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a b s t r a c t 

This paper presents a first step in the field of probabilistic forecasting of co-located wind and photovoltaic (PV) 

parks. The effect of aggregation is analyzed with respect to forecast accuracy and value at a co-located park in 

Sweden using roughly three years of data. We use a fixed modelling framework where we post-process numerical 

weather predictions to calibrated probabilistic production forecasts, which is a prerequisite when placing optimal 

bids in the day-ahead market. The results show that aggregation improves forecast accuracy in terms of contin- 

uous ranked probability score, interval score and quantile score when compared to wind or PV power forecasts 

alone. The optimal aggregation ratio is found to be 50%–60% wind power and the remainder PV power. This is 

explained by the aggregated time series being smoother, which improves the calibration and produces sharper 

predictive distributions, especially during periods of high variability in both resources, i.e., most prominently in 

the summer, spring and fall. Furthermore, the daily variability of wind and PV power generation was found to be 

anti-correlated which proved to be beneficial when forecasting the aggregated time series. Finally, we show that 

probabilistic forecasts of co-located production improve trading in the day-ahead market, where the more accu- 

rate and sharper forecasts reduce balancing costs. In conclusion, the study indicates that co-locating wind and 

PV power parks can improve probabilistic forecasts which, furthermore, carry over to electricity market trading. 

The results from the study should be generally applicable to other co-located parks in similar climates. 
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. Introduction 

The power output of wind and solar photovoltaic (PV) power is

ntermittent and non-dispatchable, hence accurate forecasts are crucial

or balancing purposes and providing technical support when trading

1] . Conventional forecasts, which give the expected generation out-

ut as a single value at each lead time, are referred to as deterministic

orecasts. However, every lead time has an inherent and irreducible un-

ertainty which is why forecasted uncertainty information at these time

teps, often referred to as probabilistic forecasts, have gained attention

n renewable energy forecasting over the last years [1,2] . Short-term

orecasts, having a lead time from a few hours to a few days ahead,

re used for day-ahead market trading where electricity generated from

ind and solar are exchanged [1] . Such forecasts are typically produced

y numerical weather predition (NWP) models in a first step and post-

rocessed using statistical models in order to reduce forecast errors in

 second step. Although more commonly used when forecasting wind

ower [1] , using NWP forecasts to improve the accuracy of day-ahead

V and solar irradiance forecasts have become increasingly popular [3] .
∗ Corresponding author. 

E-mail address: oskar.lindberg@angstrom.uu.se (O. Lindberg) . 

ttps://doi.org/10.1016/j.adapen.2022.100120 

eceived 26 September 2022; Received in revised form 14 December 2022; Accepted

vailable online 3 January 2023 

666-7924/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
The variability in wind and PV power production can be reduced

hrough spatial dispersion of the systems, commonly known as the

moothing effect [4] . For example, Katzenstein et al. [5] studied 20 in-

erconnected wind power parks across Texas and found that the re-

uction in variability occurred on time scales shorter than 24 hours.

n Lave et al. [6] , the aggregation of six irradiance measurement sta-

ions within 3 km in San Diego was studied. The authors found that

amp rates became uncorrelated on time scales below 5 minutes which

educed the aggregated variability. In both cases, the smoothing oc-

urs due to averaging independent variations in the signals. However,

f the correlation is close to zero or even negative, which is often the

ase for wind and PV power [7] , the smoothing effect can be achieved

ithout physically separating the systems. This motivates co-locating

ind and PV parks to mitigate the average variability in the combined

utput. 

A co-located park is owned by a single power producer where the

ower sources share a common interconnection point to the electricity

rid. This means that a co-located park is considered as a single power

enerating facility according to the network codes Requirements for
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t  

s  
enerators (RfG) [8,9] . In fact, individual co-located wind and PV parks

re motivated as potential candidates to be part of electricity markets re-

ated to capacity services [10] , ancillary services [11] and time-varying

ricing [12] from which profitability of future individual power parks

ill likely depend on [13] . Unlike separated parks that are connected

o the same grid, individual co-located parks can be oversized (i.e., the

otal nameplate capacity exceeds the maximum power that can be fed

nto the grid) to increase the production rate and also be complemented

ith battery storages. This means that co-located parks can, e.g., share

ontrol strategies [14] or provide flexibility to the electricity grid by

oordinating energy management strategies within the park [15] . As re-

ent as March 30, 2022, the IEA TCP Wind Task 50 was also initiated

o coordinate and develop the field of co-located wind and PV parks

16] . Furthermore, in a recent review paper, Lindberg et al. [9] found

hat the scientific literature on co-located wind and PV parks is scarce,

lthough the parks have been studied and motivated in various aspects,

.g., more effective usage of land [17] , increased utilization of the elec-

rical infrastructure [18] as well as shared operation and maintenance

ork [10] . However, the review paper highlights that the field of fore-

asting co-located parks is particularly limited, although, e.g., Long et al.

19] highlight the importance of accurate day-ahead forecasts from ag-

regated co-located wind and PV generation when trading. A natural

rst step in the field of co-located wind and PV forecasting is there-

ore to analyze the effect of aggregation of power sources in co-located

arks in terms of forecast accuracy relative to forecast accuracy of sin-

le power source production. This guides to quantify the potential ben-

fits of forecasting aggregated production for co-located parks relative

o combining forecasts from each power source. 

There are a few studies that have focused on forecasting co-located

ind and PV. Alessandrini and McCandless [20] forecasted the output

f a utility-scale co-located wind and PV park in Kuwait using analog en-

emble combined with Schaake shuffle technique to recover the correla-

ion and autocorrelation between the power sources. The corresponding

aired solar and wind power members were thereafter summed to build

n ensemble of combined generation that was statistically consistent.

t the same co-located park, Haupt et al. [21] describes the forecasting

ystem used to generate forecasts. In Pombo et al. [22] , different physics-

nformed machine learning methods to issue deterministic forecasts for

he individual wind and PV generation units in a small-scale co-located

ystem in Denmark was assessed. The results showed that shallow ma-

hine learning methods perform better for 5 minute resolved data, while

eep learning methods perform better for hourly resolved data for wind

nd solar, respectively. Furthermore, the authors found that PV power

as easier than wind power to predict due to its deterministic diurnal

ariability. 

Although Alessandrini and McCandless [20] , Haupt et al. [21] and

ombo et al. [22] are the only studies known to the authors that ex-

licitly forecast wind and PV production at a co-located park, there are

ther studies that forecast aggregated production. In Camal et al. [23] ,

 multivariate copula was used to generate correlated scenarios from

ay-ahead probabilistic forecasts of dispersed wind, PV and small hy-

ro power plants. The authors found that scenarios generated from ag-

regated production directly (as compared to separate forecasts from

ach power source) reproduced less variability due to the smoothing ef-

ect. Aggregated production also resulted in less forecast errors, which

as explained by the efficient learning capacity in high dimension of

he forecast model quantile regression forest (QRF, a statistical machine

earning method introduced in detailed in Section 2.2.1 ). In the same

aper, aggregated forecasts increased profit and reduced costs when

sed for reserve bidding and unit commitment. This was explained by

uch applications being sensible to the amplitude of the scenarios which

as more present in scenarios generated from aggregated production.

in et al. [24] proposed a coordinated day-ahead scheduling of power

ystems consisting of thermal, hydro, wind and PV power sources. For

his, scenarios of wind and PV power production were generated us-

ng a Monte Carlo method and a bi-variate copula. The authors found
2 
hat stronger negative correlations between wind and PV power output

esulted in lower system operation cost. 

In two studies by van der Meer et al. [25,26] , it was observed that

he aggregated net load ( Load minus PV power production ) probabilistic

orecasts are better calibrated than electricity demand forecasts. Two

lausible explanations to this are brought up which relate to the com-

ined distributions being more Gaussian (the forecasts where generated

sing Gaussian Processes which produces a Gaussian probability density

unction (PDF)) [26] and that the combined time series are smoother

nd consequently more straightforward to predict [25] . In van der Meer

t al. [25] , it was also found that for time periods of high PV power

ariability, i.e., during spring, the accuracy of the PV power forecasts

ended to be lower but the accuracy of the net load forecast was higher

ompared to electricity demand forecasts alone. 

.1. Aim of the study 

The previous section detailed that the research on co-located wind

nd PV park generation forecasting is limited and many questions are

till unanswered. Therefore, we clearly delimit the scope of this study.

pecifically, the purpose of this study is not to produce the most ac-

urate forecasts. Instead, we investigate whether co-locating wind and

V parks benefits forecast accuracy and value under a fixed modelling

ramework. To that end, we analyze what impact the smoothing effect –

aused by local wind power and PV power time series aggregation – has

n probabilistic forecast accuracy and electricity market participation.

n this way, we cover the three types of “goodness “ of a forecast, namely

i) consistency, (ii) quality and (iii) value [27] . Furthermore, we study

he effect of aggregation as a function of season, since the variability of

ind and PV power generation varies over time. The contributions of

his paper can be summarized as follows: 

1. We analyze the effect of aggregating varying shares of installed wind

power and PV power in a co-located park using calibrated probabilis-

tic forecasts generated using a fixed modelling framework. 

2. We simulate day-ahead electricity trading to study the impact of ag-

gregation on the value of the forecasts. 

3. We investigate the influence of seasonal variation in power output

variability on forecast accuracy. 

The remainder of the paper is structured as follows. In Section 2 the

ata as well as the forecasting methods, verification metrics and algo-

ithm for participation in the day-ahead market using probabilistic fore-

asts is presented. In Section 3 , results from the study are presented,

hich are discussed in Section 4 including ideas for future studies. Fi-

ally, in Section 5 , the main conclusions are put forward. 

. Data and methodology 

This section presents the data and methodologies used in the

tudy. In Section 2.1 , the data used in the study is presented.

ection 2.2 presents the forecasting algorithms used to generate

robabilistic forecasts under a fixed modelling framework, whereas

ection 2.3 presents visual verification tools and numerical scores. An

verview of the electricity market and optimal trading strategies based

n probabilistic forecasts are presented in Section 2.4 . Finally, Fig. 1

rovides an overview of the study’s framework as a flowchart with re-

ards to the data and methodologies presented in this section. More

pecifically, the figure shows how scenarios of different wind and PV

apacity ratios in the co-located park are used as inputs to the forecast

rocedure and evaluated in terms of forecast performance metrics and

rofitability on the day-ahead spot market. 

.1. Data 

This section presents the data used in the study. In Section 2.1.1 ,

he co-located power park and corresponding production data are pre-

ented. Section 2.1.2 describes the NWP model used when forecasting
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Fig. 1. Flowchart illustrating the input data, method steps and analysis in this study. The input data are illustrated as parallelograms. 
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c  
he power output and Section 2.1.3 presents the electricity prices used

n simulating the electricity market. 

.1.1. Co-located wind and PV park 

Lindberg et al. [9] found that the number of utility-scale co-located

ind and PV power parks are limited on a global scale (27 in total

n 2021). For this study, we used data from a co-located park on the

est coast of Sweden (Latitude: 57.033577, Longitude: 12.381662). The

ind power park consists of three Vestas V90 2 MW p wind turbines with

 combined nominal capacity of 6 MW p . The PV power park, which was

nstalled after the wind power park, consists of 9300 monocrystalline

odules with a combined nominal capacity of 2.7 MW p . This means that

he ratio of PV to the whole park is roughly 31% in terms of nominal

apacity. The dataset spans from 2016-07-02 (the date of commission-

ng of the PV park) to 2020-05-21 at 15 minute resolution. The NWP

ataset used, which is explained in Section 2.1.2 , was available from

016-11-09. Prior to modeling, the data were preprocessed such that;

i) night-time values were set to zero for the PV production; (ii) nega-

ive production was set to zero for both generation units, e.g., indicat-

ng stand-by power from inverters at zero production; (iii) production

bove the nominal capacity was set to the nominal capacity for both

enerators; (iv) if the power production from the wind turbines were

ero and the wind speed from the NWP was above 7 m/s, the whole day

as removed to avoid corrupting the forecasts errors with down-time

f the turbines due to, e.g., maintenance; (v) if the power production

rom the PV park was zero and the solar irradiance from the NWP was

bove 100 W/m 

2 , the whole day was removed (corresponding reason

s in (iv)); (vi) data resolution was summed to hourly resolved values

ince they were given in watt-hours (Wh) and (vii) normalized by the

ominal capacity of the total park output. The pre-processing resulted

n 23 days being removed from the complete data set (30,936 hours). 

Figure 2 shows the observed diurnal variability of PV and wind

ower output including 60% nominal coverage for the different seasons.

n this paper, the seasons are defined as 3-month periods according to

eteorological conventions; summer corresponds to June-August, fall

orresponds to September-November, winter corresponds to December-

ebruary and spring corresponds to March-May. This means that the

easons are offset with respect to the solstices (or equinoxes), which
3 
eans that the summer and spring receives almost the same irradiance

n clear sky conditions. The PV power output has an obvious diurnal

ycle where the magnitude and variability is a function of the seasons.

he wind power output has a relatively stable diurnal profile, where the

iurnal variability during the summer and spring is mainly due to tem-

erature gradients due to the increase in solar irradiance. The highest

ind power output and variability is during the winter and the lowest

s during the summer and vice versa for PV. The capacity factor, i.e., the

atio of produced electric energy to the amount of energy if operated at

ated power for a time period, is 14.1% and 35.6% for the PV and wind

ower park, respectively. 

In order to study the different shares of wind and PV in the com-

ined park, the first step is to combine different ratios ( 𝑟 ) of wind ( 𝑃 𝑊 𝑃 )

nd solar power ( 𝑃 𝑃𝑉 ) to obtain the combined power output of the co-

ocated park: 

 𝑡𝑜𝑡 = 𝑟𝑃 𝑊 𝑃 + (1 − 𝑟 ) 𝑃 𝑃𝑉 , (1)

here 𝑟 ∈ {0 , 0 . 1 , … , 1} × 100% and the nominal capacities of 𝑃 𝑊 𝑃 , 𝑃 𝑃𝑉 

nd 𝑃 𝑡𝑜𝑡 are the same. This facilitates a fair comparison when verify-

ng the accuracy of the forecasts since many of the diagnostic tools for

robabilistic forecasts are directly dependent on the unit of the vari-

bles, which are explained in Section 2.3 . Furthermore, this means that

 park with a ratio of 0% consists of solely a PV park whereas a park

ith a ratio of 100% consists of solely a wind park, both with the same

ominal capacity. A park with a ratio of 50% consists of wind and PV

ith equal nominal capacity. 

.1.2. NWP data 

This study uses data from the mesoscale NWP Meterological Coop-

ration on Operational Numeric Weather Prediction (MetCoOp) with a

orizontal resolution of approximately 2.5 × 2.5 km 

2 [28,29] . The NWP

ata are freely available from the Norwegian Meteorological Institute

30] . From the NWP data, hourly time series of day-ahead forecasts (00

TC cycle runs, lead times 𝑡 + 𝑘 , 𝑘 ∈ {24 , … , 48} ) of the control ensem-

le member for selected meteorological variables were downloaded. 

We post-process global horizontal irradiance (GHI) and wind speed

t 80 m from MetCoOp to power output. MetCoOp provides the hourly

umulative surface downwelling shortwave radiation ( J∕m 

2 ), which we
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Fig. 2. Measured median of diurnal variability of PV power (upper subplot) and wind power (lower subplot) for the different seasons at the co-located wind and 

PV power park. The blue envelopes show the observed 20–80% quantile and the black solid lines show the median. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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f  
onvert to GHI ( W∕m 

2 ) by taking the difference between the time steps

nd dividing it by 3600. The 80 m wind speeds were extracted by trans-

ormation of the model levels to pressure coordinates and finally height

oordinates through application of the Hypsometric equation. There-

fter, the 80 m wind speeds were calculated using linear interpolation

f the height coordinates. Forecast horizons corresponding to zenith an-

les below 85 ◦ (solar elevation angles larger than 5 ◦) are used when

erifying accuracy the forecasts. This means that we only include day-

ime values since there is no available PV power production during the

ight time. When simulating the value of the forecasts, all data are in-

luded. For the NWP data, no pre-processing was done to the data. 

.1.3. Electricity price data 

The electricity pool for Scandinavia, in which the park operates, is

ommonly known as Nord Pool. Day-ahead as well as up and down reg-

lating prices covering 26,280 hours of the complete dataset (2016-11-

9 to 2020-05-21) were downloaded from Nord Pool [31] in order to

imulate the day-ahead market. The reason for choosing three years of

ecent data is to shuffle the dataset to test the robustness of the results.
4 
he shuffling is done according to Fig. 3 . We assume perfect forecasts of

he electricity prices, which is warranted because we want to isolate the

ffect of time series aggregation on the forecast value. The co-located

ower park, described in Section 2.1.1 , is located in the electricity mar-

et bidding zone 3 (SE3), for which prices were downloaded. 

.2. Forecasting 

This section presents the forecast models in our fixed modeling

ramework. Section 2.2.1 presents the QRF model that we use to model

he nonlinear relationships between the independent and dependent

ariables, while Section 2.2.2 describes QR, which is used to improve

he calibration of the probabilistic forecasts. In Figure 1 , the different

teps for generating forecasts are presented. 

.2.1. Quantile regression forests 

QRF is a commonly used probabilistic forecasting method in the

elds of PV [2] and wind power [1] and therefore provides a baseline

or analyzing how the aggregation of wind and PV affects the accuracy
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f probabilistic forecasts. Furthermore, it has been shown that the fore-

ast distribution can rarely be expressed by a common parametric dis-

ribution [32] . To that end, QRF is a nonparametric forecasting method

here no assumptions about the predictive density is assumed. QRF is

n extension of random forest (RF) [33] and works as follow [34] . First,

 trees are grown where each branch of tree 𝑇 has a random parame-

er vector 𝜃𝑡 that include the variables under consideration at each split

oint in each tree such that 𝑇 ( 𝜃𝑡 ) . After the trees are grown, the next step

s to calculate weights 𝑤 𝑖 ( 𝑥, 𝜃𝑡 ) and 𝑤 𝑖 ( 𝑥 ) of observations 𝑖 ∈ {1 , … , 𝑛 }
or every tree and every observation, for a certain realization x of pre-

ictor X . The weights are defined as [33] : 

 𝑖 ( 𝑥, 𝜃𝑡 ) = 

𝟙 { 𝑋 𝑖 ∈ 𝑅 𝓁 ( 𝑥,𝜃𝑡 ) 
} 

#{ 𝑗 ∶ 𝑋 𝑗 ∈ 𝑅 𝓁 ( 𝑥,𝜃𝑡 ) 
} 
, (2)

 𝑖 ( 𝑥 ) = 𝑘 −1 
𝑘 ∑
𝑡 =1 

𝑤 𝑖 ( 𝑥, 𝜃𝑡 ) , (3)

here 𝑅 𝓁 ( 𝑥,𝜃𝑡 ) 
is a rectangular subset of space  in which X lives in for

very leaf 𝓁 = 1 , … , 𝐿 . This means that the leaf of which the unknown

ample falls into in each tree is found. For each observation in the train-

ng set, a weight is given to each observation in each tree. If the obser-

ations are in the same leaf as the new sample, the weight is the fraction

f samples in the same leaf and otherwise zero. 

In RF, the conditional mean of the observed response variable is

tored in each leaf. Instead of storing the conditional mean, QRF stores

ll information after which a conditional distribution can be constructed

rom the observed response variables. For every 𝑥 ∈ , there is only one

eaf such that 𝑥 ∈ 𝑅 𝓁 which can be denoted as leaf 𝓁 ( 𝑥, 𝜃) for tree 𝑇 ( 𝜃) .
inally, the estimated distribution function can be calculated as [34] : 

̂
 ( 𝑦 |𝑋 = 𝑥 ) = 

𝑛 ∑
𝑖 =1 

𝑤 𝑖 ( 𝑥 ) 𝟙 { 𝑌 𝑖 ≤ 𝑦 } , (4)

here Y is a random response variable and y is a realization. From Equa-

ion (4) , quantiles 𝑞 𝜏 can be obtained. A comprehensive description of

RF can found in [34] . 

Prior to traning and forecasting using the QRF model, we perform hy-

erparameter tuning. The observations presented in Section 2.1.1 were

sed as target values and the NWP data described in Section 2.1.2 were

sed as feature variables for the QRF model. A hyperparameter tun-

ng dataset (which consist of 4104 hours and the total number of data

oints is 30,384 hours) is used to optimize the performance of the

RF algoritm for each forecast horizon and aggregated ratio 𝑟 (Equa-

ion (1) ), respectively. The reason is that we use NWP issued at mid-

ight and the production of wind and PV power behaves differently

ccording to the time of the day, e.g., due to the diurnal variability

f PV. The QRF model is mainly influenced by three hyperparame-

ers [23] ; the number of trees in the forest ( n_estimators ), the mini-

um number of observations to become a leaf ( min_samples_leaf ) and

he number of features to consider when looking for the best split

 max_features ). max_features were chosen as 2 to give opportunity to

hoose among all available features at each tree. In methods with a large

et of features, 1/3 of the available features is usually recommended for

egression [35] . For the other two hyperparameters ( n_estimators and

in_samples_leaf ), we perform an exhaustive grid search to find the set

f parameters that minimize the continuous ranked probability score

CRPS) using 10-fold cross-validation. The hyperparameter n_estimators

hould generally be large to make sure that important local features in

he data are captured in some of the trees. Therefore, the grid search

as performed along n _ estimators ∈ {400 , 450 , … , 2000} . For the mini-

um observations per leaf, min_samples_leaf , the minimum number of

bservations should not be too small since that might lead to overfit-

ing the model. Considering this, we performed the grid search along

in _ samples _ leaf ∈ {10 , 11 , … , 20} . 
After the hyperparameter tuning, we use the training data (that con-

ists of 8760 hours) to train one QRF model for each forecast horizon.
5 
fter the QRF is built and trained, a vector of explanatory variables

rom the test data set (consisting of the remaining data, i.e., 17,520

ours) is dropped down the tree. The test data will be compared at each

plitpoint and directed to the most similar branch and an output can be

stimated from which we produce forecasts with evenly spaced nominal

robabilities 𝜏 ∈ {0 . 05 , … , 0 . 95} (see Equation (4) ). In order to quantify

ifferences in the results within the time period of the study, the divi-

ion into training and testing data sets are repeated for three different

ata intervals (in this study denoted as shuffles) according to Fig. 3 . 

.2.2. Quantile regression 

Although formally introduced in Section 2.3 , one of the required

roperties of probabilistic forecasts relates to the calibration. Uncali-

rated forecasts may introduce bias when trading. Initial verification

f the QRF model showed that the forecasts were not sufficiently cali-

rated (see upper panel of Fig. 5 ), even though we tried to extend the

yperparameter and training datasets of the model. To post-process the

RF forecasts we use QR [36] , as was initially suggested by Bremnes

37] for post-processing ensemble predictions [3,38] . QR produces a

on-parametric cumulative distribution function (CDF) by assuming a

inear relationship between the output and the independent variables.

oenker and Bassett [36] found that instead of minimizing the squared

oss to find the conditional mean, the pinball loss function could be min-

mized to find the conditional quantile of nominal probability 𝜏. QR is

ormulated as follows [36] : Similar to linear regression, we establish a

inear relation between the dependent variable 𝐹 𝜏 (in our case the post-

rocessed forecasts) and the regressors 𝑥 (in our case the QRF predictive

istributions) such that: 

̂
 𝜏 = 𝛽𝑥 + 𝜖, (5)

here 𝜏 is the quantile probability and 𝜖 is an error term that describes

verything but the input-output relationship that cannot be captured by

he model. From this, 𝛽 can be estimated from the following minimiza-

ion problem: 

̂
𝜏 = arg min 

𝛽

𝑛 ∑
𝑖 =1 

𝜌𝜏 ( 𝑦 𝑖 − 𝛽𝑥 𝑖 ) , (6)

here 𝜌𝜏 is an asymmetric piece wise linear function, often denoted

inball loss function, given as: 

𝜏 ( 𝑢 ) = 

{ 

(1 − 𝜏) 𝑢, if 𝑢 < 0 , 
𝜏𝑢, if 𝑢 ≥ 0 . (7)

To train the QR model, the QRF test set (17,520 hours) was divided

nto a new training (8760 hours) and testing data set (in which the new

est data set consists of a year (8760 hours) of data). From the QR model,

e produce the final forecast with 19 evenly spaced nominal probabili-

ies such that 𝜏 ∈ {0 . 05 , … , 0 . 95} . An example of two days of probabilis-

ic forecasts, with different issue-time and weather conditions for wind,

V power and aggregation of equal ratio of wind and PV are shown in

ig. 4 . The entire forecasting model consisting of QRF and QR is imple-

ented using the Python library scikit-learn [35] . 

.3. Verification 

Diagnostic tools to evaluate probabilstic forecasts are to check the

alibration (also called reliability ), sharpness and resolution of the fore-

asts. A series of probabilistic forecasts is said to be reliable when sta-

istically, they correspond to the observations. Sharpness relates to the

oncentration of the probabilistic forecasts. While reliability is a joint

roperty of the forecast and the observations, sharpness is solely a prop-

rty of the forecast. Gneiting and Raftery [39] argued that the sharpness

f a probabilistic forecast should be maximized, subject to the reliabil-

ty. Resolution, which should be maximized, relates to the capability of

he forecast model to issue forecasts that are different from the average

bservation. 
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Fig. 4. Two example days of normalized PV, wind and aggregation of equal level of wind and PV power production forecasts at the co-located park. The columns 

represent the different power sources. The rows represent the different issue times in UTC. The prediction intervals are shown as envelopes with nominal coverage 

range from 10% to 90% and the observations as solid red lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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As pointed out by Lauret et al. [40] ; it should be noted that the diag-

ostic tools used to evaluate probabilistic forecasts have different mean-

ngs from the point of view of a meteorologist and a statistician. From

 statisticians viewpoint, sharpness refers to the concentration of the

redictive distribution [41,42] . In meteorology, sharpness refers to the

bility of a forecasting system to generate forecasts that deviates from

he climatological value of the predictand [43] . From the meteorologists

iewpoint, resolution measures the ability to produce predictive dis-

ributions based on the predictand (i.e., forecasts are case-dependent)

hile it refers to the ability to produce different density forecasts de-

ending on the forecasts conditions (i.e., predictive distributions are

ot only conditioned by the values of the predictand) from a statistical

oint of view [42] . In this work, sharpness refers to the concentration

f the prediction intervals and resolution quantifies the ability of the

orecasting system to generate predictive distributions (i.e., the statisti-

ians viewpoint). Also, as pointed out by Gneiting et al. [44] , reliability

an be improved by statistical post-processing (which was explained in

ection 2.2.2 ), whereas this is not possible for resolution. 

To understand potential benefits of aggregating wind and PV in terms

f forecast quality, the quality appraisal will be made according to the

erification framework proposed by Lauret et al. [40] . The framework

onsists of visual diagnostic tools and numerical scores to objectively

ank the quality of the forecasts. In Section 2.3.1 –Section 2.3.1 , the vi-

ual verification tools are explained. In Section 2.3.3 –Section 2.3.5 , the

umerical verification scores used in this study are presented. 

.3.1. Probability integral transform (PIT) 

To assess the calibration of probabilistic forecasts, we use the prob-

bility integral transform (PIT). If 𝐹 is the CDF of a calibrated proba-

ilitic forecast for observations 𝑌 , it holds that 𝐹 ( 𝑌 ) ∼  ([0 , 1]) . For a

arger number of forecasts and observation pairs, the calibration can be

ssessed empirically by plotting the histograms of the resulting PIT val-

es. A probabilistic forecast is reliable if, statistically, the forecast prob-

bilities agree with the observed frequencies. A flat PIT histogram is a

ecessary but not a sufficient condition for calibration [39] . However,
6 
ue to limited amount of forecast and observation pairs in the testing

et, a range of empirical probabilities could be observed despite being

 reliable forecast. Considering this, Bröcker and Smith [45] proposed

onsistency intervals. The lower and upper bounds can be calculated by

 the binomial distribution  ( 𝑁, 1∕( |𝑄 | + 1)) , where 𝑁 is the number of

ime step in the testing set. |𝑄 | represents the total number of quantiles

n a set of quantiles 𝑄 [46] . In this sense, a set of probabilistic forecasts

re calibrated if the PIT histogram falls within the consistency interval.

.3.2. Prediction interval average width (PIAW) 

The sharpness is commonly calculated using prediction interval av-

rage width (PIAW). The sharpness of the predictive distribution is cal-

ulated by the mean size of the central prediction intervals for different

ominal coverage rates ( 1 − 𝛼)100% according to: 

 𝐼𝐴𝑊 ( 𝛼) = 

1 
𝑁 

𝑁 ∑
𝑡 =1 

( ̂𝑞 𝑡,𝜏=1− 𝛼∕2 − 𝑞 𝑡,𝜏= 𝛼∕2 ) , (8)

here 𝑞 is the forecasted quantile at probability 𝜏. Note that the sharp-

ess is a property of the forecast alone and PIAW should not be normal-

zed using observations. For this reason, the sharpness does not neces-

arily inform the forecaster about the quality of a forecasting method;

ather, it can be used to rank calibrated forecasts. 

.3.3. Continuous ranked probability score (CRPS) 

Perhaps the most common scoring rule for probabilistic forecasts is

he CRPS, which evaluates sharpness and reliability simultaneously. The

RPS, is defined as [47] : 

𝑅𝑃 𝑆( 𝐹 𝑡 , 𝑦 𝑡 ) = ∫
∞

−∞

(
𝐹 𝑡 ( 𝑥 ) − 𝟙 { 𝑦 𝑡 ≤ 𝑥 } 

)2 
𝑑𝑥, (9)

here 𝐹 𝑡 is the predicted CDF, 𝑦 𝑡 is the observation and 𝟙 is the Heav-

side step function. Here, subscript 𝑡 denotes the forecast and observa-

ion pair at time step 𝑡 . The CRPS is expressed in the same unit as the

orecasted variable and the formulation above is a negatively oriented

core, i.e., a lower value of the CRPS indicates a better performance. The
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RPS generalizes to the mean absolute error when 𝐹 𝑡 is a deterministic

orecasts which facilitates comparison between probabilistic and deter-

inistic forecasts. The CRPS is commonly averaged over the testing set

nd can be decomposed into a reliability, uncertainty and resolution

erm as CRPS = Reliability + Uncertainty - Resolution [48] . We use the

rpsDecomposition in R developed by NCAR [49] to calculate the

ecomposed CRPS. The uncertainty term, which only depends on the

bservations and furthermore a term that is used to cluster forecasts in

his study, is calculated according to Lauret et al. [40] and is formulated

s: 

𝑛𝑐𝑒𝑟𝑡 = 

∑𝑁 

𝑡 =1 
∑𝑡 

𝑖 =1 |𝑦 𝑡 − 𝑦 𝑖 |
𝑁 

2 , (10)

here N is the total number of observations. From Equation (10) , it

hould be noted that the uncertainty term is not directly related to the

ifficulty in forecasting the power output. Instead, when considering the

ower output, the uncertainty term is a function of the variability and

agnitude of the power output. 

.3.4. Interval score 

Following Winkler [50] and Gneiting and Raftery [39] , a proper

core to assess the nominal coverage rates ( 1 − 𝛼)100% is the interval

core . As for the CRPS, the interval score is negatively oriented, i.e., a

ower score is preferable. The interval score is defined as: 

𝑆( 𝛼) = 

1 
𝑁 

𝑁 ∑
𝑡 =1 

( 𝑈 𝑡 − 𝐿 𝑡 ) + 

2 
𝛼
( 𝐿 𝑡 − 𝑦 𝑡 ) 𝟙 { 𝑦 𝑡 < 𝐿 𝑡 } + 

2 
𝛼
( 𝑦 𝑡 − 𝑈 𝑡 ) 𝟙 { 𝑦 𝑡 > 𝑈 𝑡 } , 

(11) 

here 𝐿 𝑡 and 𝑈 𝑡 represents the lower and upper quantile according to

̂ 𝑡,𝜏= 𝛼∕2 and 𝑞 𝑡,𝜏=1− 𝛼∕2 , respectively. From Equation (11) , a forecast is

ewarded for a narrow prediction interval while penalized if the obser-

ation, 𝑦 𝑡 is outside the interval. The penalty is dependent on 𝛼. 

.3.5. Quantile score 

By calculating the quantile score, information about the forecast

uality at specific probability levels is obtained. As noted in Bentzien

nd Friederichs [51] , CRPS is calculated over the complete CDF through

ntegration of the Brier score. Therefore, deficiencies in different parts

f the distributions might be hidden, e.g., the tails of the distribution.

he average quantile score (QS), with N pairs of observations 𝑦 𝑡 and

uantile forecast 𝑞 𝑡,𝜏 at probability 𝜏 is given as: 

𝑆 ( 𝜏) = 

1 
𝑁 

𝑁 ∑
𝑡 =1 

𝜌𝜏 ( 𝑦 𝑡 − 𝑞 𝑡,𝜏 ) , (12)

here 𝜌𝜏 is the pinball loss function given by Equation (7) . 

.4. Trading of stochastic production 

As elaborated in Section 1 , co-located parks could be seen as single

ntities that are connected to the electricity network at a point of com-

on coupling. This means that the parks have to provide aggregated

ids to electricity markets, where accurate forecasts of expected pro-

uction is imperative. For the time periods analyzed in this study, the

lectricity pool is a dual-price market where electricity exchanges take

lace in two stages; the day-ahead and the balancing (also called regu-

ating) market. In the first stage, the day-ahead market, power producers

nd consumers place bids for the next delivery period which is the next

ay. At gate closure, which occurs 12 hours before delivery, energy of-

ers based on forecasts with horizons 𝑡 + 𝑘 , 𝑘 ∈ {13 , … , 36} should be

roposed at hourly resolution. The market clearing yields a spot price
𝑐 
𝑡 + 𝑘 after matching production offers and consumption bids and a set

f energy blocks 𝑦 𝑐 
𝑡 + 𝑘 to be delivered by the power producer at every

orecast horizon. Here, 𝑐 defines a contract between 𝑦 𝑐 
𝑡 + 𝑘 and 𝜋𝑐 

𝑡 + 𝑘 which

eans that the power producer is financially responsible for deviations

rom 𝑦 𝑐 
𝑡 + 𝑘 . In the second stage, the balancing market, deviations from
7 
he contract are translated into financial penalties. For a positive devia-

ion, the power producer has to sell on the balancing market for the cost

f activating downward regulation services 𝜋𝑠 
𝑡 + 𝑘 and buy in the case of

egative deviation for the cost of activating upward regulation services
𝑏 
𝑡 + 𝑘 . The revenue for a power producer operating in these markets can

e formulated as: 

 𝑡 + 𝑘 = 𝜋𝑐 
𝑡 + 𝑘 𝑦 𝑡 + 𝑘 + 𝐵 𝑡 + 𝑘 ( 𝑦 𝑡 + 𝑘 , 𝑦 𝑐 𝑡 + 𝑘 ) , (13)

here the imbalance term is defined as: 

 𝑡 + 𝑘 ( 𝑦 𝑡 + 𝑘 , 𝑦 𝑐 𝑡 + 𝑘 ) = 

{ 

𝜋
↓
𝑡 + 𝑘 ( 𝑦 𝑡 + 𝑘 − 𝑦 𝑐 

𝑡 + 𝑘 ) , 𝑦 𝑡 + 𝑘 − 𝑦 𝑐 
𝑡 + 𝑘 ≤ 0 

− 𝜋
↑ 
𝑡 + 𝑘 ( 𝑦 𝑡 + 𝑘 − 𝑦 𝑐 

𝑡 + 𝑘 ) , 𝑦 𝑡 + 𝑘 − 𝑦 𝑐 
𝑡 + 𝑘 > 0 , 

(14)

here 𝑦 𝑡 + 𝑘 is the actual production, 𝜋↓
𝑡 + 𝑘 and 𝜋↑ 

𝑡 + 𝑘 are referred to as

he regulation unit costs for downward and upward balancing costs,

espectively. These are defined as follow: 

↓
𝑡 + 𝑘 = 𝜋𝑐 

𝑡 + 𝑘 − 𝜋𝑠 
𝑡 + 𝑘 (15)

↑ 
𝑡 + 𝑘 = 𝜋𝑏 

𝑡 + 𝑘 − 𝜋𝑐 
𝑡 + 𝑘 (16)

This means that the imbalance term, 𝐵 𝑡 + 𝑘 ( 𝑌 𝑡 + 𝑘 , 𝑦 𝑐 𝑡 + 𝑘 ) , is formulated

s a penalty (except for perhaps some unusual occasions). Pinson et al.

42] showed that the energy offer, i.e., the decision variable, only ap-

ears in the balancing market term and that the solution that maximize

he revenue in the stochastic optimization problem is the optimal offer:

 

∗ 
𝑡 + 𝑘 = 𝐹 −1 

𝑡 + 𝑘 

( 

𝜋
↓
𝑡 + 𝑘 

𝜋
↑ 
𝑡 + 𝑘 + 𝜋

↓
𝑡 + 𝑘 

) 

, (17)

here 𝐹 𝑡 + 𝑘 is the predicted CDF, in this case the forecasted power pro-

uction. This means that the optimal production offer corresponds to

 specific quantile that is a direct function of the regulation unit costs.

or derivation of the expression, the reader is referred to Bremnes [52] .

e use perfect forecasts of spot prices and regulating unit costs, which

eans that we do not take into account any spatial or temporal depen-

encies affecting these prices. However, the reader should note that the

egulating prices generally are difficult to estimate with hourly resolu-

ion [53] . An overview of the methodology and the data used in this

tudy is presented in Fig. 1 . 

. Results 

Here results from various ratios of aggregated wind and PV are

resented. The visual inspection of the forecasts are presented in

ection 3.1 and the numerical verification scores are presented in

ection 3.2 . In Section 3.3 , the results from the electricity market simu-

ation are presented. 

.1. Visual verification tools 

.1.1. Calibration assessment 

PIT histograms, averaged over all forecast horizons, for the respec-

ive power sources as well as aggregated output with equal nominal

apacity are presented in Fig. 5 for the forecast and observation pairs

n shuffle 2. Note that the other ratios and shuffles showed similar re-

ults which is why they are not included. Deviations from a uniform

istogram (red lines in Fig. 5 ) occur due to limited amount of forecast

nd observation pairs in the testing set and show the range of empir-

cal probabilities (dashed black lines in Fig. 5 ) that could be observed

espite being a reliable forecast. In this case, the consistency intervals

orrespond to the nominal probabilities 𝜏, i.e., the 5–95% probability

nterval. 

Fig. 5 (upper row) shows that the forecasts generated from solely

he QRF models are under-dispersive which is to say that the predic-

ive distributions are too narrow on average. After post-processing the

RF forecasts with QR, Fig. 5 (lower row) shows that the probabilis-

ic forecasts are indeed better calibrated, although not perfectly. After
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Fig. 5. PIT histograms for all look-ahead times for PV power, wind power and 50% aggregation level at the studied site for shuffle 2. Consistency intervals are 

denoted by the horizontal dashed lines and the red lines show a perfectly reliable forecast. Note the differences on the y-axes. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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ost-processing the QRF forecasts, the consistency band are wider be-

ause the size of the testing data set is halved. Also, the consistency

ntervals for PV forecasts are wider since these are limited to solar el-

vation angles of 5 ◦ or more. Most histogram bars remain within the

argin that could be caused by randomness from which we conclude

hat the calibration is satisfactory for the purpose of the study since we

annot find any consistent miscalibration. To that end, we continue now

nly with forecasts generated from QRF and post-processed with QR. 

.1.2. Sharpness 

Recall from Section 2.3 that sharpness is a property of the forecast

nly, i.e., observations are excluded. Therefore, a forecast system can

roduce sharp forecasts, despite being useless if they are not reliable.

ig. 6 shows the PIAW (which represents the sharpness) of probabilis-

ic forecasts with 𝛼 ∈ {0 . 2 , 0 . 3 , … , 0 . 8} generated for a park with ratios

 ∈ {0 , 0 . 2 , … , 1} for the different seasons. The reason for solely plot-

ing the ratios in steps of 20% is to reduce clutter. For the complete

est data set ( “All year ”) and during the summer, any aggregated ratio

f co-located production of more than 20% improve the sharpness of

he forecasts compared to individual parks. However, during the fall

n shuffle 3 the improvement is realized with a ratio of more than

0%. During the winter in shuffle 1 and 2, the improvement is real-

zed with a ratio of more than 40% and solely 20%, respectively. No

mprovement over an individual PV park is realized in shuffle 2 during

pring. 

.2. Numerical verification scores 

.2.1. Continuous ranked probability score (CRPS) 

Fig. 7 shows the CRPS and its decomposition into reliability, reso-

ution and uncertainty as well as the variance for different aggregated

atios of wind and PV in the co-located park calculated over the whole

est set ( “All year ”) and the different seasons for the shuffled data sets.

% indicates a park with solely PV power and 100% indicates a park

ith solely wind power. For all seasons and shuffles, the CRPS is low-

red when issuing probabilistic forecasts of aggregated production ex-

ept for the spring in shuffle 2 where the lowest CRPS is for a wind
8 
ark and in shuffle 1 during the winter when the lowest CRPS is for

n individual PV park. In all cases, the CRPS is lowered when issuing

robabilistic forecasts of aggregated production where the optimal mix

s found at a 50% – 60% ratio considering all data as well as in the

ummer, fall and spring. This is explained by the aggregated power out-

ut from a co-located park being less variable, which is shown by the

owered variance. 

The resolution terms, which should be maximized, are lowered when

ggregating the data, indicating that the ability of the forecast model to

roduce different forecasts depending on the forecast conditions are be-

oming worse. At the same time, the uncertainty term, which is an arti-

act of the observation and should be minimized, is also decreased. The

owered uncertainty term and the reduction in variance is explained by

he smoothing effect, where the average variability of the power output

s lowered when the power output of the two sources are combined. Pre-

icting a smoother signal means that the forecast model needs to capture

ess variability, which results in lower forecast resolution. Recall from

ection 2.3 that the sharpness should be maximized subject the to relia-

ility according to Gneiting and Raftery [39] . When the time series are

ggregated, Fig. 6 and 7 show that the sharpness as well as the reliabil-

ty are, in most cases, improved. This indicate that co-locating wind and

olar has the effect of producing sharper and more reliable probabilis-

ic forecasts as compared to generating forecasts from individual power

arks. 

.2.2. Variability in power output 

The uncertainty term presented in Fig. 7 differ between seasons, e.g.,

he highest uncertainty term in PV power production is in the spring and

ummer whereas the highest uncertainty term for wind power produc-

ion is during the winter. The uncertainty term is determined by the ob-

erved power output according to Equation (10) , which means that the

erm depicts the variability in the power output. In order to understand

he effect of aggregation at different levels of variability, we calculate

he uncertainty term of wind power on a daily basis and cluster these

alues. The reason for not calculating the daily uncertainty terms of PV

ower is the strong seasonality of the insolation. Considering this, the

ighest values of the daily uncertainty terms (i.e., daily variability) in
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Fig. 6. PIAW as a function of the nominal coverage rate of the prediction intervals for different nominal capacity of wind power to the nominal capacity of the entire 

park. The rows corresponds to the shuffles and the columns to the seasons. 

Fig. 7. The rows present the CRPS and corresponding decomposition scores as well as the variance for different shares of wind in the combined park for the different 

seasons and shuffled data sets, respectively. The columns corresponds to the seasons. 

9 
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Fig. 8. Uncertainty terms calculated on a daily basis for wind power and normalized by the nominal capacity of the park for the shuffled datasets. 
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a  
V power is found in the spring, which was already assessed when divid-

ng into seasons in Fig. 7 . Fig. 8 shows the normalized daily wind power

ncertainty terms for each day of the year for the shuffled data sets. The

alculated daily uncertainty terms are relatively homogeneously spread

hroughout the year where values are in between 0–25% uncertainty

evel. The grid lines on the y-axis corresponds to the different uncer-

ainty term clusters that are used for the analyis, i.e., 0–5%, 5–10%,

0–15%, 15–20% and 20–25%. 

In Table 1 , the decomposed CRPS for different uncertainty term clus-

ers as well as different aggregated ratios of wind and PV is shown.

uring times when the daily wind power variability is the lowest (i.e.,

ncertainty term cluster 0–5%), the CRPS of a park consisting of 90%

ind power is the lowest. As the daily variability in wind power is in-

reasing, the CRPS is also increasing for a pure wind park, with the

xception of the uncertainty term cluster 20–25%. From visual inspec-

ion (not shown in this paper), this uncertainty term cluster was re-

tricted to days where the wind power production went from a small

ower output to rated power output within the course of the day. The

on-increasing CRPS for this uncertainty term cluster is likely explained

y the power curve, from which wind power output is approximately

etermined. Above the rated and below the cut-out wind speed electric

ower is constant, which is relatively straightforward to forecast and re-

ults in a lower CRPS score for this uncertainty term cluster. By assum-

ng that the forecasts are statistically independent, one may calculate

he standard error to gain information about the confidence in the re-

ult. Considering the 95% confidence limit of the standard errors for the

alculated CRPS values (parenthesis values in Table 1 ), aggregation de-

rease the standard error. This means that not only are the forecasts ac-

uracy improved from aggregation on average, but the variability in the

orecast errors are also lowered. Furthermore, the differences between

he calculated CRPS values for the different ratios are much larger than

he calculated standard errors. We can thus conclude that the improved

orecast accuracy is statistically significant. 

Forecasting aggregated time series has the effect of dampening the

ombined uncertainty term, i.e., reducing the variability of the power

roduction. Aggregation furthermore, similar to what is illustrated in

ig. 7 reduce the reliability term, which combined with the other decom-

osition terms result in a lower overall CRPS score. Another interesting

spect is that the CRPS for an individual PV power park is relatively

table (and slightly decreasing) as the wind power variability is increas-

ng. This is explained by the fact that the variability in the power sources

re anti-correlated, i.e., less solar power is produced during windy con-

itions while wind power production is lower during sunny conditions.

his indicates that during periods when one of the power sources are

etter predicted (low CRPS), the other one is predicted slighly worse

higher CRPS). 

e  

10 
.2.3. Interval score 

Similar to the CRPS score shown in Fig. 7 , the interval score is a nega-

ively oriented score. Table 2 shows the interval score for the 20% – 80%

entral prediction interval for different ratios of wind to the nominal ca-

acity of the entire park. Considering the whole test data set as well as

he summer, fall and spring; the lowest interval score of the 20%–80%

entral prediction interval is found at around 50% – 60% wind, except

or shuffle 1 in the spring, where the sizing that lowers the 60% – 80%

entral prediction interval the most is a ratio of 70% wind power to the

ombined nominal capacity of the park. For the same central prediction

ntervals, a mix of 10% – 30% wind power to the combined park yields

he lowest scores during the winter. 

.2.4. Quantile score 

Fig. 9 shows the negatively oriented quantile score as a function of

he probability levels 𝜏 ∈ {0 . 1 , 0 . 15 , … , 0 . 9} with 𝑟 ∈ {0 , 0 . 2 , … , 1} dur-

ng the different seasons. Again, as in Fig. 6 , the reason for solely plotting

hese ratios was to reduce clutter because results were found to follow

he same trend. When forecasting aggregated production, the forecasts

re improved by means of the quantile score compared to individual

arks. However, in shuffle 3 during fall the improvement is found after

he 40% aggregation level, all ratios except for 20% in shuffle 1 and 2 in

he spring and all ratios except for 80% in shuffle 2 and 3 in the winter.

n shuffle 1 in the winter, the quantile scores were always higher for an

ggregated park as compared to a pure PV park. On top of an improved

uantile score, aggregated production improves the symmetry across the

ange of quantiles compared to the forecasting of the individual power

ources. This means that forecasts of the highest and lowest quantiles

sing aggregated time series are better estimated compared to forecasts

f an individual wind or solar park. 

.3. Electricity trading 

Based on the probabilistic forecasts of electricity production and

he optimal trading strategy in the electricity market presented in

ection 2.4 , this section evaluates results from electricity market simu-

ation. In Table 3 , results with different ratios of wind and PV power are

resented for the shuffled datasets. In order to make the result from trad-

ng comparable between the different ratios, the parks are scaled such

hat all ratios produce the same amount of energy when using perfect

orecasts (20.0 GWh). The term part of imbalance is defined as the sum of

eviations divided by the sum of the produced energy. The performance

atio is calculated by normalizing the total revenue from the forecasts

y the revenue that would be obtained with perfect forecasts, which is

 metric that can be used to evaluate rivaling bidding strategies in the

lectricity market [42] . Using perfect predictions, the total revenue and
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11 
verage energy price indicate that the spot prices when the PV park pro-

uces its energy are higher than during the times that the wind park pro-

uces energy, meaning that the potential revenue is higher for a PV park

han a wind power park. This is explained by the penetration levels of

V and wind power in the Swedish power systems. In 2017, 2018, 2019

nd 2020, PV produced 0.1%, 0.3%, 0.4% and 0.6% of net electricity

roduction and wind power produced 11.0%, 10.4%, 12.0% and 17.1%

f net electricity production [54] . Due to the low amount of PV to the to-

al net production, the correlation of PV power production, as compared

o wind power production, to the existing power production across the

ower system is lower which results in a higher value factor of PV [55] .

or Shuffle 1 and 2, PV power forecasts performs worse than the wind

ower forecasts, yielding a lower performance ratio, while the opposite

s true for Shuffle 3. However, when forecasting aggregated time series,

he performance ratio is higher than for a park consisting of solely wind

r PV. This indicate that aggregating forecasts at a co-located wind and

V power park translates into improved performance when trading elec-

ricity. When the aggregated time series are forecasted, deviations from

he contracted energy production, i.e., surplus and shortage, is reduced

ausing the regulation costs to be lowered, which improves the perfor-

ance ratio and lowers the imbalance. The optimal ratio is, similar to

hat was found in Section 3.1 and Section 3.2 found at around 40% –

0% wind power to the combined nominal capacity of the park. This is

xplained by the forecasts of aggregated time series being improved by

eans of accuracy, reliability and sharpness compared to forecasts of

ndividual power sources which translates into improved trading in the

ay-ahead market. 

. Discussion 

The scientific literature has motivated co-location of wind and PV

ark in several aspects, e.g., reduced project development costs, syner-

ies in operation and maintenance, more effective land usage and better

se of the electrical infrastructure [9] . Despite these foreseen benefits,

he scientific literature on co-located wind and PV power parks is lim-

ted, in particular related to forecasting. Therefore, this study presents

 first study on the effect of aggregating the power sources on proba-

ilistic forecast quality and value and what possible synergies might be

ound when forecasting different ratios of co-located wind and PV under

 fixed modelling framework. 

An important and challenging aspect in probabilistic forecasting re-

ates to calibration, which means that the forecasts should, statistically,

orrespond to the observations. Calibration is furthermore important in

ecision making processes, such as electricity market trading, in order to

roduce accurate approximation of the underlying forecast uncertainty.

rading using unreliable probabilistic forecasts will likely lead to biases.

o produce calibrated probabilistic forecasts of wind and PV power, we

se QRF post-processed with QR using inputs from the regional NWP

odel MetCoOp. Although the main contribution of this paper is not

o produce the most accurate probabilistic forecasts, but rather analyze

he effect of aggregation within the chosen model framework itself, pos-

ible improvements would be to test and compare additional statistical

nd physical forecasting models. Furthermore, future research should

lso include more explanatory variables or include ensemble members.

nsemble members were excluded because the configuration of the en-

emble was changed several times within the studied time period. In

his study, the forecast models are trained for each lead time which cor-

esponds to the specific phase in the diurnal cycle that the NWP fore-

ast pertains to. However, antecedent time steps (due to non-zero auto-

ovariance) are interesting to consider as explanatory variables in future

tudies especially if the temporal dependence structure is of importance,

.g., if the co-located park includes storage. For this, the marginal proba-

ilities could be transformed to scenarios that could be used in stochastic

ptimization. 

When studying the effect of aggregating co-located wind and PV

ower, the results indicated that a substantial gain could be realized dur-
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Table 2 

The interval score ( ”IS ”) with varying prediction intervals for different ratios of nominal wind power to the nominal power of the complete park. 0% indicates a PV park and 100% indicates 

wind power park. The values are normalized by the nominal power meaning that the unit is %. The lowest interval score for each central prediction interval and time period are underlined 

and in bold font. 

Shuffle 1. 

All year Summer Fall Winter Spring 

𝐼𝑆 0 . 2 𝐼𝑆 0 . 4 𝐼𝑆 0 . 6 𝐼𝑆 0 . 8 𝐼𝑆 0 . 2 𝐼𝑆 0 . 4 𝐼𝑆 0 . 6 𝐼𝑆 0 . 8 𝐼𝑆 0 . 2 𝐼𝑆 0 . 4 𝐼𝑆 0 . 6 𝐼𝑆 0 . 8 𝐼𝑆 0 . 2 𝐼𝑆 0 . 4 𝐼𝑆 0 . 6 𝐼𝑆 0 . 8 𝐼𝑆 0 . 2 𝐼𝑆 0 . 4 𝐼𝑆 0 . 6 𝐼𝑆 0 . 8 

0% 10.38 11.17 12.89 16.55 9.27 10.01 11.78 15.54 11.43 12.33 14.40 18.05 7.47 8.51 10.47 14.10 11.03 11.98 14.03 17.98 

10% 9.63 10.36 11.86 15.22 8.65 9.37 10.86 14.14 10.85 11.69 13.64 17.53 7.40 8.32 10.35 14.19 10.18 11.11 13.03 16.91 

20% 9.25 10.03 11.57 14.85 8.28 8.86 10.26 13.40 10.08 10.97 12.76 16.45 7.61 8.73 10.52 14.60 9.60 10.51 12.24 15.64 

30% 8.90 9.68 11.22 14.42 7.85 8.50 9.92 13.30 9.88 10.65 12.46 16.41 7.72 8.64 10.63 14.80 9.49 10.12 11.61 15.21 

40% 8.76 9.52 10.98 14.23 7.64 8.26 9.62 12.84 9.46 10.33 12.05 15.52 8.05 8.87 10.93 15.28 8.92 9.76 11.46 14.90 

50% 8.54 9.31 10.91 14.09 7.45 8.13 9.55 12.62 9.42 10.17 11.82 15.26 8.15 9.38 11.65 15.56 8.72 9.61 11.35 14.69 

60% 8.55 9.21 10.63 14.18 7.62 8.35 9.70 12.91 9.54 10.21 11.82 15.02 8.45 9.53 11.89 16.16 8.65 9.57 11.24 14.96 

70% 8.49 9.22 10.83 14.21 7.65 8.37 9.94 13.03 9.76 10.41 11.86 14.88 9.00 9.89 11.82 16.31 8.76 9.60 11.24 14.73 

80% 8.69 9.48 11.09 14.84 7.88 8.62 10.27 13.52 9.92 10.62 12.29 15.71 9.61 10.58 12.96 17.39 9.03 9.74 11.49 15.17 

90% 9.19 9.95 11.63 15.85 8.34 9.17 10.76 14.21 10.43 11.08 12.76 16.40 10.40 11.78 14.30 19.37 9.25 10.07 11.96 15.90 

100% 9.94 10.86 12.72 16.92 8.85 9.68 11.40 14.67 11.07 11.83 13.78 17.56 11.92 13.53 16.53 21.40 10.27 11.23 13.23 16.81 

Shuffle 2. 

All year Summer Fall Winter Spring 

𝐼𝑆 0 . 2 𝐼𝑆 0 . 4 𝐼𝑆 0 . 6 𝐼𝑆 0 . 8 𝐼𝑆 0 . 2 𝐼𝑆 0 . 4 𝐼𝑆 0 . 6 𝐼𝑆 0 . 8 𝐼𝑆 0 . 2 𝐼𝑆 0 . 4 𝐼𝑆 0 . 6 𝐼𝑆 0 . 8 𝐼𝑆 0 . 2 𝐼𝑆 0 . 4 𝐼𝑆 0 . 6 𝐼𝑆 0 . 8 𝐼𝑆 0 . 2 𝐼𝑆 0 . 4 𝐼𝑆 0 . 6 𝐼𝑆 0 . 8 

0% 10.52 11.30 12.94 16.47 10.02 10.71 12.35 15.95 11.25 12.20 14.15 18.32 8.96 9.78 11.23 14.14 13.11 13.77 14.97 17.75 

10% 9.79 10.58 12.07 15.52 9.44 10.11 11.54 15.02 10.30 11.44 13.25 17.19 8.41 9.05 10.37 13.52 12.08 12.71 14.01 16.73 

20% 9.29 10.06 11.55 14.94 9.05 9.72 11.00 14.14 9.65 10.63 12.58 16.66 8.09 8.90 10.43 13.69 11.20 11.82 12.99 15.94 

30% 8.96 9.74 11.24 14.52 8.83 9.45 10.69 13.66 9.36 10.32 12.12 15.96 8.04 8.81 10.53 13.86 9.98 10.87 12.39 15.45 

40% 8.75 9.55 10.99 14.39 8.66 9.26 10.42 13.41 8.89 9.90 11.61 15.73 8.06 9.02 10.81 14.45 9.81 10.64 11.97 14.96 

50% 8.58 9.32 10.91 14.07 8.60 9.17 10.42 13.11 8.75 9.63 11.50 15.09 8.16 9.24 11.20 14.80 8.75 9.29 10.94 14.25 

60% 8.59 9.45 11.06 14.27 8.69 9.39 10.63 13.27 8.55 9.48 11.33 15.05 8.46 9.53 11.68 15.57 8.50 9.44 11.08 14.21 

70% 8.87 9.77 11.46 14.82 9.00 9.70 11.04 14.04 8.61 9.49 11.37 15.06 9.15 10.50 12.76 16.72 8.52 9.52 11.18 14.28 

80% 9.29 10.09 11.67 15.26 9.26 9.98 11.29 14.58 9.04 9.87 11.59 15.38 10.18 11.21 13.26 17.50 8.60 9.31 10.82 14.09 

90% 9.43 10.28 12.13 15.85 9.75 10.55 12.23 15.88 9.55 10.47 12.44 16.15 9.51 10.43 12.57 16.67 7.88 8.63 10.38 13.78 

100% 9.95 10.80 12.65 16.50 10.44 11.27 13.05 16.65 10.24 11.13 13.04 17.10 9.53 10.44 12.48 16.79 8.15 8.86 10.54 14.22 

Shuffle 3. 

All year Summer Fall Winter Spring 

𝐼𝑆 0 . 2 𝐼𝑆 0 . 4 𝐼𝑆 0 . 6 𝐼𝑆 0 . 8 𝐼𝑆 0 . 2 𝐼𝑆 0 . 4 𝐼𝑆 0 . 6 𝐼𝑆 0 . 8 𝐼𝑆 0 . 2 𝐼𝑆 0 . 4 𝐼𝑆 0 . 6 𝐼𝑆 0 . 8 𝐼𝑆 0 . 2 𝐼𝑆 0 . 4 𝐼𝑆 0 . 6 𝐼𝑆 0 . 8 𝐼𝑆 0 . 2 𝐼𝑆 0 . 4 𝐼𝑆 0 . 6 𝐼𝑆 0 . 8 

0% 9.35 10.74 13.23 16.36 8.86 10.31 12.89 15.96 11.24 12.37 14.3 17.09 8.51 9.47 11.14 14.07 9.93 11.55 14.58 18.04 

10% 8.74 9.84 12.07 15.36 8.19 9.34 11.73 14.76 10.47 11.39 12.97 16.2 8.33 9.1 10.56 13.83 9.2 10.5 13.14 16.83 

20% 8.23 9.21 11.15 14.41 7.84 8.84 10.83 13.9 9.57 10.63 12.32 15.61 7.84 8.49 9.95 13.07 8.59 9.69 11.93 15.53 

30% 7.9 8.67 10.28 13.68 7.51 8.23 9.72 13.01 9.23 9.98 11.45 14.63 7.55 8.35 10.13 13.41 8.22 9.06 10.8 14.51 

40% 7.75 8.4 9.93 12.73 7.37 7.9 9.25 11.81 8.51 9.18 10.89 13.94 7.63 8.53 10.35 13.36 8.15 8.8 10.37 13.29 

50% 7.67 8.27 9.53 12.43 7.3 7.75 8.76 11.42 8.09 8.88 10.4 13.62 7.77 8.63 10.25 13.48 8.02 8.61 9.93 12.9 

60% 7.65 8.25 9.62 12.53 7.33 7.83 8.97 11.5 8.19 9.06 10.68 14.55 7.9 8.78 10.6 14.07 8 8.51 9.85 12.69 

70% 7.79 8.42 9.74 12.66 7.48 8.05 9.16 11.8 8.22 8.97 10.69 14.33 8.51 9.27 11.03 14.45 7.94 8.54 9.78 12.58 

80% 8.21 8.87 10.17 13.16 8.04 8.66 9.73 12.27 8.28 9.02 10.68 14.69 9.05 9.83 11.55 15.39 8.26 8.88 10.16 12.96 

90% 8.65 9.33 10.76 13.78 8.59 9.16 10.45 13.15 8.32 9.25 10.91 14.48 9.57 10.35 12.1 15.78 8.6 9.31 10.67 13.6 

100% 9.56 10.36 11.87 15.09 9.59 10.34 11.72 14.73 9.02 9.8 11.39 14.86 10.39 11.32 13.12 16.8 9.44 10.25 11.74 14.9 

1
2
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Fig. 9. Quantile score as a function of the probability level normalized by the nominal power. The columns show the different seasons and the rows show the shuffled 

data sets. 
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ng all seasons in terms of the CRPS, the interval score and the quantile

core. The improvement was the lowest during the winter, which corre-

ponds to a time period of low PV power output. On top of this, we found

hat the variability in the respective power source to be anti-correlated,

hich carry over to slightly anti-correlated CRPS values. These are in-

eresting and useful results since the complementary characteristics in

he power output variability carries over to complementary character-

stics in terms of forecast performance. In fact, the output of wind and

V power production is generally anti-correlated [7] . 

In terms of the CRPS, we found that the variability in terms of the

ariance is lowered from aggregation, which translates into overall im-

roved forecasts. As was shown by Lindberg et al. [56] , the variability of

 co-located wind and PV park is lowered both because of lack of correla-

ion and negative correlation. Here it is shown that the lower variability

ndeed carries over to more accurate forecasts, at least for a majority of

he time. To improve the confidence in the results, the datasets were

huffled, trained and evaluated over three separate years. Although the

verage production varied slightly between the different time periods,

esults showed that the lowered variability from co-location carries over

o more accurate forecasts in all of the shuffled time periods. Apart from

he general trend is that aggregation improves the forecast accuracy, the

esults also showed that winter sticks out, where a park with mostly PV

ower produce the lowest forecast errors. This is explained by the lati-

ude location of the park and corresponding low amount in solar irradi-

tion in the winter. On top of more accurate forecasts when aggregating

he time series, results also showed that the standard errors are low-

red, which means that the variations in the forecast errors is lowered.

lthough the reliability and sharpness should be improved subject to

ach other according to Gneiting and Raftery [39] , the results showed

hat these characteristics both improved by means of aggregating co-

ocated wind and PV. However, this comes at the cost of lowering the

esolution of the forecasts. A lower resolution means that the ability to

roduce different density forecasts depending on the forecasts condition
13 
s reduced, which is explained by the variability of the aggregated time

eries being lowered. 

In Petropoulos et al. [57] , different types of uncertainties related

o forecasting are brought up. According to the decomposition of the

RPS [48] , the uncertainty term is a function of the variability in the

bservations. However, in a broader perspective, uncertainties might

elate to, e.g., parametrizations or phase error in the NWP model, which

arry over to power production. Considering that such uncertainties can

e isolated, a future research direction would be to further extend the

tudy, e.g., by estimating what uncertainties that relate to the physical

WP model and which uncertainties relate to the statistical model. 

One aspect of the goodness of a forecast is whether or not it results

n an increment economic value, according to Murphy [27] . Our re-

ults showed that aggregating co-located wind and PV power forecasts

as the effect of improving the performance in the electricity market

y reducing the deviations from the contracted energy sales. These de-

iations translate into a lower ratio between the regulation costs and

he incomes. We assumed perfect forecasts of the spot price as well

s the regulation costs. However, electricity prices are, like wind and

V power, generally seen as stochastic variables and requires forecast

trategies which we left out of this study. On top of this, the electricity

rices and power production are not necessarily independent variables,

specially with large shares of wind power [58] , which was also shown

n this study. Although not specifically applied in this study, improved

orecasts will likely be useful in other type of markets, such as capacity

arkets [10] and for ancillary services [11] , for which co-located wind

nd PV have been proposed as future candidates. This study could also

e extended and applied to those markets in order to study other aspects

f potential forecast value from co-location of wind and PV power. 

While the number of co-located wind and PV power parks are lim-

ted to a few on a global scale, it remains an interesting avenue for fu-

ure work to validate the results in this study by forecasting aggregated

ind and PV at other parks. On top of this, we have shown the effect
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Table 3 

Simulation results over market participation for different shares of wind and PV power in the co-located park. The columns represent the 

different shares and corresponding results in the rows. Values in parenthesis denote perfect forecasts. 

Shuffle 1. 

0% 20% 40% 60% 80% 100% 

Contracted [GWh]: 22.13 (20.0) 22.01 (20.0) 22.1 (20.0) 22.23 (20.0) 22.7 (20.0) 22.95 (20.0) 

Surplus [GWh] 5.93 (0) 5.60 (0) 5.70 (0) 5.80 (0) 6.41 (0) 6.85 (0) 

Shortage [GWh] 3.82 (0) 3.69 (0) 3.76 (0) 3.77 (0) 3.95 (0) 4.15 (0) 

Down-regulation cost [10 ∧3 Euro] 10.75 (0) 9.01 (0) 7.82 (0) 7.77 (0) 8.19 (0) 9.06 (0) 

Up-regulation cost [10 ∧3 Euro] 11.88 (0) 10.37 (0) 8.48 (0) 8.78 (0) 8.77 (0) 9.18 (0) 

Total revenue [10 ∧3 Euro] 722.2 (744.9) 707.3 (726.7) 697.9 (714.2) 688.6 (705.2) 681.3 (698.3) 674.6 (692.9) 

Avg. energy price [Euro/MWh] 32.64 (37.21) 32.13 (36.15) 31.58 (35.43) 30.98 (34.91) 30.02 (34.52) 29.4 (34.21) 

Avg. down-regulation unit cost [Euro/MWh] 4.48 (0) 4.28 (0) 4.32 (0) 4.36 (0) 4.38 (0) 4.43 (0) 

Avg. up-regulation unit cost [Euro/MWh] 5.02 (0) 4.47 (0) 4.47 (0) 4.47 (0) 4.50 (0) 4.10 (0) 

Part of imbalance [% of produced enery] 48.65 (0) 46.21 (0) 46.9 (0) 47.34 (0) 51.23 (0) 54.31 (0) 

Performance ratio [%] 96.96 (100) 97.33 (100) 97.72 (100) 97.65 (100) 97.57 (100) 97.37 (100) 

Shuffle 2. 

0% 20% 40% 60% 80% 100% 

Contracted [GWh]: 24.85 (20.0) 23.04 (20.0) 21.82 (20.0) 21.32 (20.0) 21.28 (20.0) 21.21 (20.0) 

Surplus [GWh] 9.02 (0) 6.90 (0) 5.70 (0) 5.30 (0) 5.30 (0) 5.32 (0) 

Shortage [GWh] 4.17 (0) 3.87 (0) 3.87 (0) 3.97 (0) 4.00 (0) 4.11 (0) 

Down-regulation cost [10 ∧3 Euro] 6.16 (0) 5.06 (0) 5.64 (0) 6.12 (0) 6.41 (0) 7.14 (0) 

Up-regulation cost [10 ∧3 Euro] 17.65 (0) 13.97 (0) 10.18 (0) 9.12 (0) 10.13 (0) 9.42 (0) 

Total revenue [10 ∧3 Euro] 703.7 (727.5) 655.4 (674.4) 631.9 (647.7) 616.5 (631.7) 604.4 (621.0) 596.8 (613.3) 

Avg. energy price [Euro/MWh] 28.32 (36.37) 28.45 (33.72) 28.96 (32.39) 28.91 (31.58) 28.4 (31.05) 28.13 (30.67) 

Avg. down-regulation unit cost [Euro/MWh] 6.11 (0) 5.28 (0) 5.27 (0) 5.27 (0) 5.28 (0) 5.36 (0) 

Avg. up-regulation unit cost [Euro/MWh] 6.01 (0) 4.58 (0) 4.60 (0) 4.59 (0) 4.54 (0) 4.43 (0) 

Part of imbalance [% of produced enery] 65.96 (0) 53.85 (0) 47.86 (0) 46.33 (0) 46.43 (0) 47.14 (0) 

Performance ratio [%] 96.73 (100) 97.18 (100) 97.56 (100) 97.59 (100) 97.34 (100) 97.3 (100) 

Shuffle 3. 

0% 20% 40% 60% 80% 100% 

Contracted [GWh]: 21.01 (20.0) 21.73 (20.0) 22.05 (20.0) 22.65 (20.0) 23.13 (20.0) 23.82 (20.0) 

Surplus [GWh] 5.65 (0) 5.81 (0) 5.90 (0) 6.47 (0) 6.94 (0) 7.78 (0) 

Shortage [GWh] 4.64 (0) 4.12 (0) 3.92 (0) 3.91 (0) 3.91 (0) 4.08 (0) 

Down-regulation cost [10 ∧3 Euro] 8.56 (0) 7.99 (0) 8.22 (0) 8.54 (0) 9.41 (0) 11.20 (0) 

Up-regulation cost [10 ∧3 Euro] 11.87 (0) 13.03 (0) 13.59 (0) 16.00 (0) 18.78 (0) 20.94 (0) 

Total revenue [10 ∧3 Euro] 910.2 (934.5) 904.3 (926.7) 899.3 (921.1) 892.4 (916.9) 885.5 (913.6) 878.9 (911.0) 

Avg. energy price [Euro/MWh] 43.3 (46.72) 41.62 (46.24) 40.78 (45.9) 39.41 (45.64) 38.28 (45.43) 36.89 (45.27) 

Avg. down-regulation unit cost [Euro/MWh] 5.176 (0) 5.075 (0) 5.066 (0) 5.08 (0) 5.066 (0) 5.044 (0) 

Avg. up-regulation unit cost [Euro/MWh] 3.911 (0) 4.409 (0) 4.571 (0) 4.528 (0) 4.586 (0) 4.473 (0) 

Part of imbalance [% of produced enery] 51.48 (0) 49.5 (0) 48.94 (0) 51.67 (0) 53.97 (0) 58.97 (0) 

Performance ratio [%] 97.40 (100) 97.58 (100) 97.63 (100) 97.32 (100) 96.92 (100) 96.47 (100) 
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f temporal aggregation at a single park. Another interesting future re-

earch direction is to see how spatio-temporal aggregation, e.g., in a

irtual power park with spatially sparse wind and PV parks, compares

o temporal aggregation in terms of forecast accuracy. This could be

one by analyzing if the local weather has a more pronounced effect on

he uncertainty mitigation as compared to parks at different locations,

ot affected by the same type of weather. 

. Conclusions 

In this work, we investigated the effect on probabilistic forecast qual-

ty and value when aggregating wind and PV power at a co-located park

y validating the result using three years of observed power output. This

as done by comparing different ratios of wind and PV to the total ca-

acity of the park, where the forecasts are thoroughly evaluated using

ualitative and quantitative methods and by simulating day-ahead mar-

et trading under a fixed modelling framework. The results presented in

his study should be generally valid for other co-located parks in similar

limates and show that the smoothing effect from aggregation carries

ver to more accurate forecasts quantified in terms of the CRPS, quan-

ile score and interval score. The optimal ratio of wind and PV in the

o-located park was found at around 50% – 60% wind power to the to-

al nominal capacity of the park when studying the whole time period.
14 
orecasting co-located production also has the effect of producing more

eliable and sharper predictive distributions which is also most promi-

ently the case during the summer, fall and spring and comes at the

ost of lowered forecast resolution, which means that the capacity to

ssue case-dependent forecasts is lowered. The daily variability in the

ind and PV power output were shown to be anti-correlated, which is

eneficial in terms of forecasting aggregated time series. Although the

ower sources show slightly anti-correlated characteristics in terms of

he CRPS and variability, it was also found that the PV forecasts be-

ng insensitive to the increasing variability of wind power production.

inally, the results indicate that a pure PV park yield the highest rev-

nues on the day-ahead market, which is explained by the small amount

f PV to the total net generation in Sweden. However, when forecast-

ng aggregated time series in a co-located park, the imbalance costs are

owered as compared to the individual power sources. This is explained

y better accuracy, reliability and sharpness from co-located forecasts

s compared to forecasts from individual power sources. 
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