16: 3D slice of parameter space — Large problem size. Red dots highlighting the top 10% of
results.
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Table 13: Results from running the TPE, ABC, and ABC-BA parameters. Large problem.

Parameters Score Score - Optimum Occurrence (%)

pl -984 1 74
pl -983 2 24
pl -982 3 2

pTPE
m -984 1 62

pTPE
m -983 2 33

pTPE
m -982 3 5

pABC
m -983 2 1

pABC
m -982 3 1

pABC
m -981 4 45

pABC
m -980 5 40

pABC
m -979 6 12

pABC
m -978 7 1

5 Discussion
The potential for stochastic spiking neural networks and neuromorphic hardware is big, while
this thesis has focused on their application in solving constraint satisfaction problems, SNNs have
numerous other uses. Especially regarding CSPs, the research suggests that this is an area with a
lot to gain in energy efficiency.

All implementations presented throughout this thesis are written and simulated using Intel Lava.
Unfortunately, as the actual neuromorphic hardware was not made available all simulations had
to be compiled and run on a CPU. The implementation should however compile and run on Loihi
chips, but investigations on the energy efficiency must be left to future research.

Observing the results, it must be said that the network can solve the simpler edition of the EUA
problem rather well. The SNN does not always find the optimum solution, especially for larger
problems, but that was never the ambition. The SNN is instead useful for finding a satisfactory
solution cheaply. It usually misses the optimum since the SNN has trouble filling all servers to
absolute capacity, usually finding solutions where servers are slightly below capacity, resulting in
a couple of additional active servers. This should also be the case when extending the resource
demand and capacity to vectors.

5.1 Improvement from Earlier Implementation
What cannot be understated is the monumental improvement to the network, compared with
the earlier implementation. As the networks are conceptually the same, one can wonder what
changes made this difference. A key change is the split between the principal and auxiliary
networks. For example, the WTA in the earlier network consisted of directly interconnected
neurons. Disregarding that the research and mathematical formulations on the principal network
required symmetrical connections, this allows massive and sudden voltage changes. In this system,
adding an additional server increases the number of WTA-related synapses by 2(Ns − 1) instead
of only 2. This allows the theoretical max change of voltage resulting from the WTA to be
wWTA × (Ns − 1) instead of wWTA, resulting in difficult scaling. Furthermore, the prior WTA
does not inhibit all neurons within the WTA, not affecting the neuron that triggered the WTA.
This skewed the energy distribution, allowing the initial noise to completely dominate the entire
behaviour of the network. This claim can be tested by randomly assigning users to servers within
range, to mimic the randomness of the initial noise. Comparing with the presented results, Table
5, running this random assignment one hundred thousand times for the small problem, Figure
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10a, give results corresponding to two, three, and four active servers 5.6%, 50.5% and 43.8% of the
times, respectively. This also explains why no server reduction is ever found for the medium-sized
problem. The reintroduction of the energy distribution, treating the process as a guided stochastic
search of the states yields a substantially better solver (as is done in the underlying theory, see
[4, Figure 2]). Lastly, the change to the capacity neurons and incorporation of an internal state
monitor allowed the search process to proceed whilst using the incoming spikes to deduce the
solver’s best solution.

5.2 Dynamic of the Network
The SNN network is however not without flaws, the root of these problems is found in the dynamics
of the utilization and capacity motifs. These two motifs receive and send spikes to the same
neurons but utilization is excitatory and capacity is inhibitory. This results in a tug-of-war, where
the balancing act is quite delicate. Too strong excitatory synapses and the network never finds
a solution adhering to the capacity constraint and too weak results in solutions that do not fully
utilize the servers. What often seems to happen is that utilization makes multiple neurons fire
simultaneously (same simulation step) which overshoots capacity. Capacity then puts a cooldown
on those neurons, making sure no more connections are made to that server. The other servers
then sequentially steal users from the overfull server, maybe resulting in another server overfilling.
The network, therefore, when testing solutions with the minimum amount of servers, usually exists
in invalid states. It then finds a valid solution almost by chance when the users “accidentally” get
correctly distributed.

(a) Slice of a simulation showing capacity of all
servers. Blue line illustrating capacity constraint

(b) Active servers at any time. The red line
illustrates the optimum amount

Figure 17: Exploration of the SNN, medium-sized problem. Calm SNN.

This overfilling behaviour is both good and bad. It is undesirable since it spends a needlessly long
time in invalid states, apparently only attempting to distribute users. It also sometimes never
finds the solution that is right in front of it, due to bad luck. But on the contrary, it seems like
this behaviour is needed to obtain the best results, the servers aggressively trying to take the users.
The servers’ tur-of-war, between taking as many users as possible and freezing from overshooting
capacity is what drives the removal of redundant servers while still allowing new servers to try
allocating the users. Also, the placement of users and servers might require some servers to be
active; the aggressive behaviour gives servers with only a few users a fighting chance.
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(a) Slice of a simulation showing capacity of all
servers. The blue line illustrates capacity

constraint.

(b) Active servers at any time. The red line
illustrates the optimum amount.

Figure 18: Exploration of the SNN, medium-sized problem. Aggressive SNN. Note that the minimum
amount of servers not necessarily means that the currently active server can obtain the optimum score.

To visualize this, the number of active servers and the capacity of each server are plotted for
three networks with different characteristics: calm, aggressive, and hyper-aggressive. These are
in Figures 17 – 19. As guessed, the calm network allows for server switching but never fills up
the servers while the hyper-aggressive overfills the servers and practically locks in active servers.
This is worse than the calm network, as even though the active number of servers is optimal,
these currently active servers might not be able to fit the users, resulting in a network that never
finds a valid state. The best are the aggressive networks, filling up and reducing servers while still
constantly allowing the active servers to change.

(a) Slice of a simulation showing capacity of all
servers. Slice of a simulation showing capacity of

all servers. The blue line illustrates capacity
constraint.

(b) Active servers at any time. The red line
illustrates the optimum amount

Figure 19: Exploration of the SNN, medium-sized problem. Hyper-aggressive SNN.

5.3 Reference Solver ILP
Moving on, the decision to implement a reference solver was fruitful. The resulting ILP solver is
a great tool to evaluate the performance of the SNN. This too is easy to scale up to for a resource
vector, only needing to extend the inequality matrix.

The ILP solver with the dual simplex solver has superior performance to the SNN for smaller
problems, but since the number of decision variables grows like Nu ·Ns the ILP solver is not, on
the writer’s computer, able to run the large+ problem. The ILP is however used for the small,
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medium, and large sized problem. This made it possible to evaluate the SNN, but also to see if
the tuner succeeded in finding the optimum value. This testing is called validation and results are
presented in Section 4.3.

5.4 Validation and Robustness
Starting with the small problem, this specific problem is chosen mainly for comparison purposes.
As written earlier, multiple parameter sets allow the SNN to find the optimum. As no convergence
existed the final choice of parameters became arbitrary. Regardless, the parameters in Equation
(28) successfully obtained the best solution for all validation runs.

With the medium-size problem, the parameters obtained the optimal score for almost all validation
runs. The single run with the non-optimal score is, as mentioned earlier, probably a case where
the SNN got unlucky with the overfilled servers. Here the effect of the tuner is visible, as seen by
the convergence graph in Figure 12b.

With the large problem, the convergence in Figure 13a clearly shows the effect of the tuner. The
obtained parameters never found the optimum score but rather the second-best score most of the
time. This can be either because the optimum is hard to find, the simulation is too short, or
perhaps the truly optimal parameters are not found.

The large+ problem, as mentioned in Section 4.3, underwent flawed tuning. With such a large
problem, the lava framework has unreliable performance and slow computations. The maximum
number of simulation steps is therefore probably not as high as it should have been. This results
in the tuner finding parameters that reliably and quickly find subpar solutions, a “calm” network
as described earlier. And due to how the “aggressive” networks find their solutions, this problem
size might require an exceedingly long simulation time.

Results from running the sets of parameters on newly generated problems, Tables 10 and 11,
suggest that the parameters work well on similar problems. This is excellent as it means that
the SNN does not need tuning for every single problem instance, which is unsustainable. In
Table 11, the clear phasing of the best parameters (bold font) displays the trend of “larger”
parameters working better on larger problems. Following this, it appears possible to use earlier
tuned parameters as starting guesses, perhaps massively reducing the parameter space before doing
a fine-grained tuning. However, for this, a good way to characterize “similar” is required. Using
the number of users and servers gives a relatively good understanding of this, but fails to capture
the denseness of the servers. Introducing the coverage parameter κ gave a way to quantify the
geographic denseness of the servers. And while κ seems important, it is not the sole determining
factor for problem similarity (As pl outperforms pm on the 600-user-problem).

Looking at all these results, it seems possible to find a trend of what constitutes good parameters.
Generally, it seems that increased size requires a larger wWTA and smaller wCWTA and wUtil.
Making a qualified guess, as both wWTA and wCWTA represent exploration cooldowns, when
a user establishes a new connection, wWTA gives time for the network to explore the solution,
stopping that user from rapidly changing servers. With a larger problem size then perhaps more
exploration time is needed and thus an increase in wWTA. wCWTA stops new connections from
being made to an overfilled server, giving time for the other servers to allocate users. With users
having access to more servers (larger problems) this time might be short. In this case, having large
wCWTA might result in the users being too spread out. A study trying to find or explore these
relationships is both important and interesting but is left out of this thesis work. The derived
approximation of the energy function might also be useful for this, if not only to obtain bounds
for the parameters. For this thesis, the tuner remained the tool for finding good parameters.
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5.5 Hyperparameter Tuners
The three considered tuners: ABC, TPE, and their combination ABC-BA are compared on the
medium and large problems. As mentioned earlier, fair comparisons between the tuners are difficult
when only looking at the quality of the solution. Since the SNN is itself an optimizer, many
parameters work given sufficient luck with the stochastic network. And the longer the runtime
is, the more chances the network has to sample the optimum. To remove some of the stochastic
performance, multiple runs of the same configurations are made. For the presented results, this
number is five. The idea is to separate the sometimes-lucky from the often-lucky parameters.
The tuner comparison mainly consists of looking at how the algorithms searched the parameter
space, revealing their search strategy, and then seeing how lucky solutions affected the search.
Choosing suitable runtimes is also important, theoretically, all parameters can find the optimum
with enough time. By setting a maximum time shorter than infinity, the network is implicitly
tuned for quick convergence. As good aggressive networks usually require some time to sample a
good solution, with too short runtime the network is implicitly tuned for calm parameters that
reliably find subpar solutions.

A general observation regarding the algorithms’ search is that the TPE and ABC algorithms have
extremely different approaches. ABC displayed no clear exploitation, instead just appearing like
random search, Figures 15b and 16b. The best parameters are for ABC found by chance rather
than intelligent search. TPE has great exploitation but seems to converge to a too-restricted
region, especially since the other algorithms clearly found good parameters outside this region.
Looking at Figure 15a especially, TPE seems completely stuck in a small region. For function
optimization, this is desired as the optimizer should converge to the point minimum. For this
problem, tiny variations do not seem to change the SNN’s behaviour and since the objective
function is step-like it is more beneficial to do wider exploitation.

The algorithm combination, ABC-BA displays characteristics of both the parent algorithms. It
has multiple small regions of exploitation, clusters, as well as the ABC’s random search between
them. It found the best solutions in the same region as TPE but kept exploring. This is perhaps
most clear looking at Figure 15c, four regions can be seen of which two are properly exploited.
Furthermore, it seems like the Bayesian elements constitute the intelligent search while the ABC
elements broaden its view by adding more unique data points. While partly due to design, the
ABC-BA algorithm wastes computations in the bad clusters. This is likely the trade-off to having
bees compute local distributions, some bees will unknowingly pick up the parameters corresponding
with reliably sub-par solutions.

One thing that probably resulted in unfavourable results for ABC is how the fitness function
is computed, Equation (11). For example, a parameter reliably scoring -925 only has a slight
advantage over parameters scoring -920 and -900, all with fitness 926, 921, and 901. These
minor numerical differences represent good, okay, and bad solutions. If only these solutions are
considered, the probabilities of each attracting accountants/onlookers are 33.7%, 33.5%, and 32.8%
respectively. Due to the large number of users, the accountants/onlookers get evenly split. This
should have been foreseen and is probably the reason why ABC got not exploitation and why
ABC-BA has so many trials in the worse regions. Also, swarm algorithms usually use a larger
swarm than eight members and more iterations than twenty. The results of using pure ABC
could maybe have been predicted, as it might not be meant for these computationally expensive
systems. TPE and Bayesian-styled algorithms are probably the way forward, as the time it takes
to evaluate the systems is so much longer than the time for computing the next parameters. Using
all available information from earlier runs also resulted in low-iteration convergence and very few
runs of parameters that yielded invalid solutions. TPE and ABC-BA do however give rise to many
new hyperparameters.
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6 Conclusions and Future work
Edge computing is an approach to ensure continued high-quality connections to service providers
when the number of cloud devices greatly increases. To ensure the functionality of edge comput-
ing, the devices need to be assigned and connected to a local edge server. The edge user allocation
problem consists of assigning as many devices/users to as few edge servers as possible. This can
be reformulated as a constrained satisfaction problem. In this thesis, the design for a stochastic
spiking neural network that solves the edge user allocation problem is shown. SNNs have been
shown to decrease energy consumption for constrained satisfaction problems by a factor of a thou-
sand when run on neuromorphic hardware [5]. The thesis also presents a proposed modification
to the artificial bee colony algorithm, ABC-BA, meant to improve the algorithm’s capability to
tune the hyperparameters of stochastic spiking neural networks.

The network is first tuned on four different problem sizes, ranging from 6 to 10000 users. Each
hyperparameter tuning is 20 iterations long with simulation time depending on the problem size.
Obtained parameters are run 100 times to catalogue their consistency. Then the performance of
the network with tuned parameters is tested on unseen problems. Lastly, some experiments on
the developed hyperparameter tuner are made. These compared the search pattern and computed
parameters for the proposed algorithm and its building blocks.

The tuned new SNN displays a large improvement to the earlier implementation [8], easily finding
the true minimum for the 6 and 100 users problem-size where the earlier SNN does not. When
increasing the problem size, the SNN quite consistently found solutions only slightly worse than
the optimum. The optimum is computed by rewriting the edge user allocation problem as an
integer linear programming problem and solving it with an established ILP solver. While the SNN
is able to find suboptimal solutions for the 10000-user problem, the ILP for that problem size
cannot be run given the current computational resources.

The SNN’s parameters dictate both the performance and behaviour of the network. Results
suggest that the best performance is obtained when the network’s behaviour is aggressive, that is,
rapidly changing states and often existing in states corresponding to invalid solutions. Aggressive
networks seem to take time to find optimal solutions, while parameters resulting in calmer networks
usually quickly and reliably find suboptimal solutions. Without careful simulations, the tuner can
accidentally tune a calm network, as might have been the case with the tuning of the largest
problem.

The performance of the proposed tuner, ABC-BA, is compared to the artificial bee colony algo-
rithm and the tree-structures Parzen estimator algorithm, the two algorithms essentially creating
ABC-BA. Results show that while introducing many new hyperparameters, the two algorithms
with Bayesian elements display a much more intelligent search pattern. For a computationally
costly network, where tuning is limited, the artificial bee colony algorithm seems no better than
random guessing. Results seem favourable for ABC-BA, finding superior parameters in a more
desirable search pattern. To properly investigate whether this conclusion holds, more careful,
repeated, and thorough testing between the algorithms is needed on both the EUA and other
problems.

For future work, continuing to scale up the network and problem will provide interesting insight
into possible limitations. As the current implementation takes a very long time, problems larger
than 10000 users are skipped. Designing more accurate tests will also provide good insights, as
perhaps the apparent shortcomings of the network when each user has access to 30+ servers might
be irrelevant. Also, just barely skipped in this thesis, is a systematic comparison of runtimes
between the SNN and ILP solver. Although the SNN is currently simulated on a CPU, the SNN
hints at better runtime scaling than the ILP solver (Managing to run the 1arge+ problem). Ad-
ditionally, continuing to develop ABC-BA and test the algorithm on other problems will probably
give rise to more tweaks and improvements. The choice of the fitness function is already a clear
source for improvement. And lastly, trying to find a relationship between the good parameters
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and the network’s performance will bypass the need to tune the edge user allocation problem.
This will massively improve the usefulness of the SNN but also require a lot of thorough testing
to correctly characterize the effect of each parameter. This was left as future work.
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