

Civilingenjörsprogrammet i teknisk fysik

Uppsal a universitets l ogotyp

UPTEC F 23043

Examensarbete 30 hp

Juni 2023

ROS-based implementation of
a model car with a LiDAR and
camera setup

Marcus Nises
Civilingenjörsprogrammet i teknisk fysik

Teknisk-naturvetenskapliga fakulteten

Uppsala universitet, Utgivningsort Uppsala

Handledare: Mats Wiklander Ämnesgranskare: Ping Wu

Examinator: Tomas Nyberg

Uppsal a universitets l ogotyp

ROS-based implementation of a model car with a LiDAR and

camera setup

Marcus Nises

Abstract

The aim of this project is to implement a Radio Controlled (RC) car with a Light Detection and

Ranging (LiDAR) sensor and a stereoscopic camera setup based on the Robot Operating

System (ROS) to conduct Simultaneous Localization and Mapping (SLAM). The LiDAR sensor

used is a 2D LiDAR, RPlidar A1, and the stereoscopic camera setup is made of two monocular

cameras, Raspberry Pi Camera v2. The sensors were mounted on the RC car and connected

using two Raspberry Pi microcomputers. The 2D LiDAR sensor was used for two-dimensional

mapping and the stereo vision from the camera setup for three-dimensional mapping. RC car

movement information, odometry, necessary for SLAM was derived using either the LiDAR data

or the data from the stereoscopic camera setup. Two means of SLAM were implemented both

separately and together for mapping an office space. The SLAM algorithms adopted the Real

Time Appearance Based Mapping (RTAB-map) package in the open-source ROS.

The results of the mapping indicated that the RPlidar A1 was able to provide a precise mapping,

but showed difficulty when mapping in large circular patterns as the odometry drift resulted in

the mismatch of the current mapping with the earlier mapping of the same positions and

secondly in localization when turning quickly. The camera setup derived more information about

surrounding and showed more robust odometry. However, the setup performed poorly for the

mapping of visual loop closures, i.e., the current mapping did not match the earlier mapping of

earlier visited positions.
Teknisk-naturvetenskapliga fakulteten, Uppsala universitet . Utgivningsort U ppsal a. H andl edare: Mats Wikl ander, Ämnesgranskare: Pi ng Wu, Exami nator: Tom as Nyberg

§

Populärvetenskaplig Sammanfattning
Analys av omgivning och miljö används inom ett flertal tekniska områden. Ett av dessa
är inom kartläggning av omgivning vilket kan användas bland annat för automatisk
navigation. Omgivningen kan analyseras med hjälp av sensorer. Sensorer kan ha olika
uppgifter som att bedöma avstånd, att analysera objekt eller se färg. Två populära typer
av sensorer som använts i detta projekt är Light Detection and Ranging (LiDAR) och
kameror.

LiDAR är en ljusbaserad detektions och avståndsmätningsmetod. En LiDAR sensor
mäter distans genom att emmitera ljus i form av en laserpuls från och mäta tiden för
ljuset att reflekteras på ett objekt och färdas tillbaka till en detektor på sensorn. Li-
DAR teknologin används inom kartläggning tack vare dess pålitlighet och precision [1].
LiDAR teknologin finns tillgänglig för både 2D och 3D sensorer. 3D LiDAR används
för att exempelvis kartlägga omgivningen eller större markytor i tre dimensioner. 2D
LiDAR utför distansmätningar i två dimensioner och har användning för bland annat
kartläggning och navigation inomhus. De kan därför användas i exempelvis hjälprobotar
eller robotdammsugare [2].

Kameror används på ett flertal sätt för avkänning, analys och mätning av omvärlden. En
populär användning inom automisering är i Advanced Driver Assistance Systems (ADAS)
på moderna bilar. Kameror är då placerade runtom en bil och pekar i olika riktningar för
olika syften inom bildanalys och distansmätning [3]. I de områden två kameror iaktar
samtidigt från olika perspektiv, ofta på framsidan av bilarna, uppstår en stereoskopisk
effekt och en distanskarta kan beräknas. En vanlig stereoskopisk kamera är konstruerad
genom att två enkla kameror är placerade med en upmätt distans emellan och kopplade
att ta bilder exakt samtidigt. Med två bilder på samma objekt från olika perspektiv kan
objektets position i tre dimensioner beräknas genom att först matcha korresponderande
punkter i de två bilderna och sedan beräkna hur långt punkterna skiljer sig i pixlar [4].

Simultaneous Localisation and Mapping (SLAM) är det beräkningstekniska problemet av
att kartlägga ett område och samtidigt spåra positionen för objektet som utför kartläg-
gningen [5], ofta en robot eller bil. För detta krävs information av omgivningen samt
information om objektets rörelse. Informationen av omgivningen ges av sensorer som
LiDAR eller kameror. Rörelseinformationen kan exempelvis utvinnas genom att spåra
omgivningens rörelse i bilder, från LiDAR data, av en Internal Measurement Unit eller
genom att läsa av hur många varv däcken har snurrat på en bil. Beräkningarna i
grundproblemet är probabilistiska och ett flertal verktyg finns som kan utföra SLAM
beräkningar. Verktyget som används i detta projekt är Real Time Appearance Based
Mapping (RTAB-map).

i

List of Abbreviations
Notation Description
ADAS Advanced Driver Assistance Systems.
IMU Internal Measurement Unit.
LiDAR Light Detection and Ranging.
LTM Long Term Memory.
OS Operating System.
RC Radio Controlled.
RGB Red Green Blue.
RGB-D Red Green Blue Depth.
ROS Robot Operating System.
RP3 Raspberry Pi 3 model b.
RP4 Raspberry Pi 4 model b.
RTAB-map Real Time Appearance Based Mapping.
SDK software development kit.
SLAM Simultaneous Localisation and Mapping.
TF Transform coordinate Frames.
WM Working Memory.

ii

Table of Contents
1 Introduction 1

1.1 Background . 1
1.2 Aim and goals . 2
1.3 Tasks . 2
1.4 Outline . 2

2 Theory 3
2.1 Simultaneous Localisation and Mapping 3
2.2 Robot Operating System . 4
2.3 LiDAR . 5
2.4 Stereo Vision . 6
2.5 Odometry . 7
2.6 Real Time Appearance Based Mapping (RTAB-map) 7

3 Method and Implementation 9
3.1 Overview of the system . 9
3.2 Hardware and Components . 11

3.2.1 Raspberry Pi 4 model b . 12
3.2.2 Raspberry Pi 3 model b . 12
3.2.3 Arduino Uno . 12
3.2.4 RPlidar A1 . 12
3.2.5 Raspberry Pi Camera Module v2 13
3.2.6 RC car . 13
3.2.7 Laptop . 13

3.3 Assembling the robot . 13
3.4 Software and development tools . 14

3.4.1 Ubuntu 20.04 . 15
3.4.2 ROS Noetic . 15
3.4.3 OpenCV . 15

3.5 Software installation and configuration 15
3.5.1 Operating System . 15
3.5.2 ROS . 15
3.5.3 ROS IP connection . 16
3.5.4 Manually controlling the car . 17
3.5.5 Raspberry Pi Cameras . 17
3.5.6 RTAB-map . 18
3.5.7 Stereo Camera setup . 18
3.5.8 Calibration . 19

3.6 The SLAM configuration . 20
3.7 Running the Robot . 21
3.8 Mapping and comparison . 22

4 Results and discussions 23
4.1 Depth vision using cameras . 23
4.2 Mapping of Office Space . 24

4.2.1 First office map . 24

iii

4.2.2 Stereo camera only with stereo camera odometry 25
4.2.3 Stereo camera and LiDAR with stereo camera odometry 26
4.2.4 Stereo camera and LiDAR with LiDAR odometry 27

4.3 Performance . 28
4.4 Challenges . 28
4.5 Possible Improvement . 30

4.5.1 Stereo camera setup . 30
4.5.2 RC-car . 31
4.5.3 RTAB-map configuration . 31
4.5.4 ROS RTAB-map setup . 31

5 Conclusions and further work 33
5.1 Conclusion . 33
5.2 Further work . 33

Appendix 34

References 40

iv

1 Introduction
This degree project aims to perform an implementation of Simultaneous Localisation
and Mapping (SLAM) on an Radio Controlled (RC) car using a 2D Light Detection and
Ranging (LiDAR) sensor and a stereoscopic camera setup consisting of two monocular
camera modules. On a theoretical level and conceptual level the SLAM problem is solved
but difficulties remain in realising general solutions to the SLAM for mobile robots as
the mapping of larger areas with increasingly difficult terrain is performed [5]. A good
implementation of SLAM is often a prerequisite for automation of mobile robots as
autonomous navigation requires accurate knowledge of the surroundings.

1.1 Background

Automation in robotics is a field that may become more prominent in the future. With
applications for autonomous navigation such as in industrial material transfer, vacuum
cleaners, lawnmowers and help robots, the usage of autonomous navigation may increase
in years to come [6]. For a mobile robot to perform autonomous navigation information
about surroundings is required and a means to obtain this is through SLAM.

The SLAM problem is the challenge of placing a mobile robot in an unknown loca-
tion in an unknown environment and for the mobile robot to build an incremental and
consistent map of its surroundings while simultaneously determining its location in that
map [5]. Theoretically there are ways in which SLAM has been solved, but issues re-
main in realising SLAM implementation as no real life scenario is ideal. At the same
time improvements will continue as improvements to hardware allow for more complex
computation making SLAM work in more challenging environments and on larger scale.

Cameras have a multitude of possible applications including object recognition and
analysis. They have been used to great effect in modern cars where Advanced Driver
Assistance Systems employ a set of cameras around a vehicle for different purposes [3]. If
a point is seen from two cameras simultaneously and the position and orientation of the
cameras relative to each other are known, the distance and 3D position of that point can
be calculated. In this thesis, two cameras are placed on a mobile robot and synchronised.
This allows for points that can be recognised by both cameras to be mapped in three
dimensions and used in SLAM.

Light Detection and Ranging (LiDAR) is a sensor type used for measuring distance.
The LiDAR sensor emits a laser beam and measures the time for the laser beam to
reflect on an object and return to a receiver on the sensor. It is commonly used for
high-resolution distance maps, with applications in surveying, geodesy, forestry and
navigation for autonomous cars [7]. The LiDAR sensor used in this theses is a 2D LiDAR
sensor, which in SLAM has great usage in mapping indoor locations.

To perform SLAM for this project, Real Time Appearance Based Mapping (RTAB-
map) was chosen. This was due to its availability in Robot Operating System (ROS) and
as of 2019 being the only ROS SLAM library to provide compatibility with both stereo
camera and LiDAR sensors [8]. This allows for SLAM to be performed by both sensors
individually, as well as simultaneously. Projects using similar sensors have achieved good

1

results using RTAB-map [9]. To perform the SLAM RTAB-map needs information about
surroundings and information about the mobile robot position and movement in relation
to its surroundings.

1.2 Aim and goals

This project aims to implement a RC car with a LiDAR sensor and a stereoscopic camera
setup to conduct SLAM. The goals of the project are that the SLAM is implemented
successfully using the LiDAR and the camera setup so that the car can successfully
perform mapping its surroundings.

1.3 Tasks

The tasks of this thesis are set as follows.

• Implement SLAM using a LiDAR sensor and Camera setup separately.

• Implement SLAM using a LiDAR sensor and Camera setup simultaneously.

• Test, evaluate and compare stereo camera and LiDAR SLAM using odometry
obtained from stereo camera and LiDAR sensor separately.

1.4 Outline

Section 1 provides a short introduction, background and goal for this thesis. Section 2
describes theory behind the SLAM problem, and theory behind sensors and the means
used to implement SLAM. Section 3 presents the method and implementation, including
a system overview, hardware components used, the process of assembling the robot, an
overview of the software used, and the installation process. The results are presented in
chapter 4 and then discussed in chapter 5 in which challenges and possible improvements
are also discussed. Chapter 6 finally reiterates the conclusions drawn from the results
and provides suggestion for further improvement of the work done in this thesis.

2

2 Theory

2.1 Simultaneous Localisation and Mapping

The Simultaneous Localisation and Mapping (SLAM) problem is the idea of placing a
mobile robot in a unknown environment and for it to incrementally build a consistent
map of its surroundings while simultaneously monitoring its position in relation to its
surroundings [5].

Given the quantities.

• xk: State vector describing the location and orientation of the vehicle.

• uk: Control vector, applied at time k − 1 to derive the vehicle to a state xk at time
k.

• mi: Vector describing the location of the ith landmark whose true location is
assumed time invariant.

• zik: An observation taken from the vehicle of the location of the ith landmark at
time k. At a time with multiple relevant landmarks or no specific landmark is
relevant, the quantity is written as zk.

The sets are defined as follows.

• X0:k = {x0, x1, ..., xk} = {X0:k−1, xk}: History of vehicle locations.

• U0:k = {u1, u2, ..., uk} = {U0:k−1, uk}: History of control inputs.

• m = {m1,m2, ...,mn}: Set of all landmarks.

• Z0:k = {z1, z2, ..., zk} = {Z0:k−1, zk}: Set of all landmark observations.

The base Simultaneous Localisation and Mapping (SLAM) problem is a probabilistic
problem and requires that the probability distribution

P (xk,m|Z0:k, U0:k, x0) (2.1)

is computed for all times k. This distribution describes the joint posterior density of
the landmark locations and vehicle location and orientation at time k given the set of
landmark observations, history of control inputs and initial state of the vehicle.

Given an estimation of the distribution P (xk,m|Z0:k, U0:k, x0) at time k−1 the joint poste-
rior density at time k can be computed, with an observation uk and observation zk, using
the Bayes theorem. For this a state transition model and an observation model is required.

The observation model describes probability of making an observation zk, given joint
posterior density xk and landmarks m and is generally describes on the form

P (zk|xk,m) (2.2)

The motion model describes joint posterior at time k xk and is assumed to only require
proceeding joint posterior xk−1 and control vector uk

P (xk|xk−1, uk) (2.3)

3

The standard SLAM algorithm is now implemented as a standard recursive prediction of
time-update and measurement update [5].

Time update:

P (xk,m|Z0:k−1, U0:k, x0) =

∫
P (xk|xk−1, uk)× P (xk−1,m|Z0:k−1, U0:k−1, x0)dxk−1 (2.4)

Measurement update:

P (xk,m|Z0:k, U0:k, x0) =
P (zk|xk,m)P (xk,m|Z0:k−1, U0:k, x0)

P (zk|Z0:k−1, U0:k)
(2.5)

2.2 Robot Operating System

Robot Operating System (ROS) is an open source software development kit (SDK) that
provides building blocks for applications in robotics. A crucial component of ROS is the
message-passing system, allowing interaction between software systems and hardware.
With the ability to build and reuse code, the vast ROS community has standardised
ROS message formats. This includes communicating sensor data , such as LiDAR and
cameras, in standardised formats, as well as communication between software programs.
The ROS ecosystem includes drivers, algorithms and user interfaces as well as tools such
as launch, introspection, debugging, visualisation, plotting, logging and playback [10].
The ROS environment communication is structured using “Nodes”, “Topics”, and “Master”,
as shown in schematics in Figure 2.1.

Figure 2.1: ROS environment schematic. A node “publishes” a message to a topic.
Another node “subscribes” to that same topic. The nodes are registered by the system
master. Created in “draw.io”.

Nodes are executable files within a ROS package that use a ROS client library to commu-
nicate with other nodes. Nodes can publish or subscribe to messages within the ROS
environment, they can also provide or use a Service [11]. Nodes perform actions within a
ROS system, including hardware drivers, algorithms and user interfaces [10].

4

Topics are gatherings of information that Nodes publish or subscribe to. The Topic type
is defined by the message type published to it. All communication between Nodes in a
ROS environment occur using Topics. Multiple Nodes can subscribe to or publish to the
same Topic [12].

Master provides a naming and registration service for the nodes in a system. The
Master tracks publishers and subscribers to topics and services within the ROS system.
This enables Nodes within the system to locate each other and allows for communication
within the system [13].

The Launch tool allows for easily starting and managing multiple nodes simultaneously,
including changing node parameters. This is handled in text files with the .launch
ending. launch files can be run from other launch files or using the terminal command
roslaunch [14].

2.3 LiDAR

Light Detection and Ranging (LiDAR) is based on laser triangulation ranging principle.
A LiDAR sensor consists of an emitter and a receiver as shown in Figure 2.2. The emitter
emits a laser pulse wave. The pulse wave propagates, then reflects on an object which it
meets with and returns to the receiver. The time for the laser pulse wave to travel forth
and back to the LiDAR sensor, ∆t, can be measured with the sensor and the distance to
that object can be calculated using the following equation

d =
1

2n
c∆t (2.6)

where c denotes the speed of light, n the index of refraction for the propagation medium
(n ≈ 1 in air). The result is divided by two as the laser wave has travelled that distance
twice for it to return [15].

Figure 2.2: LiDAR sensor distance measurement using laser emitter and receiver.

5

2.4 Stereo Vision

A stereoscopic camera consists of two or more image sensors, calibrated and capturing
images simultaneously. By capturing an image from two viewpoints, 3D vision and depth
can be extracted. To calculate depth, the system need to examine points and pixels of the
two or more images, determine which pixels correspond to each other, and then compute
3D coordinates using the geometrical relation between cameras obtained by calibration.
The relative 3D coordinates of a recognised point is displayed in Figure 2.3.

Figure 2.3: Ileft and Iright represent left and right image planes respectively. Ol and Or

represents centres of projection. The position of point P = (XP , YP , ZP) is determined
by comparing left and right projections pl and pr in respective image plane.

Calculations for the coordinates of the spatial point P = (XP , YP , ZP) represented in
Figure 2.3, using trigonometry, are as follows.

xl =
XPf

ZP

; xr =
(XP − T)f

ZP

; yl = yr =
YPf

ZP

(2.7)

ZP = f
T

xl − xr

= f
T

d
; XP = xl

T

d
; YP = yl

T

d
(2.8)

The position of point P is calculated using its projections in left and right camera lens pl
and pr, using the known distance T between centres of projection Ol and Or and using
the focal length f of the cameras. Assuming the 3D coordinate frame has origin in left
camera Ol. Disparity d = xl − xr is calculated using the difference distance in amount of
pixels of the points projection in the two lenses [4].

The disparity is inversely proportional to the distance, a point closer to the cameras will
have higher disparity than one far away. An error of one pixel proves far more faulty at
low disparity and a simple stereo system is thus likely to be inaccurate at far distances.
Accuracy is proportionate to image resolution and proportionate to distance between
cameras T [3].

6

2.5 Odometry

Odometry is the use of data from motion sensors to determine the mobile robots position
and change in positioning relative to previous known position. Odometry information
is commonly derived using wheel encoders or an Internal Measurement Unit (IMU).
Odometry can also be derived using sensors such as cameras or LiDAR sensors by
matching the current time step data to that of earlier time steps and match features of
structural motion, thus determining movement [16]. In ROS the odometry information
message contains the mobile robot position and velocity, represented as position with
covariance and twist with covariance [17].

2.6 Real Time Appearance Based Mapping (RTAB-map)

Real Time Appearance Based Mapping (RTAB-map) is an open source SLAM library.
RTAB-map implements loop closure detection with a memory management approach
to satisfy requirements for long term and large size environment mapping. RTAB-map
was created by Mathieu Labbé and Francois Michaud from the University of Quebec
and released in year 2013 as a purely visual based mapping library. RTAB-map grew
to implement graph based SLAM in 2017, and then to implement 2D and 3D LiDAR
compatibility to allow implementation and comparison of a variety of 2D and 3D solutions
for a wide range of applications. RTAB-map was also evolved to a ROS package for further
robotic accessibility and possibility to implement and compare SLAM approaches [8].

The RTAB-map ROS package is named rtabmap_ros with the main node named
rtabmap.

Figure 2.4: Block diagram of rtabmap ROS node structure [8].

The required inputs are one odometry source providing movement and Transform coor-
dinate Frames (TF) information, as well as one sensor source, preferably an RGB-D or
stereo image. It is also possible to work only with a Laser scan and odometry source.
The inputs are synchronised and forwarded to the graph-SLAM algorithm using both
Working Memory (WM) and Long Term Memory (LTM) to match current map features
with existing ones to find loop closures. The final outputs are various mapping Data,
point cloud, occupancy grid, and odometry correction published as TF [8].

Loop closure detection signifies a key feature in real life SLAM. Loop closure detec-
tion is the ability for the mobile robot performing SLAM to detect when the current

7

observations correspond to those of a previously visited location. Such a detection signifies
that the robot is on a previously mapped position and the current position should be
the same as that previous position. The mobile robot movement information can drift
over mapping sessions and thus detecting loop closures and correcting movement drift
can be crucial for obtaining coherent maps. The loop closure detection in RTAB-map is
visual based and not implemented using 2D LiDAR sensor data [8, 18]. An example of
loop closure detection and correction is displayed in Figure 2.5.

Figure 2.5: Example of loop closure detection and correction. The loop closure is detected
at position marked by the red X and the faulty trajectory is corrected to correspond to
the detected position marked by the green X.

8

3 Method and Implementation

3.1 Overview of the system

The SLAM was performed using a remote mapping setup. With the remote mapping
setup, all SLAM computation and visualisation was performed on the laptop. The role
of the RC car with sensors and minicomputers was to gather information about the
surroundings and be controllable from the client.

On the RC car the RP4 was the communication hub and was the only unit communicating
with the laptop. It was connected to the RP3 by Ethernet cable and to Arduino via HDMI
cable. The movement instructions were sent to the Arduino from the RP4. The RP4
powered one camera module and the LiDAR. The RP3 only powered one camera module
and broadcasted that information to the RP4. The Arduino constantly ran one Arduino
ROS program which allows for varied input from the RP4. Movement instructions were
communicated from the laptop to the RP4 and then relayed to the Arduino Uno. The
Arduino Uno controlled the DC motors using analogue output. The schematic for the
RC car hardware is displayed in Figure 3.1.

Figure 3.1: RC car hardware setup. The RP4 runs the left camera module, powers the
RPlidar A1, and relays movement instructions to the Arduino Uno. The RP3 runs the
right camera module and sends this data to the RP4. Created in “draw.io”.

The remote mapping setup with base image synchronisation was implemented by com-
municating all information to and from the RC car via the RP4. On the RP3, the
right camera raspicam node gathered compressed RGB images from the right camera
module. This image stream was sent to the RP4 through Ethernet. The RP4 ran four
ROS nodes. Firstly, the left camera raspicam node gathered compressed RGB images

9

from the left camera module. Then a custom node combined left and right image streams
using a custom ROS message before sending this message to the laptop. This ensured
that the left and right camera images arrived simultaneously to the laptop, satisfying
base image synchronisation. The third node on the RP4 was the rplidar_ros node,
gathering information from the LiDAR sensor and sending this to the laptop. Finally, a
rosserial_arduino node was run, allowing the RP4 to relay movement instructions
from the laptop keyboard to the Arduino Uno. The Arduino Uno continuously ran
a rosserial_arduino node, requesting movement instructions from the RP4 and
converting these to motor DC output. The system setup, with basic ROS overview, can
now be represented by the following Figure 3.2.

Figure 3.2: System setup with basic ROS overview. The RP4 communicates with the
Arduino Uno using an HDMI cable, to the RP3 using an Ethernet cable and to the laptop
via WiFi. Created in “draw.io”.

The motivation for using the remote mapping setup was that the system had to satisfy a
number of requirements on communication and computation. Firstly the ROS computa-
tion on odometry and SLAM proved too costly to continuously run on the RP4. Thus the
bulk of the computation was chosen to be processed on a laptop connected to the RP4
by WiFi. This ROS setup was based on Labbé remote mapping work and is visualised by
Figure 3.3 [20]. In this thesis, the RGB-D was exchanged to a compressed stereo image
message and an external odometry source was not used as odometry was derived from
stereo images or laser scan.

10

Figure 3.3: Remote mapping with RTAB-map [20].

3.2 Hardware and Components

The following list are the key components of the project.

• Raspberry Pi 4 model b

• Raspberry Pi 3 model b

• Arduino Uno

• Arduino Sensor Shield v5.0

• L298N Motor Driver Board

• RPlidar A1

• Raspberry Pi Camera Module 2, 2x

• RC car (basic components, such as wheels, battery, DC motor)

• Powerbank, 18W 10000mAh

• Cables (USB:s, HDMI, power cables, electrical wires)

• Laptop

11

3.2.1 Raspberry Pi 4 model b

One of the minicomputers used is a Raspberry Pi 4 model b (RP4) with a 64 GB SD card
for memory. Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz processor, RAM
memory of 4 GB, two USB 3.0 and two USB 2.0 ports, USB-C Power Supply, two Micro
HDMI ports and CSI camera port [21].

3.2.2 Raspberry Pi 3 model b

The second minicomputer used is a Raspberry Pi 3 model b (RP3) with a 64 GB SD card
for memory. Quad Core 1.2GHz Broadcom BCM2837 64bit CPU, 1GB RAM, BCM43438
wireless LAN and Bluetooth Low Energy (BLE) on board, 100 Base Ethernet, 40-pin
extended GPIO, 4 USB 2.0 ports, 4 Pole stereo output and composite video port, Full
size HDMI, CSI camera port [22].

3.2.3 Arduino Uno

Arduino Uno is a microcontroller board based on the ATmega328P. It has 14 digital
input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz
ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP
header and a reset button [23].

3.2.4 RPlidar A1

In this thesis the LiDAR sensor used was an RPlidar A1. The RPlidar A1 performs a 2D
360 degree scan in the plane it is mounted. The sensor consists of a range scanner system
mounted in the dome like shape on its top, a motor system spinning the top dome in 360
degrees, and a customizable platform allowing mounting by screws. The top dome, with
emitter and receiver, spins at a frequency of 5.5 Hz and collects approximate 2000 data
point per second, this equates to approximately one point at every degree. The distance
range is 0.15-6 m and the resolution error less than 1% of the distance. The sensor can be
connected with USB cable [24]. A top view of the RPlidar A1 is displayed in Figure 3.4.

Figure 3.4: RPlidar A1 from top view

12

3.2.5 Raspberry Pi Camera Module v2

The Raspberry Pi Camera Module 2 is a camera module for Raspberry Pi with a
Sony IMX219 8-megapixel image sensor. Capable of 3290x2464p images or 1080p 30fps
video [25].

3.2.6 RC car

The RC Car based on the Playknowlogy car frame from Kjell & Company. It contained
two DC motors, an Arduino Uno and a L298 Motor driver [26].

3.2.7 Laptop

The Laptop used to perform computation and visualization is a Lenovo ideapad 720S-
14IKB. It has an Intel i7-8550U 1.80GHz processor and 8GB RAM.

3.3 Assembling the robot

The Playknowlogy RC car was assembled according to contained instructions. The car
frame with motors was mounted and the Arduino was connected to the L298 motor driver.
Holes were drilled in the top layer allowing for the RP3 to be mounted. A taller frame of
10cm was 3D printed and mounted on top of this base frame. This taller frame contained
holes for the RP4, a pocket for the powerbank, holes to mount the RPlidar A1 and two
slots for the Raspberry Pi camera modules.

13

(a) Car from front (b) Car from side

Figure 3.5: Pictures of RC car. Left image marks the camera modules, LiDAR and
powerbank. Right image marks the location of RP3, RP4 and Arduino.

The LiDAR was mounted on top of the car to allow for full 360 degree range. The camera
modules were mounted 13 cm apart by each side and 24 cm above ground. On the middle
layer the RP3 and the Arduino Uno were placed. The bottom layer contained the L298
motor driver and an external battery pack for the motors. This resulted in the base
connections of the hardware as shown in Figure 3.1.

3.4 Software and development tools

The following software and packages were used in the project.

• Ubuntu 20.04 server 64 bit (installed on both Raspberry Pi:s)

• ROS Noetic

• rplidar_ros, ROS library

• rosserial_arduino, ROS library

• raspicam_node, ROS library

• rtabmap_ros, ROS library

• Rviz, 3D visualization program for ROS

• OpenCV, Open source computer vision library

14

3.4.1 Ubuntu 20.04

The Operating System (OS) used on the RP4, RP3 and laptop was Ubuntu 20.04 server.
This was chosen due to being a lightweight OS compatible with all required software and
with a large knowledge pool

3.4.2 ROS Noetic

The ROS version “Noetic Ninjemys” was used on all units on this project. It is the latest
version of ROS 1, with lots of documentation. It fulfills all requirements to operate
RTAB-map for the purposes of this project.

3.4.3 OpenCV

Open Source Computer Vision Library (OpenCV) is an open source computer vision and
machine learning library. The library contains both classic and state of the art computer
vision and machine learning algorithms and is used by a multitude of established companies
such as Google and Microsoft. Leaning mostly towards real-time vision applications it
is a good fit for use in robotics and is supported in ROS as well as used for most ROS
computer vision applications [19].

3.5 Software installation and configuration

3.5.1 Operating System

The chosen OS for the Raspberry Pi:s was Ubuntu Server 20.04. This OS is lightweight
and compatible with the latest ROS 1 version ROS Noetic. The OS was installed following
the Ubuntu tutorial “How to install Ubuntu Server on your Raspberry Pi” [27] and using
the “Raspberry Pi Imager for Ubuntu” to flash the Ubuntu Server 20.04 64 bit OS to
a 64GB microSD card. Initial WiFi configuration was created using the Raspberry Pi
Imager Advanced Options, automatically connecting to same WiFi as laptop on boot and
allowing for a headless setup using ssh Linux command from laptop. This was flashed
to the microSD card which was then slotted into the Raspberry Pi and booted. After
boot and login, the packages was updated to the latest version and the unit was rebooted
using terminal commands.
$ sudo apt update
$ sudo apt upgrade
$ sudo reboot now

This concluded the initial Ubuntu Server installation.

3.5.2 ROS

On all units ROS Noetic was installed using the ROS wiki installation "Ubuntu install
of ROS Noetic" [28]. On the laptop the ros noetic Desktop-Full version was installed,
containing various extra packages. On the the Raspberry Pi:s the ros noetic ROS-Base
was installed, containing base packaging, build and communication.

After installation the environment was setup by sourcing the ROS setup file in the
.bashrc file, making sure the script was sourced in every terminal.

15

$ echo "source␣/opt/ros/noetic/setup.bash" >> ~/. bashrc
$ source ~/. bashrc

To create and build custom ROS packages, necessary packages were installed and the
rosdep package was initialised.
$ sudo apt install python3 -rosdep python3 -rosinstall python3 -

rosinstall -generator python3 -wstool build -essential
$ sudo rosdep init
$ rosdep update

Now ROS Noetic was fully installed and initialised. A workspace was now created in the
home directory and sourced.
$ mkdir -p ~/ catkin_ws/src
$ cd ~/ catkin_ws
$ catkin_make
$ source devel/setup.bash
$ echo "source␣~/ catkin_ws/devel/setup.bash" >> ~/. bashrc

Packages could now be created and used within this workspace.

For this thesis, the custom package containing all custom programs and launch files was
named “stereo_formatting” and can be found on the thesis GitHub page referred to in
Appendix 5.2.

3.5.3 ROS IP connection

For information to be communicated correctly between units in ROS the RP4 and laptop
needs to communicate over WiFi and the RP4 and RP3 needs to communicate over
Ethernet. Static WiFi IP address was set on the laptop by using the regular WiFi settings,
the laptop was assigned WiFi IP 192.168.1.120. On the RP3 and RP4 static IP addresses
were configured by editing system files. The RP4 was assigned WiFi IP 192.168.1.121
and Ethernet IP 10.0.0.1. The RP3 was assigned Ethernet IP 10.0.0.2 and WiFi IP
192.168.1.122. The RP3 WiFi was not used in ROS, only using ssh from laptop.

For ROS to recognise units in the system and correctly transfer information, the
IP addresses had to be specified in ROS. This was done using the three parameters
ROS_MASTER_IP, ROS_HOSTNAME and ROS_IP. These parameters had to be set
in every terminal to prevent ROS from using the local unit as master. The parameters
were added to the .bashrc file for simplicity. ROS_MASTER_IP specifies the master
in the system, in this case it was the RP4 with IP 192.168.1.121. ROS_HOSTNAME
declares the address of nodes run on that unit. The full ROS IP setup is displayed in
Table 3.1.

Table 3.1: Unit IP addresses, and corresponding ROS configuration IP addresses.

Unit IP Adress ROS_IP ROS_HOSTNAME ROS_MASTER_IP
RP4 192.168.1.121, 10.0.0.1 192.168.1.121 192.168.1.121 192.168.1.121
RP3 10.0.0.2 10.0.0.2 10.0.0.2 10.0.0.1

laptop 192.168.1.120 192.168.1.120 192.168.1.120 192.168.1.121

Finally, the IP addresses of all units were added to each unit /etc/hosts file. This
allowed for the ROS messages to be trusted and transferred correctly.

16

3.5.4 Manually controlling the car

The motors of the car were controlled from the Arduino which in turn was controlled from
the RP4 in accordance with Figure 3.1. To manually control the car the rosserial_arduino
library was installed as described in ROS wiki [29]. Binaries were installed on RP4 using
terminal commands
$ sudo apt -get install ros -noetic -rosserial -arduino
$ sudo apt -get install ros -noetic -rosserial

A C++ program for controlling the car named was written in a package within the ROS
project workspace. The script is named “varied_control.cpp” 5.2 and works as follows.

The packages ros.h, geometry_msgs/Twist.h and Arduino.h were included. The topic
message controlling the car to be sent from the laptop is on the ROS “Twist” form,
enabling car control from the keyboard. Variables were declared specifying motor output
pins and for later use. Functions were declared.

The void setup() function runs once to initialize the Arduino pins as outputs and
setting 0 current to start with motors idle. The node is initialized as a subscriber.

The void loop() function waits for a new message from the topic “turtle1/cmd_vel”,
before entering the void drive() function.

The void drive() function reads values from the message and calls to either the
void accelerate() or void turn() function. The message will display one of the
values x = 2, x = −2, z = 2, z = −2 and this value is passed along. The laptop keyboard
input corresponds as the following. x = 2 is forward arrow, x = −2 is backwards arrow,
z = 2 is right arrow and z = −2 is left arrow.

The void accelerate() and void turn() functions changes right and left speed
variable values depending on the direction passed along in the argument. They then
finally call to the void drive() function which writes analogue values to motors.
The maximum value to write is 28 − 1 = 255. This C++ program can be found in the
Appendix 5.2.

3.5.5 Raspberry Pi Cameras

To use the Raspberry Pi camera modules in ROS, the Raspberry Pi:s first had to be
configured. Since the OS used was Ubuntu server 64 bit using ARM64 architecture and
not the Raspbian OS, the cameras did not work by default. To enable compatibility
with the ARM64 OS, advice from the ROS discourse thread “Raspicam_node on ARM64
Raspberry pi” by user “anfederman” was used [30]. After basic install and network
configuration of the OS, the following configuration was performed to enable Raspberry
Pi camera compatibility.

Camera support libraries were installed using terminal command:
$ sudo apt install libraspberrypi -bin libraspberrypi -dev

/boot/firmware/config.txt file was opened using terminal command
$ sudo nano /boot/firmware/config.txt

The two following lines were added

17

start_x =1
gpu_mem =128

Camera was tested by capturing an image as test.jpg
$ raspistill -o test.jpg

To use in ROS the source version of the node named “raspicam_node” from Ubiquity
Robotics was installed using instructions in the official Github page [31].

The node was run using a copy of a launch file included in the raspicam_node package,
with base settings changed to disable exposure mode, using a 640× 480 resolution with
10Hz frame rate and a shutter speed of 7000µs = 0.007s.
<param name="width" value ="640"/ >
<param name=" height" value ="480"/ >

<param name=" exposure_mode" value="off"/>
<param name=" framerate" value ="10"/ >
<param name=" shutter_speed" value ="7000"/ >

3.5.6 RTAB-map

The RTAB-map ROS package was built on the laptop by installing ROS binaries according
to the RTAB-map ROS GitHub page [32]. RTAB-map was used on the laptop. The
RTAB-map binary install included launch files used to start the processes. For this
project the custom launch file test.launch was used.

3.5.7 Stereo Camera setup

The RP4 was set as the ROS master unit and was connected to the RP3 using an Ethernet
cable. Static Ethernet IP addresses was configured on both Raspberry Pi units, displayed
in Table 3.1. The IP addresses were configured to allow for WiFi connection between
laptop and RP4, and Ethernet connection between RP3 and RP4.

A custom message containing left and right camera info and compressed images was
created. On the RP4 a ROS node was written collecting the information and packing as
this custom message before publishing that custom message. In this stage all message
header times were set to the RP4 message time. This was done to trick RTAB-map that
the images were fully synchronised as well as being able to disregard wrong system time
on the RP3, note that this setup is not optimal. The C++ program for this node was
named synchronizer.cpp and can be found in the Project GitHub. On the laptop a
corresponding script was created, unpacking that information and converting to was data
using OpenCV in ROS before publishing using ROS image_transport. The C++ pro-
gram for that node was named unpack.cpp and can be found in the Project GitHub 5.2.

The resulting image data flowchart is displayed in Figure 3.6.

18

Figure 3.6: Image data flowchart. RP3 sends the right camera compressed RGB image
stream over Ethernet to the RP4. The RP4 packages this message with the left camera
compressed RGB image stream and sends to the laptop as one message. The Laptop
unpacks and converts to raw RGB images. Created in “draw.io”.

3.5.8 Calibration

After stereo implementation the camera was calibrated using the ROS camera_calibration
package with the stereo calibration option. After synchronised raw images were sent
from the RP4 and unpacked on the laptop, the following command was run in a laptop
terminal.
$ rosrun camera_calibration cameracalibrator.py --size 6x8 --

square 0.073 right :=/ stereo/right/image_raw left :=/ stereo/
left/image_raw right_camera :=/ stereo/right left_camera :=/
stereo/left --no-service -check

This program calibrates the images based on different orientations and angles of the
easy to find square edges of the chessboard pattern. This gave proper calibration files
including distance between cameras. Using those calibration files the depth could be
recognized in the images.

(a) Left camera calibration image (b) Right camera calibration image

Figure 3.7: One of many left and right image pairs used in calibration of stereo cameras.

19

3.6 The SLAM configuration
The SLAM computation and visualisation, performed on the laptop, was launched using
the launch file test.launch which can be found in the thesis GitHub page or in the
Appendix. This launch file was created based on launch files from the RTAB-map “Setup
RTAB-Map on Your Robot!” page [33]. The most important parts of the launch file are
explained in text.
<launch >

<include file="$(find␣stereo_formatting)/launch/laptop.launch"
/>

<node name="scan_sync" pkg="stereo_formatting" type="scan_sync
" />

The <launch> line signifies the start of the launch file. Another laptop launch file lap-
top.launch containing the node for unpacking the compressed stereo image message is
called. The scan_sync node is started. This node sets the RPlidar A1 scan data time
to the laptop system time, negating the often non synchronised system clock on the RP4.

Basic arguments and frame names are set. Essential TF between system coordinate
frames are communicated using static_transform_publisher nodes. The argu-
ment "hector_odom" default="false" is set as true if LiDAR odometry is to be
used instead of camera odometry for the session.
<group ns="/stereo" >

<node pkg="stereo_image_proc" type="stereo_image_proc"
name="stereo_image_proc"/>

<!-- Odometry -->
<node if="$(arg␣hector_odom)" pkg="hector_mapping" type="

hector_mapping" name="hector_mapping" output="screen">

The stereo_image_proc node, subscribing to the rectified left and right image data
and converting these stereo images to depth, is started. If LiDAR odometry is used for
the session, the hector_mapping node is started.

<node unless="$(arg␣hector_odom)" pkg="rtabmap_odom" type=
"stereo_odometry" name="stereo_odometry" output="screen
">

If instead stereo camera odometry is used, the stereo_odometry node from the
rtabmap_odom package is started.
<node pkg="rtabmap_sync" type="stereo_sync" name="stereo_sync"

output="screen">

The stereo_sync node from the rtabmap_sync package is started for synchronising
the left and right image to an RGB-D message.
<group ns="rtabmap">

<node name="rtabmap" pkg="rtabmap_slam" type="rtabmap"
output="screen" args="--delete_db_on_start">

The SLAM computations are performed using the rtabmap node from the rtabmap_slam
package. Arguments within the node are set for subscribing to the correct topics and
parameters for the specific SLAM setup are set.

<node if="$(arg␣rviz)" pkg="rviz" type="rviz" name="rviz"
args="-d␣$(find␣stereo_formatting)/config/setuprviz.rviz"
output="screen" launch -prefix="bash␣-c␣'sleep␣20;␣$0␣$@'

"/>

20

</group>
</launch >

Finally, the general purpose ROS user interface “Rviz” is started using the custom
setup setup.rviz file and starting the rviz node. The launch file is then ended by
</launch>.

3.7 Running the Robot

The robot SLAM setup was ran by performing the following steps. In the Appendix, the
ROS workspaces for the project can be found with all the configuration and launch files
5.2. After connecting to the RP3 and RP4 from the laptop using ssh and confirming
network connection proper, the following commands were run.

1. These commands were run on the RP4:

(i) roscore

(ii) roslaunch stereo_formatting stereo.launch

2. This command was run on the RP3:

(i) roslaunch raspicam_node custom.launch

3. These commands were run on the laptop:

(i) roslaunch stereo_formatting test.launch

(ii) rosrun turtlesim turtle_teleop_key

4. Robot was placed in corridor of office space.

5. Robot was placed on the left hand side of the office and driven manually in a
circular motion around the office space. The approximate office space layout and
path is displayed in Figure 3.8.

21

(a) Sketch of office layout. The yellow box
shows the main area that was mapped.

(b) Sketch of office layout. The red X shows
where mobile robot was initially placed. Green
line the trajectory.

Figure 3.8: Sketch of office layout, black lines marks walls and shelves, red areas marks
tables and chairs. Left image displays main mapped area. Right image displays initial
robot position and path.

3.8 Mapping and comparison

The SLAM problem, as described in Section 2.1, is theoretically solved [5]. However,
in practise, that is not the case since conditions and data are not ideal. Most realised
SLAM setups require two main sensor data components.

1. Sensor data of surroundings

2. Odometry

This corresponds to the remote mapping setup in Figure 3.3.

In this thesis, the sensor data was derived from the stereo camera setup and RPli-
dar A1 both separately and together. The choice of using either sensor or both at once
was made using the parameters in the test.launch launch file as described in Section
3.6.

Odometry, as described in Section 2.5, was derived using data from one of the two
sensor types, stereo camera and 2D LiDAR. The choice of the sensor from which to derive
odometry, and switching between the two options, was performed in the test.launch
launch file.

22

4 Results and discussions

4.1 Depth vision using cameras

The image displayed in Figure 4.1 is a captured screenshot of a live stereo image disparity
feed. It was obtained using the stereo_image_proc ROS package with the stereo_view
node. After stereo images were calibrated and the rectified stereo pair was published on
the laptop, the following command was run in a laptop Linux terminal.
$ rosrun image_view stereo_view stereo :=/ stereo image:=

image_rect_color

Figure 4.1: Initial disparity Image, with three people in image.

The calibrated Stereo Camera setup is able to see depth in an image, as shown in Figure
4.1. This shows a frame of the continuous disparity map. In the color gradient, red
represents the objects closes to cameras and purple represents furthest away. The colors
in between from closest to furthest are yellow, green, light blue, dark blue. Grey areas
show parts where depth fails to be computed. This can occur due to distance being either
too far away, too close to cameras, or due to the object being difficult to detect. The
setup used is able to compute a depth map based on the position of pixels relative to the
cameras, although accuracy is not measured. This proves the setup can in some way be
used in SLAM.

23

4.2 Mapping of Office Space

4.2.1 First office map

This is the first SLAM session, using only the stereo camera setup with odometry from
stereo cameras. This session used the custom ROS launch file brtabmap.launch.

Figure 4.2: First office map using only the stereo camera setup. Image is a screenshot
from Rviz.

The car started on left side at the green trajectory line and lost location at end of the
green trajectory line on right side of image. At this point SLAM was not locked to three
degrees of freedom and position drifts downwards throughout the mapping. This is sub
optimal when mapping in a single plane.

Although the desks along the hallways are visible, they are grainy which negatively
affects the system ability to preform loop closure detection.

The camera odometry is able to track the car during turns and loses position first
when the car approached the open area displayed at bottom of office seen in sketch Figure
3.8. With a 640× 480p resolution the setup looses accuracy quickly with distance and
seems to struggle with vision when objects are further away than approximately 4 meters.

It can be seen that along robot path small pixels appear seemingly in the air. This noise
could be due to multiple factors such as poor stereo camera calibration, poor synchroni-
sation, robot instability, or poor camera quality. They could possibly be removed using
another RTAB-map configuration.

24

4.2.2 Stereo camera only with stereo camera odometry

This SLAM session was performed using only the stereo camera setup with odometry
from stereo cameras. Mapping was locked to one plane of mapping and not driven to
larger open area. The image was captured from top view. The car was driven from the
bottom left position in a circle around the office, then driven through office isles. This
session used the custom ROS launch file test.launch.

Figure 4.3: Improved Office map using the stereo camera setup only. Image is a screenshot
from Rviz.

The odometry is seemingly sturdy but performing the loop closure when coming back to
the bottom left corner fails. After this the car was driven between the halls among the
tables but as loop closure failed the cumulative odometry drift caused the map to lose
coherency. Still, the office layout for the hallways somewhat correspond to that of Figure
3.8.

25

4.2.3 Stereo camera and LiDAR with stereo camera odometry

This SLAM session was performed using both the LiDAR and the stereo camera setup
with odometry from stereo cameras. Mapping was locked to one plane of mapping and
not driven to larger open area. The car was driven from the trajectory line at top left
of image and run was ended at bottom left side of image. This session used the custom
ROS launch file test.launch with argument hector_odom = "true".

Figure 4.4: Office map with LiDAR and the stereo camera setup using stereo camera
odometry. Image is a screenshot from Rviz.

This setup used the obstacle grid marked black in the image in Figure 4.4 from the LiDAR.
The role of the stereo cameras was to compute odometry and attempt to perform loop
closures. The LiDAR maps efficiently and accurately and a large room map is realised
from a far shorter run than that in Figure 4.3. Some issues appear due to limitations
of 2D light based sensor, chairs and tables seen in the centre row in Figure 4.4 are only
recognized as dots.

In this run the map displays great likeness to the office layout shown in Figure 3.8.
However, the odometry drifts as the robot mapped the room and the run was ended as it
failed to close the loop to adjust for the odometry drift. The inability to perform loop
closure shows the camera setup used to be too poor to perform reliable mapping. The
color pixels in the image display area mapped from cameras but the performance is not
good enough to detect individual objects and perform loop closures.

26

4.2.4 Stereo camera and LiDAR with LiDAR odometry

This SLAM session was performed using both the LiDAR and the stereo camera setup
with odometry from LiDAR using RTAB-map implementation. Odometry was lost when
turning and no full room map was achieved.

Figure 4.5: Failed office map with LiDAR and the stereo camera setup using LiDAR
odometry. Image is a screenshot from Rviz.

The result using LiDAR odometry only was similar to that of Figure 4.5. No full map
was achieved as odometry was lost.

The poor odometry, especially when turning, could be due to the car itself combined
with this specific LiDAR sensor. This car with sensors mounted was too heavy for the
simple motors, and caused them to struggle. This caused the car to struggle turning
slowly and often turned to quick as was the case in Figure 4.5. A quick angular rotation,
combined with the 5.5Hz rotation speed in the RPlidar A1, could cause odometry issues
if the surrounding distance points differ too much one frame to another.

Another theory as to why this was the case would be a sub par odometry implementation

27

for this project. The ROS odometry message includes position covariance, denoting
uncertainty which should increase when data changes quickly, for example when turning
quickly. The odometry implementation for this project used static covariance, possibly
causing poor odometry when turning.

4.3 Performance

The results displayed in Figures 4.3, 4.4 and 4.5 show that an office type environment
could to some capacity be mapped using this setup. The types of sensors also display
different strengths and weaknesses.

The movement and positioning information (odometry) derived from the cameras seemed
more sturdy than that of the LiDAR. The camera odometry based mapping sessions
managed to map the entire room and only lost position when placed in a large empty
area at the bottom of the office not displayed in figures. However, the odometry drifted
over the mapping session and this camera setup proved unable to perform large loop
closures that are otherwise essential to the RTAB-map SLAM method [9]. The inability
to perform loop closures could also be due to the difficulty of finding individual elements
in an office environment with many repeating features and objects.

Comparing Figure 4.3 to Figure 4.4 suggests that the LiDAR is able to provide a
more precise and further reaching data than that of the cameras. It is also able to map
in 360 degree field and thus has no dependency of robot orientation, contrary to the
cameras which are only able to see in a limited field forwards.

These results suggest a good mapping setup to be a combination of these two sen-
sor types, perhaps with some added improvements. The LiDAR provides a precise
occupancy grid but is prone to odometry drift as in Figure 4.5 and cannot relocate if
drift is severe. It is non dependant on robot orientation and the LiDAR data is low size
and fast to compute. RDB-D and Stereo camera setups has in many cases proved able to
provide loop closures achieving great results of SLAM [8,9]. The data of images is large
in size, even on compressed form, and are more costly to compute than the 2D LiDAR
data. They are also dependant of orientation and 360 degree mapping will be hard to
achieve if robot does not turn around in place often or if a 360 degree panoramic camera
is not used as achieved in 2005 [34].

4.4 Challenges

The greatest challenge of this project was configuring the stereo camera setup made of
two low cost camera modules and the Raspberry Pi:s. It was shown that it is possible
to achieve stereo capabilities from even a setup as inexpensive as the one used but the
quality is ultimately sub par and purchasing a readily available stereo camera or RGB-D
camera is advised.

With the two cameras forced to be mounted on the RP3 and RP4 respectively the
problem of synchronising the image streams became apparent. At first both streamed
separately to the laptop and showed asynchronous behaviour due to the difference in
transfer speed over WiFi. The RP3 image stream was slower due to its 2.4 GHz WiFi in

28

comparison to the 5 GHz WiFi from the RP4. To solve this the image from the RP3
was transferred to the RP4 via Ethernet by using static Ethernet IP:s and allowing both
Ethernet and WiFi to be used on the master unit RP4.

Simply relaying the image streams by the RP4 did not fix the full synchronisation
problem as the image streams over WiFi was still separate, and prone to asynchronous
behaviour if WiFi was unstable. Some alternatives using ROS synchronisation libraries
was considered, but the working solution was implemented using a custom message as
shown in the method.

Another challenge was the transfer and computation of data. A mapping setup will benefit
greatly from performing the computation on the mobile robot. This was attempted but
the RP4 risked overheating and computed too slowly when performing computation of
the images, and was instead used to relay data to the laptop. This caused difficulty as
the amount of data able to be transferred was limited by the transfer speed from the RP4
WiFi and limited by the WiFi used to connect units. The initial WiFi used fluctuated
greatly and traffic was relayed to a WiFi router separate from other traffic. This setup
allowed a stable transfer of two compressed images of 640× 480 pixels resolution at 12Hz
and was limited to 10Hz for stability. This proved sufficient for camera odometry but
higher resolution could have improved results greatly.

The camera modules used, Raspberry Pi Camera Module v2, while good in specifi-
cations, proved hard to configure for SLAM. The base settings in the launch file had
anti shake enabled and had no limit on shutter speed. This caused data to be blurred
when moving or mainly rotating the car. This was changed as shown in section 3.5, to
no anti shake and shutter speed at 7000µs. This shutter speed was chosen as it allowed
enough time for a good image, but not enough to risk much motion blur. A shutter speed
comparison is shown in Figures 4.6 and 4.7.

Figure 4.6: Images of moving hand. Left image displaying motion blur with shut-
ter_speed = 7000, right image displaying motion blur with shutter_speed =
3000.

29

No motion blur is apparent in any of the two images but image quality and colors is
better in case of shutter_speed = 7000.

Figure 4.7: Images of moving hand. Left image displaying motion blur with shut-
ter_speed = 7000, right image displaying motion blur with shutter_speed=0
(no limit).

No difference in image quality and colors is apparent in any of the two images but motion
blur is large in image with no limit on shutter speed shutter_speed = 0. This change
greatly improved the stereo camera odometry as images were more clear when turning
the car.

4.5 Possible Improvement

To this project there are lots of possible improvements as the results could have been
much better. These include improvements on the RC car, improvements on the stereo
camera setup and improvements on the ROS and RTAB-map configuration.

4.5.1 Stereo camera setup

Despite actions taken to synchronise the cameras, the cameras are not fully synchronised
by hardware. At 10 Hz frame rate the difference in time between images that are counted
as synchronised in time can differ up to 1

10∗2 = 0.05s in time. With slow moving cameras
and with still background this would not equate to much error in distance and was
deemed sufficient for this project but could contribute to error in distance or difficulty
with odometry especially when turning the car. With a faster moving camera setup on for
example a drone a possible error of this size could prove detrimental to performance. One
way to improve upon this which was attempted would be to wire a GPIO pin and ground
between the RP4 and RP3 and triggering the RP3 image capture from the RP4 by pulsing
a digital signal to that GPIO pin. This would still not be equal to the synchronisation of
commercial stereo cameras where capture is performed simultaneously across multiple
cameras, but could improve results of this project.

30

4.5.2 RC-car

The base frame, motors and wheels for the RC car used in this project was the Kjell &
Company “Playknowlogy” [26]. This is a very low cost car which leads to it being low
performance and is not meant for automatic control and purposes with higher mechanical
demand. Adding weight by mounting the RP3, RP4, LiDAR and powerbank made the
frame and wheel axis sag and caused the car to be difficult to control. For example it
would often turn not at all or far to fast applying the same voltage to the motors. It
would also wobble greatly when driving which affected image data greatly and provided a
poor basis for image processing in the rest of the project and measurements. The LiDAR
performance is less affected by this as the distance in the planar field does not differ much
when wobbling but the camera performance is greatly affected since pixel position in 3D
differs more with this instability. This issue could have been improved and provided a
better basis for the project by mounting the sensors on an RC car capable of the added
weight and more easily controllable.

4.5.3 RTAB-map configuration

ROS and RTAB-map contains a multitude of configuration options and parameters that
could be changed and used. In this project the conditions for the stereo camera setup
SLAM was too poor for parameter tuning to be efficient. The parameters used was set
in the launch file and largely based on default parameters from the RTAB-map ROS
page [33]. The following two parameters made the greatest improvement on SLAM for
this project.

1. reg3dof = true

2. Kp/RoiRatios = 0.03 0.03 0.03 0.3

The first parameter locked the robot movement to one plane and not allowing movement
in height. This is suitable if robot only moved on one floor, as advised by Labbé [35].
The second parameter allowed RTAB-map to perform computation on only the upper
70% of the images. This prevented RTAB-map from making loop closures and drawing
conclusion based on the repeating floor pattern of the office. This was used to great
efficiency by the winners of the IROS 2014 Kinect Challenge [9].

Effects of other parameters that were not explored in this project include changing
the visual SLAM approach and changing demands on mapping resolution.

4.5.4 ROS RTAB-map setup

Performing SLAM computation for images, or image computation in general, is costly.
At the same time it is advised to to perform the calculations on the mobile robot and
only use other units for data visualisation. Such a setup allows for better versatility and
essentially no demands on WiFi transfer rate and WiFi stability. It would require greater
computation power on the robot than the RP4 can provide. A ROS RTAB-map setup
for computation on the robot using remote visualisation is displayed in Figure 4.8 and is
more similar to setups used in other SLAM projects [8].

31

Figure 4.8: Remote visualisation with RTAB-map [33].

In this project the images were transferred from the RP4 to the laptop in a message
containing compressed left image, compressed right image, left camera info and right
camera info. A better setup could be to transform the stereo images to a compressed
Red Green Blue Depth (RGB-D) image before sending to the laptop for computation.
This could be done using the stereo_sync node from the rtabmap_sync package [36].
An RGB-D message is smaller than two RGB messages and would allow for higher frame
rate or resolution allowing for better visual SLAM.

32

5 Conclusions and further work

5.1 Conclusion

This thesis has shown it is possible to perform SLAM given a 2D LiDAR and using two
monocular cameras as a stereo camera both individually and in tandem.

The 2D LiDAR provided good mapping data regardless of robot orientation but was
prone to odometry issues. The camera setup used provided sturdy odometry but did
not give sufficient mapping data for loop closures in the difficult office environment. A
combination of the two sensor types LiDAR and cameras can complement each other
and has potential to provide good maps using SLAM.

5.2 Further work

For this thesis lots of further work is possible. Firstly the RC car used gave poor condi-
tions for the camera to be sure of pixel positioning, and at points turned to quickly for
the LiDAR odometry calculations. A better car frame, perhaps based on a more sturdy
RC car could benefit the results greatly.

Secondly the camera modules used are sub optimal for SLAM implementation and
after much work and configuration still proved insufficient to perform loop closure detec-
tion in SLAM. Using instead an RGB-D camera or commercial stereo camera could get
better data and provide improved results.

Thirdly the RTAB-map is a complicated but seemingly good SLAM approach pro-
viding a great amount of different options for SLAM. The options explored in this project
are but scratching the surface and improved parameter values and options could make a
big impact.

Finally being forced to perform computation remotely on the laptop is sub optimal.
Using a more powerful system for computation on the robot and only visualising remotely
could allow the robot to operate regardless of WiFi speed, improving stability.

33

Appendix
Code used for this work can be found in GitHub repository https://github.com/Nises/
SLAM_Exjobb/tree/master/catkin_ws.
Note that the two GitHub repositories “hector_slam” and “rtabmap_ros” are included
but not accessible. These repositories has to be accessed separately.

Script varied_control.cpp

The code for controlling movement of the car
#inc lude <ros . h>

#inc lude <geometry_msgs/Twist . h>
#inc lude <Arduino . h>

ros : : NodeHandle nh ;

i n t pinRB=6; // de f i n e pin6 as l e f t back connect wi th IN1
i n t pinRF=9; // de f i n e pin9 as l e f t forward connect wi th IN2
i n t pinLB=10; // de f i n e pin10 as r i g h t back connect wi th IN3
i n t pinLF=11; // de f i n e pin11 as r i g h t back connect wi th IN4
i n t x , z ;
i n t speedR=0;
i n t speedL=0;
i n t increment=10;

void a c c e l e r a t e (i n t m) ;
void turn (i n t n) ;
void wr i t e () ;

void dr ive (const geometry_msgs : : Twist& d i r) {
x = d i r . l i n e a r . x ;
z = d i r . angular . z ;
nh . logdebug ("Debugging") ;
i f (x) {

// a c c e l e r a t i n g
S e r i a l . p r i n t ("␣ Acce l e r a t i ng ␣") ;
a c c e l e r a t e (x) ;

}
i f (z) {

// turn ing
S e r i a l . p r i n t ("␣Turning␣") ;
turn (z) ;

}
}

ro s : : Subscr iber<geometry_msgs : : Twist> sub (" t u r t l e 1 /cmd_vel" , &dr ive) ;

void setup ()
{
S e r i a l . begin (9600) ;
pinMode (pinLB ,OUTPUT) ;
pinMode (pinLF ,OUTPUT) ;
pinMode (pinRB ,OUTPUT) ;
pinMode (pinRF ,OUTPUT) ;

34

https://github.com/Nises/SLAM_Exjobb/tree/master/catkin_ws
https://github.com/Nises/SLAM_Exjobb/tree/master/catkin_ws

analogWrite (pinRB , 0) ;
analogWrite (pinRF , 0) ;
analogWrite (pinLB , 0) ;
analogWrite (pinLF , 0) ;

nh . in i tNode () ;
nh . sub s c r i b e (sub) ;
}
void a c c e l e r a t e (i n t x) // a c c e l e r a t e
{
speedR += x∗ increment ;
speedL += x∗ increment ;
i f (speedR>250 | | speedR<−250){

speedR −= x∗ increment ;
}
i f (speedL>250 | | speedL<−250){

speedL −= x∗ increment ;
}

wr i t e () ;
}

void turn (i n t z) // turn
{
speedR += z∗ increment ;
speedL += −z∗ increment ;
i f (speedR>250 | | speedR<−250){

speedR −= z∗ increment ;
}
i f (speedL>250 | | speedL<−250){

speedL −= −z∗ increment ;
}
wr i t e () ;
}

void wr i t e ()
{
analogWrite (pinRB , (speedR>0 ? 0 : −speedR)) ;
analogWrite (pinRF , (speedR>0 ? speedR : 0)) ;
analogWrite (pinLB , (speedL>0 ? 0 : −speedL)) ;
analogWrite (pinLF , (speedL>0 ? speedL : 0)) ;
de lay (50) ;
}

void loop ()
{
nh . spinOnce () ;
de lay (1) ;
}

ROS launchfile test.launch

The main launch file used on laptop.
<?xml ver s i on=" 1 .0 "?>
<!−− −−>
<launch>

35

<inc lude f i l e="$(f i nd ␣ stereo_formatt ing) / launch/ laptop . launch"/>

<node name="scan_sync" pkg=" stereo_formatt ing " type="scan_sync" />

<arg name=" pi /2" value="1.5707963267948966 " />
<arg name=" opt i c a l_ro ta t e " value="0␣0␣ 0 .19 ␣−$(arg ␣ p i /2) ␣0␣−$(arg ␣ p i /2) " />
<node pkg=" t f " type=" stat i c_trans fo rm_publ i sher " name="camera_base_link"

args="$(arg ␣ op t i c a l_ro ta t e) ␣ base_l ink ␣ stereo_camera␣100" />

<arg name=" hector " de f au l t=" true " />
<arg name="hector_odom" de f au l t=" f a l s e " />

<arg name=" rv i z " de f au l t=" true " />

<node i f="$(arg ␣hector_odom)" pkg=" t f " type=" stat i c_trans fo rm_publ i sher "
name="scanmatcher_to_base_frame"
args=" 0 .0 ␣ 0 .0 ␣ 0 .0 ␣ 0 .0 ␣ 0 .0 ␣ 0 .0 ␣/ scanmatcher_frame␣/base_l ink ␣100" />

<node i f="$(arg ␣ hector) " pkg=" t f " type=" stat i c_trans fo rm_publ i sher " name="
base_to_laser_broadcaster "
args=" 0 .0 ␣ 0 .0 ␣ 0 .19 ␣ 0 .0 ␣ 0 .0 ␣ 0 .0 ␣␣ base_link ␣ l a s e r ␣100" />

<arg name="base_frame" de f au l t="base_l ink " />
<arg name="odom_frame" de f au l t="odom"/>

<!−− Run the ROS package stereo_image_proc −−>
<group ns="/ s t e r e o " >

<node pkg="stereo_image_proc" type="stereo_image_proc" name="
stereo_image_proc"/>

<!−− Odometry −−>
<node i f="$(arg ␣hector_odom)" pkg="hector_mapping" type="

hector_mapping" name="hector_mapping" output=" sc r e en ">

<!−− Frame names −−>
<param name="map_frame" value="map" />
<param name="base_frame" value="$(arg ␣base_frame) " />
<param name="odom_frame" value="$(arg ␣odom_frame) " />

<!−− Tf use −−>
<param name="pub_map_odom_transform" value=" f a l s e "/>
<param name="pub_map_scanmatch_transform" value=" true "/>
<param name="pub_odometry" value="$(arg ␣hector_odom) "/>

<!−− Map s i z e / s t a r t po in t −−>
<param name="map_resolution" value=" 0.050 "/>
<param name="map_size" value="2048"/>
<param name="map_multi_res_levels " va lue="2" />

<!−− Map s i z e / s t a r t po in t −−>
<param name="map_resolution" value=" 0.050 "/>
<param name="map_start_x" value=" 0 .5 "/>
<param name="map_start_y" value=" 0 .5 " />

<!−− Map update parameters −−>
<param name="update_factor_free " value=" 0 .8 "/>
<param name="update_factor_occupied " value=" 0 .8 " />
<param name="map_update_distance_thresh" value=" 0 .4 "/>

36

<param name="map_update_angle_thresh" value=" 0 .06 " />
<param name=" laser_z_min_value" value = "−1.0" />
<param name="laser_z_max_value" value = " 1 .0 " />

<!−− Adver t i s i ng con f i g −−>
<param name=" scan_topic " value="/ s t e r e o / scan"/>

</node>

<node un l e s s="$(arg ␣hector_odom)" pkg="rtabmap_odom" type="
stereo_odometry" name="stereo_odometry" output=" sc r e en ">
<remap from=" l e f t / image_rect " to=" l e f t / image_rect "/>
<remap from=" r i gh t / image_rect " to=" r i gh t / image_rect "/>
<remap from=" l e f t / camera_info" to=" l e f t / camera_info"/>
<remap from=" r i gh t / camera_info" to=" r i gh t / camera_info"/>

<param name="frame_id" type=" s t r i n g " value="base_l ink "/>
<param name="odom_frame_id" type=" s t r i n g " value="odom"/>
<param name="queue_size " type=" in t " value="5"/> −−>

<param name="approx_sync" type="bool " va lue=" f a l s e "/>
<param name="queue_size " type=" in t " value="5"/>
<param name="Vis /Min In l i e r s " type=" s t r i n g " value="10"/>
<param name="Vis /RoiRatios " type=" s t r i n g " value=" 0 .03 ␣ 0 .03 ␣ 0 .04 ␣

0 .04 "/>
<param name="Vis /CorNNDR" type=" s t r i n g " value=" 0 .8 "/>
<param name="Vis /MaxFeatures" type=" s t r i n g " value="1000"/>
<param name="GFTT/MinDistance" type=" s t r i n g " value="10"/>
<param name="GFTT/Qual i tyLeve l " type=" s t r i n g " value=" 0.00001 "/>

−−>

<param name="Reg/Force3DoF" type="bool " va lue=" true "/>
</node>

<node pkg="rtabmap_sync" type=" stereo_sync " name=" stereo_sync " output=
" sc r e en ">
<remap from=" l e f t / image_rect " to="/ s t e r e o / l e f t / image_rect_color "

/>
<remap from=" r i gh t / image_rect " to="/ s t e r e o / r i g h t / image_rect_color

"/>
<remap from=" l e f t / camera_info" to="/ s t e r e o / l e f t / camera_info"/>
<remap from=" r i gh t / camera_info" to="/ s t e r e o / r i g h t / camera_info"/>

</node>
</group>

<group ns="rtabmap">
<node name="rtabmap" pkg="rtabmap_slam" type="rtabmap" output=" sc r e en "

args="−−delete_db_on_start ">
<param name="frame_id" type=" s t r i n g " value="base_l ink "/>
<param name="odom_frame_id" type=" s t r i n g " value="odom"/>
<param name=" subscr ibe_scan " type="bool " value=" true "/>
<param name=" subsc r ibe_ste r eo " type="bool " va lue=" f a l s e "/>
<param name=" subscr ibe_depth " type="bool " va lue=" f a l s e "/>
<param name=" subscr ibe_rgbd " type="bool " va lue=" true "/>
<param name=" subscr ibe_rgb " type="bool " va lue=" f a l s e "/>
<param name="approx_sync" type="bool " value=" true "/>
<param i f="$(arg ␣hector_odom)" name="subscribe_odom_info" type="bool "

value=" f a l s e "/>

37

<remap from=" r i gh t / image_rect " to="/ s t e r e o / r i g h t / image_rect "/>
<remap from=" l e f t / camera_info" to="/ s t e r e o / l e f t / camera_info"/>
<remap from=" r i gh t / camera_info" to="/ s t e r e o / r i g h t / camera_info"/> −−>
<remap from="rgbd_image" to="/ s t e r e o /rgbd_image"/>

<remap from="odom" to="/ s t e r e o /odom"/>

<param name="queue_size " type=" in t " value="30"/>
<remap from=" scan" to="/ s t e r e o / scan"/>

<!−− As hec tor doesn ' t ␣ prov ide ␣ compatible ␣ covar iance ␣ in ␣ the ␣odometry
␣ top ic , ␣don ' t use the t o p i c and f i x the covar iance −−>

<param i f="$(arg ␣hector_odom)" name="odom_frame_id" type="
s t r i n g " value="hector_map"/>

<param i f="$(arg ␣hector_odom)" name="odom_tf_linear_variance " type="
double " value=" 0.0005 "/>

<param i f="$(arg ␣hector_odom)" name="odom_tf_angular_variance" type="
double " value=" 0.0005 "/>

<!−− RTAB−Map ' s ␣ parameters ␣−−>
␣␣␣␣␣<param␣name="Vis /Min In l i e r s "␣ type="s t r i n g "␣ value="12"/>

␣␣␣␣␣<param␣name="Reg/Force3DoF"␣ type="bool "␣ value="true"/>
␣␣␣␣␣<param␣name="Kp/RoiRatios "␣ type="s t r i n g "␣ value ="0.05␣ 0 .05 ␣ 0 .05 ␣0.3"/>

␣␣␣␣␣<param␣name="Rtabmap/TimeThr"␣ type="s t r i n g "␣ value="700"/>

␣␣␣␣␣<param␣name="Rtabmap/Detect ionRate "␣ type="s t r i n g "␣ value="1"/>

␣␣␣␣␣<param␣name="Kp/Detec torSt rategy "␣ type="s t r i n g "␣ value="0"/>
␣␣␣␣␣<param␣name="Kp/NNStrategy"␣ type="s t r i n g "␣ value="1"/>

␣␣␣␣␣<param␣name="SURF/Hess ianThreshold "␣ type="s t r i n g "␣ value="1000"/>

␣␣␣␣␣<param␣name="Vis /Min In l i e r s "␣ type="s t r i n g "␣ value="10"/>

␣␣␣␣␣<param␣name="RGBD/LoopClosureReextractFeatures "␣ type="s t r i n g "␣ value="
true"/>

␣␣␣␣␣<param␣name="RGBD/NeighborLinkRef in ing "␣ type="s t r i n g "␣ value="true"/>
␣␣␣␣␣<param␣name="RGBD/ProximityBySpace"␣ type="s t r i n g "␣ value="true"/>
␣␣␣␣␣<param␣name="RGBD/AngularUpdate"␣ type="s t r i n g "␣ value="0.01"/>
␣␣␣␣␣<param␣name="RGBD/LinearUpdate "␣ type="s t r i n g "␣ value="0.01"/>
␣␣␣␣␣<param␣name="RGBD/OptimizeFromGraphEnd"␣ type="s t r i n g "␣ value=" f a l s e "/>
␣␣␣␣␣<param␣name="Grid/FromDepth"␣ type="s t r i n g "␣ value=" f a l s e "/>

␣␣␣␣␣<param␣name="Vis /MaxWords"␣ type="s t r i n g "␣ value="500"/>
␣␣␣␣␣<param␣name="Vis /MaxDepth"␣ type="s t r i n g "␣ value="5"/>

␣␣␣␣␣<param␣ i f ="$(arg ␣ hector) "␣name="Grid/ Sensor "␣ type="in t "␣ value="0"/>␣
<!−−␣occupancy␣ g r id ␣ from␣ l i d a r ␣−−>

␣␣␣␣␣<param␣name="Reg/ Strategy "␣ type="s t r i n g "␣ value="1"/>␣␣<!−−␣ICP␣−−>

␣␣␣␣␣<!−−␣ICP␣parameters ␣−−>
␣␣␣␣␣<param␣name="Icp /Voxe lS ize "␣ type="s t r i n g "␣ value="0.05"/>
␣␣␣␣␣<param␣name="Icp /MaxCorrespondenceDistance"␣ type="s t r i n g "␣ value

="0.1"/>

38

␣␣␣␣␣<param␣name="c loud_no i s e_f i l t e r i ng_rad iu s "␣ value="0.05"/>
␣␣␣␣␣<param␣name="cloud_noise_f i l ter ing_min_neighbors "␣ value="3"/>

␣␣␣␣␣<param␣name="proj_max_ground_angle"␣ value="50"/>
␣␣</node>

␣␣<!−−␣ V i s u a l i s a t i o n ␣RTAB−Map, ␣master ␣on␣remote␣machine␣ so ␣rtabmap␣ takes ␣
~50 s ␣ to ␣ s t a r t . ␣−−>

␣␣<node␣ un l e s s ="$(arg ␣ r v i z) "␣pkg="rtabmap_ros"␣ type="rtabmapviz "␣name="
rtabmapviz "␣ args="−d␣$(f i nd ␣ stereo_formatt ing) / launch/ con f i g /rgbd_gui .
i n i "␣output="sc r e en "␣ launch−p r e f i x="bash␣−c␣ ' s l e e p 30; $0 $@ ' ␣">

␣␣␣␣␣<param␣name="subsc r ibe_ste r eo "␣␣␣␣ type="bool "␣␣␣ value="true"/>
␣␣␣␣␣<param␣ un l e s s ="$(arg ␣ hector) "␣name="subscribe_odom_info"␣ type="bool "␣

␣␣ value="true"/>
␣␣␣␣␣<param␣ i f ="$(arg ␣ hector) "␣name="subscr ibe_lase rScan "␣ type="bool "␣

value="true"/>
␣␣␣␣␣<param␣name="queue_size "␣␣␣␣␣␣␣␣␣␣ type="in t "␣␣␣␣ value="10"/>
␣␣␣␣␣<param␣name="frame_id"␣␣␣␣␣␣␣␣␣␣␣␣ type="s t r i n g "␣ value="base_l ink"/>
␣␣␣␣␣<remap␣from=" l e f t / image_rect "␣␣␣ to="/ s t e r e o / l e f t / image_rect_color"/>
␣␣␣␣␣<remap␣from="r i gh t / image_rect "␣␣ to="/ s t e r e o / r i gh t / image_rect"/>
␣␣␣␣␣<remap␣from=" l e f t / camera_info"␣␣ to="/ s t e r e o / l e f t / camera_info"/>
␣␣␣␣␣<remap␣from="r i gh t / camera_info"␣ to="/ s t e r e o / r i gh t / camera_info"/>
␣␣␣␣␣<remap␣from="odom_info"␣␣␣␣␣␣␣␣␣ to="/ s t e r e o /odom_info"/>
␣␣␣␣␣<remap␣from="odom"␣␣␣␣␣␣␣␣␣␣␣␣␣␣ to="/ s t e r e o /odom"/>
␣␣␣␣␣<remap␣ i f ="$(arg ␣hector_odom)"␣ from="scan"␣ to="/ s t e r e o / scan"/>
␣␣␣␣␣<remap␣ un l e s s ="$(arg ␣hector_odom)"␣ from="scan"␣ to="/ s t e r e o / scan"/>

␣␣␣␣␣<param␣name="imageView_odometry\ features_shown"␣ type="bool "␣ value="
f a l s e "/>

␣␣␣␣␣<param␣ i f ="$(arg ␣hector_odom) "␣name="odom_frame_id"␣ type="s t r i n g "␣
value="hector_map"/>

␣␣</node>

␣␣<!−−␣ V i s u a l i s a t i o n ␣RVIZ . ␣−−>
␣␣<node␣ i f ="$(arg ␣ r v i z) "␣pkg="r v i z "␣ type="r v i z "␣name="rv i z "␣ args="−d␣$(

f i nd ␣ stereo_formatt ing) / c on f i g / s e tup rv i z . r v i z "␣output="sc r e en "␣ launch−
p r e f i x="bash␣−c␣ ' s l e e p 20; $0 $@ '"/>

</group>
</launch>

39

References
[1] X. Wang, H. Pan, K. Guo, X. Yang, and S. Luo, “The evolution of lidar and its application in high

precision measurement”, IOP Conference Series: Earth and Environmental Science, vol. 502, no. 1,
p. 012 008, May 2020. doi: 10.1088/1755-1315/502/1/012008.

[2] J. Velasco, “Lidar is the gold standard of robot vacuum navigation, but it’s not perfect”, July, 2021.
[Online]. Available:
https://www.digitaltrends.com/home/lidar-gold-standard-robot-vacuum-navigation/. [Accessed
May. 23, 2023].

[3] A. Dubey, “Stereo vision-Facing the challenges and seeing the opportunities for ADAS
applications”, Texas Instruments. June, 2020 [Online]. Available:
https://www.ti.com/lit/wp/spry300a/spry300a.pdf?ts=1673869574680&ref_url=
https%253A%252F%252Fwww.google.com%252F. [Accessed Jan. 28, 2023].

[4] University of Auckland, “COMPSCI773S1T: Vision Guided Control”, 2019. [Online]. Available:
https://www.cs.auckland.ac.nz/courses/compsci773s1t/lectures/773-GG/topCS773.htm.
[Accessed Feb. 13, 2023].

[5] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part I the essential
algorithms”, in IEEE Robotics Automation Magazine, vol. 13, no. 2, pp. 99-110, June 2006, doi:
10.1109/MRA.2006.1638022.

[6] J. Wenshuai, “Application of autonomous navigation in robotics”, Journal of Physics: Conference
Series, vol. 1906, p. 012 018, May, 2021. doi: 10.1088/1742-6596/1906/1/012018.

[7] K. Schmid et al., “Lidar 101: An Introduction to Lidar Technology, Data, and Applications”,
National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center, November,
2012. [Online]. Available: https://coast.noaa.gov/data/digitalcoast/pdf/lidar-101.pdf. [Accessed
Feb. 02, 2023].

[8] M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar and visual simultaneous
localization and mapping library for large-scale and long-term online operation”, Journal of Field
Robotics vol. 36, pp. 416–446, 2 Mar. 2019. issn: 15564967. doi: 10.1002/rob.21831.

[9] M. Labbé, “IROS 2014 Kinect Challenge”, June, 2020. [Online]. Available:
https://github.com/introlab/rtabmap/wiki/IROS-2014-Kinect-Challenge. [Accessed Apr. 23,
2023].

[10] Open Robotics, “The ROS Ecosystem”, 2021. [Online]. Available:
https://www.ros.org/blog/ecosystem/. [Accessed May. 20, 2023].

[11] Open Robotics, “Understanding Nodes”, October, 2022. [Online]. Available:
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes [Accessed Jan. 26, 2023].

[12] Open Robotics, “Understanding ROS Topics”, October, 2022. [Online]. Available:
http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics [Accessed Jan. 26, 2023].

[13] Open Robotics, “Master”, January, 2018. [Online]. Available: http://wiki.ros.org/Master [Accessed
Jan. 26, 2023].

[14] Open Robotics, “roslaunch”, October, 2019. [Online]. Available: http://wiki.ros.org/roslaunch.
[Accessed May. 27, 2023].

[15] Y. Li, J. Ibanez-Guzman, “Lidar for Autonomous Driving: The Principles, Challenges, and Trends
for Automotive Lidar and Perception Systems”, in IEEE Signal Processing Magazine, vol. 37, no. 4,
pp. 50–61, 2020. doi: 10.1109/MSP.2020.2973615.

40

https://www.digitaltrends.com/home/lidar-gold-standard-robot-vacuum-navigation/
https://www.ti.com/lit/wp/spry300a/spry300a.pdf?ts=1673869574680&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/wp/spry300a/spry300a.pdf?ts=1673869574680&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.cs.auckland.ac.nz/courses/compsci773s1t/lectures/773-GG/topCS773.htm
https://coast.noaa.gov/data/digitalcoast/pdf/lidar-101.pdf
https://github.com/introlab/rtabmap/wiki/IROS-2014-Kinect-Challenge
https://www.ros.org/blog/ecosystem/
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics
http://wiki.ros.org/Master
http://wiki.ros.org/roslaunch

[16] H. Tibebu, V. De-Silva, C. Artaud, R. Pina, and X. Shi, “Towards Interpretable Camera and
LiDAR Data Fusion for Autonomous Ground Vehicles Localisation”, Sensors, vol. 22, no. 20, p.
8021, Oct. 2022, doi: 10.3390/s22208021.

[17] Open Robotics, “nav_msgs/Odometry Message”, Mars, 2022. [Online]. Available:
http://docs.ros.org/en/noetic/api/nav_msgs/html/msg/Odometry.html. [Accessed Feb. 17, 2023].

[18] M. Labbé and F. Michaud, “Appearance-Based Loop Closure Detection for Online Large-Scale and
Long-Term Operation”, IEEE Transactions on Robotics, vol. 29, no. 3, pp. 734–745, 2013. doi:
10.1109/TRO.2013.2242375.

[19] OpenCV, “About”, [Online]. Available: https://opencv.org/about/. [Accessed Feb. 15, 2023].

[20] M. Labbé, “Remote Mapping”, September, 2019. [Online]. Available:
http://wiki.ros.org/rtabmap_ros/Tutorials/RemoteMapping. [Accessed Apr. 19, 2019].

[21] Raspberry Pi, “Raspberry Pi 4 Model B specifications”, [Online]. Available:
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/. [Accessed Jan. 28,
2023].

[22] Raspberry Pi, “Raspberry Pi 3 Model B”, [Online]. Available:
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/. [Accessed Jan. 28, 2023].

[23] Arduino, “Arduino Uno Rev3”, [Online]. Available:
https://store.arduino.cc/products/arduino-uno-rev3. [Accessed Jan. 26, 2023].

[24] Slamtec, “DATASHEET RPLIDAR A1”, June, 2016. [Online]. Available:
https://www.generationrobots.com/media/rplidar-a1m8-360-degree-laser-scanner-development-
kit-datasheet-1.pdf. [Accessed Feb. 23, 2023].

[25] Raspberry Pi, “Raspberry Pi Camera Module 2”, [Online]. Available:
https://www.raspberrypi.com/products/camera-module-v2/. [Accessed Feb. 17, 2023].

[26] Kjell Company, “Playknowlogy Arduino Robotbil Startpaket”, [Online]. Available:
https://www.kjell.com/se/produkter/hem-fritid/lek-lar/programmerbara-robotar/playknowlogy-
arduino-robotbil-startpaket-p87288. [Accessed Jan. 26, 2023].

[27] Ubuntu, “How to install Ubuntu Server on your Raspberry Pi”, [Online]. Available:
https://ubuntu.com/tutorials/how-to-install-ubuntu-on-your-raspberry-pi#1-overview.
[Accessed Jan. 24, 2023].

[28] Open Robotics, “Ubuntu install of ROS Noetic”, [Online]. Available:
http://wiki.ros.org/noetic/Installation/Ubuntu. [Accessed Jan. 26, 2023].

[29] Open Robotics, “Arduino IDE Setup”, November, 2022. [Online]. Available:
http://wiki.ros.org/rosserial_arduino/Tutorials/Arduino%20IDE%20Setup. [Accessed Feb. 05,
2023].

[30] anfederman, “Raspicam_node on ARM64 Raspberry pi”, December, 2021. [Online]. Available:
https://discourse.ros.org/t/raspicam-node-on-arm64-raspberry-pi/23311. [Accessed Mar. 17, 2023].

[31] Ubiquity Robotics, “raspicam_node”, June, 2020. [Online]. Available:
https://github.com/UbiquityRobotics/raspicam_node. [Accessed Feb. 23, 2023].

[32] M. Labbé et al., “rtabmap_ros”, Introlab, April, 2023. [Online]. Available:
https://github.com/introlab/rtabmap_ros. [Accessed Feb. 23, 2023].

[33] M. Labbé, “Setup RTAB-Map on Your Robot!”, April, 2023. [Online]. Available:
http://wiki.ros.org/rtabmap_ros/Tutorials/SetupOnYourRobot. [Accessed Apr. 19, 2023].

41

http://docs.ros.org/en/noetic/api/nav_msgs/html/msg/Odometry.html
https://opencv.org/about/
http://wiki.ros.org/rtabmap_ros/Tutorials/RemoteMapping
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://store.arduino.cc/products/arduino-uno-rev3
https://www.generationrobots.com/media/rplidar-a1m8-360-degree-laser-scanner-development-kit-datasheet-1.pdf
https://www.generationrobots.com/media/rplidar-a1m8-360-degree-laser-scanner-development-kit-datasheet-1.pdf
https://www.raspberrypi.com/products/camera-module-v2/
https://www.kjell.com/se/produkter/hem-fritid/lek-lar/programmerbara-robotar/playknowlogy-arduino-robotbil-startpaket-p87288
https://www.kjell.com/se/produkter/hem-fritid/lek-lar/programmerbara-robotar/playknowlogy-arduino-robotbil-startpaket-p87288
https://ubuntu.com/tutorials/how-to-install-ubuntu-on-your-raspberry-pi#1-overview
http://wiki.ros.org/noetic/Installation/Ubuntu
http://wiki.ros.org/rosserial_arduino/Tutorials/Arduino%20IDE%20Setup
https://discourse.ros.org/t/raspicam-node-on-arm64-raspberry-pi/23311
https://github.com/UbiquityRobotics/raspicam_node
https://github.com/introlab/rtabmap_ros
http://wiki.ros.org/rtabmap_ros/Tutorials/SetupOnYourRobot

[34] H. Andreasson, A. Treptow and T. Duckett, “Localization for Mobile Robots using Panoramic
Vision, Local Features and Particle Filter”, 2005. 3348 - 3353. 10.1109/ROBOT.2005.1570627.

[35] M. Labbé, “Advanced Parameter Tuning”, April, 2023. [Online]. Available:
http://docs.ros.org/en/noetic/api/nav_msgs/html/msg/Odometry.html. [Accessed Apr. 23, 2023].

[36] M. Labbé, “rtabmap_sync”, April, 2023. [Online]. Available: http://wiki.ros.org/rtabmap_sync.
[Accessed May. 07, 2023].

42

http://docs.ros.org/en/noetic/api/nav_msgs/html/msg/Odometry.html
http://wiki.ros.org/rtabmap_sync

	Introduction
	Background
	Aim and goals
	Tasks
	Outline

	Theory
	Simultaneous Localisation and Mapping
	ROS
	LiDAR
	Stereo Vision
	Odometry
	RTAB-map

	Method and Implementation
	Overview of the system
	Hardware and Components
	RP4
	RP3
	Arduino Uno
	RPlidar A1
	Raspberry Pi Camera Module v2
	RC car
	Laptop

	Assembling the robot
	Software and development tools
	Ubuntu 20.04
	ROS Noetic
	OpenCV

	Software installation and configuration
	Operating System
	ROS
	ROS IP connection
	Manually controlling the car
	Raspberry Pi Cameras
	RTAB-map
	Stereo Camera setup
	Calibration

	The SLAM configuration
	Running the Robot
	Mapping and comparison

	Results and discussions
	Depth vision using cameras
	Mapping of Office Space
	First office map
	Stereo camera only with stereo camera odometry
	Stereo camera and LiDAR with stereo camera odometry
	Stereo camera and LiDAR with LiDAR odometry

	Performance
	Challenges
	Possible Improvement
	Stereo camera setup
	RC-car
	RTAB-map configuration
	ROS RTAB-map setup

	Conclusions and further work
	Conclusion
	Further work

	Appendix
	References

