

Civilingenjörsprogrammet i teknisk fysik

Uppsal a universitets l ogotyp

UPTEC F 23026

Examensarbete 30 hp

06 23

Modeling, Simulation, and Injection of
Camera Images/Video to Automotive
Embedded ECU
Image Injection Solution for Hardware-in-the-Loop
Testing

Anton Lind
Civilingenj örspr ogrammet i teknisk fysik

Teknisk-naturvetenskapliga fakulteten

Uppsala universitet, Utgivningsort Uppsala/Visby

Handledare: Rubén Calvillo Portales Ämnesgranskare: Ping Wu

Examinator: Tomas Nyberg

Uppsal a universitets l ogotyp

Modeling, Simulation and Injection of

Camera Images/Video to Automotive

Embedded ECU

Anton Lind

Abstract

Testing, verification and validation of sensors, components and systems is vital in the early-

stage development of new cars with computer-in-the-car architecture. This can be done with the

help of the existing technique, hardware-in-the-loop (HIL) testing which, in the close loop testing

case, consists of four main parts: Real-Time Simulation Platform, Sensor Simulation PC,

Interface Unit (IU), and unit under test which is, for instance, a Vehicle Computing Unit (VCU).

The purpose of this degree project is to research and develop a proof of concept for in-house

development of an image injection solution (IIS) on the IU in the HIL testing environment. A

proof of concept could confirm that editing, customizing, and having full control of the IU is a

possibility. This project was initiated by Volvo Cars to optimize the use of the HIL testing

environment currently available, making the environment more changeable and controllable

while the IIS remains a static system.

The IU is an MPSoC/FPGA based design that uses primarily Xilinx hardware and software

(Vivado/Vitis) to achieve the necessary requirements for image injection in the HIL testing

environment. It consists of three stages in series: input, image processing, and output.

The whole project was divided in three parts based on the three stages and carried out at Volvo

Cars in cooperation by three students, respectively. The author of this thesis was responsible

for the output stage, where the main goal was to find a solution for converting, preferably, AXI4

RAW12 image data into data on CSI2 format. This CSI2 data can then be used as input to

serializers, which in turn transmit the data via fiber-optic cable on GMSL2 format to the VCU.

Associated with the output stage, extensive simulations and hardware tests have been done on

a preliminary solution that partially worked on the hardware, producing signals in parts of the

design that could be read and analyzed.

However, a final definite solution that fully functions on the hardware has not been found,

because the work is at the initial phase of an advanced and very complex project. Presented in

this thesis is: important theory regarding, for example, protocols CSI2, AXI4, GMSL2, etc.,

appropriate hardware selection for an IIS in HIL (FPGA, MPSoC, FMC, etc.), simulations of

AXI4 and CSI2 signals, comparisons of those simulations with the hardware signals of an

implemented design, and more. The outcome was heavily dependent on getting a certain

hardware (TEF0010) to transmit the GMSL2 data. Since the wrong card was provided, this was

the main problem that hindered the thesis from reaching a fully functioning implementation.

However, these results provide a solid foundation for future work related to image injection in a

HIL environment.
Teknisk-naturvetenskapliga fakulteten, Uppsala universitet . Utgivningsort U ppsal a/Visby . H andledare: Rubén Calvillo Portales , Äm nesgranskar e: Pi ng Wu, Examinator: Tom as Nyberg

Populärvetenskaplig sammanfattning
Med den växande digitalisering av vårt samhälle har integrerad teknologin ökat markant inom vissa
industrier. Detta är speciellt märkbart inom fordonsindustrin där bilar har gått från att vara rent
bränsledrivna maskiner med några enstaka simpla elektriska funktioner, till att ha flera sammankop-
plade elektriska kommunikationsnätverk, bestående av flertal datorer som styr många funktioner av
varierande komplexitet. Följaktligen, har fokuset för tillverkningen av bilar skiftat mot huvudsaklig
smarta funktioner och lösningar som inte bara gör körningen mer behaglig för föraren, men också mer
säker.

Ett exempel på sådana smarta funktioner är aktiva säkerhetsfunktioner, som försöker undvika att kolli-
sioner uppstår. Dessa aktiva säkerhetsfunktioner faller vanligtvis under två olika kategorier: avancerade
körhjälpssystem (ADAS) och automatiserade körsystem (AD eller ADS). ADAS omfattar funktioner
som hjälper föraren till mer säker körning, som till exempel kollisionsundvikning, filhållningshjälp, dö-
davinkeldetektering och adaptiv farthållare, men föraren förblir den huvudsakliga kontrollanten av for-
donet. Medan AD är automatiserad körning helt utan, eller nästintill utan, interaktion från föraren.

Eftersom AD och ADAS introducerar mycket komplex och specifik programvara som så småningom
kommer att användas för fordon i trafik, krävs omfattande tester för att säkerställa att hårdvaran och
programvaran fungerar tillsammans på ett tillförlitligt sätt. Det är här som testning blir en viktig
del av utvecklingen av nya bilar med dator-i-bilen-arkitektur. Bland de befintliga testteknikerna ger
hardware-in-the-loop (HIL) testning en testmiljö som används för att verifiera och validera komponenter
och system i de tidiga utvecklingsstadierna. På så sätt kan verkliga elektriska styrenheter (ECUs) och
fordonsdatorenheter (VCUs) testas på ett kontrollerat och repeterbart sätt. Detta kan uppnås genom
att stimulera ECUs/VCUs med antingen verkliga inspelade data eller syntetiska data. Ett exempel på
detta kan vara bildinjektion, där bilder injiceras i ECUn/VCUn med antingen inspelade kameradata som
verklig data eller simulerade bild-data som syntetiska data.

Syftet med detta examensarbete är att undersöka och utveckla ett konceptbevis för intern utveckling
av en bildinjektionslösning, anpassad för en HIL testmiljö. Detta konceptbevis skulle kunna bekräfta
att redigering, anpassning och full kontroll över bildinjektionslösningen är en möjlighet. Eftersom Volvo
Cars inte har någon kontroll över programvaran i den nuvarande lösningen, skulle detta kunna minska de
förseningar som uppstår när oförutsedda ändringar görs i testmiljön. I grund och botten blir testmiljön
mer föränderlig och kontrollerbar, trots att bildinjektionslösningen förblir ett statiskt system.

Denna bildinjektionslösning kallas Interface Unit (IU) och är en Field Programmable Array (FPGA)
baserad design som främst använder Xilinx hårdvara och mjukvara (Vivado/Vitis) för att uppnå de
nödvändiga kraven för bildinjektion i en HIL-testmiljö. Examensarbetet utfördes i samarbete mellan
tre studenter. Denna rapport täcker dock slutsteget av IU:n, där huvudmålet är att hitta en lösning
för att konvertera, helst AXI4 RAW12 bild-data till data på CSI2-format. Denna CSI2-data kan sedan
användas för att överföra informationen till en VCU.

I slutändan hittades ingen slutgiltig lösning som fungerade fullt på hårdvaran. Detta tros vara ett problem
med initialisering i vissa delar av designen. Omfattande simuleringar och hårdvarutester gjordes dock på
en preliminär lösning, som delvis fungerade på hårdvaran och producerade signaler i delar av designen
som kunde läsas och analyseras i verklig tid. Även om ingen slutgiltig lösning hittades, ger denna
rapport ändå en grundlig förklaring av teori, teknisk bakgrund, hårdvarukrav, hårdvarukonfiguration,
programvarukonfiguration, simuleringar, hårdvaruresultat, osv, för HIL bildinjektion. Vilket följaktligen
gör det till en solid grund för framtida arbete inom området.

i

Acknowledgements
This thesis was carried out at Uppsala University in cooperation with Volvo Cars Gothenburg.

First and foremost I would like to present my huge appreciation to team manager Siddhant Gupta and
supervisor Rubén Calvillo Portales at Volvo Cars, who provided guidance, inspiration and assistance,
not only on a professional but also a personal level. Also, thank you to Ping Wu at Uppsala University
who guided me through this thesis with useful feedback and information.

A big thank you to my thesis partners Justus Hoffman and Nidhi Chakrabhavi Basavaraju who pro-
vided a great cooperative environment which, through discussions and assistance, furthered the work we
accomplished together.

Another huge thanks to the rest of the workers in the Volvo Cars HIL-team who made the work and the
life outside of work way more enjoyable.

Last but not least, thank you to my family who are always there to support me in any endeavours.

ii

List of Abbreviations
AD - Automated Driving Systems

ADAS - Advanced Driving Assistance Systems

CAN - Controller Area Network

CSI2 - Camera Serial Interface 2

DP - DisplayPort

ECU- Electronic Control Unit

FMC - FPGA Mezzanine Card

FPGA - Field Programmable Gate Array

GMSL2 - Gigabit Multimedia Serial Link 2

HIL - Hardware-in-the-Loop

IC - Integrated Circuit

IDE - Integrated Development Environment

IP - Intellectual Property

IU - Interface Unit

LIN - Local Interconnect Network

MPSoC - Multiprocessor System on a Chip

PL -Programmable Logic

PS- Processing System

RTL - Register Transfer Level

TB - Testbench

TRM - Technical Reference Manual

VCU - Vehicle Computing Unit

VIU - Vehicle Interface Unit

WFW - Waveform Window

iii

Contents
1 Introduction 1

1.1 Background . 1
1.2 Overview of the Hardware-in-the-Loop Testing Environment 1
1.3 Scope of the Project . 2
1.4 Division of the Thesis . 4

2 Technical Background and Theory 5
2.1 Vehicle Communciation Architecture . 5
2.2 FPGA, Microncontroller, and CPLD . 5
2.3 MPSoC . 5
2.4 AMD Vivado Design Suite . 6
2.5 IP Cores and Subsystems . 6
2.6 Communication Protocols and Connections . 6

2.6.1 AMBA AXI4 . 6
2.6.2 Serial Communication and SerDes . 8
2.6.3 MIPI CSI-2 . 8
2.6.4 GMSL2 . 9

2.7 Image Theory . 9
2.7.1 Camera Basics . 9
2.7.2 Bayer Filter . 10
2.7.3 RAW . 10
2.7.4 RGB . 10

3 Method 11
3.1 Hardware . 11

3.1.1 Zynq™ UltraScale+ MPSoC SOM . 11
3.1.2 FMC connectors . 12
3.1.3 Input Stage: DP FMC card . 15
3.1.4 Output Stage: GMSL2 FMC card . 16
3.1.5 Bridging Input and Output . 16
3.1.6 SD card vs JTAG . 17

3.2 Software . 18
3.2.1 Vivado . 18
3.2.2 MPSoC . 19
3.2.3 Vitis IDE . 19
3.2.4 GMSL2 FMC card . 19

3.3 Vivado: Programming an MPSoC . 19
3.3.1 HDL wrapper . 19
3.3.2 Synthesis, Implementation, and Constraints . 20
3.3.3 Bitstream and Hardware Specification . 20
3.3.4 Vitis IDE and Hardware Manager . 20

3.4 CSI2 Tx Subsystem Specifics . 21
3.5 CSI2 Tx Subsystem Example Design . 23

3.5.1 Clocking Wizard . 23
3.5.2 Processor System Reset . 24
3.5.3 AXI Traffic Generator . 24
3.5.4 AXI Interconnect . 25
3.5.5 Video Test Pattern Generator . 26
3.5.6 AXI4-Stream Subset Converter . 27
3.5.7 MIPI CSI-2 Rx Subsystem . 27

3.6 Simulation Setup . 28
3.7 Implementing the Software on the Hardware . 29

3.7.1 TEF0010 Lead Times and Complications . 29
3.7.2 Migrating the Programming to the MPSoC . 29

3.7.3 UltraScale+ MPSoC PS in Vivado . 30
3.7.4 Virtual Input/Output (VIO) . 32
3.7.5 Integrated Logic Analyzer (ILA) . 33
3.7.6 VIO and ILA complications . 34
3.7.7 VIOs and ILAs in Hardware Manager . 34
3.7.8 Edited CSI2 Tx Subsystem Example Design . 34

4 Results and Discussion 35
4.1 Simulations . 35

4.1.1 CSI2 Tx Subsystem Example Design . 35
4.2 Hardware Signal Tap . 40

4.2.1 Edited CSI2 Tx Subsystem Example Design with ATG 40
4.3 General Discussion . 45

5 Conclusion and Future Work 46

Appendices 47
A.1 Block Diagrams . 47

A.1.1 CSI2 Tx Subsystem Example Design . 47
A.1.2 Edited CSI2 Tx Subsystem Example Design with ATG 48
A.1.3 Edited CSI2 Tx Subsystem Example Design without ATG 49

A.2 VHDL Code and Wrappers . 50
A.2.1 Clock Divider for Blinking LED . 50
A.2.2 CSI2 Tx Example Design Custom Testbench (VHDL) 51
A.2.3 CSI2 Tx Subsystem Example Design VHDL Wrapper 55
A.2.4 Edited CSI2 Tx Subsystem Example Design VHDL Wrapper 58

References 59

1 Introduction

1.1 Background
When cars were starting to be produced the main focus was allowing people to travel longer distances
in a shorter time than what had been possible before. Safety was not the main priority, however as
cars became more advanced so did the safety features. Today keeping the costumers safe and protected
is a central part of the manufacturing process in the automotive industry, since it is vital to build a
brand that represents quality and safety. This signifies what Volvo stands for, as they have been actively
working for safer automotive transportation since at least 1959 when Volvo engineer Nils Bolin invented
the three-point seat belt and Volvo Cars waived the patent rights, allowing everyone to benefit from the
invention [1].

When it comes to the automotive industry, the safety features implemented can be divided into two
groups: passive and active safety. Passive safety features are those that help keep the driver safe by
reacting to the collision in the event of an incident. An example of this can be the three-point seat
belt or collision activated airbags, which both help keep the driver and passengers safe in the event of
a collision. Meanwhile, active safety features are those that try to avoid any collisions occurring in the
first place [2]. These active safety features usually fall under two different categories: Advanced Driving
Assistance Systems (ADAS) and Automated Driving Systems (AD or ADS). The ADAS includes features
which assist the driver with smart functionalities such as collision avoidance, lane keeping aid, blind spot
detection, and adaptive cruise control, but the driver remains the main controller of the vehicle. While
the AD is fully automated driving with no, or almost no, interaction from the driver. The software for
these ADAS and AD features usually use sensors such as cameras and LIDARs as inputs [3][4].

Volvo’s safety vision from year 2007 was to strive for zero serious injuries or deaths in Volvo manufactured
vehicles. This mainly came down to passive safety features, which helped keep the driver safe in the
event of a collision. However, today a new safety vision has been implemented, where the goal is to have
zero cars produced by Volvo in any accidents altogether [5]. This is where active safety features come in
handy, and development in these areas is crucial to reach the vision of zero collisions for Volvo cars.

Since AD and ADAS introduce highly complex and specific software that will eventually be used for
vehicles in traffic, extensive testing is needed to ensure that the sensors and software work together in a
reliable way. This is where testing becomes a vital part of the development of new cars with computer-in-
the-car architecture. Among the existing testing techniques, hardware-in-the-loop (HIL) testing allows
the user to verify sensors and validate components and systems in the early stages of development. With
sensor simulation techniques, validation of autonomous driving throughout all stages of development
becomes a possibility.

1.2 Overview of the Hardware-in-the-Loop Testing Environment
HIL is a testing environment that is used to verify and validate components and systems in the early
stages of development. By doing so, real electrical control units (ECUs) and vehicle computing units
(VCUs) can be tested in a controlled and repeatable way. This can be achieved by stimulating the ECUs
with either real recorded data or synthetic data. One example of this can be image injection, where
images are injected into the ECU with either recorded camera data as real data or simulated image data
as synthetic data. In Figure 1.1 an example setup is seen that allows both open-loop HIL simulations
with raw data input from a front camera, as well as closed-loop HIL simulations with synthetic data from
the Sensor Simulation PC. Note that the toggle switch connected to the ECU is used to switch between
the open-loop and the closed-loop HIL simulations. In this thesis the front looking camera, including
imager and lens, is instead replaced and simulated by the HIL environment. This is the general setup
of the HIL environment that the thesis will be based on. Though, most of the thesis will focus on the
Interface Unit and how to bridge the gap between the Sensor Simulator PC and the VCU/ECU in a
suitable and potentially improved way.

1

Figure 1.1: HIL environment setup

To the left in Figure 1.1 is the Real-Time Simulation Platform. This is the simulation platform/software
that generates the real-time 3D environment that is used during HIL testing. The software used in
this case is called Aurelion. Through Aurelion, the 3D environment needed for image injection can be
simulated from the exact perspective that the sensors would perceive the environment. This means, for
example, that a certain camera can be simulated from its specific perspective, effectively seeing what it
sees. An example of this is shown in Figure 1.2, where the perspective of a front looking camera in a
car is simulated. This allows the testing environment to verify and validate specific sensors in the most
realistic way.

Figure 1.2: Camera perspective from Aurelion simulated 3D environment

However, this requires a substantial amount of graphical computational power. Hence, the platform runs
on a Sensor Simulation PC, connected via Ethernet, that has multiple graphic cards that can handle the
computationally heavy operations. The Sensor Simulation PC outputs the simulated images into Dis-
playPort format, which go directly to the Interface Unit (IU) as an input. In turn, the IU should output
the image data in GMLS2 format via fiber-optic cable. This is then directly inserted into the VCU’s
image processing stack. The VCU processes the image information and feeds back commands/actions to
the Real-Time Simulation Platform that the VCU wants to perform on the simulated vehicle. This HIL
setup is thereby a closed-loop system. Note that the ECU in Figure 1.1 is a VCU in this thesis. Though,
the same setup can be used with an ECU.

1.3 Scope of the Project
The goal of the thesis is to evaluate and implement the injection of the simulated (raw) image data
directly into the ECU, by research and implementation in several areas as mentioned below:

1. Since the optical path generated from the camera, consisting of a lens and the imager, is removed;
an emulation of these components is necessary in the visualization.

2

2. The I2C data needs to be embedded

3. Timing and embedding of data that does not contain the actual image information need to be
located and can thus be adapted and parameterized depending on the camera used.

Whether an FPGA or a Microcontroller is best suited for this objective and how they should be pro-
grammed to achieve this is the main research scope in this thesis. Emulation or Complete Emulation
of 1) and 2) can be done partially on the GPU and partially on Microcontroller/FPGA based Interface
Unit, leading to the second research area. For 3), it is evaluated to be best embedded on the Interface
Unit, but that is another research scope in this project.

4. The connection between Sensor Simulation PC and the Interface Unit is facilitated via the Display
Port output or any other viable interface. It is necessary to enable low-latency and efficient trans-
mission of image data including reliability on the image quality with precise timing. This high
precision timing enables limited data buffering resulting in minimizing the lag caused by signal
adjustment. Selection of this interface is another research aspect.

5. Evaluation of this prototype system shall be carried out for raw camera data injection at an
approximate rate of 10 Gbit/sec and the possibility to support multiple channels of data streams.

The original scope of the thesis, presented above, proved to be significantly broader and more complicated
than anticipated as the work progressed. Due to this, the tasks and goals of the thesis as a whole had
to be reconsidered and reduced in complexity, so that they could actually be carried out and achieved.

The focus of the whole thesis project will primarily be on how to implement the IU so that it is easily
customizable while retaining sufficient performance. Today, there are some available solution for the IU,
but the software is not publically available. So, as soon as something changes on either side of the IU
(input/output), changes have to be made inside the IU that can not currently be done by Volvo. This
causes long delays. The IU is also programmed with a bitstream using an SD card. This bitstream can
not be reverse engineered, so it is impossible to know what code is being loaded onto the IU. Hence, the
problem of how to program the IU has to be solved from the ground up.

The main goal stayed centered around the Interface Unit, but rather than implementing areas such as
I2C data, timing, embedding of data, automation, etc., the practical focus shifted more towards achieving
a simple proof of concept. Partly, because some of these areas proved way too complicated, but also
because none of them were really relevant until a basic solution had been found. To research and develop
a simple solution for the IU, or parts of the IU, that can function in a simple environment became the
new focus. Solely to prove that the IU can be edited, configured, fully controlled and eventually produced
in-house was the new overarching goal for the thesis.

This specific thesis project and report will mainly focus on how to program the output stage of the IU. In
particular, most of the work will be focused on how to convert, preferably RAW12, image data received
in AXI4 format into MIPI CSI2 format. A more detailed block diagram of the system that the thesis
focuses on is shown in Figure 1.3. The dash-line arrow for the GMSL2 connection represents how the
camera would usually be connected to the VCU. However, the camera is replaced by the Simulator and
the IU that together produce the input for the VCU (i.e image injection).

3

Figure 1.3: Block diagram of the image injection setup that details the important parts of the thesis

1.4 Division of the Thesis
The whole thesis project was concerned with the IU. It was conducted in cooperation by three students,
the author of this thesis, Justus Hoffmann and Nidhi Chakrabhavi Basavaraju, and was therefore is
divided into three separate parts. Referring to Figure 1.1, Justus’ part mainly focuses on the input
stage, Nidhi’s part mainly focuses on the image processing stage, and my part mainly focuses on the
output stage. Justus’ report [6] and Nidhi’s report [7] can both be found in the Reference section, since
each of their reports will be referenced throughout this report when needed. Though, all of the work
and theory presented from this point forward, was solely carried out by me.

4

2 Technical Background and Theory

2.1 Vehicle Communciation Architecture
Most, if not all, cars and vehicles that are currently being produced have a built in computer that handles
most software logic in a car. This computer is a VCU. The VCU either directly controls features in a
car that require computing logic or handles communication with other parts of the car that handles the
computing logic, i.e the VCU can branch out to other computing units that do the computing more
"locally". These units are usually called Vehicle Interface Units (VIUs). The VCU and VIUs are usually
called the Core System. The VIUs are in turn, connected to multiple different ECUs. The ECUs are
tailored to measure and control very specific part of the vehicle. For example one can monitor and/or
control the engine, while another one can monitor and/or control braking. The ECUs are connected
to what is called the Mechatronic Rim. Since the ECUs and VCU usually communicate via different
network protocols/interfaces, the VIUs can be seen as a translator that handles the conversion. Usually
the Mechantronic Rim uses Controller Area Network (CAN) or Local Interconnect Network (LIN) as
communication networks and the Core System use Ethernet. However, when ECUs are directly connected
to the VCU they need to operate on Ethernet to accommodate the VCU [8].

CAN and LIN are communication protocols/networks that are frequently used for electronic communi-
cation in vehicles. LIN can usually be found as the main communication protocols in older vehicles and
larger trucks. Though, in modern cars it also provides a more cost effective and easier to use alternative,
compared to the more reliable protocol CAN. This can be usefull in certain parts of the car that does
not require high fault tolerance or precise timing. Rain sensors, window adjustments, and wipers are
some example areas in the car that can use LIN [9].

2.2 FPGA, Microncontroller, and CPLD
Field Programmable Gate Arrays (FPGAs) and microcontrollers are two types of programmable inte-
grated circuits (ICs) used in a wide range of applications. Both have their own unique strengths and
weaknesses, and the choice between them depends on the specific requirements of the application. FP-
GAs are reconfigurable digital circuits that can be programmed to perform a wide range of tasks. They
are created using a matrix of programmable logic blocks that can be connected together to form complex
digital circuits. FPGAs are highly configurable and offer a high degree of flexibility, making them ideal
for applications that require a high level of customization or fast prototyping. FPGAs also offer high
speed and low latency, which makes them ideal for applications that require real-time processing, such
as image and signal processing. On the other hand, microcontrollers are small, single-chip computers
that are designed to perform specific tasks. They contain a CPU, memory, and input/output peripherals
such as timers, UARTs and ADCs. Microcontrollers are ideal for applications that require low power
consumption, low cost and low complexity. They are used in a wide range of embedded systems, such
as consumer electronics, industrial control systems, and automotive applications [10].

Compared to an FPGA whose purpose is to be a configurable gate array with large logic resources that
can be programmed by the user after manufacturing, a Complex Programming Logic Device (CPLD) is
an IC that essentially assists implementation of digital systems or handles less computationally heavy
operations. It can be seen as similar to an FPGA but with fewer logic resources and simpler intercon-
nections. This makes the CPLD a more cost effective alternative to the FPGA. It is common for CPLDs
used for digital circuit implementation (mostly in systems together with an FPGA) to have firmware
pre-programmed, detailing the interconnections between the CPLD’s pins. Though, the firmware can be
re-programmed and so can the logic array within the CPLD [11][12][13].

2.3 MPSoC
A System on a Chip (SoC) refers to system, including a multitude of different peripheries and integrated
circuits, built onto one single microchip. This differs from a traditional motherboard where the GPU,
CPU, memories, peripherals, etc. all are separate components [14]. A Multiprocessor System on a
Chip (MPSoC) is a System on a Chip with multiple microprocessors instead of one, which allow for
multi-processing capabilities [15].

5

2.4 AMD Vivado Design Suite
Most synthesis tools on the market aimed at programming FPGAs expects the design provided, as
input, to be on Register Transfer Level (RTL) form [16]. Vivado is a software/IDE used for RTL
code development, anaysis, synthesis, and implementation. It operates on an RTL-to-Bitstream design
flow, which means that RTL designs can be developed, synthesised, implemented, and generated into a
bitstream. This bitstream can later be used to program the FPGA [17].

Since Vivado is a software that aims at programming of FPGAs and MPSoCs, the main languages
available are VHDL and Verilog. While these can be used to write custom code, most of the designs
developed in Vivado are based on Intelectual Property (IP) cores.

2.5 IP Cores and Subsystems
An IP core can be seen as a pre-programmed block of code that, thanks to Vivado’s IP integrator, can
easily be configured either through an interactive GUI or programmatically through TCL programming
interface. By introducing these pre-programmed blocks of code that are proven to work with Xilinx
devices and are easily adjustable for the user, it increases the development simplicity and re-usability
while decreasing development time. Vivado also offers numerous IP Subsystems that provide a single
solution with multiple integrated IP cores, interconnected using AMBA AXI4 interconnect protocol.
These IP cores and subsystems can, in turn, easily be connected together in a Vivado block diagram,
that is used to build a full RTL design [17][18].

2.6 Communication Protocols and Connections
2.6.1 AMBA AXI4

AMBA Advanced eXtensible Interface 4 (AXI4) is an interface specification developed by ARM. The
AMD Vivado Design Suite extends development capabilities with the AXI4 interface, providing users of
Xilinx devices a standardized and easy to use protocol for IP core integration [19]. There are three main
AXI4 interfaces that each have their own area of use. The first one is AXI4, or Full AXI4. This interface
is more commonly used for high-performance memory mapped requirements. The second interface is
the AXI4-Lite. This protocol aims more towards simpler memory mapped communication requiring low-
throughput, and can usually be found handling control and status registers. The final interface is the
AXI4-Stream, that targets high speed streaming data. The AXI4 protocol as a whole, is a master/slave-
based architecture where the master initiates communication and the slave responds. Additionally, the
AXI4 is a channel-based interface. This means that the data transferred between the master and the
slave uses a set of five independent channels for reading and writing (refer to Figure 2.1) [20].

Figure 2.1: AXI interface with five read and write channels [20]

Data being transmitted on one of the channels is called a transfer. A transfer only occurs upon the rising

6

edge of the clock when both signals READY and VALID are high. As can be observed in Figure 2.2 a
transfer occurs at time instance T3 [20]. Note that ACLK here is the AXI reference clock.

Figure 2.2: AXI4 information transfer with time on the x-axis [20]

The AXI4 Read/Write transaction works as follows. Firstly, for a simplified depiction of the read
transaction, observing Figure 2.3 and 2.1, the master sends information regarding the address and control
signals via the Address Read Channel. Then from the slave the data for the address is transmitted to
the master via the Read Data Channel. This read transaction requires multiple transfers [20].

Figure 2.3: AXI4 Read Transaction [20]

Secondly, for a simplified depiction of the write transaction, observing Figure 2.4 and 2.1, the master
initially sends information regarding address and control signals via the Address Write Channel. The
data correlated to this address is then transmitted from the master to the slave via the Write Data
Channel. Lastly, the response from the slave to the master is sent via the Write Response Channel
detailing whether the transfer is successful or not. This write transaction also requires multiple transfers
[20].

7

Figure 2.4: AXI4 Write Transaction [20]

2.6.2 Serial Communication and SerDes

In serial communication, the clock and the data are combined into one signal instead of sending them in
separate signals where the clock edge samples the data line, as is the case in parallel busses. This is done
by encoding schemes. The encoder (transmitter) and the decoder (receiver) use the same scheme, and
the receiver extracts the clock from the data. Hence, the clock is still needed on receiver side to sample
the data line, but the receiver can get its own clock. Most common encoding is the 8B/10B, where 8bit
of data is converted into 10 bits of data effectively losing 25% bandwidth, but it does guarantee DC
balance of the line and transitions for Clock/Data Recovery (CDR). Where DC balance is the avoidance
of DC bias, which can occur for example if multiple logical 1’s are sent in a row causing a charge/bias
to build up in the line [21]. For transmitting and receiving the serial communication there needs to be a
serializer (encoder) on the transmitting side and a deserializer (decoder) on the receiving side. In serial
communication it is important to match the Serializer and the Deserializer so that they operate on the
matching encoding/decoding schemes.

2.6.3 MIPI CSI-2

CSI-2 or Camera Serial Interface-2 is an image sensor interface and is commonly used for cameras in
phones, tablets and automotive applications. CSI-2 essentially provides a simple sensor interface that
allows for high bit rate streaming. The protocol is usually implemented with the physical layer MIPI
D-PHY, and the standardized CSI-2 cable has the following channels:

• 2 x GPIO for Camera Control (I2C)

• 1 x Clock lane

• 4 x Image data lanes (Scalable)

• 2 x Free GPIO (e.g "for external trigger signals or peripheral control")

• 1 x External power

Hence, there is a total of 10 lanes running along the CSI-2 cable. The data lanes of the CSI-2 are
scalable, which means that a choice can be made to use any number of data lanes. Since each data lane
can transfer data up to 1.5Gbps and there are a total of 4 data lanes, the bandwidth can be adjusted
between 0.2Gbps to 6Gbps [22]. An example of the 4 lane data stream for CSI-2 is shown in Figure 2.5.

8

Figure 2.5: CSI-2 4-lane data stream [23]

Cameras for AD and ADAS frequently use MIPI CSI-2 as the protocol for communicating the image
data from the imager of the camera to other components of the system. Since this is the case, the image
processing stack of the VCU only accepts image data in strictly the CSI-2 format. Thus, to inject images
into such a VCU the data needs to be on the CSI-2 format.

2.6.4 GMSL2

Gigabit Multimedia Serial Link (GMSL) are high speed communication ICs that use serializing and
deserializing (SerDes) technology to provide multistream support over a single cable. SerDes effectively
reduces the number of cables/IO pins needed, reduces the risk for clock skew during high clock speeds,
generally provides much faster bit rates, and allows high speed data transmission over longer distances
compared to wide parallel busses. The GMSL is tailored to handle multiple data streams, which makes it
suitable for splitting image data streams. Also, it only requires one link to convert other protocols such
as DisplayPort. The difference between GMSL and GMSL2 is that GMSL2 supports 4k video support
while GMSL only supports 1080p. It also supports bidirectional diagnostic, which can be useful during
testing. GMSL2 is a suitable solution for Automotive Infotainment and ADAS since it achieves the
requirements for data integrity, complex interconnects and high bandwidth [24].

2.7 Image Theory
2.7.1 Camera Basics

Images from a camera can be captured in multiple different way. However, digital cameras are usually
based on photosensetive CMOS layer that is divided into a grid. The image that the camera captures
depend on the so called Color Filter Array (CFA) in the camera. This is an arrangement of color filters
placed over the sensor grid of the camera to capture the RGB color information. Since most cameras
do not have the capability of capturing more than one color per square/position in the grid, a color
filter array has to be chosen for that particular camera. Each of these position in the grid essentially
represents a pixel of the image [25]. A clear representation of this is ullustrated in Figure 2.6.

9

Figure 2.6: Graphical representation of a CFA [26]

2.7.2 Bayer Filter

One of the more common CFAs is the Bayer Filter. The Bayer Filter color array is structured in a way
that half of the pixels represent a green value, one fourth of the pixels represent a red value, and one
fourth of the pixels represent a blue value. This is usually called RGGB. The pattern is structured in
such a way that each line either alternates between green and red or green and blue. For example, the
first pixel in the first row starts with a blue pixel, then the next pixel in the same row is a green pixel,
then the next is a blue pixel, etc, until the end of the line. Then in the second line, the first pixel is green
and the rest of the pixels in this line alternate between red and green instead. Essentially producing a
similar color format as the one in Figure 2.7. The starting pixel is not of importance, but rather the
pattern that the pixel color is repeated with, each line alternating between either green and blue or green
and red [25][27].

Figure 2.7: Example of a Bayer Pattern CFA [26]

2.7.3 RAW

Unprocessed image data directly captured from the camera, such as image data in RGGB format, is
commonly called a RAW image. Depending on the amount of bits used to represent each pixel a number
is included in the name. Thus, RAW8 has 8-bit pixel representation, RAW10 has 10-bit pixels, RAW12
has 12-bit pixels, etc [28].

2.7.4 RGB

When using a CFA such as the Bayer Filter a lot of information can be lost, since each pixel only
represents one color. This is where de-mosaicing is useful. De-mosaicing is the process of essentially
interpolating the pixel values around a pixel that lack the color information. For example, a green pixel
in a RGGB pattern have neighboring blue and red pixels. An algorithm can then be implemented that
interpolates the values of the sorrounding red and blue values so that the green pixel gets an estimated
value of what the red an blue values would be at that specific place in the picture. This is essentially
how a common RGB image is produced [25]. RGB usually has a 8-bit representation of each of the colors
(red, green, blue) for each of the pixels in the image. This is often referred to as RGB888 and is typically
the image data format that is transmitted over for example DisplayPort or HDMI.

10

3 Method

3.1 Hardware
Usually when it comes to programming hardware, a relatively easily programmed computing unit is
needed. The two more common types of programmable computing units are Microcontrollers and FPGAs.
Projects requiring high computational complexity, parallel computing and/or greater customizability
usually benefits from using an FPGA. This is because an FPGA can run processes in parallel, enabling
higher data rates and computational capacity. FPGAs also have higher customizability than a standard
Microcontroller, since changes can be made inside the actual hardware [10]. Since HIL setups often
requires high bit rates and complex operations with specific requirements, an FPGA-based board is
more suitable for this project. Though, a Microcontroller can probably still be used to accomplish image
injection, though preferably not in high demand environments.

3.1.1 Zynq™ UltraScale+ MPSoC SOM

The specific MPSoC used in this project is the Zynq™ Ultrascale+™ MPSoC [29], developed by AMD
Xilinx. This MPSoC is based on the Zynq™ Ultrascale+™ FPGA. The MPSoC is equipped with a Pro-
cessing System (PS) bridged with a Programmable Logic (PL), allowing the user to run either sequential
logic on the PS or parallel logic on the PL. So, the PS can be programmed with C/C++ while the
PL can be programmed with VHDL/Verilog. A more detailed view of the Zynq UltraScale+ MPSoC’s
composition is presented in Figure 3.1. A picture of the Zynq UltraScale+ MPSoC can be seen in Figure
3.2.

Figure 3.1: Zynq UltraScale+ MPSoC composition [29]

Figure 3.2: Zynq UltraScale+ MPSoC [30]

The MPSoCs are usually not sold piece-wise, but rather implemented onto a board/module that is de-
signed for a specific application area. This is a so called System-on-Module (SOM) [15]. The specific

11

SOM used in this degree project is the TEB0911 UltraRack+ MPSoC Board [31], produced and manu-
factured by Trenz Electronic. This specific board was chosen because it was readily available and proven
to be a suitable IU solution. The TEB0911 module can be seen in Figure 3.3. There is a multitude
of important information regarding the TEB0911 that will be conveyed in other parts of the Method,
where the information is more relevant.

Figure 3.3: TEB0911 UltraRack+ MPSoC SOM [31]

For brevity, the "Zynq UltraScale+ MPSoC" will at times be refered to as "Ultrascale+ MPSoC" or
just "MPSoC". The Zynq UltraScale+ MPSoC SOM "TEB0911 UltraRack+ MPSoC" will be refered
to as "TEB0911". The "Zynq UltraScale+ MPSoC FPGA" will at times be refered to as "UltraScale+
FPGA", "MPSoC FPGA", or "TEB0911 FPGA".

3.1.2 FMC connectors

The TEB0911 module is equipped with six FPGA Mezzanine Card (FMC) connectors, which can be
seen in Figure 3.3. The FMC connector is a standardized FPGA Input/Output (I/O) connection socket
that makes I/O connections to FPGA SoC boards easier [32]. A more specific representation of the main
components of the TEB0911 module is presented in Figure 3.4. The FMC connectors range from A-F,
and each have a different set of capabilities. The FMC modules are then connected to one of these FMC
sockets depending on the specific requirements of the FMC module. A list can be seen below, detailing
which FMC corresponds to which number in Figure 3.4 [33].

4. FMC B

6. FMC C

8. FMC D

10. FMC E

27. FMC A

29. FMC F

12

Figure 3.4: TEB0911 main components [33]

FMC connectors can be divided into two groups; High-pin count (HPC) and Low-pin count (LPC). The
HPC and LPC connectors have the same form factor, but the HPC has more usable pins than the LPC.
An HPC FMC connector has 10 rows (A, B, C, D, E, F, G, H, J, K) with 40 pins on each row (A1-A40,
B1-B40, etc.), while a LPC FMC connector only has 4 rows (C, D, G, H) with 40 pins on each row [34].
The socket/connector can be seen in Figure 3.5.

Figure 3.5: FMC HPC socket [34]

The pinouts for the HPC FMC can be observed in Figure 3.6. Each pin is labeled and colored depending
on its protocol and what signals it is capable of transmitting/receiving. The pinouts for LPC FMC can
be seen in Figure 3.7, as a comparison. A summary of the total number of pin types for the HPC FMC
can be seen in Figure 3.8. Pin descriptions for some of the more important pins is presented in Figure
3.9. Note the LA_XX pins, which will be seen in later sections of the report due to its use in testing of
CSI2 data and clock transmitting. It is important to know each of the pin on the FMC connector to be
able to map the signals to the appropriate pins on the FPGA.

13

Figure 3.6: FMC HPC pinout [34]

Figure 3.7: FMC LPC pinout [34]

14

Figure 3.8: HPC connector pin summary [34]

Figure 3.9: FMC pinout descriptions [34]

3.1.3 Input Stage: DP FMC card

One of the main parts of the degree project is to investigate how to handle the input stage. This part
is the main topic of Justus’ thesis report [6]. Since the sensor simulation PC outputs image data via
DisplayPort, it advantageous to adapt the IU to handle the DisplayPort protocol as an input. To achieve
proper input speeds and to allow multiple DisplayPort connections to the IU, an FMC module needs to be
connected to the TEB0911 module. The main responability of this module is to convert the DisplayPort
format to an AXI data stream that can be transferred to the UltraScale+ MPSoC FPGA.

The DP FMC module used in this project is the TEF0007 [35], which is developed and sold by Trenz
Electronics. The card offers DisplayPort 1.2 support, with one input and one output port. It is based
on a Xilinx Kintex-7 FPGA [36], so the module can be programmed and perform the needed operations
locally, instead of on the MPSoC FPGA. The card can be seen in Figure 3.10.

15

Figure 3.10: TEF0007 DisplayPort FMC module [37]

3.1.4 Output Stage: GMSL2 FMC card

In the same way as the input stage, how to handle the output stage needs to be investigated. This part
of the degree project was the main topic of this specific thesis project and report.

As mentioned in Section 1.2 communication between the IU and the VCU is transmitted via fiber-optic
cable in GMSL2 format. Since GMLS2 is a serial communication protocol, the image data transmitted
from the IU needs to be serialized. This is accomplished with the assistance of serializers and deserializers.
As mentioned in the Section 2.6.2, serializer/deserializer (SerDes) pairs needs to match in order to
communicate properly. The deserializer on the receiving side of the GMLS2 cable, inside the VCU, is a
MAX96712. By default the serializer on the transmitting side, inside the IU, needs to be a MAX9295A to
match the deserializer. Refer to Figure 1.3 for a clear illustration of this SerDes pair. Since the serializers
on the transmitting side take CSI2 as input, the main responsibility of this module is to convert the AXI4
data stream from the UltraScale+ MPSoC FPGA to CSI2 format that can be accepted by the serializers
and converted into GMSL2 output.

The specific FMC module that most of the work is based on is the TEF0010 [38], which is developed and
sold by Trenz Electronics. The card offers four GMSL2 ouputs, each with its own dedicated serializer.
It is based on a Xilinx Artix-7 FPGA [39], so the module can be programmed and perform the needed
operations locally, instead of on the UltraScale+ MPSoC FPGA. The card can be seen in Figure 3.11.

Figure 3.11: TEF0010 GMSL2 FMC module [40]

3.1.5 Bridging Input and Output

The bridging of the input and output stage on the hardware level is accomplished by connecting each of
the FMC modules to the FMC connectors/sockets on the UltraScale+ MPSoC SOM TEB0911. Which
connector to use, out of the six available on the TEB0911, depends on the specific requirements of the
FMC module. The TEF0007 was mounted on the FMC A connector and the TEF0010 was mounted on
the FMC E connector. Since the mounting of the FMC modules onto the TEB0911 were handled by a

16

different company working closely with the provider of the cards, no definite motivation for this decision
can be given.

However, bridging the input and output stages on a software level is more difficult. Since the sensor
simulation PC provides image data in RGB color format via DisplayPort and the VCU only accepts
image data in the RAW12 format, another major part of the degree project is handling the conversion
between the two image formats. This part will be the main topic of Nidhi’s thesis report [7].

The conversion between RAW-RGB is a frequent occurrence in many technologies. One example of this
is digital cameras, which usually take the picture in RAW format and convert it into RGB to display
the picture on the built in display [41]. However, the conversion from RGB-RAW is significantly more
difficult. The algorithm that handles this image processing/conversion will be running on the UltraScale+
MPSoC FPGA.

3.1.6 SD card vs JTAG

There are usually multiple ways to configure programmable computational units such as Microcontrollers
and FPGAs. One of the more popular alternatives is JTAG. This approach usually requires connectivity
via some sort of cable, e.g USB-cable, to a PC. However, there are other options that can circumvent
the need for cable connectivity.

The TEB0911 provides essentially two different option for programming of the MPSoC and FPGAs in
the system: SD card and JTAG. The SD card can be used when automation is of importance since no
external PC needs to be connected to the module. Instead, a bitstream is loaded onto the SD card that
can be fetched directly by the MPSoC/FPGAs on start-up, if the SD card is plugged in to its slot in
the TEB0911. However, this limits the possibility for live diagnostics and testing. This is where the
JTAG connectivity is useful. With JTAG, the MPSoC and FPGAs can be programmed directly from
an external PC with USB connectivity. Additionally, information can simultaneously be read from the
module with serial monitoring, which provides an avenue for debugging and hardware testing. This
makes programming via JTAG a much more suitable approach during development and testing.

Furthermore, the TEB0911 has two separate ports for JTAG connectivity; one for programming the
MPSoC (XMOD JTAG Header J24) and one for programming the FPGAs on the FMC modules con-
nected to the TEB0911 (XMOD JTAG Header J35). More specifically, the JTAG Header J35 programs
the CPLD on the TEB0911. The CPLD in turn handles the programming of the FPGAs on the FMC
modules connected to the TEB0911.

Whether the MPSoC on the TEB0911 and the FPGAs on the FMC modules are programmed via JTAG
or SD card is decided by the configuration of the physical 4-bit Dual in-line Package (DIP) switch S3
on the TEB0911 board. This switch also specifies whether the FPGAs of the FMC modules should be
connected to the "JTAG-chain" of the CPLD, so that they can be programmed through the CPLD and
JTAG Header J35. Each bit in the 4-bit S3 switch has its own physical switch, resulting in S3-1, S3-2,
S3-3, and S3-4 being the names of the four individually configurable switches [33]. Refer to Figure 3.12
for an illustration of the S3 switch in the "layout schematic" of the TEB0911. Note that the top of the
figure is one of the sides of the TEB0911 board, and S2 for example is an external connector. Also note
that the bit-switch S3-1 is to the left and bit-switch S3-4 is to the right, on the S3 switch. For a better
illustration of where the switch is situated on the TEB0911, refer to Figure 3.4 and position 26.

17

Figure 3.12: Layout schematic of the TEB0911 specifically showing the 4-bit S3 switch [42]

The exact configuration used for the switches in thisproject to be able to program both the TEB0911
FPGA and the FPGAs on the FMC modules via JTAG is the following:

S3-1: ’0’

S3-2: ’0’

S3-3: ’1’

S3-4: ’1’

Comparing Figure 3.12 and the switch configuration above, note that setting the switch to ’0’ is down
in the figure (towards the center of the TEB0911) and a ’1’ is up in the figure (away from the center of
the TEB0911). I.e a ’1’ is toward the "ON" writing on the switch.

3.2 Software
The main problem of all three parts of the degree project will be how to program the software that will
run on the hardware. This section will give an overview of the software and how the software is used to
achieve the final results of the thesis.

3.2.1 Vivado

Since most of the hardware used in the project is produced by Xilinx, a software developed by Xilinx
called Vivado was used to program the MPSoC and the FPGAs. More specifically the 2019.2 [43]
version of Vivado. This particular version was chosen because it was the latest version of Vivado that
undoubtedly supported the TEB0911, since there were reference designs available for for the TEB0911 in
the 2019.2 version [44]. An attempt was made to use the 2022.2 version, but complications arose where

18

it was not possible to include the Zynq UltraScale+ MPSoC PS IP core and synthesize it in a block
design.

3.2.2 MPSoC

When creating a new project in Vivado, it is important to choose the exact hardware that will later be
used to upload the code onto. This is important because timings, pins, clocks, etc, has to be exactly
the same on the hardware as the software. The TEB0911 used in this project has the exact project part
name: "ZYNQ-UltraScale+ TEB0911-09EG-1E. SPRT PCB: REV03, REV02. (xczu9eg-ffvb1156-1-e)".
This is the specific board that has to be chosen at the start of a new Vivado project. The part of the
name in parentheses can be viewed as the serial number of that particular type of board.

As mentioned in Section 3.1.1 the UltraScale+ MPSoC is equipped with a Programmable Logic (PL)
and a Processor System (PS). Essentially, the PL is the FPGA and the PS is the processor, of the
MPSoC. Depending on the operation that should be performed, either or both of these can programmed.
When operations with higher computational complexity and/or when parallel computing is needed, it is
beneficial to program the PL/FPGA. However, the PS can be more beneficial to program if the operation
is simpler, less computationally demanding, and/or if greater "flexability" in the coding is needed. This
is because the PS runs on C/C++ code that can be more easily changed than the coding for the PL
which runs on FPGA coding languages such as VHDL.

3.2.3 Vitis IDE

Programming the PS was primarily done in the software called Vitis. This is a separate IDE from
Vivado, but it can be seen as an extension of Vivado. Vitis provides and easy way of writing and
uploading C/C++ code to the PS. The hardware design made in Vivado is packaged and exported to
Vitis, so Vitis can also program the FPGA/PL in addition to the PS. This enables designs where both
the PS and PL need to operate simultaneously. It is important to have the same Vitis version as the
Vivado, so in this project Vitis 2019.2 was used.

3.2.4 GMSL2 FMC card

Choosing the correct model in Vivado is vital for the GMSL2 FMC card (TEF0010) as well. However,
the FMC cards do not exist as full boards to choose in Vivado, so the correct FPGA that is on the
card has to be chosen instead. As aforementioned, the TEF0010 has an Artix-7 FPGA, and its exact
model name is: "XC7A100TFGG484(ABX1921)". Note that the parentheses are not actually a part of
the name here, but rather added because only the part not within parentheses gives results in Vivado.
Hence, "XC7A100TFGG484" can be used to search for this specific FPGA in the "parts" section when
creating a new project in Vivado. Though, there are four different options and which one to choose
depends on the speed grade of the FPGA. This particular FPGA was available with speed grades -3, -2,
-1, -1LI, and -2L [45]. Though, in Vivado there were only -3, -2, -2L and -1 as options. The Artix-7 on
this particular card (TEF0010) has a speed grade of -1 [40]. Hence, "XC7A100TFGG484-1" is the part
number that correlates with the Artix 7 FPGA on the TEF0010.

3.3 Vivado: Programming an MPSoC
The first steps of programming an FPGA/MPSoC starts in Vivado. As mentioned previously, the correct
board or part has to be chosen when creating a new project in Vivado, so that it matches the hardware
being used. When the correct hardware has been chosen and a project in Vivado has been created, it
is time to develop the design/programming. Note that a majority of the RTL designs in this project is
based on IP cores and subsystems.

3.3.1 HDL wrapper

When a new project is created, the RTL needs to be designed. When the RTL design is finished an
HDL wrapper needs to be created. The HDL wrapper is generated based on the RTL design, and consist
of VHDL or Verilog code that describes the RTL design in its entirety. The language that the HDL

19

wrapper is generated in depends on the target language chosen in the project settings. This project
will exclusively use VHDL as the programming language, since all three thesis members have previous
knowledge and experience in this language.

3.3.2 Synthesis, Implementation, and Constraints

An HDL wrapper is mainly needed so that the design can be synthesised and implemented. Synthesis
effectively transforms the HDL code "...into a synthesized netlist of library cells..." [46]. This synthesized
netlist can in turn be used for Implementation in Vivado. An Implementation is described by Xilinx
as a "...placement and routing tool for AMD devices, generating bitstreams and device images..." [47].
When the Implementation is finished an Implemented Design is generated where the full structure of
the targeted FPGA can be seen, with all its pins and connections specified to these pins. How the pins
of the FPGA are connected can either be specified before Synthesis and Implementation in a so called
Contraints File (XDC), or directly in the Implemented Design. This is often called port mapping, which
effectively describes how the inputs and outputs of the RTL design (software) is connected to the pins
of the FPGA (hardware). The constraints file is written in its own language called XDC, hence the
constraints file can also be referred to as an XDC-file [48]. Changing the port mapping directly in the
Implemented Design instead, allows for a more interactive way of port mapping where all the pins and
their information is readily available. Refer to Section 3.7.3 and Figure 3.28 for a concrete example
of port mapping in the Implemented Design. There is also a tool in the Implemented Design called
Constraints Wizard, that can help the user define constraints in a more user-friendly manner, compared
to defining and writing them directly into the XDC/Constraints file.

3.3.3 Bitstream and Hardware Specification

When the design is synthesized and implemented, a bitstream can be generated that describes the entire
system with all connections, timings, voltage levels, etc. The bitstream is essentially the file that is used
to upload the code onto the FPGA. Hence, the design/programming process is finished here if only the
FPGA/PL of the MPSoC is to be programmed. However, if there is a need to program the PS as well, the
project needs to be exported to the Vitis IDE. This is done by exporting Hardware Specifications from
Vivado. During the export, there is an option to include the bitstream in the Hardware Specification.
This is important to remember so that the code can be uploaded to the FPGA within the Vitis IDE.

3.3.4 Vitis IDE and Hardware Manager

In the Vitis IDE an Application Project is made, based on the Hardware Specification file with the
included bitstream. In this Application Project multiple C/C++ code files can be added, written or
edited depending on what the user want the PS to execute. When all relevant code is included, the next
step is to build project. Build project is an executable action in Vitis which "...builds the board
support package...", "...compiles the application software using platform-specific gcc/g++ compiler...",
and links the application software to the board support package [49, p. 45]. This can be seen as a regular
C compiler, but where the software and the hardware is compiled compiled together. There are two main
options for the build project; Debug and Release. This project exclusively uses Debug, as it is more
beneficial during development and testing. When the build is finished the project can be uploaded to
the hardware. There are multiple options for this, but the main way used in this project is right-clicking
on the project in the file explorer and choosing the executable option Debug As → Launch on Hardware
(Single Application Debug). If no errors appear, the code is uploaded to both the PS and the PL
and the MPSoC is thereby fully programmed.

An alternative to uploading the code in Vitis is to use the Hardware Manager in Vivado. When only the
PL/FPGA needs to be programmed and not the PS, the bitstream can instead be uploaded directly via
the Hardware Manager to the FPGA. The first step in the Hardware Manager is to open a new target.
When connected to the FPGA via JTAG from the PC, the FPGA will show up as an available "Hardware
Target". Choosing the FPGA opens up several windows that give the user multiple options on how to
interact with the FPGA. Options such as directly upload code/bitstream directly to the FPGA, live
mointoring of certain signals in a waveform window, live configuration of certain signals, and more. For
details regarding monitoring and configuration of live signals on the FPGA, refer to sections 3.7.4 - 3.7.7.

20

3.4 CSI2 Tx Subsystem Specifics
The main purpose of this degree project is to investigate how to handle the input and output of the
FPGA on the GMSL2 FMC card so that the serializisers on the card get data a clocks on the CSI2
protocol format as inputs. To do so, code is needed that can convert the AXI4 stream of data, that
comes from the MPSoC, into CSI2. There are essentially two options here: write a VHDL file that
can convert AXI to CSI2 and that follows both protocols specifications and timings exactly, or take an
already developed subsystem by Xilinx that only needs to be configured to the specific requirements of
the project. The latter was chosen to save time and effort.

Effective from Vivado version 2020.1, the so called MIPI CSI Controller Subsystem is bundled with
Vivado. This means that all versions after 2020.1 had the license for the MIPI CSI Controller Sub-
system. This includes both a MIPI CSI2 Rx Subsystem and a MIPI CSI2 Tx Subsystem [50]. Here,
the Tx subsystem is what is needed, since the aim is to transmit (Tx) CSI2 signals, not receive (Rx).
However, due to the 2019.2 version being used, the license for the MIPI CSI2 Tx Subsystem had to be
requested via Xilinx and added to Vivado externally. Though, the license acquired is only for hardware
evaluation/testing and is only active for 120 days. Therefore, it can not be used for longer period of
times on the hardware but it works fine for this project. For brevity, this subsystem will often be refered
to as the "CSI2 Tx Subsystem" or the "Tx Subsystem". In Figure 3.13 the CSI2 Tx Subsystem can be
seen, as displayed in the block design of Vivado.

Figure 3.13: MIPI CSI-2 Tx Subsystem IP

An expanded version of the MIPI CSI2 Tx Subsystem can be observed in Figure 3.14. On the input
side (left) the interfaces of the AXI4-Lite (s_axi) and AXI4 (s_axis) protocols can be seen expanded.
The purpose of the protocols have already been explained in the Section 2, but the AXI4-Lite essentially
controls the initialization of the subsystem while the AXI4 handles the receiving of image data. There
are also two clocks as inputs: s_axis_aclk is the AXI reference clock which should be the same for all
parts of the design that are AXI-interconnected, and dphy_clk_200M is the 200 MHz clock used for the
Tx subsystem’s DPHY control. The DPHY clock pin should be connected to a dedicated 200 MHz clock
[51]. It is also important to note that the system clock used for most of the project was a 100 MHz clock.

On the output side (right) the interface for the CSI2 protocol can be seen with pin name mipi_phy_if.
This interface includes the differential pairs of the CSI2 data lanes and the clock lanes. Depending on
the IP configuration more data lanes can be added. If the CSI2 lanes are changed to e.g 4 instead of 1,
mipi_phy_if_data_n[0:0] would instead be a bus called mipi_phy_if_data_n[3:0] with 4 CSI2 lanes.
The "p" and "n" in the names for the data and clock lanes signifies whether the signal, for the differential
signal pair, is a non-inverted (positive) or inverted (negative) signal, respectively. The interrupt pin is
used for generating interrupt to indicate status information. Pins txbyteclkhs - mmcm_lock_out are
all used for connecting additional subsystem to the output stage of the Tx Subsystem [51]. Though, this
is not relevant for this project.

21

Figure 3.14: MIPI CSI-2 Tx Subsystem IP Expanded

Additionally, in Figure 3.15 an example is displayed of how a the configuration GUI for the IPs can look.
This specific window is for the CSI2 Tx Subsystem, and all the adjustable parameters are specific for
this IP. But most IPs have a similar window with different parameters that are easily adjusted.

Figure 3.15: MIPI CSI-2 Tx Subsystem IP Configuration GUI

22

3.5 CSI2 Tx Subsystem Example Design
Most IP cores and subsystems have what is called an example design. This is a Vivado block design made
by the developer of the IP, that will give the user an example of how to use and build a design around
the IP. This design can be generated in Vivado by adding an IP core/subsystem into a block design,
right-clicking on it, and choosing "Open IP Example Design...". This generates a new Vivado project
with the full example design and everything that comes with the design, e.g could have testbenches and
other files included.

The CSI2 Tx Subsystem IP has an associated example design that can be seen in Figure A.1.1 under
Appendix A.1.1. This design is constructed with multiple different IP cores and subsystems. Each
core/subsystem presented in the example design will be described in detail in sections 3.5.1 - 3.5.6 . All
figures shown of the IP’s in these sections are directly pulled from the full example design, as seen in
Figure A.1.1. This means that the configurations of the IP’s shown are adapted for the example design,
and do not necessarily look like this initially when added to a new block design.

Furthemore, it is important to note that the example design for the CSI2 Tx Subsystem is exclusively
designed and meant for simulations, and not for synthesis and implementation. However, the example
design and its simulations can be used as a foundation of how to use the IP and also as a verification/proof
that other, synthesizable designs, are behaving as expected.

The example design provided by Vivado have two different options. First option can generate a design
with a single CSI2 data lane, RGB888 data type, and single pixel mode. Second option can generate a
design with four CSI2 data lanes, YUV422 8-bit data type, and with quad pixel mode [51, p. 41]. The
example design aimed at RGB888 was chosen since it seemed like the more simple option, with only one
data lane and the frequently used RGB888 data format.

3.5.1 Clocking Wizard

The Clocking Wizard IP can be seen in Figure 3.16. The purpose of this IP is to provide an HDL source
code wrapper that converts an input clock (clk_in1) into multiple output clocks (clk_out1, clk_out2,
..., clk_out7) with user defined frequencies. In addition, it also provides a timing parameter summary
for the circuit using Xilinx timing tools [52]. This makes the clocking wizard a very suitable IP to use
in the first stages of most block designs, since it can provide seven different output clocks with easily
customizable frequencies based on one input clock. Note that the clocking wizard is connected directly
to the external ports reset_rtl_0 and clk_100MHz. These external ports are the global inputs of the
full RTL design. For synthesis and implementation these ports have to be port mapped/connected to a
physical pin on the FPGA. For simulations these can be controlled with either a testbench or directly in
the waveform window. More information regarding simulations can be found in Section 3.6.

Figure 3.16: Clocking Wizard IP

23

3.5.2 Processor System Reset

The Processor System Reset IP can be seen in Figure 3.17. This IP provides customizable resets for an
entire processor system, including peripherals, interconnects, and processor. It essentially allows users to
"...tailor their designs to suit their application by setting certain parameters to enable/disable features."
[53, p. 4]. Hence, this IP is also often included in the first stage of most block designs to centralize all
resets for the block design in one place. Making the resets easier to control and customize.

Figure 3.17: Processor System Reset IP

3.5.3 AXI Traffic Generator

The AXI Traffic Generator (ATG) IP can be seen in Figure 3.18. This IP provides the user a way
to generate traffic for AXI4, AXI4-Stream, and other AXI4 peripherals. It has multiple different con-
figurations that allow different AXI4 traffic generation [54]. In this example design the ATG is set to
custom AXI4-Lite traffic generation with mode System Test. This means that the ATG can read/write
AXI4-Lite transactions and checker logic. Hence, its main purpose is to act as a AXI4-Lite master, where
it generates AXI4-Lite traffic to initialize and test certain IP cores in the block design. The generated
AXI4-Lite traffic is sent via the output M_AXI_LITE_CH1. The outputs done and status[31:0] provide
information regarding the IP current status. The inputs are an AXI reference clock (s_axi_aclk) and
an AXI reset (s_axi_aresetn).

Figure 3.18: AXI Trafic Generator IP

In Figure 3.19 the configuration window for the ATG is displayed. Note that it is set to the aforementioned
custom AXI4-Lite with mode System Test. Also note the so called COEfficient (COE) files. These are
files needed when the core is set to "Custom". The COE file is an "...ASCII text file with a single
radix header followed by several vectors" [55, p. 95]. These files are needed to describe the paramater
values for some IPs. In System Init mode, only COE files for address and data are needed. Theses files

24

describe the data that should be generated and to which AXI addresses. Or more precisely, the Address
COE file "provides the sequence of addresses to be issued" and the Data CEO file "provides the sequence
of data corresponding to the address specified in Address COE File" [54, p. 23]. Where first entry in the
in the Adress COE file corresponds to first entry in the Data COE file. System Test mode is essentially
an enhancement of the System Init mode that allows the core to generate read transactions [54, p. 24].
There are two additional COE files needed here; Mask and Control. The Mask COE file "...represents
the bits to mask before comparing the read data versus expected data" [54, p. 24] and the Control COE
file "contains the control information of type of transaction to be generated, next COE entry to fetched,
and to count if any errors occurred" [54, p. 57]. The COE files are fully user programmable, so they
need to be written directly by the user. Though, in this example design they are already written and
provided to the user.

Figure 3.19: AXI Trafic Generator IP Configuration Window

3.5.4 AXI Interconnect

The AXI Interconnect IP can be seen in Figure 3.20. This IP interconnects one or mutiple AXI mas-
ter devices to one or more slave devices [56]. So, in the example design the two AXI4-Lite masters
axi_traffic_gen_0 (ATG0) and axi_traffic_gen_1 (ATG1) are connected to the inputs S00_AXI
and S01_AXI of the AXI Interconnect IP. Consequently, the outputs of the IP (M00_AXI - M02_AXI) are
connected to the three AXI slaves mipi_csi2_tx_subsyst_0, v_tpg_0, and mipi_csi2_rx_subsyst_0.
The input clocks and resets are the clocks and resets associated with the respective master and slave.

25

Figure 3.20: AXI Interconnect IP

3.5.5 Video Test Pattern Generator

The Video Test Pattern Generator (VTPG) IP can be seen in Figure 3.21. The function of this IP is to
generate test patterns for video system debugging, bring up, and evaluation. The core can be customized
to generate a variety of video test patterns that allow the user to asses and debug video system quality,
motion, edge, and color performance [57]. This makes the VTPG a fitting IP to use whenever a test image
needs to be generated. For example, as imge data input to the CSI2 Tx Subsystem. The image resolution
and what type of test pattern the image should include, can be adjusted in the VTPG’s configuration GUI.
The input s_axi_CTRL takes AXI4-Lite communication. The clock (ap_clk) and the reset (ap_rst_n)
are the AXI reference clock and AXI reset. The output m_axis_video allows tranmitting of image data
via AXI4 interface. Note here that m_axis_video_TUSER[0:0] is not a separate signal but rather part
of the m_axis_video interface. However, it is connected elsewhere so it is displayed as its own separate
signal.

Figure 3.21: Video Test Patter Generator IP

In Figure 3.22 an expanded version of the VTPG in Figure 3.21 can be seen. Here the AXI4-Lite
input and AXI4 output interfaces can be seen in detail with its respective signals. The output signal
m_axis_video_TDATA[23:0] is important to note because this is where the image data is transmitted
[57]. Additionally, there are some other important signals; TLAST, TVALID, TREADY, etc, that control the
communication between the VTPG and the CSI2 Tx Subsystem in the example design. These will be
discussed in greater detail in Section 4.1, where more concrete simulation results can be linked to their
behaviour.

26

Figure 3.22: Video Test Patter Generator IP Expanded

3.5.6 AXI4-Stream Subset Converter

The AXI4-Stream Subset Converter can be seen in Figure 3.23. This IP provides a way to connect two
separate AXI4-Streams that slightly differ in their structure. It has configurable AXI4-Stream signals
for each interface that provides the user with a consistent way of converting one signal set into another.
In the example design, this IP is used between the VTPG AXI4 output and the CSI2 Tx Subsystem
AXI4 input as a way to match their AXI4 interfaces. The input S_AXIS receives the AXI4-Stream that
is converted and transmitted via the output M_AXIS. Input signals aclk and aresetn are AXI4 reference
clock and reset.

Figure 3.23: AXI4-Stream Subset Converter IP

3.5.7 MIPI CSI-2 Rx Subsystem

The MIPI CSI2 Rx Subsystem IP can be seen in Figure 3.24. Instead of receiving AXI4-Stream and
transmitting signals on the CSI2 format, like the CSI2 Tx Subsytem does, this IP receives signals in CSI2
protocol and converts it into Native video data stream. In the example design, this IP’s main function is
to create a feed-back from the output of the Tx Subsystem. Allowing the user to investigate the image
data output from the Tx as Native image data stream as output from the Rx Subsystem. This means,
the Tx Subsystem’s output port mipi_phy_if_1 is looped back and connected to the Rx Subsystem’s
input port mipi_phy_if_0, as can be seen in the example design in Figure A.1.1. Though, it is important
to note that these ports are not physically connected in the block design, but rather connected via the

27

testbench. Refer to Section 3.6 for further information regarding testbenches. This feedback to the Rx
Subsystem can be a useful tool when simulating the design, but will not be relevant for future designs
that aim at synthesis and implementation. Mainly due to the fact that, for implementation, the input
port can not be connected to the output port while it is connected to a physical pin. Essentially, making
the connection generated in the testbench a virtual one that exclusively works for simulations. The
Native video data is transmitted on the output video_out_tdata[23:0]. The remaining outputs will
be discussed in greater detail in Section 4.1, as they are more relevant when linked to simulation results.

Figure 3.24: MIPI CSI-2 Rx Subsystem IP

3.6 Simulation Setup
Before simulating an RTL design, it is important to know how simulations work in the specific software,
in this case Vivado, and the different ways of setting up a simulation. As explained in Section 3.3 an
RTL design has to be developed in order to synthesize, implement and generate a bitstream from the
design. This is the case when doing simulations as well, but the design does not have to be synthesized
or implemented. Simulations is a separate executable tool that Vivado present, but it still needs a valid
RTL design as input.

Vivado’s simulation environment requires input signals to the external input ports. This is due to the fact
that the ports are not mapped/connected to any physical pins on the FPGA when doing simulations.
Hence, the user has to provide the software with input signals. This can be achieved mainly in two
different ways: directly adding and configuring the signals in the waveform window (WFW) or writing a
testbench (TB). Where the waveform window is the window in Vivado that displays the simulated signals
in a waveform. This can be seen in greater detail under Section 4.1, where most results are presented
using a WFW.

Furthermore, a testbench is a file written by the user, in either Verilog or VHDL, that specify how the
input signals should behave and how some ports should be interconnected. In the example design, a
testbench is provided in Verilog and should work directly with the example design. However, to really
understand how the example design works, how to write a testbench in Vivado, and to get full control
over the simulations, an additional one was written in VHDL for this project. The VHDL code for this
TB can be seen in Appendix A.2.2.

The TB is quite a simple one, as the only inputs that need to be generated are a 100 MHz clock and a
reset. Additionally, the external output port mipi_phy_if_1 needs to be looped-back/connected to the
external input port mipi_phy_if_0 in order to enable the feedback from the Tx Subsytem to the Rx
Subsystem. This connection is realized in the TB by mapping each output signal to its respective input
signal.

28

3.7 Implementing the Software on the Hardware
Implementing the software on the hardware is the main initial problem to overcome for the project to
progress further. It is also one of the more difficult stages of most embedded system implementations.
This section will describe how the CSI2 Tx Subsystem Example Design was edited and what tools were
used to allow the design to be implemented on the hardware.

3.7.1 TEF0010 Lead Times and Complications

Certain parts of the project, was initially halted due to lead times on specific parts of the hardware. More
specifically, the GMSL2 FMC card TEF0010 had a delivery lead time that was longer than expected.
The card was delivered and mounted to the TEB0911 around week 11 of 2023. This made working on the
specific hardware impossible until this time. So, the work up until this point mainly consisted of research
and preparing for the card to arrive. Preparation such as creating a graphical block design of the card
with important signals, port mapping between the TEF0010’s FPGA and TEB0911’s FPGA, software
simulations, etc. When the card eventually arrived, efforts were made to program the card via Vivado’s
Hardware Manager, as had been proven to work with the TEF0007 FMC card, but to no avail. The
FPGA that is on the card simply did not show up as an available device in the Hardware Manager. Many
ideas regarding this fault were explored, including initializations, switch configurations on the TEB0911,
CPLD’s firmware, and more. After some weeks of attempts and extensive research regarding the cause
of the problem, the card was dismounted from the TEB0911 to examine it closer. Upon inspecting the
card it was found that the card was not the expected TEF0010, but rather a completely custom card
designed by the company currently providing the IU solution. It did not include any Xilinix FPGA,
which is why it did not show up as a device in Vivado’s Hardware Manager. Rather, it is operated by
two FPGAs called CrossLink which are produced by Lattice Semiconductor [58]. These FPGAs can be
programmed using a different software called Lattice Diamond Programmer [59]. However, this was not
an available option since programming the card is only possible when sufficient information regarding
the hardware is available. Either through schematics or technical reference manuals. This being a fully
custom card, and all schematics and technical reference manuals being confidential, made programming
the hardware practically impossible.

3.7.2 Migrating the Programming to the MPSoC

Due to the unforeseen circumstances regarding the GMSL2 FMC card, the approach of the output stage
had to be changed. Rather than running the code/operations on the GMSL2 card’s FPGA, it was instead
migrated to the MPSoC/FPGA on the TEB0911. This was done in an attempt to salvage relevant results
for the thesis. I.e attempting to implement the code on the TEB0911 FPGA could still provide proof
that the CSI2 Tx Subsystem could be used as a possible solution for a GMSL2 card, with hardware
produced by Xilinx instead. However, since no information is available for the current GMSL2 card, no
actual GMSL2 signal can be produced from the CSI2 signals that were supposed to be sent from the
FPGA on the TEF0010 to the serializers on the TEF0010. So, the focus shifted toward producing CSI2
signals from the MPSoC Ultrascale+ FPGA on the TEB0911 instead.

This was problematic for the project as a whole, but also altered the approach of the design as well. Since
most of the research up until this point was aimed at the TEF0010, there was no concrete plan for how
the design would be implemented on the TEB0911 instead. A lot of the work, following the discovery,
went into research and development of the design so that it could be implemented on the hardware.

Firstly, the pin mapping of the outputs had to be adjusted. Though, this was quite a painless process
since changing the targeted hardware in Vivado to the TEB0911 actually provided a new configuration
tab in the configuration GUI for the CSI2 Tx Subsystem. This tab called Pin Assignment, as can be seen
in Figure 3.13, provides the user a simple way of connecting/mapping the CSI2 outputs (data lanes and
clock lane) of the CSI2 Tx Subsystem to pins on the TEB0911’s FPGA. The port mapping is thereby
realized without having to manually specify it in the Implemented Design or in a constraints file, as
previously mentioned in Section 3.3.2 .

29

Figure 3.25: MIPI CSI-2 Tx Subsystem IP Configuration Window with Pin Assignment tab open

Secondly, the pin mapping of the inputs also had to be reconsidered. Originally the plan was to to
implement the example design, or a slightly edited version of the example design, and then a custom
design on the TEF0010. Since the example design only requires an input clock and a reset, these could
be generated/fetched from the TEB0911 and sent to the FPGA on the TEF0010 for preliminary testing
of the design. Though, as the design had to be migrated to the TEB0911, new input sources had to be
found. Usually, there are multiple available clocks on SOMs that can be utilized by the user in designs.
The same applies for the TEB0911, but these clocks are generated by a programmable phase-lock loop
(PLL) clock generator, based on a reference clock from an oscillator, and then transmitted to pins on
the FPGA. Since PLLs have to be programmed it would take some time to learn how to use the PLL.
So, alternative approaches were desirable.

3.7.3 UltraScale+ MPSoC PS in Vivado

This is where the PS of the UltraScale+ MPSoC came in handy. The PS can actually be implemented
into the block design in Vivado by using an IP core representation of the PS called Zynq UltraScale+
MPSoC. More precisely, "the IP core is the software interface around the Zynq UltraScale+ Processing
System" [60, p. 4]. The IP core can be seen in Figure 3.26. Note that from this point forward in the
report, the figures presented in Section 3 that show any picture from Vivado will be related to either a
fully custom design or a customized version of the example design, since changes had to be made to the
original example design in order to implement it on the hardware.

30

Figure 3.26: Zynq UltraScale+ MPSoC IP

Essentially this IP core allows the user to configure multiple parameters inside the PS, and gives the user
a simple way of connecting and using the PS in hardware RTL designs. Among many other functionalities
the IP core, more importantly for the current problem, can provide four separate PL clocks that can be
used in the block design. These four PL clocks are fully customizable in terms of frequency [60]. This can
be seen in Figure 3.27 where the GUI configuration tab for the PL clocks are presented. Simply enable
the number of PL clocks desired and input the required frequency for each clock. Consequentially, the
PL clocks show up as outputs in the IP core, as can be seen in Figure 3.26 where pl_clk0 and pl_clk1
are the PL clocks. This solves the problem of input clock source.

Figure 3.27: Zynq UltraScale+ MPSoC IP Configuration Window with PL Clock Configuration Tab

However, another problem spurred from the use of the PS IP in the block design. When the code/program
was uploaded to the FPGA nothing seemed to happen on the TEB0911. This could be identified since
a custom VHDL script had been written that converts the 100 MHz clock, that nearly the whole design
operates based on, into a slower 1Hz clock signal. Refer to Appendix A.2.1 for this custom VHDL code,

31

and Figure A.1.2 and A.1.3 for the RTL block called "clk2LED_0" which represent this VHDL code
in the block designs. The output signal of this RTL block was in turn connected to an output port
LED[0:0] that was port mapped to a LED on the TEB0911. The specific LED used in this case was
a user definable LED connected to the K14 pin of the FPGA. The port mapping was specified in the
Implemented Design and can be seen illustrated in Figure 3.28 below. If the design, or at least the clock,
worked correctly this LED would have been blinking with 1s intervals, which it did not.

Figure 3.28: Implemented Design Port Mapping Example

Additionally, another LED on the TEB0911, that is pre-programmed and dedicated to signaling whether
code is currently being and has successfully been uploaded, showed that the code was uploaded suc-
cessfully to the board. This LED can be found under the name D6 in TEB0911’s TRM [33]. Hence,
something was wrong with the implementation. After multiple tries and research it was found that the
PS, which generates the PL clocks, has to be initialized in order to work on the hardware. This means
that C/C++ code had to run on the PS to initialize the PS in the RTL design. This can be achieved
with a simple "Hello World"-script in the Vitis IDE. When uploading this simple C code together with
the Hardware Specifications (which includes the bitstream/code for the FPGA) with "Run Debug" in
Vitis IDE, the PS was properly initialized and the program on the FPGA started working correctly.

3.7.4 Virtual Input/Output (VIO)

The main remaining problem was the reset input source. Since the reset preferably needs to be controlled
by the user in real-time during runs on the hardware, a solution needed to be found that could support
this. Vivado’s Virtual Input-Output (VIO) IP provides a solution for this. VIOs can essentially be seen
as a workaround when there are either no physical pins available, so they need to be virtually represented,
or when real-time control of a certain signal is needed. Hence, the IP can give the user full live control
over the inputs of the design. For example, an input (output of the VIO) port can be changed from a
logical ’0’ to a ’1’ while the program is running on the hardware. An example of a VIO can be seen in
Figure 3.29 where the output probe_out0[0:0] can control the input reset of the whole design.

32

Figure 3.29: Virtial Input-Output IP as an Input Reset

Additionally, the VIO can also be used whenever there is an output port of a block design where, no
physical pins are available, the signal transferred via the port is irrelevant to the implementation, or the
user simply wants to actively monitor the output port. An example of this can be seen in Figure 3.30
where probe_in0[0:0] and probe_in1[0:0] are monitoring some output signals. The VIOs should run
on the same clocks as the signal/operation that they are monitoring/controlling.

Figure 3.30: Virtual Input-Output IP as a Monitor for Output Signals

3.7.5 Integrated Logic Analyzer (ILA)

Contrary to the VIO, the Integrated Logic Analyzer (ILA) IP can be used in a similar way but for
internal signals within the block design instead of external inputs/outputs. Although, the ILA can only
monitor and not actively control the internal signals. The ILA is mainly used as a tool to debug and
monitor designs implemented into the hardware. This makes it a useful tool whenever the programming
is not behaving as expected, but no error messages are generated. By monitoring the internal signals,
the user can identify where the implementation fails and make the needed adjustments. An example of
an ILA can be seen in Figure 3.31 where it is monitoring multiple signals

Figure 3.31: System Integrated Logic Analyzer IP

33

3.7.6 VIO and ILA complications

However, some problems occurred initially regarding the ILAs and VIOs during uploading. When up-
loading the design to the FPGA, the ILAs and VIOs were "dropped" from the design. This means that
Vivado essentially omitted them. This occurred when trying to upload the program via Vivado’s Hard-
ware Manager. The error message Vivado gave mainly detailed that the ILAs and VIOs need to operate
on a "free-runnning clock". This was partly due to the problem described earlier, with the initialization
of the PS IP core. Since the program was first uploaded via Vivado’s Hardware Manager, and not in
Vitis IDE with C code to initialize the core, no PL clocks were generated. This caused the VIOs and
ILAs to be dropped.

However, after changing this and uploading via Vitis with C code, the ILAs and VIOs were still dropped
with Vivado reporting that they require a free-running clock. A free-running clock, according to Xilinx
Forums, is a clock "...without any glitches and consistent 1-0 without skew", which "...starts it’s operation
automatically when the board is powered up", and is a "non-interrupted and non-gated clock" [61]. The
original example design had a clocking wizard that would divide the input clock into multiple output
clocks. Hence, this clocking wizard stayed in the design even after the PS IP core was added. So, one PL
clock output from the PS was originally connected to the input of the clocking wizard and then divided
into a number of output clocks, that could be used in the design. Though, the clocking wizard has a
"locking"-function built in. This locking sequence ensures a safe clock startup, essentially causing the
clocking wizard to not generate any clocks until its output pin locked (refer to Figure 3.16) is set to High
[52, p. 43]. This is believed to be the second reason why the ILAs and VIOs were dropped. The clocks
operating the ILAs, VIOs, and the entire design were not being generated straight away, causing the
ILAs and VIOs to not have a free-running clock and consequently being dropped. Thereby, the clocking
wizard was omitted from the design and the PL clocks from the PS IP core were used directly instead.

3.7.7 VIOs and ILAs in Hardware Manager

When VIOs and ILAs are included into a block design they are implemented into the hardware upon
programming, the same as the rest of the design. However, they also show up as separate "entities" in
Vivado’s Hardware Manager after programming, each with their own WFW that shows the monitored
signals. For results using the ILAs and VIOs in the Hardware Manager and additional information
regarding the IPs, refer to Section 4.2.

3.7.8 Edited CSI2 Tx Subsystem Example Design

All IPs introduced in sections 3.7.3 - 3.7.5 were added to the original example design to enable or aid
the synthesis and implementation of the design. Two main versions of the edited design are presented
in the Appendix. One version of the edited design can be seen in Appendix A.1.3. Important to note
that the part of the original example design that enabled the CSI2 Rx Subsystem has been removed in
both designs, since that part was exclusively for simulation and could not be implemented. Also note
that for this particular design the AXI traffic generators have been removed. Instead the AXI4-Lite
control signals are generated from the PS IP cores output M_AXI_HPM0_LPD. These can therefore be
controlled with C code in the PS, which provides the user with fully customizable AXI4-Lite control
signals. Though, at the cost of simplicity since the C programming of AXI4-Lite signals is a complex
process. There are some example codes provided by Xilinx in the Vitis IDE for certain IP cores, but
these are specific for that IP core’s example design. Since this design is a fully custom one, it would
require fully custom C code for the AXI4-Lite signal generation. Hence, initialization of all cores in the
design with AXI4-Lite from the PS has not yet been achieved.

An alternative for this is to keep the AXI traffic generators as in the original example design and not
configure any of the parameters on the IP cores controlled by AXI4-Lite from the ATGs. This version
of the edited example design can be seen in Figure A.1.2. Alternatively, the ATG could be configured in
other ways with different modes that are not the "Custom Modes" which required COE files, as explained
in Section 3.5.3. Initialization of all the cores with the ATGs have not yet been achieved. Refer to Section
4.2 for hardware tap and signal monitoring of the edited CSI2 Tx Example Design with ATGs.

34

4 Results and Discussion

4.1 Simulations
When working with embedded systems it can be crucial to know exactly how signals in the system are
supposed to behave in theory, before the implementation process starts. This is where simulations are
useful. Simulations, in this case, are exclusively software based simulations that emulate the hardware
and the signals on the hardware in the form of waveforms in the waveform window. Consequentily, the
user can obtain tangible results that can be used as proof and a comparison of how the hardware is
supposed to behave upon implementation. Note that all simulated WFW have seconds (on µs scale) as
unit on the x-axis.

Due to unknown problems, simulations in Vivado 2019.2 did not work as expected for the CSI2 Tx Sub-
system Example Design. More precisely, the signals stayed constant with wither ’0’s or ’1’s. Therefore,
the figures below are from simulations of the example design in Vivado 2022.2 instead, since these worked
as expected. Though, the block design for the 2022.2 version is nearly identical so the simulations are
directly applicable to the CSI2 Tx Subsystem Example Design for the 2019.2 version.

4.1.1 CSI2 Tx Subsystem Example Design

As previously mentioned, the example design provided with the CSI2 Tx Subsystem IP includes a test-
bench that specifies what signals should be generated at the external input ports and how some signals
on the external ports of the design should be connected. This TB generated in Verilog was re-written
in VHDL. The results of the simulations can be seen in the figures below. Note that all of the signals in
the figures are color-coordinated and grouped with group names to allow easier identification regarding
what protocols/interfaces the different signals belong to.

Initially refer to Figure 4.1 that shows the first instance of signal s_axis_tready for the AXI4 interface
of the CSI2 Tx Subsystem. This signal is driven by the CSI2 Tx Subsystem and indicates that the
Subsystem is ready to receive data. Note that this signal is included in the signal group "Tx Subsystem
AXI Input". The signal group names are user defined group names and are only present in the WFW
to make the simulations easier to interpret. The word "input" in the name "Tx Subsystem AXI Input"
does not signify that all signals in this group are inputs, but rather that they are connected to the side
of the IP that usually take inputs (left side). The same applies for the groups with "output" in their
name. These signal groups can be found connected to the output side of their respective IPs (right side).
Whether a signal is actually an input or an output can be seen to the left of the signal name in the
WFW. Where inputs have a "I" in a small orange box and outputs have a "O" in a small green box.
This applies for all figures presented in the results.

Additionally, observe the m_axis_video_TREADY of signal group "VTPG AXI Output" also goes high in
the figure, since this is the input of the VTPG receiving the output s_axis_tready of the Tx Subsystem.
Similar causations will not always be mentioned in the report because they mean little for the actual
result, but it is important to be aware of.

35

Figure 4.1: First simulations instance of tready signal from the CSI2 Tx Subsystem

Refer to Figure 4.2 that illustrates the beginning of actual data being transmitted. This is the first
instance in the simulation that the VTPG starts sending video/image data via its output m_axis_-
video_TDATA[23:0] as highlighted in the figure. Note that it took a relatively long time (around 145
µs) for the VTPG to start sending the image data.

Figure 4.2: First instance of video data from the VTPG in simulation

Figure 4.3 displays the same time instance in the simulation as Figure 4.2, however it is zoomed in for
greater detail to see what is actually being transmitted. Note here that m_axis_video_TDATA[23:0]
transmits video data in "packets" of 24-bits. For example the first data packet "AD00D5" is a hexadec-
imal representation of the binary number "1010 1101 0000 0000 1101 0101", which is 24 bits. This is as
expected since each pixel in the data frame being sent is on the RGB888 format. This means that each

36

pixel is represented by 8 bits of red, 8 bits of green, and 8 bits of blue, resulting in a total of 8·3 = 24 bits.
Hence, each of these data packets represent the color data for each pixel. If the image has a resolution
of 64x64, which is the case for the example design, a total number of 64 · 2 = 128 data packets/pixels
will be transmitted for each video frame.

Figure 4.3: Zoomed in Figure 4.2

The reason why the image data is being sent at this particular time is because the signal m_axis_TVALID
from the VTPG was driven high. Refer to Figure 4.4 for the highlighted signal. This signal essentially
indicates that the master interface (VTPG AXI4 output) is able to provide valid samples of data to
the slave interface (CSI2 Tx Subsystem AXI4 input). I.e valid video data can be transmitted from the
VTPG. And since the aforementioned m_axis_video_TREADY is already high, which means that the CSI2
Tx Subsystem is ready to accept data, the flow of data between VTPG and Tx Subsystem can begin
[57].

Figure 4.4: First instance of of m_axis_TVALID

37

In Figure 4.5 the first activation of signal m_axis_video_TLAST[0:0] can be observed. This signal
signifies when the end of a line has been reached. This means, that all the pixel data has been transmitted
for one line of the frame [57]. A longer pause of data transmission in video_out_TDATA[23:0] can be
seen after m_axis_video_TLAST[0:0] has been asserted.

Figure 4.5: First instance of m_axis_video_TLAST[0:0]

A zoomed in version of Figure 4.5 can be seen in Figure 4.6. This gives a clearer look at what video data
is being sent while TLAST is asserted. However, the product guide for the VTPG [57] does not explicitly
detail what is being transferred during this time, so it is open for speculation or further research. It is
most likely just buffer data that could carry information regarding line change or something similar.

Figure 4.6: Zoomed in Figure 4.5

Additionally note that the video data transferred from the VTPG in m_axis_video_TDATA[23:0] is not
exactly the same as the received video data to the CSI2 Tx Subsystem in s_axis_tdata[47:0]. This
is due to the configurations of the two IPs resulting in different widths for the video data signals. The
CSI2 Tx Subsystem width is for example determined by the pixel type and number of pixels per beat

38

[51], while the data width for the VTPG is determined through different parameters. The differences in
width is handled by the AXI Subset Converter, as explained in Section 3.5.6. To prove that the video
data information is preserved, the signals for the Rx Subsystem can be examined.

Refer to Figure 4.7 where the output video signal video_out_tdata[23:0] has been added to the WFW.
This is the first instace of video data being transmitted from the CSI2 Rx Subsystem.

Figure 4.7: First simulated instance of video data from the Rx Subsystem via video_out_tdata[23:0]

Figure 4.8 illustrates the same time instance as Figure 4.7, however it is zoomed in for greater signal
detail. Note that the packets of data are exactly the same as the first packets of data being sent from
VTPG, as discussed and illustrated in Figure 4.3. Which makes sense, since the video data transmitted
from the VTPG, converted into CSI2, and then converted back into video data should have the same
values. Observe that the Rx video data is slightly delayed compared to the VTPG video data and only
transmits in batches of four packets. However, the pixel data remains exactly the same. Essentially
proving that information integrity is kept after going through the CSI2 Tx Subsystem.

39

Figure 4.8: Zoomed in Figure 4.7

4.2 Hardware Signal Tap
When implementing a design/program to an embedded system, it is crucial to investigate how the signals
behave on the actual hardware. This is where hardware "signal tap" can be useful. The signal tap can
be realized in Vivado with ILAs and VIOs, as mentioned in sections 3.7.4 - 3.7.7, via the Hardware
Manager. When running a signal tap the ILAs have to be triggered to display the signal waves in the
WFW. Throughout this section, the results will be generated by first setting the external reset to ’1’
with the VIO controlling the system reset (which is active high), then starting the ILA and letting it wait
for its trigger, then the reset is set to ’0’ which disables the reset and initiates system operations. This
should after a short time trigger any ILA with reasonable conditions set for the triggers. This section
will provide the resulting signal taps on the implemented designs.

4.2.1 Edited CSI2 Tx Subsystem Example Design with ATG

When using an ILA in the Hardware Manager it is important to specify the desired triggers that will
trigger the ILA and display the results. This means that conditions have to be set that tell the ILA to
present the current signals in a certain time frame. In Figure 4.9 the ILA monitoring the AXI4 "input"
interface to the CSI2 Tx Subsystem is displayed. Though, note that no waveforms are showing in the
WFW and the ILA is "Waiting for Trigger". This is due to the fact that none of the conditions for
the triggers, as seen below the WFW, are being met. I.e all signals are constantly 0, which means no
information is being transferred via these channels. This is a problem, since it effectively means that no
test image is being produced from the VTPG.

40

Figure 4.9: Signal tap of AXI4 input interface for CSI2 Tx Subsystem

This problem stems from what is most likely a problem with the initialization of the IPs in the design.
This means that the AXI4-Lite control signals (from the ATGs in this case) that are supposed to initialize
the IPs (especially VTPG and Tx Subsystem) are not behaving as desired. Refer to Figure 4.10 where
the AXI4-Lite input to the VTPG is displayed. Here a quick burst of control signals are portrayed,
which after a short time go to 0 or 1 and stays constant. A zoomed in version of Figure 4.10 can
be seen in Figure 4.11 . These signals are similar to the AXI4-Lite VTPG input signals displayed in
Figure 4.12, which is pulled directly from simulations of the example design. These two figures should
correlated exactly for respective AXI4-Lite signals since nothing in the VTPG or the Tx Subsystem has
been changed. Though they slightly differ in the amount of peaks each control signal has.

Figure 4.10: Signal tap of AXI4-Lite input to the VTPG

41

Figure 4.11: Zoomed in Figure 4.10

Figure 4.12: Simulated signals of AXI4-Lite input to the VTPG

Additionally, refer to Figure 4.13 and Figure 4.14 where the AXI4-Lite outputs from the ATG0 and
ATG1, respectively, are displayed. Here it can be observed that the ATGs are successfully sending
AXI4-Lite signals on the hardware. Also observe the simulated AXI4-Lite output signals for both ATGs
in Figure 4.16, for comparison. The simulated signals for the ATG0 can be argued look similar to the
signals in the ATG0 signal tap. Though, while the signals are being transmitted instantly from ATG0 in
the simulations (Figure 4.16), there appears to be almost no variation in the signals from ATG1. This
is most likely due ATG1 taking longer to start transmitting data after the system starts up.

42

Figure 4.13: Signal tap AXI4-Lite output from ATG0

Figure 4.14: Signal tap AXI4-Lite output from ATG1

43

Figure 4.15: Zoomed in Figure 4.14

Figure 4.16: Simulated signals of AXI4-Lite ouput from both ATG0 and ATG1

The aforementioned delay present in ATG1 was also observed live, while switching the vio reset on-
and-off in the Hardware Manager. Refer to Figure 4.17 where the VIO ports of all VIOs in the system

44

are present, including the system reset and status ouputs from the two ATGs. In this time instance
that the figure shows, the system reset signal was set from ’1’ (active) to ’0’ (non-active). The status
and done signals for ATG0 changed almost instantly after deactivating the reset, while the status and
done signals for ATG1 remained unchanged. Now observe Figure 4.18 which is the results of the reset
signal being kept at 0 until ATG1’s signals change. This took place after roughly 10 real-time seconds.
Essentially providing a viable explanation to why no changes were observed in the simulations in Figure
4.16, since these only span in the scale of µs. Longer simulations would be extremely time and memory
demanding.

Figure 4.17: VIO reset signal set from 1 to 0

Figure 4.18: VIO reset signal remaining a 0 for some time

4.3 General Discussion
Even though no concrete proof has been found explaining why the VTPG is not producing any video data,
qualified guesses can be made on the results presented. In the hardware, there are AXI4-Lite signals being
transmitted from both ATGs and there are AXI4-Lite signals being accepted by the VTPG. Though,
nothing is coming out on the other end of the VTPG. An assumption can be made that the cause for
this is wrongful AXI4-Lite data, rather than the absence of AXI4-Lite data. To fix this issue, more time
is needed to delve deeper into what exactly is being sent on the hardware and to try different approaches
on how to generate the AXI4-Lite signals in a controllable and understandable way.

One of these options is to completely abandon the idea of using AXI Traffic Generators as a way to
generate the AXI4-Lite signals, and instead focus on generating the control signals with C code drivers
for the PS. Another option is to explore other ways of using the ATGs, apart from the current "Custom
Mode" implemented. The issue could, reasonably, spur from the fact that the AXI4-Lite signals are
being produced based on COE files, and that these files are exclusively meant for the unedited example
design.

45

5 Conclusion and Future Work
In this degree project, research and development of a simple solution has been conducted for the output
stage of an Interface Unit, as a proof of concept that image injection can be achieved with the currently
available hardware and software. A preliminary design for the output stage has been implemented on
the hardware (MPSoC) that generates signals in some parts of the design. The signals in the hardware
have, in turn, been compared to signals generated in a simulation to examine the parts of the design
that are failing. Based on these comparisons, this is believed to be an issue with initialization of these
parts. No concrete final fully implemented solution has been found.

One of the main reasons for not achieving a full implementation of a solution was the issue with wrong
hardware. The part that this thesis report mainly focused on, i.e the output stage, was heavily based
on the notion of getting a certain hardware (TEF0010) to handle the transmitting of GMSL2. However,
after some weeks of waiting for the card to arrive and then some weeks of trying to get the card to work,
it was found that the card was a fully custom card designed by the current provider of the IU solution.
Thus, since the card is fully custom, the associated schematics and technical reference manuals are fully
confidential. Without these, no implementation can realistically be achieved on the current hardware.
The only real option to solve this issue is to order the card that was originally intended, since schematics
are available for this card, or any other similar card with available schematics and/or technical reference
manuals.

Another reason to why the implementation was not achieved within this thesis was the pure complexity
and size of the project. Even though the full project was divided into three parts, the original scope was
found to have unreasonably high complexity and broad goals. However, even after limiting the scope of
the thesis it still proved to be too complex to fully implement even a simple design. This would require
far more time and resources to effectively complete. In fact, a meeting was had towards the end of the
project with the company currently providing the IU solution. They explained how their final solution
had taken roughly five years, with multiple experienced engineers working on it, to complete. Providing
some indication to the size of the project.

Despite this, the work presented in this thesis can be used as a foundation for future work within the
area. This thesis has proven that it is possible to edit and customize the hardware, and given enough time
I personally believe that a simple implementation could be achieved. This simple solution could then be
worked further upon to enable more control, higher data throughput, more advanced functions and higher
automation. Though, the first step to this progression is to either obtain sufficient information regarding
the current hardware, or obtain alternative hardware that already has sufficient technical information
available to the public. Additionally, all the hardware used is based on the already aforementioned
available IU solution. However, there are other commercial solutions that could offer greater support for
customization straight out of the box. This is another venue that could be explored in greater detail for
future work within this area.

46

Appendices

A.1 Block Diagrams
A.1.1 CSI2 Tx Subsystem Example Design

Figure A.1.1: CSI2 Tx Subsystem Example Design

47

A.1.2 Edited CSI2 Tx Subsystem Example Design with ATG

Figure A.1.2: Edited CSI2 Tx Subsystem Example Design with ATG

48

A.1.3 Edited CSI2 Tx Subsystem Example Design without ATG

Figure A.1.3: Edited CSI2 Tx Subsystem Example Design

49

A.2 VHDL Code and Wrappers
A.2.1 Clock Divider for Blinking LED

--
-- Company: Volvo Cars
-- Engineer: Anton Lind
--
-- Design Date: 2023-05
-- Design Name: clk2LED.vhd
--
-- Purpose: Clock divider that divides an input clock with 100 000 000
-- and outputs the divided clock.
-- Can be connected to a LED to identify whether the input
-- clock is running properly on the hardware.
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity clk2LED is

Port (
clk : in std_logic;
led : out std_logic
);

end clk2LED;

architecture Behavioral of clk2LED is
constant divider_c : integer := 100000000;

signal led_s : std_logic := '0';
signal cnt_s : integer range 0 to divider_c :=0;

begin
led <= led_s;

process(clk)
begin

if rising_edge(clk) then
cnt_s <= cnt_s+1;

if (cnt_s = divider_c) then
cnt_s <=0;
led_s <= not led_s;

end if;
end if;

end process;

end Behavioral;

50

A.2.2 CSI2 Tx Example Design Custom Testbench (VHDL)

--
-- Company: Volvo Cars
-- Engineer: Anton Lind
--
-- Design Date: 2023-05
-- Design Name: CSI2_Tx_Subsystem_Example_Design_TB
--
-- Purpose: VHDL Testbench for the RGB888 CSI2 Tx Subsystem Example Design.
-- Generates a 100MHz input clock and initializes the input reset signal.
-- Additonally, handles the feedback connection between CSI2 Tx output
-- and CSI2 RX input.
-- A process for generating a simple reset signal for testing can also
-- be found (initially commented out).

--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity my_tb_1 is
-- Port ();
end my_tb_1;

architecture Behavioral of my_tb_1 is

component design_1_wrapper
port(

clk_100MHz : in STD_LOGIC;
reset_rtl_0 : in STD_LOGIC;

mipi_phy_if_0_clk_hs_n : in STD_LOGIC;
mipi_phy_if_0_clk_hs_p : in STD_LOGIC;
mipi_phy_if_0_clk_lp_n : in STD_LOGIC;
mipi_phy_if_0_clk_lp_p : in STD_LOGIC;
mipi_phy_if_0_data_hs_n : in STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_0_data_hs_p : in STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_0_data_lp_n : in STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_0_data_lp_p : in STD_LOGIC_VECTOR (0 to 0);

done : out STD_LOGIC;
done_1 : out STD_LOGIC;
interrupt : out STD_LOGIC;
mipi_phy_if_1_clk_hs_n : out STD_LOGIC;
mipi_phy_if_1_clk_hs_p : out STD_LOGIC;
mipi_phy_if_1_clk_lp_n : out STD_LOGIC;
mipi_phy_if_1_clk_lp_p : out STD_LOGIC;
mipi_phy_if_1_data_hs_n : out STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_1_data_hs_p : out STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_1_data_lp_n : out STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_1_data_lp_p : out STD_LOGIC_VECTOR (0 to 0);
rxbyteclkhs : out STD_LOGIC;
status : out STD_LOGIC_VECTOR (31 downto 0);

51

status_1 : out STD_LOGIC_VECTOR (31 downto 0);
video_out_tdata : out STD_LOGIC_VECTOR (23 downto 0);
video_out_tdest : out STD_LOGIC_VECTOR (9 downto 0);
video_out_tlast : out STD_LOGIC;
video_out_tvalid : out STD_LOGIC
);

end component;

--Inputs---
signal clk_100MHz : STD_LOGIC;
signal reset_rtl_0 : STD_LOGIC := '0';

signal mipi_phy_if_0_clk_hs_n : STD_LOGIC;
signal mipi_phy_if_0_clk_hs_p : STD_LOGIC;
signal mipi_phy_if_0_clk_lp_n : STD_LOGIC;
signal mipi_phy_if_0_clk_lp_p : STD_LOGIC;
signal mipi_phy_if_0_data_hs_n : STD_LOGIC_VECTOR (0 to 0);
signal mipi_phy_if_0_data_hs_p : STD_LOGIC_VECTOR (0 to 0);
signal mipi_phy_if_0_data_lp_n : STD_LOGIC_VECTOR (0 to 0);
signal mipi_phy_if_0_data_lp_p : STD_LOGIC_VECTOR (0 to 0);

-- Outputs---
signal done : STD_LOGIC;
signal done_1 : STD_LOGIC;
signal interrupt : STD_LOGIC;
signal mipi_phy_if_1_clk_hs_n : STD_LOGIC;
signal mipi_phy_if_1_clk_hs_p : STD_LOGIC;
signal mipi_phy_if_1_clk_lp_n : STD_LOGIC;
signal mipi_phy_if_1_clk_lp_p : STD_LOGIC;
signal mipi_phy_if_1_data_hs_n : STD_LOGIC_VECTOR (0 to 0);
signal mipi_phy_if_1_data_hs_p : STD_LOGIC_VECTOR (0 to 0);
signal mipi_phy_if_1_data_lp_n : STD_LOGIC_VECTOR (0 to 0);
signal mipi_phy_if_1_data_lp_p : STD_LOGIC_VECTOR (0 to 0);
signal rxbyteclkhs : STD_LOGIC;
signal status : STD_LOGIC_VECTOR (31 downto 0);
signal status_1 : STD_LOGIC_VECTOR (31 downto 0);
signal video_out_tdata : STD_LOGIC_VECTOR (23 downto 0);
signal video_out_tdest : STD_LOGIC_VECTOR (9 downto 0);
signal video_out_tlast : STD_LOGIC;
signal video_out_tvalid : STD_LOGIC;

-- Defining clock period for a 100MHz clock
constant clk_period : time := 10 ns;

begin
-- Initiate the Unit Under Test (UUT)
uut: design_1_wrapper
port map(

clk_100MHz => clk_100MHz,
done => done,
done_1 => done_1,
interrupt => interrupt,
mipi_phy_if_0_clk_hs_n => mipi_phy_if_0_clk_hs_n,

52

mipi_phy_if_0_clk_hs_p => mipi_phy_if_0_clk_hs_p,
mipi_phy_if_0_clk_lp_n => mipi_phy_if_0_clk_lp_n,
mipi_phy_if_0_clk_lp_p => mipi_phy_if_0_clk_lp_p,
mipi_phy_if_0_data_hs_n(0) => mipi_phy_if_0_data_hs_n(0),
mipi_phy_if_0_data_hs_p(0) => mipi_phy_if_0_data_hs_p(0),
mipi_phy_if_0_data_lp_n(0) => mipi_phy_if_0_data_lp_n(0),
mipi_phy_if_0_data_lp_p(0) => mipi_phy_if_0_data_lp_p(0),
mipi_phy_if_1_clk_hs_n => mipi_phy_if_1_clk_hs_n,
mipi_phy_if_1_clk_hs_p => mipi_phy_if_1_clk_hs_p,
mipi_phy_if_1_clk_lp_n => mipi_phy_if_1_clk_lp_n,
mipi_phy_if_1_clk_lp_p => mipi_phy_if_1_clk_lp_p,
mipi_phy_if_1_data_hs_n(0) => mipi_phy_if_1_data_hs_n(0),
mipi_phy_if_1_data_hs_p(0) => mipi_phy_if_1_data_hs_p(0),
mipi_phy_if_1_data_lp_n(0) => mipi_phy_if_1_data_lp_n(0),
mipi_phy_if_1_data_lp_p(0) => mipi_phy_if_1_data_lp_p(0),
reset_rtl_0 => reset_rtl_0,
rxbyteclkhs => rxbyteclkhs,
status(31 downto 0) => status(31 downto 0),
status_1(31 downto 0) => status_1(31 downto 0),
video_out_tdata(23 downto 0) => video_out_tdata(23 downto 0),
video_out_tdest(9 downto 0) => video_out_tdest(9 downto 0),
video_out_tlast => video_out_tlast,
video_out_tvalid => video_out_tvalid

);

-- Feeding CSI2 outputs of the Tx core to the Rx core as inputs
mipi_phy_if_0_clk_hs_n <= mipi_phy_if_1_clk_hs_n;
mipi_phy_if_0_clk_hs_p <= mipi_phy_if_1_clk_hs_p;
mipi_phy_if_0_clk_lp_n <= mipi_phy_if_1_clk_lp_n;
mipi_phy_if_0_clk_lp_p <= mipi_phy_if_1_clk_lp_p;
mipi_phy_if_0_data_hs_n <= mipi_phy_if_1_data_hs_n;
mipi_phy_if_0_data_hs_p <= mipi_phy_if_1_data_hs_p;
mipi_phy_if_0_data_lp_n <= mipi_phy_if_1_data_lp_n;
mipi_phy_if_0_data_lp_p <= mipi_phy_if_1_data_lp_p;

-- Generating 100MHz clock signals
clk_process : process
begin

clk_100MHz <= '0';
wait for clk_period/2;
clk_100MHz <= '1';
wait for clk_period/2;

end process;

-- Uncomment the following to generate a test-reset signal
---- Generating rst signal
--rst_process : process
--begin
-- wait for 700 ns;
-- reset_rtl_0 <= '1';
-- wait for 100 ns;
-- reset_rtl_0 <= '0';
-- wait;
--end process;

53

end Behavioral;

54

A.2.3 CSI2 Tx Subsystem Example Design VHDL Wrapper

--Copyright 1986-2022 Xilinx, Inc. All Rights Reserved.
--
--Tool Version: Vivado v.2022.2 (win64) Build 3671981 Fri Oct 14 05:00:03 MDT 2022
--Date : Wed Mar 1 13:08:53 2023
--Host : 5CG8505X0V running 64-bit major release (build 9200)
--Command : generate_target design_1_wrapper.bd
--Design : design_1_wrapper
--Purpose : IP block netlist
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
entity design_1_wrapper is

port (
clk_100MHz : in STD_LOGIC;
done : out STD_LOGIC;
done_1 : out STD_LOGIC;
interrupt : out STD_LOGIC;
mipi_phy_if_0_clk_hs_n : in STD_LOGIC;
mipi_phy_if_0_clk_hs_p : in STD_LOGIC;
mipi_phy_if_0_clk_lp_n : in STD_LOGIC;
mipi_phy_if_0_clk_lp_p : in STD_LOGIC;
mipi_phy_if_0_data_hs_n : in STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_0_data_hs_p : in STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_0_data_lp_n : in STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_0_data_lp_p : in STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_1_clk_hs_n : out STD_LOGIC;
mipi_phy_if_1_clk_hs_p : out STD_LOGIC;
mipi_phy_if_1_clk_lp_n : out STD_LOGIC;
mipi_phy_if_1_clk_lp_p : out STD_LOGIC;
mipi_phy_if_1_data_hs_n : out STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_1_data_hs_p : out STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_1_data_lp_n : out STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_1_data_lp_p : out STD_LOGIC_VECTOR (0 to 0);
reset_rtl_0 : in STD_LOGIC;
rxbyteclkhs : out STD_LOGIC;
status : out STD_LOGIC_VECTOR (31 downto 0);
status_1 : out STD_LOGIC_VECTOR (31 downto 0);
video_out_tdata : out STD_LOGIC_VECTOR (23 downto 0);
video_out_tdest : out STD_LOGIC_VECTOR (9 downto 0);
video_out_tlast : out STD_LOGIC;
video_out_tvalid : out STD_LOGIC

);
end design_1_wrapper;

architecture STRUCTURE of design_1_wrapper is
component design_1 is
port (

mipi_phy_if_0_clk_hs_n : in STD_LOGIC;
mipi_phy_if_0_clk_hs_p : in STD_LOGIC;
mipi_phy_if_0_clk_lp_n : in STD_LOGIC;

55

mipi_phy_if_0_clk_lp_p : in STD_LOGIC;
mipi_phy_if_0_data_hs_n : in STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_0_data_hs_p : in STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_0_data_lp_n : in STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_0_data_lp_p : in STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_1_clk_hs_n : out STD_LOGIC;
mipi_phy_if_1_clk_hs_p : out STD_LOGIC;
mipi_phy_if_1_clk_lp_n : out STD_LOGIC;
mipi_phy_if_1_clk_lp_p : out STD_LOGIC;
mipi_phy_if_1_data_hs_n : out STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_1_data_hs_p : out STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_1_data_lp_n : out STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_1_data_lp_p : out STD_LOGIC_VECTOR (0 to 0);
clk_100MHz : in STD_LOGIC;
done : out STD_LOGIC;
done_1 : out STD_LOGIC;
interrupt : out STD_LOGIC;
reset_rtl_0 : in STD_LOGIC;
rxbyteclkhs : out STD_LOGIC;
status : out STD_LOGIC_VECTOR (31 downto 0);
status_1 : out STD_LOGIC_VECTOR (31 downto 0);
video_out_tdata : out STD_LOGIC_VECTOR (23 downto 0);
video_out_tdest : out STD_LOGIC_VECTOR (9 downto 0);
video_out_tlast : out STD_LOGIC;
video_out_tvalid : out STD_LOGIC

);
end component design_1;

begin
design_1_i: component design_1

port map (
clk_100MHz => clk_100MHz,
done => done,
done_1 => done_1,
interrupt => interrupt,
mipi_phy_if_0_clk_hs_n => mipi_phy_if_0_clk_hs_n,
mipi_phy_if_0_clk_hs_p => mipi_phy_if_0_clk_hs_p,
mipi_phy_if_0_clk_lp_n => mipi_phy_if_0_clk_lp_n,
mipi_phy_if_0_clk_lp_p => mipi_phy_if_0_clk_lp_p,
mipi_phy_if_0_data_hs_n(0) => mipi_phy_if_0_data_hs_n(0),
mipi_phy_if_0_data_hs_p(0) => mipi_phy_if_0_data_hs_p(0),
mipi_phy_if_0_data_lp_n(0) => mipi_phy_if_0_data_lp_n(0),
mipi_phy_if_0_data_lp_p(0) => mipi_phy_if_0_data_lp_p(0),
mipi_phy_if_1_clk_hs_n => mipi_phy_if_1_clk_hs_n,
mipi_phy_if_1_clk_hs_p => mipi_phy_if_1_clk_hs_p,
mipi_phy_if_1_clk_lp_n => mipi_phy_if_1_clk_lp_n,
mipi_phy_if_1_clk_lp_p => mipi_phy_if_1_clk_lp_p,
mipi_phy_if_1_data_hs_n(0) => mipi_phy_if_1_data_hs_n(0),
mipi_phy_if_1_data_hs_p(0) => mipi_phy_if_1_data_hs_p(0),
mipi_phy_if_1_data_lp_n(0) => mipi_phy_if_1_data_lp_n(0),
mipi_phy_if_1_data_lp_p(0) => mipi_phy_if_1_data_lp_p(0),
reset_rtl_0 => reset_rtl_0,
rxbyteclkhs => rxbyteclkhs,
status(31 downto 0) => status(31 downto 0),
status_1(31 downto 0) => status_1(31 downto 0),
video_out_tdata(23 downto 0) => video_out_tdata(23 downto 0),
video_out_tdest(9 downto 0) => video_out_tdest(9 downto 0),

56

video_out_tlast => video_out_tlast,
video_out_tvalid => video_out_tvalid

);
end STRUCTURE;

57

A.2.4 Edited CSI2 Tx Subsystem Example Design VHDL Wrapper

--Copyright 1986-2019 Xilinx, Inc. All Rights Reserved.
--
--Tool Version: Vivado v.2019.2 (win64) Build 2708876 Wed Nov 6 21:40:23 MST 2019
--Date : Thu May 25 12:06:22 2023
--Host : 5CG8505X0V running 64-bit major release (build 9200)
--Command : generate_target design_1_wrapper.bd
--Design : design_1_wrapper
--Purpose : IP block netlist
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
entity design_1_wrapper is

port (
LED : out STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_0_clk_n : out STD_LOGIC;
mipi_phy_if_0_clk_p : out STD_LOGIC;
mipi_phy_if_0_data_n : out STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_0_data_p : out STD_LOGIC_VECTOR (0 to 0)

);
end design_1_wrapper;

architecture STRUCTURE of design_1_wrapper is
component design_1 is
port (

LED : out STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_0_clk_n : out STD_LOGIC;
mipi_phy_if_0_clk_p : out STD_LOGIC;
mipi_phy_if_0_data_n : out STD_LOGIC_VECTOR (0 to 0);
mipi_phy_if_0_data_p : out STD_LOGIC_VECTOR (0 to 0)

);
end component design_1;

begin
design_1_i: component design_1

port map (
LED(0) => LED(0),
mipi_phy_if_0_clk_n => mipi_phy_if_0_clk_n,
mipi_phy_if_0_clk_p => mipi_phy_if_0_clk_p,
mipi_phy_if_0_data_n(0) => mipi_phy_if_0_data_n(0),
mipi_phy_if_0_data_p(0) => mipi_phy_if_0_data_p(0)

);
end STRUCTURE;

58

References
[1] “A heritage of safety innovations.”

https://www.volvocars.com/intl/v/car-safety/safety-heritage. [Online]. Accessed:
2023-05-08.

[2] “What are the differences between active and passive safety features on cars?.” https:
//www.eckellsparks.com/2022/03/02/difference-active-passive-safety-features/?utm_s
ource=rss&utm_medium=rss&utm_campaign=difference-active-passive-safety-features,
2022. [Online]. Accessed: 2023-05-08.

[3] “Adas vs autonomous driving: What is the role of adas in autonomous driving?.”
https://caradas.com/adas-vs-autonomous-driving/, 2022. [Online]. Accessed: 2023-05-08.

[4] Volvo Cars, “Driver assistance systems.”
https://www.volvocars.com/au/v/car-safety/driver-assistance. [Online]. Accessed:
2023-05-08.

[5] Volvo Cars, “Safety: Culture and vision.”
https://www.volvocars.com/intl/v/safety/culture-vision, 2022. [Online]. Accessed:
2023-05-09.

[6] J. Hoffmann, “Modeling, simulation, and injection of camera images/video to automotive
embedded ecu,” Master’s thesis, University of Stuttgart, Stuttgart, Germany, 2023. Unpublished.

[7] N. C. Basavaraju, “Modeling, simulation, and injection of camera images/video to automotive
embedded ecu,” Master’s thesis, Uppsala University, Uppsala, Sweden, 2023. Unpublished.

[8] H. H. Bengtsson, M. Hiller, and S. Sigfridsson, “Tsn ethernet as core network in the centralized e/e
architecture - challenges and possible solution.”
https://standards.ieee.org/wp-content/uploads/import/documents/other/eipatd-prese
ntations/2019/D1-02_BENGTSSON-TSN_ethernet_as_core_network_in_EE_architecture.pdf,
2019. [Online]. Accessed: 2023-05-09.

[9] Kvaser, “Introduction to the lin bus.”
https://www.researchgate.net/publication/321935869_Radiation_Effects_on_MOSFETs,
2022. [Online]. Accessed: 2023-05-09.

[10] Millennium Circuits Limited, “Field programmable gate array (fpga) vs. microcontroller — what’s
the difference?.” https://www.mclpcb.com/blog/fpga-vs-microcontroller/. [Online].
Accessed: 2023-05-11.

[11] Xilinx, “Cpld.” https://www.xilinx.com/products/silicon-devices/cpld/cpld.html.
[Online]. Accessed: 2023-05-31.

[12] javatpoint, “Difference between cpld and fpga.” https://www.javatpoint.com/cpld-vs-fpga.
[Online]. Accessed: 2023-05-31.

[13] Lithmee, “What is the difference between cpld and fpga.”
https://pediaa.com/what-is-the-difference-between-cpld-and-fpga/, 2019. [Online].
Accessed: 2023-05-31.

[14] Bae Systems, “What is a system-on-a-chip?.”
https://www.baesystems.com/en-us/definition/what-is-a-system-on-a-chip. [Online].
Accessed: 2023-05-11.

[15] reflexces, “Xilinx zynq ultrascale+ mpsoc.”
https://www.reflexces.com/modules/xilinx-zynq-ultrascale-mpsoc. [Online]. Accessed:
2023-05-11.

[16] Doulos, “Rtl coding.” https://www.doulos.com/knowhow/vhdl/rtl-coding/. [Online]. Accessed:
2023-05-16.

59

https://www.volvocars.com/intl/v/car-safety/safety-heritage
https://www.eckellsparks.com/2022/03/02/difference-active-passive-safety-features/?utm_source=rss&utm_medium=rss&utm_campaign=difference-active-passive-safety-features
https://www.eckellsparks.com/2022/03/02/difference-active-passive-safety-features/?utm_source=rss&utm_medium=rss&utm_campaign=difference-active-passive-safety-features
https://www.eckellsparks.com/2022/03/02/difference-active-passive-safety-features/?utm_source=rss&utm_medium=rss&utm_campaign=difference-active-passive-safety-features
https://caradas.com/adas-vs-autonomous-driving/
https://www.volvocars.com/au/v/car-safety/driver-assistance
https://www.volvocars.com/intl/v/safety/culture-vision
https://standards.ieee.org/wp-content/uploads/import/documents/other/eipatd-presentations/2019/D1-02_BENGTSSON-TSN_ethernet_as_core_network_in_EE_architecture.pdf
https://standards.ieee.org/wp-content/uploads/import/documents/other/eipatd-presentations/2019/D1-02_BENGTSSON-TSN_ethernet_as_core_network_in_EE_architecture.pdf
https://www.researchgate.net/publication/321935869_Radiation_Effects_on_MOSFETs
https://www.mclpcb.com/blog/fpga-vs-microcontroller/
https://www.xilinx.com/products/silicon-devices/cpld/cpld.html
https://www.javatpoint.com/cpld-vs-fpga
https://pediaa.com/what-is-the-difference-between-cpld-and-fpga/
https://www.baesystems.com/en-us/definition/what-is-a-system-on-a-chip
https://www.reflexces.com/modules/xilinx-zynq-ultrascale-mpsoc
https://www.doulos.com/knowhow/vhdl/rtl-coding/

[17] Xilinx, “Rtl-to-bitstream design flow.” https://docs.xilinx.com/r/en-US/ug892-vivado-desig
n-flows-overview/RTL-to-Bitstream-Design-Flow, 2022. [Online]. Accessed: 2023-05-16.

[18] Xilinx, “Intellectual property.”
https://www.xilinx.com/products/intellectual-property.html. [Online]. Accessed:
2023-05-17.

[19] Xilinx, “Amba axi4 interface protocol.”
https://www.xilinx.com/products/intellectual-property/axi.html. [Online]. Accessed:
2023-05-26.

[20] Xilinx, “Axi basics 1 - introduction to axi.”
https://support.xilinx.com/s/article/1053914?language=en_US, 2023. [Online]. Accessed:
2023-05-26.

[21] Nandland, “How serdes works in an fpga, high speed serial tx/rx for beginners.”
https://www.youtube.com/watch?v=3xZsTBEUkFI, 2021. [Online]. Accessed: 2023-05-25.

[22] MIPI Alliance, “Mipi camera serial interface 2.” https://www.mipi.org/specifications/csi-2,
2016. [Online]. Accessed: 2023-05-26.

[23] NXP Semiconductors, “Mipi–csi2 peripheral on i.mx6 mpus.”
https://www.nxp.com/docs/en/application-note/AN5305.pdf, 2016. [Online]. Accessed:
2023-05-26.

[24] Flexmedia XM, “Know-how: what is gmsl2? capabilities and test challenges.”
https://flexmediaxm.com/know-how-what-is-gmsl2-capabilities-and-test-challenges/.
[Online]. Accessed: 2023-05-25.

[25] Computerphile, “Capturing digital images (the bayer filter) - computerphile.”
https://www.youtube.com/watch?v=LWxu4rkZBLw, 2015. [Online]. Accessed: 2023-05-26.

[26] Wikipedia, “Bayer filter.” https://en.wikipedia.org/wiki/Bayer_filter, 2023. [Online].
Accessed: 2023-05-26.

[27] Arrow, “Introduction to bayer filters.” https:
//www.arrow.com/en/research-and-events/articles/introduction-to-bayer-filters,
2019. [Online]. Accessed: 2023-05-26.

[28] B. Fraser, “Understanding digital raw capture.”
https://www.adobe.com/digitalimag/pdfs/understanding_digitalrawcapture.pdf, 2004.
[Online]. Accessed: 2023-05-26.

[29] Xilinx, “Zynq ultrascale+ mpsoc.”
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html.
[Online]. Accessed: 2023-05-15.

[30] Mouser Electronics, “Xilinx zynq® ultrascale+™ mpsoc multiprocessors.”
https://www.mouser.se/new/xilinx/xilinx-zynq-ultrascale-mpsocs/. [Online]. Accessed:
2023-05-15.

[31] Trenz Electronic, “Teb0911 ultrarack+ mpsoc board with amd zynq ultrascale+ zu9,6 fmc
connectors.” https://shop.trenz-electronic.de/en/TEB0911-04-9BEX1MA-TEB0911-UltraRa
ck-MPSoC-Board-with-AMD-Zynq-UltraScale-ZU9-6-FMC-Connectors. [Online]. Accessed:
2023-05-11.

[32] Xilinx, “Fpga mezzanine card.”
https://www.xilinx.com/products/boards-and-kits/fmc-cards.html. [Online]. Accessed:
2023-05-12.

[33] Trenz Electronics, “Teb0911 trm.” https://shop.trenz-electronic.de/trenzdownloads/Tren
z_Electronic/Motherboards_and_Carriers/TEB0911/REV04/Documents/TRM-TEB0911-04.pdf,
2019. [Online]. Accessed: 2023-05-15.

60

https://docs.xilinx.com/r/en-US/ug892-vivado-design-flows-overview/RTL-to-Bitstream-Design-Flow
https://docs.xilinx.com/r/en-US/ug892-vivado-design-flows-overview/RTL-to-Bitstream-Design-Flow
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property/axi.html
https://support.xilinx.com/s/article/1053914?language=en_US
https://www.youtube.com/watch?v=3xZsTBEUkFI
https://www.mipi.org/specifications/csi-2
https://www.nxp.com/docs/en/application-note/AN5305.pdf
https://flexmediaxm.com/know-how-what-is-gmsl2-capabilities-and-test-challenges/
https://www.youtube.com/watch?v=LWxu4rkZBLw
https://en.wikipedia.org/wiki/Bayer_filter
https://www.arrow.com/en/research-and-events/articles/introduction-to-bayer-filters
https://www.arrow.com/en/research-and-events/articles/introduction-to-bayer-filters
https://www.adobe.com/digitalimag/pdfs/understanding_digitalrawcapture.pdf
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.mouser.se/new/xilinx/xilinx-zynq-ultrascale-mpsocs/
https://shop.trenz-electronic.de/en/TEB0911-04-9BEX1MA-TEB0911-UltraRack-MPSoC-Board-with-AMD-Zynq-UltraScale-ZU9-6-FMC-Connectors
https://shop.trenz-electronic.de/en/TEB0911-04-9BEX1MA-TEB0911-UltraRack-MPSoC-Board-with-AMD-Zynq-UltraScale-ZU9-6-FMC-Connectors
https://www.xilinx.com/products/boards-and-kits/fmc-cards.html
https://shop.trenz-electronic.de/trenzdownloads/Trenz_Electronic/Motherboards_and_Carriers/TEB0911/REV04/Documents/TRM-TEB0911-04.pdf
https://shop.trenz-electronic.de/trenzdownloads/Trenz_Electronic/Motherboards_and_Carriers/TEB0911/REV04/Documents/TRM-TEB0911-04.pdf

[34] FMCHUB, “Vita 57 fpga mezzanine card (fmc) signals and pinout of high-pin count (hpc) and
low-pin count (lpc) connectors.”
https://fmchub.github.io/appendix/VITA57_FMC_HPC_LPC_SIGNALS_AND_PINOUT.html.
[Online]. Accessed: 2023-05-15.

[35] Trenz Electronic, “Tef0007.” https://wiki.trenz-electronic.de/display/PD/TEF0007, 2018.
[Online]. Accessed: 2023-05-15.

[36] Xilinx, “Kintex 7.”
https://www.xilinx.com/products/silicon-devices/fpga/kintex-7.html. [Online].
Accessed: 2023-05-15.

[37] Sundance Technology, “Tef0007-02a.” https://www.sundance.technology/system-on-modules
-som/fmc-modules/io-modules/tef0007-02a/. [Online]. Accessed: 2023-05-15.

[38] Trenz Electronic, “Tef0010.” https://wiki.trenz-electronic.de/display/PD/TEF0010, 2020.
[Online]. Accessed: 2023-05-15.

[39] Xilinx, “Artix-7.” https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html.
[Online]. Accessed: 2023-05-16.

[40] Sundance Technology, “Tef0010-01.” https://www.sundance.technology/system-on-modules-s
om/fmc-modules/io-modules/tef0010-01/. [Online]. Accessed: 2023-05-15.

[41] Peter Krogh, “Camera raw images.” https://www.mediagraph.io/blog/camera-raw-images,
2020. [Online]. Accessed: 2023-05-15.

[42] Trenz Electronics, “Teb0911.”
https://shop.trenz-electronic.de/trenzdownloads/Trenz_Electronic/Motherboards_and_
Carriers/TEB0911/REV04/Documents/AD-TEB0911-04-9BEX1FA.PDF. [Online]. Accessed:
2023-05-30.

[43] Xilinx, “Downloads.” https://www.xilinx.com/support/download/index.html/content/xilin
x/en/downloadNav/vivado-design-tools/archive.html. [Online]. Accessed: 2023-05-17.

[44] Trenz Electronics, “Teb0911 ultrarack+ mpsoc board with amd zynq™ ultrascale+™ zu9,6 fmc
connectors.” https://shop.trenz-electronic.de/en/TEB0911-04-9BEX1MA-TEB0911-UltraRa
ck-MPSoC-Board-with-AMD-Zynq-UltraScale-ZU9-6-FMC-Connectors?path=Trenz_Electroni
c/Motherboards_and_Carriers/TEB0911/Reference_Design. [Online]. Accessed: 2023-05-15.

[45] Xilinx, “Artix-7 fpgas data sheet: Dc and ac switching characteristics.”
https://docs.xilinx.com/v/u/en-US/ds181_Artix_7_Data_Sheet, 2022. [Online]. Accessed:
2023-05-16.

[46] Xilinx, “Logic synthesis.”
https://www.xilinx.com/products/design-tools/vivado/implementation.html#synthesis.
[Online]. Accessed: 2023-05-17.

[47] Xilinx, “Implementation.” https:
//www.xilinx.com/products/design-tools/vivado/implementation.html#implementation.
[Online]. Accessed: 2023-05-17.

[48] Xilinx, “Vivado design suite user guide using constraints.” https://www.xilinx.com/support/d
ocuments/sw_manuals/xilinx2022_1/ug903-vivado-using-constraints.pdf, 2022. [Online].
Accessed: 2023-05-31.

[49] Xilinx, “Vitis unified software platform documentation: Embedded software development
(ug1400).” https://docs.xilinx.com/viewer/book-attachment/PHwa3sDuk6G_sjX_v9CnHw/4Yl
0KRfcZ5H6NcC7s7Ye9g, 2023. [Online]. Accessed: 2023-05-17.

[50] Xilinx, “Mipi csi controller subsystems.”
https://www.xilinx.com/products/intellectual-property/ef-di-mipi-csi-rx.html.
[Online]. Accessed: 2023-05-18.

61

https://fmchub.github.io/appendix/VITA57_FMC_HPC_LPC_SIGNALS_AND_PINOUT.html
https://wiki.trenz-electronic.de/display/PD/TEF0007
https://www.xilinx.com/products/silicon-devices/fpga/kintex-7.html
https://www.sundance.technology/system-on-modules-som/fmc-modules/io-modules/tef0007-02a/
https://www.sundance.technology/system-on-modules-som/fmc-modules/io-modules/tef0007-02a/
https://wiki.trenz-electronic.de/display/PD/TEF0010
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html
https://www.sundance.technology/system-on-modules-som/fmc-modules/io-modules/tef0010-01/
https://www.sundance.technology/system-on-modules-som/fmc-modules/io-modules/tef0010-01/
https://www.mediagraph.io/blog/camera-raw-images
https://shop.trenz-electronic.de/trenzdownloads/Trenz_Electronic/Motherboards_and_Carriers/TEB0911/REV04/Documents/AD-TEB0911-04-9BEX1FA.PDF
https://shop.trenz-electronic.de/trenzdownloads/Trenz_Electronic/Motherboards_and_Carriers/TEB0911/REV04/Documents/AD-TEB0911-04-9BEX1FA.PDF
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://shop.trenz-electronic.de/en/TEB0911-04-9BEX1MA-TEB0911-UltraRack-MPSoC-Board-with-AMD-Zynq-UltraScale-ZU9-6-FMC-Connectors?path=Trenz_Electronic/Motherboards_and_Carriers/TEB0911/Reference_Design
https://shop.trenz-electronic.de/en/TEB0911-04-9BEX1MA-TEB0911-UltraRack-MPSoC-Board-with-AMD-Zynq-UltraScale-ZU9-6-FMC-Connectors?path=Trenz_Electronic/Motherboards_and_Carriers/TEB0911/Reference_Design
https://shop.trenz-electronic.de/en/TEB0911-04-9BEX1MA-TEB0911-UltraRack-MPSoC-Board-with-AMD-Zynq-UltraScale-ZU9-6-FMC-Connectors?path=Trenz_Electronic/Motherboards_and_Carriers/TEB0911/Reference_Design
https://docs.xilinx.com/v/u/en-US/ds181_Artix_7_Data_Sheet
https://www.xilinx.com/products/design-tools/vivado/implementation.html#synthesis
https://www.xilinx.com/products/design-tools/vivado/implementation.html#implementation
https://www.xilinx.com/products/design-tools/vivado/implementation.html#implementation
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug903-vivado-using-constraints.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug903-vivado-using-constraints.pdf
https://docs.xilinx.com/viewer/book-attachment/PHwa3sDuk6G_sjX_v9CnHw/4Yl0KRfcZ5H6NcC7s7Ye9g
https://docs.xilinx.com/viewer/book-attachment/PHwa3sDuk6G_sjX_v9CnHw/4Yl0KRfcZ5H6NcC7s7Ye9g
https://www.xilinx.com/products/intellectual-property/ef-di-mipi-csi-rx.html

[51] Xilinx, “Mipi csi-2 transmit subsystem v2.0 product guide.”
https://docs.xilinx.com/v/u/2.0-English/pg260-mipi-csi2-tx, 2019. [Online]. Accessed:
2023-05-18.

[52] Xilinx, “Clocking wizard logicore ip product guide (pg065).” https://docs.xilinx.com/viewer/b
ook-attachment/eBBMExOBcxQAxRvH9B~~uA/FpyRRAcCZJJEmbXGsBhjXQ, 2022. [Online]. Accessed:
2023-05-18.

[53] Xilinx, “Processor system reset module v5.0 product guide (pg164).”
https://docs.xilinx.com/v/u/en-US/pg164-proc-sys-reset, 2015. [Online]. Accessed:
2023-05-18.

[54] Xilinx, “Axi traffic generator v3.0 product guide (pg125).”
https://docs.xilinx.com/v/u/en-US/pg125-axi-traffic-gen, 2019. [Online]. Accessed:
2023-05-18.

[55] Xilinx, “Vivado design suite user: Guide designing with ip.” https:
//www.xilinx.com/support/documents/sw_manuals/xilinx2021_2/ug896-vivado-ip.pdf,
2021. [Online]. Accessed: 2023-05-19.

[56] Xilinx, “Axi interconnect v2.1 logicore ip product guide (pg059).” http:
//users.ece.utexas.edu/~mcdermot/arch/articles/Zynq/pg059-axi-interconnect.pdf,
2016. [Online]. Accessed: 2023-05-18.

[57] Xilinx, “Video test pattern generator v8.0 logicore ip product guide (pg103).”
https://docs.xilinx.com/v/u/8.0-English/pg103-v-tpg, 2019. [Online]. Accessed:
2023-05-18.

[58] Lattice Semiconductor, “Crosslink.”
https://www.latticesemi.com/Products/FPGAandCPLD/CrossLink. [Online]. Accessed:
2023-05-20.

[59] Lattice Semiconductor, “Lattice diamond programmer and deployment tool.”
https://www.latticesemi.com/programmer. [Online]. Accessed: 2023-05-20.

[60] Xilinx, “Zynq ultrascale+ mpsoc processing system v2.0 product guide.” https:
//docs.xilinx.com/v/u/2.0-English/pg201-zynq-ultrascale-plus-processing-system,
2016. [Online]. Accessed: 2023-05-22.

[61] Xilinx Forum, “What ’s the define of the free run clock.” https://support.xilinx.com/s/quest
ion/0D52E00006hpcV8SAI/what-s-the-define-of-the-free-run-clock?language=en_US,
2017. [Online]. Accessed: 2023-05-23.

62

https://docs.xilinx.com/v/u/2.0-English/pg260-mipi-csi2-tx
https://docs.xilinx.com/viewer/book-attachment/eBBMExOBcxQAxRvH9B~~uA/FpyRRAcCZJJEmbXGsBhjXQ
https://docs.xilinx.com/viewer/book-attachment/eBBMExOBcxQAxRvH9B~~uA/FpyRRAcCZJJEmbXGsBhjXQ
https://docs.xilinx.com/v/u/en-US/pg164-proc-sys-reset
https://docs.xilinx.com/v/u/en-US/pg125-axi-traffic-gen
https://www.xilinx.com/support/documents/sw_manuals/xilinx2021_2/ug896-vivado-ip.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2021_2/ug896-vivado-ip.pdf
http://users.ece.utexas.edu/~mcdermot/arch/articles/Zynq/pg059-axi-interconnect.pdf
http://users.ece.utexas.edu/~mcdermot/arch/articles/Zynq/pg059-axi-interconnect.pdf
https://docs.xilinx.com/v/u/8.0-English/pg103-v-tpg
https://www.latticesemi.com/Products/FPGAandCPLD/CrossLink
https://www.latticesemi.com/programmer
https://docs.xilinx.com/v/u/2.0-English/pg201-zynq-ultrascale-plus-processing-system
https://docs.xilinx.com/v/u/2.0-English/pg201-zynq-ultrascale-plus-processing-system
https://support.xilinx.com/s/question/0D52E00006hpcV8SAI/what-s-the-define-of-the-free-run-clock?language=en_US
https://support.xilinx.com/s/question/0D52E00006hpcV8SAI/what-s-the-define-of-the-free-run-clock?language=en_US

	Introduction
	Background
	Overview of the Hardware-in-the-Loop Testing Environment
	Scope of the Project
	Division of the Thesis

	Technical Background and Theory
	Vehicle Communciation Architecture
	FPGA, Microncontroller, and CPLD
	MPSoC
	AMD Vivado Design Suite
	IP Cores and Subsystems
	Communication Protocols and Connections
	AMBA AXI4
	Serial Communication and SerDes
	MIPI CSI-2
	GMSL2

	Image Theory
	Camera Basics
	Bayer Filter
	RAW
	RGB

	Method
	Hardware
	Zynq™ UltraScale+ MPSoC SOM
	FMC connectors
	Input Stage: DP FMC card
	Output Stage: GMSL2 FMC card
	Bridging Input and Output
	SD card vs JTAG

	Software
	Vivado
	MPSoC
	Vitis IDE
	GMSL2 FMC card

	Vivado: Programming an MPSoC
	HDL wrapper
	Synthesis, Implementation, and Constraints
	Bitstream and Hardware Specification
	Vitis IDE and Hardware Manager

	CSI2 Tx Subsystem Specifics
	CSI2 Tx Subsystem Example Design
	Clocking Wizard
	Processor System Reset
	AXI Traffic Generator
	AXI Interconnect
	Video Test Pattern Generator
	AXI4-Stream Subset Converter
	MIPI CSI-2 Rx Subsystem

	Simulation Setup
	Implementing the Software on the Hardware
	TEF0010 Lead Times and Complications
	Migrating the Programming to the MPSoC
	UltraScale+ MPSoC PS in Vivado
	Virtual Input/Output (VIO)
	Integrated Logic Analyzer (ILA)
	VIO and ILA complications
	VIOs and ILAs in Hardware Manager
	Edited CSI2 Tx Subsystem Example Design

	Results and Discussion
	Simulations
	CSI2 Tx Subsystem Example Design

	Hardware Signal Tap
	Edited CSI2 Tx Subsystem Example Design with ATG

	General Discussion

	Conclusion and Future Work
	Appendices
	Block Diagrams
	CSI2 Tx Subsystem Example Design
	Edited CSI2 Tx Subsystem Example Design with ATG
	Edited CSI2 Tx Subsystem Example Design without ATG

	VHDL Code and Wrappers
	Clock Divider for Blinking LED
	CSI2 Tx Example Design Custom Testbench (VHDL)
	CSI2 Tx Subsystem Example Design VHDL Wrapper
	Edited CSI2 Tx Subsystem Example Design VHDL Wrapper

	References

