UPTEC F 23044
Examensarbete 30 hp
Juni 2023

UNIVERSITET

State Machine Model-To-Code
Transformation In C

Jonathan Carlgren
Per William Oskarsson

Civilingenjorsprogrammet i teknisk fysik

State Machine Model-To-Code Transformation In C

UPPSALA Jonathan Carlgren

UNIVERSITET Per William Oskarsson
Abstract

A state machine model can turn a complex behavioural system into a more accessible graphical
model, and can improve the way people work with system design by making it easier to
communicate and understand the system. The clear structure of a state machine model enables
automatic generation of well structured, and consequently readable, and maintainable code.
There are many known implementations and even plenty of commercial software available for
working with state machines, and the goal of this project is to compare and discuss some of
these implementations in the context of Ericsson's demands for run time, memory usage,
scalability, readability, and maintainability.

More specifically, the project focuses on the state machine models specified in the UML (the
unified modeling language [15]), utilizing UML's associated markup language, XMl, to go from
graphical model to generated C code. The resulting C code is primarily a code skeleton which
only provides the basic behaviour of transitioning between states given a specific event, it is
expected that the developers manually implement additional features themselves. The
examined implementations are: Nested Switch, Array of Structs, Function Pointers, Basic State
Pattern, State-Table Pattern, and Hierarchical State Pattern. Additionally, the project
investigates how multiple state machines can communicate and work together as interacting
state machines. And finally, to showcase how a state machine implementation can be
maintainable, we develop an iterative code editor that can edit already operating and manually
modified state machine implementations.

The implementations are tested on a case study example provided by Ericsson, aimed to
represent a sort of typical state machine design when it comes to number of states and events.
The implementations are further tested with randomly generated state machines, to examine
their scalability properties.

In our opinion the results favour the Array of Structs and Basic State Pattern implementations
and the choice depends on the optimisation used and the priority between run time and
memory.

Teknisk-naturvetenskapliga fakulteten

Uppsala universitet, Utgivningsort Uppsala/Visby

Handledare: Lisa Granholm Amnesgranskare: Mikael Sternad

Examinator: Tomas Nyberg

Popularvetenskaplig sammanfattning

For systemutveckling inom inbyggda system anvinds tillstandsmaskiner vanligen som verktyg for att
modellera komplexa beteenden. Det dr ett enkelt sétt att fa en Gverblick av systemet som helhet samt
lagga till funktionalitet. Dessa system kan ta lang tid for utvecklare att fran en specifikation modellera
dessa som en tillstandsmaskin till att sedan implementera den i kod. Forskning inom modellbaserad
utveckling belyser olika vigar pa hur man kan Oversitta dessa modellerade tillstandsmaskiner direkt
till kod, for att automatisera detta arbete sd mycket som mdjligt. I detta examensarbete foreslas ett
sitt att arbeta med tillstandsmaskiner, fran UML modell till C kod genom att utveckla kodgeneratorer.
Kodgeneratorerna skapar kodskelett for tillstAndsmaskiner enligt sex olika designsétt fran vetenskapliga
artiklar och implementationer online. De genererade kodskeletten utvérderas utifran kortid, minnes-
anviandning, skalbarhet, lasbarhet samt underhallsméssighet. Efterat utokas arbetet genom att undersoka
olika sétt att modellera kommunikation mellan tva tillstandsmaskiner som kors sekventiellt. En av dessa
kodgeneratorer uttkas &ven med funktionalitet fér att kunna uppdatera en tillstandsmaskin i redan
genererad kod som ett "proof of concept".

Implementationerna testas bade pa en given tillstAndsmaskin och spontant genererade tillstandsmaskiner,
dér resultaten for implementationerna anvénda foreslar att "Array of Structs" och "Basic State Pattern"
presterar bast. Fér kommunikation mellan tva genererade tillstandsmaskiner s& &r ett resultat svarare
att urskilja. Den extra implementerade funktionaliteten for att iterativt uppdatera en genererad kod for
en tillstandsmaskin fungerar vil och &r ett sétt att géra mer underhallsméssig kod.

Acknowledgements

We would like to forward special thanks to our subject reviewer Mikael Sternad for helping us out with
the thesis. We would also like to thank our supervisors Mattias Hellsing and Lisa Granholm and the rest
of the Arkopool team at Ericsson for giving us the opportunity to work with this thesis.

Contents

1 Introduction

1.1 Background L e
1.2 EricSson o o e e e e e e e e e e e e e e
1.3 Problem statement
1.4 Division of Labour e
2 Theory
2.1 State Machine
2.2 UML e
2.3 UML State Machine e
2.3.1 Hierarchy and composite state Lo L oL
2.3.2 History state L
2.4 XML and XMI
2.5 Modeling Software
2.6 Model-To-Code Generation it
2.7 Code Generator Design
2.8 State Machine Implementations
2.8.1 Nested Switch/If Statements
2.8.2 Array of Structs
2.8.3 Function Pointers.o
2.8.4 State Pattern
2.8.5 State-Table Pattern
2.8.6 Hierarchical State Pattern
2.9 Interacting State Machines L o
2.9.1 Switch statement with global variables 0L
2.9.2 Function Pointers.
2.9.3 Message Passing
2.9.4 Mediator Pattern
2.10 Iterative Code Editor
2.11 Test Case
2.12 Performance Parameters e
2.12.1 Run Time e e e
2.12.2 Memory USage i e e
2.12.3 Scalabilityo
2.13 Code metrics e
2.13.1 Maintainability Lo
2.13.2 Modularity
3 Implementation
3.1 Modeling L e e
3.2 Parsing e e
3.3 Code Generation e
3.4 eventHandler Functions
3.5 Nested Switch
3.6 Function Pointers e
3.7 Array of Structs
3.8 O0P In C e
3.9 Basic State Patterno
3.10 State-Table Pattern
3.11 Hierarchical State Pattern
3.12 State Machine Interaction e
3.12.1 Global Switch
3.12.2 Mediator Pattern
3.12.3 Message Passing L

ENEENEEN BEN IEN |

© © © 0o 0o oo o P

o T e T s T e T e S e S G e e e G e G O Tl e T e T e T o S S S ey
B R W W W W WD EFEEEOOOOOO©

14

3.124 3D array

3.13 Iterative Code Editor
3.13.1 Add State e
3.13.2 Add Event e
3.13.3 Delete State e e e
3.13.4 Delete Event e e e e e e e e

3.14 Benchmarking oL e

Results

4.1 Benchmarks
4.1.1 Nested Switch
4.1.2 Function Pointers e
4.1.3 Array Of Structs
4.1.4 Basic State Pattern
4.1.5 State-Table Pattern
4.1.6 Hierarchical State Pattern

4.2 Comparing Benchmarks L oL

4.3 Case Study e

4.4 State Machine Interaction Benchmarks
4.4.1 Global Switch
4.4.2 Mediator Pattern
4.4.3 Message Passingo Lo
4.4.4 Function Pointer 3D array Lo

4.5 Comparing Interaction Methods Lo

Discussion

5.1 State Machine Implementations o
5.1.1 Maintainabilityo

5.2 Case Study o e

5.3 State Machine Interaction e
5.3.1 Maintainability Lo

5.4 Tterative Code Editor e

Conclusions

Future Work

7.1 Code Generator Functionality L

7.2 State Machine Structure e
7.2.1 Event and Transition Logic o oL

7.3 Maintainability oL

7.4 Parallelization e e e e e

7.5 Additional Implementations

25
25
25
26
28
29
30
32
33
36
38
38
39
41
42
44

47
47
47
47
48
48
49

50

1 Introduction

1.1 Background

Embedded systems exist everywhere where electronics are present, in all type of appliances whether it
be your refrigerator or mobile phone. These devices can be complex systems loaded with software. One
challenge in software development is how to best represent these complicated systems in code. A widely
used practice is to model the systems as state machines that consists of different states and transitions.
In software development, a lot of time can be spent translating system specifications from simple text or
a model language, into source code. Therefore, a great amount of research has gone into automatically
generating state machines from modeling language into code.

The concept of automatically generating source code from a state machine model is largely a solved
equation, with many modeling tools offering code generation in their applications. However, in many
cases the code generated by these tools may not be efficient for the specific system at hand. For systems
with more advanced features such as hierarchy or history, the generated code might not even support the
functionality correctly.

1.2 Ericsson

Ericsson is a Swedish multinational company with around 100 000 employees worldwide and has been a
major contributor in the networks and telecommunications industries during the 147 years of its existence.
Embedded systems are a fundamental part of these industries, and a good understanding of state machines
can be a great tool to streamline the software development process for companies such as Ericsson.

1.3 Problem statement

As it stands currently, the division at Ericsson has no centralised way of working with state machines.
It usually boils down to getting a specification explained in simple text and then implementing the
functionality manually. Thus, they would like a showcase of how the general workflow could look like
when working with state machines, if possible as automated as can be. There are a wide variety of tools
that can model state machines and also generate code from the model, however these would have to be
put through security checks and they more or less follow a similar set of generalized coding. A prospect
of interest was therefore to study some of the existing research of state machine code generation and
compare the performance of some different implementations. The thesis will mainly aim to cover the
following topics:

e Suggest a general way to work with state machines, from model to C code.

e Investigate current design practices for state machines and compare how they perform against each
other.

e Implement support for iteratively changing already generated state machine code.
e Investigate design practices for interacting state machines.

The thesis work begins with a literature study to better understand the current research and how state
machines are used in practice. From the literature study, six different state machine implementations are
selected to be implemented from model to code. The implementations will be tested and evaluated with
both randomly generated state machines, and a case study provided by Ericsson. Finally, the work is
extended to include interacting state machines and an editor that can iteratively update already generated
state machine code.

1.4 Division of Labour

Both of us have conducted our own literature studies to gather information, and from there on we chose
three state machine implementations each. Per is responsible for the three state pattern approaches,
while Jonathan is responsible for the other three. For the additional extensions, Per looks at the state
machine interaction sections, and Jonathan the iterative code editor parts.

2 Theory

This section introduces the concepts necessary to understand the complete process of going from a state
machine model to functioning state machine code.

2.1 State Machine

A state machine is a mathematical modeling concept, where the behaviour of a system is described
by states, and transitions between states. It is commonly used to express the intended behaviour of
electrical engineering and software systems, to help reduce complexity and provide a graphical overview
of the systems. The concept is suitable for systems involving user interfaces (such as Ericsson’s) that
should trigger transitions in response to external events [3]. Many examples can be taken from electrical
engineering systems where for example a power switch can be described as a state machine including two
states "on" & "off" with a transition between the states triggered by an external event, "press power
button".

(Power Switch)

press power button
| on [, Off

Figure 1: Power switch state machine example.

A

We will call this type of state machine a "flat state machine", meaning a state machine where the
transition only can depend on one external event and the current state. For some more complex software
systems, additional features are required for the state machine in order to fully describe the behaviour
of the systems. Some of these features were introduced by David Harels "Statecharts", during his work
with the Israel Aircraft Industries that started in 1983 [1]. Statecharts extends state machines with
features such as "nested states", "parallel states", and "history states", which are essential to describe
the behaviour of certain systems [19].

2.2 UML

Working with model driven development has become an essential tool for many large scale software
development projects. To ensure scalability, security and robustness, it is important to have a clear
architecture for the modeling language. Rational Software began developing The Unified Modeling
Language (UML) in 1994 to standardise the way system architects, software engineers, and software
developers work with modeling to ensure a clear architecture [24, 17, 9]. UML includes many different
types of models and state machine models are one of the behavioral models included. In 1997, UML was
adopted by the Object Management Group (OMG), a non-profit software consortium and standards
development organisation backed by prominent technology organisations, making UML an industry
standard for system modeling and design [15, 16].

2.3 UML State Machine

At the time of this report the latest UML version is UML 2.5.1, and its specifications can be found at
UML.org [17]. We mostly focus on flat state machines in this report (since it is the type of the case study
provided by Ericsson), but we also compare the performance of a more advanced implementation. The
additional state machine features included in this implementation are introduced below.

2.3.1 Hierarchy and composite state

One significant feature is hierarchy, it allows a substate to inherit characteristics from a parent state,
and enables the existence of composite states. Composite states contains one or more regions within
itself, and allows for orthogonal independent behaviour within each region. The regions may include
further hierarchy with additional states, composite states or even state machines within them. In Figure

2, the composite state "Computer Science " contains two orthogonal regions with additional states and
transitions within them.

4 Computer Science | N\

lab complete
Lab P O

Exam passed exam O
N)

Figure 2: Composite state "Computer Science I" with two orthogonal regions containing the substates "Lab" and "Exam".
The dashed line indicates orthogonality between the regions, meaning that progress within the two regions are independent
of each other.

2.3.2 History state

There is support for two types of history states in UML, shallow and deep history. Shallow history
remembers the topmost substate configuration, while deep history remembers the full state configuration.
When exiting a region within the state machine, the history states can remember the state configuration
within that region allowing the state machine to return to the configuration later on.

(a) Shallow history (b) Deep history

Figure 3: History pseudostates.

2.4 XML and XMI

The Extensible Markup Language (XML) is one among file formats like JSON, YAML and HTML that
can be used to store data. There are different benefits of using the different types to store a representation
of a state machine, but what makes XML desirable is the focus on structure and readability. It is a format
widely used and as such, there are many available tools that handles XML files.

For UML diagrams in particular the Object Management Group (OMG) have developed an application
of the XML format tuned for UML specifications, namely the XML Metadata Interchange specification
[14]. The specification uses convenient conventions for naming attributes of the different state machine
elements such as "uml:State", "uml:Transition" and has attributes giving these elements a unique id,
"xmi:id". This makes the XMI format easy to parse.

2.5 Modeling Software

There are many different tools that support modeling with UML and XMI, both open source and
commercial. Some examples include Visual Paradigm, Eclipse Papyrus, and Microsoft Visio [7, 18, 1].

2.6 Model-To-Code Generation

Model transformations is an important aspect in Model-Driven Engineering (MDE) [11, 21]. It is a
framework that sets the rules for how to automatically transform a higher-level model, into another
model (Model to Model transformation) or source code (Model-to-Code transformation) for example.
To achieve Model-To-Code transformation there are many approaches, domain-specific languages (DSL)
such as WebDSL or machine learning based algorithms to name a few.

A simple and common proposal is to generate the code using a one to one mapping of state machine

components to appropriate data structures in the code language of choice. For advanced systems this
might not be enough, but for the analysis conducted here, it will suffice.

2.7 Code Generator Design

Designing the code generator will be broken down into two parts - creating a parser and generating the
code itself. A parser reads through data and breaks it down into recognized characters. For this context,
the parser should read the modeled state machine specification and save the contents of the state machine
like states, transitions and so on. The code generation step uses the parsed data and writes it into a .c
code file and if desired, a .h header file to create working C code for a state machine following the model
specification.

2.8 State Machine Implementations

This section showcases the different ways of implementing a state machine that will be compared. The
code generated from UML models will follow these designs, which can be broken down into pattern-based
designs and non pattern-based design [6, 10]. A design pattern in software can be explained as a
description of how to implement a system or application following an established software design pattern
first introduced by the Gang of Four consisting of Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides [10]. They provide a general design solution, but do not specify details like how to handle
transitions and model semantics. That is up to the developer. Non-pattern based designs do not follow
any established pattern.

2.8.1 Nested Switch/If Statements

One of the most common and straight forward approaches is using nested switch /if statements. It provides
an effective solution for simple flat state machines, but lack support for more advanced state machine
features [22, 6]. The outer switch/if statement keeps track of the current state as a scalar variable, while
the inner switch/if statement keeps track of the current event as a scalar variable. The current event is
provided to the system by some external event.

2.8.2 Array of Structs

Another way of implementing a flat state machine is using an array of structs. Since it is a straightforward
approach the exact origin of this approach is unclear, but our implementation is based on an article by
Amlendra Kumar [2]. The structs contains possible combinations of states and events, and the indexing
of the structs is based on enumerates of possible states or/and events. There are different ways of ordering
the array depending on how the user intends to work with the state machine model.

2.8.3 Function Pointers

The Function Pointers implementation stores pointers to transition functions in a 2D array with the
number of states and events making up the dimensions of the array. This is one of many different
implementations that utilises a state-event-table approach [22]. Similar to the Array of Structs approach,
we enumerate all possible states and events and the current state and event corresponds to the index
of the function pointer to the correct transition function. The array size grows quickly with number of
states and events, however the array will be sparse and the look up time is independent of array size.

2.8.4 State Pattern

One of the behavioral patterns in software design is the state pattern. It was originally introduced in
1994 by the Gang of Four ([10]) and has since then become a mainstay in state machine design, being
the base for several pattern-based extensions of state machine representation in code [13, 20, 22, 23].

The main idea behind the state pattern is to allow an object to change its behavior when it changes

internal states. In this way, the behavior for a state machine can change depending on the current state.
States should be independent of each other so that implementation of new states does not affect the

10

previously defined ones, which makes the code easier to maintain.

A state machine implemented with the state pattern design works as a context object that contains
a reference to the active state object. The context communicates and delegates work to the active state
through an interface. This interface defines state-wide methods like entry and exit actions and setting
the state. Individual states are used for the state-specific behavior. What the state pattern does not tell
one however, is how transitions are handled and is up to the specific implementation to decide.

2.8.5 State-Table Pattern

The State-Table pattern is a variant of the State Pattern that handles transitions using a table, such as a
matrix or hash table for instance. This is as opposed to most traditional State Pattern implementations,
that handles transition through class methods. A table-based approach could be desirable for systems with
many states and transitions, as it brings more structure where code management using other approaches
may become difficult.

2.8.6 Hierarchical State Pattern

The traditional approaches to implement state machines through pattern and non-pattern based design
have their benefits, but are limited in supporting the full functionality that UML state machines can
provide. Omne of such functionalities are hierarchical states. While generating code for hierarchical
state machines in particular is not the main interest of the project, it can be good to see how well an
implementation with more features performs compared to the more simpler approaches. There have been
several proposals for implementations to support different or all parts of UML models.

In the proposal by Sunitha and Samuel ([23]), code skeletons for a state machine are generated in Java
from UML State Charts with support for hierarchy, concurrency along with history. They provide a
template for their pattern in Figure 4. As with the regular State Pattern, Samuel and Sunitha propose
each state and event as distinct classes, along with a context class keeping track of the active state and
delegating the events to the states. State hierarchy is supported by using inheritance in a composite
state class that derives the substates. To represent concurrency, one can have parallel regions in this
composite state by the use of the OrthogonalProperty class that is equipped with methods to set
regions and handle subtransitions. While shallow history is stored in the context class, deep history
is its own class and is managed by the composite state and OrthogonalProperty class as well. When
comparing implementations, this implementation will be named "Hierarchical State Pattern" so that it
can be referred to easier and not be confused with the other state pattern-based approaches.

Events StateMachine
H+setSignal ttransition(State
ignal() ition(X0 OrthogonalProperty
ContextClass State HinitCompo()

H+setRegions()

LactiveState : State
[*—{+dispatch(Events)() | [*subTransitions()

-shallowHistory[] : State
Hdispatch(Events)()

HistoryState SimpleS' CompositeState
-no_of_regions : int
updateHistory() | [rdispatch(Events)()| [Sub_states[] : State
HrestoreHistory() ldeep_history[] : HistoryState
[+dispatch(Events)()

SubStates

H+dispatch(Events)()

Figure 4: Proposed pattern template by Sunitha and Samuel [23]

11

2.9 Interacting State Machines

Another area of state machine design that was of interest was how to implement state machine interaction.
There can be different desired goals of communication to compare, and in this thesis we limit the scope
to the transition logic of the state machines. Namely, when the transition of a state depends on the state
of another state machine. Large systems consists of several state machines with their distinct functions
that interact with one and another and exchange data, which makes it important that the interaction
between them is handled efficiently. The systems used by the division at Ericsson have the individual
interacting state machines running sequentially. As such, the implementations analyzed here will not be
using any parallelization methods even though they could very well be useful in other settings.

2.9.1 Switch statement with global variables

A simple idea is to only add conditional statements into the event handlers of the state machines that
checks the active state of the other state machine. This requires the context/state machine object of the
other state machine to either be global or sent in as additional input which can be less desirable. As a
result, while having low communication overhead compared to other approaches, the code might become
harder to read and maintain for larger state machines. To reference this method easier, we call it the
"Global Switch" approach.

2.9.2 Function Pointers

Similar to implementing regular state machines, a lookup table with function pointers to handle the
transition logic could be expanded to cover different cases when the state machine needs to take another
action depending on another state machine. A suitable approach is to use a 3D-array. Each event consists
of a cell in the 3D-array, which points to a matrix, where each matrix element is a combination of the
states of the two state machines for that event. If there is a different action to be taken for a select
set of states, that element will point to the other state to transition to. Using a function pointer array
can be more efficient, however for large applications these arrays cost increasing amounts of memory. A
3D-array uses even more memory than the regular state-event lookup table.

2.9.3 Message Passing

Message passing can be used for most systems using state machines. It works well in parallel state
machines, or in distributed and event-driven systems, for instance. A system using message passing
creates a message with information and sends it to a process. That process can then use that information
to take the relevant action. An example is when a state machine performs a transition to a new state.
The new active state is sent in a message to the other state machine that is handling an event and will
transition differently depending on the active state read in the message.

2.9.4 Mediator Pattern

The mediator pattern is a behavioral design pattern that is used to reduce communication complexity
between objects. Instead of objects being dependent on multiple different classes, all communication is
handled through a mediator class by having the communicator contain references to the state machines.
This decouples components which can make code more maintainable, since communication is centralized

[12].

2.10 Iterative Code Editor

An additional feature requested by Ericsson is to make the generated code updatable. Since the initial
code generation only results in a code skeleton and the user usually needs to add specific behaviour
manually, it is important to be able to keep the manually written code when updating the state machine
model. This can be done using Python string manipulation where a python script can read, navigate,
edit, and write to a previously generated state machine implementation file. The distinct structures of
some of the implementations makes it easy to navigate the file and find the specific code elements that

12

should be edited without touching the manually added code. The ambition is to enable insertion and
extraction of states, events, and attributes related to the two.

2.11 Test Case

The state machine implementations are first tested on a case study of a state machine provided (and
anonymized) by the division at Ericsson, which can be seen in Figure 5. It is a state machine with
many transitions compared to states. This case study is modeled using a modeling language (in our case
Papyrus and Visual Paradigm Community) and stored as an XML /XMI file. The file is then run through
the parser, and finally the code skeletons are generated according to the different designs.

19

15] 16
20

21

C 10 E

12

13 22

23

Figure 5: State machine model of the case study.

2.12 Performance Parameters

The following section brings up the parameters used to estimate the performance of the implementations.
These parameters consider how efficient the system runs overall and also looks at some basic software
design principles.

2.12.1 Run Time

Run time is a common metric of efficiency. It is important that the state machine has good throughput
as transitions in modern systems only takes nanoseconds.

2.12.2 Memory usage

Depending on where the software is mounted, having low memory usage can be a must. For small
integrated circuits in embedded systems for example, the available memory is often quite low, which
makes it imperative for the software to keep the memory consumption at a minimum.

2.12.3 Scalability

Scalability of an implementation is essential to maintain optimal performance as the state machine grows.
It measures how well performance scales with increasing memory demand. For large systems in the
industry, you want to add states and transitions to a state machine without a great decrease in throughput.

13

2.13 Code metrics

The following metrics are ones that are either impossible to measure or have no clear way to be measured.
They consist of important qualities in code design that is relevant in production. As such, they will not
be measured, but commented on.

2.13.1 Maintainability

Maintainability is an important metric in software design. The generated code should be easy to
understand, change and test. Code that is too complex or require large amounts of micro modifications
in different places is expensive, and less likely to be used as of it in production.

2.13.2 Modularity

Modular code has its functionality split into independent parts. This makes the code more organized,
and easier to maintain and test.

14

3 Implementation

This section aims to give an overview of how one can work with state machines, from being given a
specification, to modeling the specification and finally arrive at a desired code skeleton. Additionally,
different types of state machine implementations that can be used as framework for code generation is
highlighted. These are implementations found in articles of related work, or generally established ideas
that were discussed in the previous section.

3.1 Modeling

To model the UML state machines in this thesis, Papyrus and Visual Paradigm Community Edition was
used. Papyrus saves UML models as .uml files, and Visual Paradigm is able to convert the model into
XML and XMI, which makes them suitable for this application.

3.2 Parsing

Parsing of the UML files is done in a Python script using the built-in ElementTree XML API [8]. It
parses a given XML file and represents it as a tree structure, exploiting the hierarchical structure of XML
data. Then, given a state machine diagram saved as a .uml file, the parser iterates through the elements
of the tree until it finds nodes with attributes "uml:State" for states, "uml:Transition" for transitions,
and more. The relevant data of these nodes are stored in separate dictionaries.

3.3 Code Generation

The code generator takes the parsed data and uses it to write the header and code skeleton for the state
machine, following one of said implementations. It is accomplished in the script by iterating through the
data in the dictionaries, and writing the code automatically in a string literal which is then written into
the target source code .c file and header .h file.

3.4 eventHandler Functions

In the Nested Switch, Function Pointers, and Array of Structs implementations, the transition logic is
implemented using eventHandler functions. Initially, the eventHandler functions only contains the
basic transition logic of returning the next state, see Figure 6. The purpose of these functions is to
facilitate manually adding new features for specific transitions in a structured way.

1
A B

enumStates EventlHandler (void)

{
}

return StateB;

=0 N

Figure 6: A simple state machine model consisting of two states "A" & "B", and one event "1", and the generated
eventHandler function related to the transition.

3.5 Nested Switch

The Nested Switch approach creates enumerated types for all possible states and events, it then utilizes
nested switch statements to find specific eventHandler functions and consequently trigger transitions
between states. Whenever a new event occurs the state machine finds the combination of the current

15

state in an outer switch statement and the new event in an inner switch statement. It proceeds to call an
eventHandler function that handles the transition and returns the next state. In the basic code skeleton
the eventHandler functions exclusively returns the next state, with further functionality left for the user
to implement manually. Figure 7 illustrates a simple state machine model and a fragment of the resulting
generated code with the Nested Switch logic.

1
A B

1]...
2 |switch(state)
314
4 |case StateA:
5 14
6 switch (event)
7 {
8 case Eventl:
9 {
10 nextState = EventlHandler ();
11 break;
12 }
13 }
14 break;
15 |}
16 | case StateB:
17

Figure 7: A simple state machine model consisting of two states "A" & "B", and one event "1", and a fragment of the
resulting generated code with the Nested Switch logic.

3.6 Function Pointers

The Function Pointers approach creates enumerated types for all possible states and events, and a 2D
array of function pointers that point to eventHandler functions. The size of the enumerate types
determine the dimensions of the array, and when the state machine is running, the index of the current
state and the new occurring event corresponds to a specific function pointer in the array. The resulting
eventHandler function returns the next state. Figure 8 illustrates a simple state machine model and a
snippet of its generated code skeleton using the Function Pointers approach.

) 1
A 2 B

16

static eventHandler StateMachine —

{
[StateA] =

{[|Eventl] = EventlHandler, [Event2] = Event2Handler},
[StateB]| = {}

}s

nextState = (xStateMachine|[currentState|[newEvent])();

© 00 3O Uk Wi =

Figure 8: A simple state machine consisting of two states "A" & "B", and two events "1" & "2". The code snippet
contains the 2D array "StateMachine" starting at line 2, with the number of states corresponding to the first dimension and
the number of events corresponding to the second dimension of the array. Line 8 shows how the call to the eventHandler
function is made from the 2D array.

3.7 Array of Structs

The Array of Structs approach creates enumerated types for all possible states and events, and a struct
type that contains a state, an event, and a pointer to an eventHandler function. It generates an array
of these structs with all the valid combinations of states and events given in the state machine, with the
enumerated events corresponding to arrays indices. When the state machine is running the enumerate
value of a new occurring event corresponds to the index of the corresponding eventHandler function,
which in turn, returns the next state. Figure 9 illustrates a simple state machine model and a snippet of
its generated code skeleton using the Array of Structs approach.

N |
A 2 B

1]...

2 |typedef struct

314

4 enumStates stateMachineState;

5 enumEvents stateMachineEvent;

6 eventHandler stateMachineEventHandler;
7 |} stateMachineStruct;

8| ...

9 |stateMachineStruct stateMachine [|] =

10 |{

11 {StateA, Eventl, EventlHandler},

12 {StateA, Event2, Event2Handler}

13 1}

14 | ...

15 | nextState = (xstateMachine [newEvent].stateMachineEventHandler) ();
16

Figure 9: A simple state machine consisting of two states "A" & "B", and two events "1" & "2". The code snippet contains
the struct declaration starting at line 2, the struct contains a state, an event and an eventHandler function pointer. The
structs are kept in the array starting from line 9 and each event corresponds to one entry in the array. Line 15 shows how
the call to the eventHandler function is made from the array.

17

3.8 OOP in C

Object-Oriented Programming (OOP) is a programming paradigm that focuses software design around
objects and classes, as opposed to for example functional or imperative programming. Implementing
state machines in code using OOP concepts can prove to be beneficial for pattern-based designs focusing
on object encapsulation, such as the State Pattern, which is why a good amount of related work in the
field writes code in popular OOP languages such as C++ or Java. The functionality that OOP brings is
not natural to C, which means we have to emulate it if we want to use a similar design pattern. There are
4 important concepts that OOP consists of - polymorphism, inheritance, encapsulation and abstraction.
The concepts that will mostly be of use for the State Pattern implementations are polymorphism and
inheritance [5].

In C there is no such thing as a class, instead structures are used. They can hold data similar to
class variables, and function pointers to emulate class methods. With class inheritance, a class inherits
the features of another parent class. In C, a child can have an instance of its parent struct as the first
member. The child struct is then able to access variables of the parent struct through pointer casting.

Polymorphism is the idea of multiple different objects having the same interface and use the same method
calls, but implement them differently. In C, one could accomplish this using function pointers as class
methods, and then pointing to different functions depending on the object. Each object then has its own
version of the same method, pointing to different functions. It makes code more reusable and flexible.

3.9 Basic State Pattern

In the skeleton for the state pattern, each state is implemented as individual structs, which contains
function pointers to event functions, emulating class methods. Additional distinct behavior of the states
can be added into said structs. Every state has an interface struct inherited that has pointers to more
generic statewide functions such as setState(). The overarching state machine object is defined as a
context struct, which stores the current active state and inherits all the other distinct state structs. The
generated code skeleton provides function bodies for the class methods of specific events, but the contents
are left to be implemented by the user for their own specific state machine. One instance of this design
is given in Figure 10. We will call this the "Basic State Pattern", in which transitions are called through
the class methods of the states.

18

1]...

2 |struct State {

3 void (xsetState)(State **source, State xtarget);
4 void (xentry)();

5 void (xexit)();

6 |};

7

8 |typedef struct {

9 State interface;

10 void (* TO_ event)(Context *ct);
11 //Additional state behavior ...
12 | }SOState;

13

14 |typedef struct {

15 State interface;

16 void (* T1 event)(Context *ct);
17 //Additional state behavior ...
18 | }S1State;

19

20 | struct Context {

21 State xactive;

22 S0State SO;

23 S1State S1;

24 | }5

25 | ...

26 |void SO _TO_ event(Context *ct){

27 setState (&(ct—>active), (State *)&S1);
28 | };

29

30 |void setState(State xxsource, State xtarget){
31 xsource = target;

32 | };

33

Figure 10: Example of how a state machine can be designed using the State Pattern design. A state machine with states
"SO0" and "S1" are defined with their individual behavior along with the inherited statewide class methods in the "State"
struct. The context object stores references to all states and the active state. An example of the transition logic is shown
in the SO_TO_event function along with the interface setState function.

3.10 State-Table Pattern

This version of the state pattern is more akin to the Array of Structs idea. It stores states and events
as enum variables, but still has the context struct to store the active state. The other struct is for the
state-event table, storing an event and a pointer to a state handler. The generated code skeleton creates
the state-event tables where the rows are ordered by states and columns by events. An entry in the
table that corresponds to an event happening while the state machine is in the current state will return a
struct, where the state handler field is a function pointer to a state handler function. In the state handler
functions the user can implement the distinct behavior of the state, following the state design pattern.
An example is given in Figure 11.

19

1]...

2 |void SOhandler (Context *ct, Event e){

3 //Define state behavior...

4 ct—>active=S0;

51}

6

7 |void Slhandler (Context *ct, Event e){

8 //Define state behavior...

9 ct—active=S1;

10 | };

11

12 |static EventTable transitiontable[nostates][noevents] = {
13 //S0

14 [{

15 {T0,S1handler},

16 |},

17 //S1

18 |{

19 {T1,SOhandler},

20 |}, }

21

22 |void eventfunc(Context *xct, Event e){
23 EventTable transition = transitiontable[ct—>active]|[e];
24 statehandler sh = transition.sh;
25 sh(ct, e);}

26

Figure 11: Code example of using the State-Table Pattern implementation. Individual state behavior of states "S0" and
"S1" is encapsulated in their respective handler functions in lines 2 and 7. The transition table is defined in line 12, with
an event along with the active state being one entry in the table. The state handler function is accessed from the struct in
"eventfunc" in line 22.

3.11 Hierarchical State Pattern

Following the pattern proposed by Sunitha and Samuel ([23]) structs are defined as in Figure 4. As
with the regular state pattern, the states are expressed as distinct structs. There is a context struct
that stores the active state, shallow history state and inherits a state machine struct which models the
state machine itself. It contains a pointer to a dispatch function which delegates events to the states.
To handle deep history, the HistoryState struct is used, which inherits the state interface and stores
pointers to the updatehist() and restorehist() functions. A composite state takes the form of the
CompositeState struct keeping track of the number of regions of said state and arrays of the substates and
deep history states nested in it. For concurrency, they suggest the OrthogonalProperty interface that
employs methods to set the number of regions and handle transitions between substates within regions.
The composite state inherits this class. For a flat state machine without the need of the composite state
functions of the implementation, an example is given in Figure 12.

20

void Context dispatch(Context *ct, Event xe){
dispatch|[ct—active—>stateid |(ct, e);
}s

void SO dispatch(Context *ct, Event xe){
switch (e—>sig){
case TO signal:

0 O Ui Wi

10 ct—sm. transition = TO0 transition;
11 ct—>sm. transition (ct, (State *)&S1);
12 break;

13 |}

14 case T1 signal:

15 |{

16 ct—sm. transition = T1 transition;
17 ct—>sm. transition (ct, (State *)&S2);
18 break;

19 |}

20 default:

21 | {

22 break;

23 |}

24 |} }

25

26 |void TO transition(Context *xct, State xtarget){
27 //Do something

28 ct—active = target;

29 | }5

30

Figure 12: Code fragment of a flat state machine implemented using the Hierarchical State Pattern implementation. The
context object "ct" of the state machine object "sm" delegates an incoming event through the active state Context_dispatch
function in line 2 by calling the appropriate dispatch function. If SO_dispatch is called it checks the event signal and makes
the parent state machine object transition to the next state.

3.12 State Machine Interaction

The different proposals for state machine interaction support (except for the 3D array approach which
is more of its own implementation) is added into the Basic State Pattern approach described in the
State Pattern section. This is because we are mainly interested in comparing different state machine
interaction methods in this section and not the state machine implementation in itself. The State Pattern
implementation was used as the base state machine implementation for this mainly due to it showing
good results from the state machine implementation benchmark and being well structured.

3.12.1 Global Switch

There are two global context objects modeling the state machines, storing the active state and keeping
references of all states in their state machine. In the event handler functions e.g. SO_TO_event () from
Figure 10, a switch statement checks the active state id of the other state machine and then performs
the appropriate transition depending on the state using the setState() method in the state class.

21

3.12.2 Mediator Pattern

A Mediator struct stores the state machine context objects for each state machine, and all functions,
such as the event handlers and setState () method is changed to only take the mediator as input. The
event handlers then reads the active state id of the other context from the mediator through a switch
statement and executes the transition needed.

3.12.3 Message Passing

Using message passing, the code makes use of Message structs which contains a pointer to the active
state of the state machine sending it. Additionally, the context structs hold message queues along with
the current queue size. In the event handlers, the first message in the queue is used to determine
the appropriate transition together with the current state. Then, when the correct transition is made,
a message with the new current state is sent to the other state machine using the extra function
msg_queue (). Another function, msg_dequeue () removes the read message from the queue.

3.12.4 3D array

The code uses four different enum variables for two state machines covering the events and states
for each: MOStates, MiStates, MOEvents and M1Events (MO and M1 is used as names for the state
machines as an example). A 3D array is then defined for each of the state machines with the dimensions
MOStatesxM1StatesxMOEvents for MO and M1StatesxMOStatesxM1Events for M1. If there is a valid
transition to make for any combination, the array contains a function pointer to a state handler function
taking care of the transition and other behaviour one would want to implement. Non-valid combinations
are initialized as NULL.

3.13 Iterative Code Editor

The main workload for the code editor is navigating the code to find the particular code elements of
interest for the edit. This is done with index management using the standard python functions £ind (),
and rfind () to look for characteristics of the code elements. When considering addition of new states
and events the prime objective is to retain the manually written code that might have been added to the
code skeleton. When considering deletion of already existing states and events an additional important
objective is to make sure that the trace of the element is removed in all the code elements of the original
code skeleton. The characteristics vary for the different implementations and therefore the code editor
is limited to one of the implementations and can be seen as a proof of concept. Because the Array of
Structs implementation showed the best performance in the initial testing of the case study, it is the
implementation that is considered.

3.13.1 Add State

Adding a state is the most simple action when editing the state machine. In the Array of Structs
implementation the enumerate type containing the states, has an additional fictional "lastState" entry,
the editor looks for the "lastState" and inserts the new state above.

3.13.2 Add Event

When adding an event, the editor has to add three code elements: a new event to the enumerate type,
a new eventHandler function, and a new struct to the array. To add the event to the enumerate type,
the editor looks for the "lastEvent" entry and inserts the new event above. To add the eventHandler
function, the editor looks for the first code section after the eventHandler functions, in the Array of
Structs implementation it is the "stateMachineStruct" array, the editor inserts the new eventHandler
fucntion before the array. To add the new struct to the array, the editor looks for the last struct in the
"stateMachineStruct" array by finding the last eventHandler function pointer in the array and inserting
the new struct below.

22

3.13.3 Delete State

When deleting a state, the editor first removes the state from the enumerate type, secondly removes all
eventHandler functions returning the state and the structs and events in the enumerate type related
to those eventHandler functions, and finally removes all structs which includes the state and the
eventHandler functions and events in the enumerate type related to those structs. When deleting
elements from a specific code section, the editor first finds the specific code section and then looks for the
element within that code section. To remove the state from the enumerate type, the editor simply looks
for the state within the code section containing the states enumerate type. To remove the eventHandler
functions returning the state, the editor looks for return statements followed by the state name within
the eventHandler functions code section. The editor saves the names of the removed eventHandler
functions and looks for them within the array of structs, if any are found, the editor removes the structs
from the array and the events related to the structs from the enumerate type. To remove all structs
which includes the state, the editor looks for the state name within the array of struct. If any structs are
found, before removing them, the editor saves the event name from that struct and removes the event
from the enumerate type and its associated eventHandler function.

3.13.4 Delete Event

When deleting an event, the editor finds and removes the event form the enumerate type, removes the
struct containing the event, and removes the eventHandler function related to the event. The editor
simply looks for the event name within the each particular code section.

3.14 Benchmarking

In the Python scripts that generate C-code using parsed data, there is also an option to generate test
functions that does the benchmark. The execution time benchmark consists of generating a large amount
of events and letting the state machine handle them. This is done 100 times and then averaged out to
eliminate noise as much as possible. A total of 5 runs per measurement is done where the fastest time is
selected as a data point. These events are required to be valid for the active state of the state machine,
meaning that invalid events are discarded and regenerated until a valid one is found. This decision was
made because the code skeletons does not include error handling, so upon receiving an invalid event,
the state machine would immediately exit the event handler functions or do nothing which is not very
interesting. Naturally, the timings only includes the time taken for the state machine to handle valid
events. To monitor memory usage, the executable size is mainly used, along with the data distribution
of the file using the size command in unix. Some memory monitoring tools like valgrind was used, but
was not of much help due to the implementations not dynamically allocating memory for the most part.
The stack allocated memory used was kept the same size during runtime.

For the scalability measurements, the scripts include functionality to generate random state machines.
The number of valid events that the state machines handle are fixed, while the amount of states are
changed. When generating state machines, there are some concerns to take into consideration to make
measurements fair. For example, how do we generate the transition logic between states? Let us say a
randomly generated state machine has every state having one state being the target and source of one
transition each. That would be biased towards the Nested Switch implementation since the state would
have a low amount of condition checking, meanwhile for another implementation like the state pattern
using class methods, it would not make a difference. Therefore, a lower bound and upper bound on the
amount of transitions are set up as a rule for the randomly generated state machines. The main rule is that
all states should be the target and source of at least one transition. Then, the lower bound measurements
has every state having one transition and the upper bound has each state being able to transition to
every other state (n? — n transitions). An additional measurement for state machines with completely
random amounts of transitions is also considered as a kind of middle-ground. The measurements are
done with both no optimisation flags and the -O2 optimisation flag to see if the compiler manages to
optimise performance better for some implementations.

The interaction models measure scalability using a similar approach, but instead of measuring the best

23

case and worse case scenarios in terms of the amount of events in generated state machines, the best case
and worse case scenarios consider the amount of actions that can be taken depending on the other state
machine’s active state. One could vary the amount of events along with the amount of actions as well,
however for these measurements it was decided to only have one event for each state, as the generated
code for a large amount of possible actions already created large code, with some of them not able to
compile in gce. A scalability measurement for interaction with 1000 states means both state machines
have 1000 states. A run time measurement with 10° generated events for this case has each state machine
running one event, then the other state machine running the next event, resulting in 5 - 10% events per
state machine.

24

4 Results

4.1 Benchmarks

This section presents the benchmark results from measuring run time and memory size of the different
implementations with both randomly generated state machines and the state machine from the case
study. The benchmarks are all done on a Linux RedHat virtual machine, using an Intel Xeon Gold
6240R processor with 2.40 GHz. Measurements being specified as "-" in tables means the code was not
successfully compiled. Ericsson does not specify exactly what type of optimisation is being used in their
environments, but after discussion with the department we were told that the -O2 optimisation flag would
make for a fairly similar optimisation. The run times presented here are the times it takes for the state
machines to perform 10° transitions between states.

4.1.1 Nested Switch

Tables 1 & 2, and Figure 13 show the results of the scalability benchmarks for the Nested Switch
implementation. The results show more or less constant run time for the smaller state machines with
n and 2n events, regardless of optimisation flags. When running without optimisation flags, the state
machines with random and n? — n events results in run times that increases with the size of the state
machines, however the -O2 optimisation flag successfully reduces n? — n events to constant run time.
Overall, the -O2 optimisation flag reduce the run time by 14-72% (ignoring the random events). The size
of the files increases with the size of the state machines, and the -O2 optimisation flag reduces the file
sizes by 11-35% (ignoring the random events).

Timings [ms]

States [n] | Transitions | Flags | n Events | 2n Events | Random Events (min 2n) | n? — n Events
10 10° no flags 3.667 4.041 3.984 4.442
50 10° no flags 3.545 3.930 4.324 5.619
100 10° no flags 3.650 4.251 5.341 6.539
250 10° no flags 3.671 4.393 8.156 10.806
500 10° no flags 3.844 4.130 11.645 -

1000 10° no flags 4.462 4.003 28.713 -
10 10° -02 3.039 2.986 3.362 3.175
50 10° -02 3.005 3.006 3.722 3.242
100 10° -02 3.148 2.991 4.016 3.176
250 10° -02 3.134 2.947 6.757 3.076
500 10° -02 3.148 2.940 8.416 -

1000 10° -02 3.175 3.057 12.750 -

Table 1: Timings for the scalability benchmarks using the Nested Switch implementation.

25

Memory |B|
States [n] | Flags | n Events | 2n Events | Random Events (min 2n) | n? — n Events
10 no flags 2 580 3 268 3612 8 052
50 no flags 6 020 9 428 18 068 173 892
100 no flags 10 308 17 268 36 668 696 292
250 no flags 23 460 40 980 122 268 4 363 492
500 no flags 45 460 80 484 307 084 17 475 492
1000 no flags 89 460 159 476 017 620 -
10 -02 2 284 2 780 3 692 6 140
50 -02 4 540 6 940 14 188 119 740
100 -02 7 324 12 140 24 268 477 740
250 -02 15 724 27 724 61 804 2991 724
500 -02 29 724 53 724 194 220 -
1000 -02 57 724 105 724 399 052 -
Table 2: File sizes for the scalability benchmarks using the Nested Switch implementation.
30
Events
no flags
251 ::: ;n : ;n
Random Random 10° 5
. —== n*-n — n*-n
I I S
o g4 ¥y 7 7 meemmTT =
2151 R R P
E 2 || e
107 ,/’/ . no flags Fents -02
R4 10" 1 -—=n n
’,’, —-==2n 2n
5 ’f__—~—-—-::::::::_—_====.---___----=====::: Random Random
0 200 400 600 800 1000 0 200 400 600 800 1000
States States
(a) Time (b) Size
Figure 13: The Nested Switch implementations scalability benchmarks.
4.1.2 Function Pointers

Tables 3 & 4, and Figure 14 displays the results from the scalability benchmarks of the Function Pointers
implementation.
machines results in run times increasing with the size of the state machine. This means that the n events
state machines has a longer run time than the 2n events state machines when the number of states
surpasses ~ 250 states. The results indicates that for the smaller state machines with n & 2n events, the
-O2 optimisation flag consistently improves run time with 8-15%, while the results are more noisy and
show no consistent improvement for the larger state machines. When it comes to memory, the file size
simply increases with the size of the state machine, and the result is practically unaffected by the -O2
optimisation flag with a maximum memory reduction of 2.4% (ignoring the random events).

26

The 2n events state machines manages a constant run time while the other state

Timings [ms]

States [n] | Iterations | Flags | n Events | 2n Events | Random Events (min 2n) | n? —n Events
10 10° no flags 3.523 3.655 3.667 3.681
50 10° no flags 3.659 3.766 3.907 4.137
100 10° no flags 3.670 3.782 4.131 4.899
250 10° no flags 3.761 3.722 5.133 6.277
500 10° no flags 4.054 3.656 6.590 10.152

1000 10° no flags 4.950 3.735 7.618 -
10 10° -02 3.198 3.358 3.122 3.201
50 10° -02 3.117 3.338 3.145 3.417
100 10° -02 3.210 3.425 3.598 4.258
250 10° -02 3.191 3.412 4.376 6.146
500 10° -02 3.554 3.342 6.960 12.509

1000 10° -02 4.347 3.258 8.812 -

Table 3: Timings for the scalability benchmarks using the Function Pointers implementation.

Memory [B]
States [n] | Flags | n Events | 2n Events | Random Events (min 2n) | n? — n Events

10 no flags 3 092 4 404 5 836 13 556

50 no flags 24 340 46 884 96 940 1106 724
100 no flags 86 884 171 988 434 940 8 426 676
250 no flags | 514 516 1 027 268 3 375 676 127 676 516
500 no flags | 2 027 268 4 052 772 12 531 516 1 010 726 276
1000 no flags | 8 052 772 | 16 103 780 68 386 964 -

10 -02 3 020 4 300 6 236 13 260

50 -02 24 140 46 556 99 404 1 099 340
100 -02 86 556 171 356 511 388 8 396 940
250 -02 513 740 1 025 740 3 133 132 127 489 740
500 -02 2 025 740 | 4 049 740 15 501 532 1 009 977 740
1000 -02 8 049 740 | 16 097 740 68 329 260 -

Table 4: File sizes for the scalability benchmarks using the Array of Structs implementation.

Time [ms]

no flags

—-—=n

-==2n

Events 106 5

Random

2
-== n’-n

-02

n
2n
Random

105 4

n?—n

5
2
.

Memory [kB]
2

10! 4

Events
no flags -02

-=-n

n
-==2n — 2n
Random Random

—== n’-n n’—n

400 600

States

(a) Time

800

200 400

States

(b) Size

Figure 14: Function Pointers implementation scalability benchmarks.

27

600 800 1000

4.1.3 Array Of Structs

Tables 5 & 6, and Figure 15 displays the results from the scalability benchmarks of the Array of Structs
implementation. When running the state machines without optimisation flags, the 2n events state
machines keeps a consistent run time independent of the size of the state machines, while the run time
increases with size for the other state machines. This means that the 2n events state machines runs
faster than the smaller n events state machines when more than 250 states are considered. The results
of using the -O2 optimisation flag is less conclusive with fluctuations that in some cases result in worse
run times than without the -O2 flag. No matter the number of events, the -O2 flag results in particularly
large reduction of run time for the state machines with exactly 250 states. The file size increase with the
size of the state machines, and the -O2 optimisation flag reduces the file sizes by 2.9-4.5% (ignoring the
random events).

Timings [ms]

States [n] | Iterations | Flags | n Events | 2n Events | Random Events (min 2n) | n? —n Events
10 10° no flags 3.522 3.577 3.498 3.243
50 10° no flags | 3.568 3.615 3.717 3.883
100 10° no flags 3.563 3.643 3.877 4.323
250 10° no flags 3.598 3.608 4.299 5.105
500 10° no flags 3.718 3.609 4.669 6.592

1000 10° no flags 3.865 3.629 5.080 -
10 10° -02 3.273 3.375 3.308 2.999
50 10° -02 3.458 3.636 3.308 3.208
100 10° -02 3.547 3.521 3.390 3.490
250 10° -02 3.317 2.966 3.235 4.232
500 10° -02 3.846 3.702 3.911 6.162

1000 10° -02 3.750 3.580 5.216 -

Table 5: Timings for the scalability benchmarks using the Array of Structs implementation.

Memory [B]

States [n] Flags | n Events | 2n Events | Random Events (min 2n) | n? — n Events
10 no flags 2 468 3 140 3724 7 828
50 no flags 5 156 8 500 16 932 165 956
100 no flags 8 500 15 204 43 932 665 108
250 no flags | 18 548 35 300 125 860 4 172 548
500 no flags | 35 300 68 804 242 180 16 718 308
1000 no flags | 68 804 135 812 471 316 -

10 -02 2 396 3 036 3 404 7516
50 -02 4 956 8 156 17 164 158 556
100 -02 8 156 14 556 31 436 635 356
250 -02 17 756 33 756 114 316 3 985 756
500 -02 33 756 65 756 279 308 15 969 756
1000 -02 65 756 129 756 640 268 -

Table 6: File sizes for the scalability benchmarks using the Array of Structs implementation.

28

Time [ms]
by & by R o o
o n o n > 1
! !) !

w
n
!

bl
=
L

no flags
—-—=n

—-==n

=== 2n
Random

2
‘—n

Events

2n

Random

n-—n

104 4

10 5

102 4

Memory [kB]

10! 4

T
200

(

Figure 15: Array of Structs implementation scalability benchmarks.

T T
400 600
States

a) Time

4.1.4 Basic State Pattern

T
800

Events
no flags

-—=n

=== 2n

Random

T
1000

T T
200 400

(b) Size

T T T
600 800 1000

Tables 7 and 8 show the results of the scalability measurements for the state pattern implementation,
visualized in Figure 16. While a bit noisy, the best case scenario results for a generated state machine
with n events seems to indicate that the implementation scales well, in both the cases of optimisation.
For generated state machines with 2n and random amounts of events there is an increase in run time for
increasing number of states, which means the implementation does not scale as well in those cases. The
worst case scenario with n2 — n events seem to not scale well at all, but when using optimisation flags
the opposite could be the case looking at the timings. However, the reduced amount of samples makes it
hard to discern since there is no data for 500 and 1000 states.
Memory size for the State Pattern is shown to be high, in particular when increasing the amount of
events. A generated state machine with n? — n events and 500 states compiled with no flags, have an
executable size of about 24.5 MB for example. With optimisation the compiler manages to reduce the
memory size by a noticeable amount.

Timings [ms]

States [n] | Iterations | Flags | n Events | 2n Events | Random Events (min 2n) | n? —n Events
10 10° no flags 3.637 3.465 3.542 3.712
50 10° no flags 3.526 3.716 3.710 4.531
100 10° no flags 3.561 3.708 3.657 8.023
250 10° no flags 3.671 3.864 3.968 19.009
500 10° no flags 3.560 4.107 4.787 -

1000 10° no flags 3.736 4.660 5.905 -
10 10° -02 3.067 3.038 3.078 3.032
50 10° -02 2.991 3.039 3.081 3.163
100 10° -02 2.997 3.060 3.083 3.141
250 10° -02 3.040 3.081 3.095 3.228
500 10° -02 3.060 3.136 3.195 -

1000 10° -02 3.023 3.263 3.698 -

Table 7: Timings for the scalability benchmarks using the State Pattern implementation.

29

Memory |B|
States [n] | Flags | n Events | 2n Events | Random Events (min 2n) | n? — n Events

10 no flags 4171 5 363 4 883 12 011
50 no flags 13 691 19 763 32 107 248 891
100 no flags 25 595 37779 67 883 987 587
250 no flags | 61 291 91 763 179 403 6 137 299
500 no flags | 120 795 181 779 405 067 24 530 787
1000 no flags | 239 803 361 779 925 403 -

10 -02 3 947 4 899 5 691 9 947
50 -02 12 715 17 619 25 771 192 715
100 -02 23 659 33 539 48 803 760 251
250 -02 56 507 81 219 138 747 4 706 507
500 -02 111 259 160 739 358 931 -
1000 -02 220 763 319 731 721 563 -

Table 8: File sizes for the scalability benchmarks using the State Pattern implementation.

! Events
187 ,’ no flags -02
! -1 N
%7 II === 2n 2n
’I Random Random
/ -=- n’-n n2—n
b /]
14 !
!
— ’I
£ i
QE) I[
Z 10 |
]
II
& 1
!
1
64 I
!
1
T
44 ¢lommemm==ssssTo---oTTTTTTT T o
T . . '
0 200 400 600 800 1000

States

(a) Run time

Figure 16: State Pattern implementation scalability benchmarks.

4.1.5 State-Table Pattern

10* 4

Memory [kB]
2

2
‘

Events
no flags -02

-—-n

n
—-==2n — 2n
Random Random

2 n’—n

T T T
600 800 1000

(b) Memory size

Results for the State-Table Pattern approach is given in Tables 9 and 10, along with a plot in Figure 17.
Here, the run time increases for an increasing amount of states for all cases of events in the generated
state machines, suggesting that it does not scale well in terms of performance using this implementation.
The only case for when the run time is more consistent is for n events, using the -O2 optimisation flag

when compiling.

The measurements show that the State-Table Pattern uses up most amount of memory of any of the
implementations tested. Increasing the number of states increases the lookup table used which requires
more allocation memory, as well as the array storing EventTable structs containing more than just a
normal function pointer. Using optimisation flags, the memory size is reduced but by a small proportion
as for 500 states with n? — n events for instance, the memory size is reduced by less than 1075%.

30

Timings [ms]

States [n] | Iterations | Flags | n Events | 2n Events | Random Events (min 2n) | n? —n Events
10 10° no flags 3.949 4.129 3.978 4.296
50 10° no flags 3.885 4.268 4.157 4.415
100 10° no flags 4.103 4.389 4.082 4.430
250 10° no flags 4.254 4.485 4.697 5.482
500 10° no flags 4.478 5.170 5.708 -

1000 10° no flags 4.379 6.176 7.024 -
10 107 -02 3.138 3.140 3.786 3.343
50 10° -02 3.392 3.530 3.616 3.453
100 10° -02 3.291 3.662 3.703 3.880
250 10° -02 3.461 3.786 4.066 4.967
500 10° -02 3.372 4.386 5.211 5.841

1000 10° -02 3.618 5.441 6.782 -

Table 9: Timings for the scalability benchmarks using the State-Table Pattern implementation.
Memory [B]
States [n] | Flags n Events | 2n Events | Random Events (min 2n) | n? —n Events

10 no flags 4 063 5 663 7 583 16 863

50 no flags 44 991 85 007 196 991 1964 975
100 no flags 168 143 328 143 710 527 15 848 127
250 no flags | 1017 583 2 017 583 5 637 583 249 017 583
500 no flags | 4 033 327 | 8 033 327 29 449 327 1996 033 327
1000 no flags | 16 064 831 | 32 064 831 122 176 831 -

10 -02 3 823 5 423 5 423 9 947

50 -02 44 143 84 143 167 343 1964 143
100 -02 166 543 326 543 915 343 15 846 543
250 -02 1013 743 2013 743 5 645 743 249 013 743
500 -02 4 025 743 8 025 743 21 137 743 1996 025 743
1000 -02 16 049 743 | 32 049 743 127 873 743 -

Table 10: File sizes for the scalability benchmarks using the State-Table Pattern implementation.

Events
no flags

-——n
—-== 2n
Random

2
—-== n*-n

-02

n
2n
Random

2
n“—n

T
600

States

(a) Run time

T
800

T
1000

Memory [kB]

10! 4

Events
no flags -02

-—=n n
2n

Random

=== 2n
Random

2
n“—n

2
—-==n"-n

T
400

T T T
600 800 1000

States

(b) Memory size

Figure 17: State-Table Pattern implementation scalability benchmarks.

31

4.1.6 Hierarchical State Pattern

Looking at Tables 11, 12 and Figure 18, the results for the Hierarchical State Pattern are shown. From
the measurements, it is implied that generated state machines of all cases increase in run time when the
state machine grows. For state machines generated with n2 —n events, run time measured is significantly
higher compared to the best case scenario of n events. With optimisation, run time is reduced by a
noticeable margin and close to constant for n events.

The added functionality for hierarchy, history and concurrency makes the implementation need more
memory than the regular state pattern approach. Including the -O2 optimisation flag when compiling

reduces this size

further.

Timings [ms]

States [n] | Iterations | Flags | n Events | 2n Events | Random Events (min 2n) | n? —n Events
10 10° no flags 3.841 4.129 4.062 4.851
50 10° no flags 4.140 4.136 4.125 8.888
100 10° no flags 4.212 4.463 6.669 13.404
250 10° no flags 3.998 5.494 8.189 46.661
500 10° no flags 4.273 6.825 9.567 -

1000 10° no flags 5.052 8.948 12.577 -
10 10° -02 3.131 3.136 3.357 3.542
50 10° -02 3.117 3.322 4.082 4.590
100 10° -02 3.137 3.955 4.349 5.781
250 10° -02 3.470 4.334 5.610 18.121
500 10° -02 3.291 4.629 6.415 -

1000 10° -02 3.281 4.879 9.166 -

Table 11: Hierarchical State Pattern implementation scalability benchmarks.
Memory [B]
States [n] | Flags | n Events | 2n Events | Random Events (min 2n) | n? —n Events

10 no flags 5759 7047 7 855 16 887
50 no flags 19 351 25 911 43 231 349 367
100 no flags 36 311 49 607 85 255 1 381 487
250 no flags 88 279 121 815 255 263 8 588 063
500 no flags | 174 551 241 175 571 447 -
1000 no flags | 345 559 479 287 1263 967 -

10 -02 5 103 6 151 7279 13175
50 -02 16 503 21 815 31 127 253127
100 -02 30 727 41 367 65639 994087
250 -02 74 183 100 967 182 103 6156711
500 -02 146 215 199 335 443 367 -
1000 -02 288 727 395 447 972 967 -

Table 12: File sizes for the scalability benchmarks using the Hierarchical State Pattern implementation.

32

40

w
S
L

Time [ms]

20 A

Events
no flags -
—-—=n
2n
Random

n®—n

T
600
States

(a) Run time

Memory [kB]

104

10° 4

10! 4

no flags

-—-n

—-==2n

2

—_——— e

Random

Events

n
2n

Random
2

n“—n

T T
400 600

States

T
200

o4

(b) Memory size

T T
800 1000

Figure 18: Run time and memory size measurements for the Hierarchical State Pattern.

4.2 Comparing Benchmarks

Looking at all implementations at the same time in Figure 19 with no optimisation flags, for the cases
of state machines generated with n, 2n and random events the State Pattern and Array of Structs
approach performs the best in terms of run time. For any case of event size, the Hierarchical State
Pattern scales the worst and is the slowest barring the cases when the amount of events are random or
2n in the generated state machine, where the Nested Switch implementation is slower. The 2D array
based State-Table Pattern and Function Pointers solutions rank in the middle of the approaches and
perform well, similar to the State Pattern and Array of Structs for event sizes bigger than n. Using the
Nested Switch implementation does not seem to work the best for state machines with 2n and random
events, according to the results. However, the non pattern-based Nested Switch and Array of Structs
ideas depend on memory the least out of the implementations, while the extra structure overhead of the
pattern based implementations are in need of more. Requiring the most is the State-Table pattern and
Function Pointers that use a 2D-array to handle events.

5o n Events n Events
71 — Switch 10* 4 —— Switch
~— Function Pointers ~— Function Pointers
481 — Array of Structs —— Array of Structs
— Basic State Pattern — Basic State Pattern
4.6 4 — State-Table Pattern w4 State-Table Pattern
— Hierarchical State Pattern — Hierarchical State Pattern
s z
2 S
£ £
= 40 3 102 4
= ERU
4.0
3.8 10! 4
3.6

600
States

800

(a) Time n

1000

33

T T T
400 600 1000

States

800

(b) Size n

States

(g) Time n? —n

91 2n Events 2n Events
—— Switch —— Switch
~——— Function Pointers 104 4 — Function Pointers
84 —— Auray of Structs — Array of Structs
— Basic State Pattern — Basic State Pattern
— State-Table Pattern — State-Table Pattern
74 — Hierarchical State Pattern 04 Hierarchical State Pattern
E =
° Z
£°] :
= 10?
5 B
10!
44 0
7
0 200 400 600 800 1000 0 200 400 600 800 1000
States States
(c¢) Time 2n (d) Size 2n
Random (min 2n) Events 10° Random (min 2r) Events
—— Switch —— Switch
25 4 ~— Function Pointers — Function Pointers
— Array of Structs — Array of Structs
—— Basic State Pattern 10* { —— Basic State Pattern
—— State-Table Pattern —— State-Table Pattern
209 —— Hierarchical State Pattern —— Hierarchical State Pattern
E g 103
2 g
E 151 £
- s
10%
104
10!
5 -
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
States States
(e) Time Random (min 2n) (f) Size Random (min 2n)
n®—n Events n®—n Events
—— Switch 10° § —— Switch
£ — Function Pointers ~— Function Pointers
——— Array of Structs —— Array of Structs
— Basic State Pattern 10° { —— Basic State Pattern
— State-Table Pattern — State-Table Pattern
304 —— Hierarchical State Pattern — Hierarchical State Pattern
7 2 10¢
B g
& g
20 A =z 10
10%
104
E 10!
0 100 200 300 400 500 0 100 200 300 400 500

States

(h) Size n? —n

Figure 19: Run time and memory size for state machine implementations, no optimisation flags.

With the -O2 optimisation flag added in Figure 20, we notice that the State Pattern implementation
performs well in all cases of generated state machines, and the run time for the n? —n case has been greatly

34

reduced in the optimisation by the compiler. The Array of Structs implementation still performs well but
a difference from the benchmark with no optimisation flags is that the Nested Switch implementation
seem to have improved, competing with the State Pattern approach except for state machines generated
with random events. Both table based approaches State-Table Pattern and Function Pointers compare
worse to most other implementations, especially for larger state machines with more states and events.
For smaller amounts of events, the added structure of the Hierarchical State Pattern does not seem to
impact the performance too much, but for n? — n its run time is the worst. On the memory side, the
table based State-Table Pattern and Function Pointers approaches needs the most memory for all cases
of events. The Nested Switch and Array of Structs implementations have the smallest memory size, with
the extra overhead from the pattern based State Pattern and Hierarchical State Pattern require more.
The difference between these two and the Array of Structs and Nested Switch approaches is smaller the
more events the state machines have however, since the extra structure needed for the State Pattern then
matters less.

35

4.4 1
n Events n Events
—— Switch 10* § —— Switch
421 —— Function Pointers ~— Function Pointers
—— Array of Structs ——— Array of Structs
404 — Basic State Pattern —— Basic State Pattern
——— State-Table Pattern 1004 State-Table Pattern
— Hierarchical State Pattern — Hierarchical State Pattern
_ 3.8 §
2)
= 3.6 5 107 4
3] 2 10
3.4
324 10" 5
3.0 1
0 200 400 600 800 1000 0 200 400 600 800 1000
States States
(a) Time n (b) Size n
331 2n Events 2n Events
—— Switch —— Switch
——— Function Pointers 104 4 —— Function Pointers
504 —— Array of Structs —— Array of Structs
— Basic State Pattern — Basic State Pattern
— State-Table Pattern — State-Table Pattern
454 — Hierarchical State Pattern 104 Hierarchical State Pattern
=)
£ E
=404 2
= 107 4
3.5 1
10" 4
0] — N 0000000
0 200 400 600 800 1000 0 200 400 600 800 1000
States States
(c) Time 2n (d) Size 2n

Random (min 2n) Events
Switch

Function Pointers

Array of Structs

Basic State Pattern
State-Table Pattern
Hierarchical State Pattern

E
o 81
£
B
6
44
0 200 400 600 800 1000
States
(e) Time Random (min 2n)
18 n? —n Events
—— Switch
164 — Function Pointers
— Array of Structs
ud Basic State Pattern
—— State-Table Pattern
—— Hierarchical State Pattern
- 121
)
o
£ 10+
5]
8
6
44
0 100 200 300 400 500

States

(g) Time n? —n

Memory [kB]

\

Memory [kB]

10° 4

10* 4

103 4

10% 4

10! 4

Random (min 2n) Events
Switch

Function Pointers
Array of Structs
Basic State Pattern
State-Table Pattern

}

Hierarchical State Pattern

200

=

600 800 1000

States

400

(f) Size Random (min 2n)

106 4

10° 4

10* 4

103 4

10% 4

10! 4

n®—n Events
Switch
Function Pointers
Array of Structs
Basic State Pattern
State-Table Pattern
Hierarchical State Pattern

!

0 100

3

200 300 400 500

States

(h) Size n? —n

Figure 20: Run time and memory size for state machine implementations, optimised with -O2.

4.3 Case Study

The results for the case study are illustrated without optimisation flags in Figure 21, and with the -O2
optimisation flag in Figure 22. The results without optimisation flags suggest that the Array of Structs
method both performs best in regards to run time, and requires the least amount of memory. Most of the
state pattern based implementations ranks at the bottom, with the Hierarchical State Pattern having the
longest run time and largest memory size. Using the Nested Switch approach, it is seen that the memory
size is low, but slow for this system in regards to run time, possibly due to the case study having high
amounts of transitions compared to states. When using the -O2 optimisation flag the Array of Structs
implementation just about loses out to the Basic State Pattern implementation for run time and the
Nested Switch implementation for memory usage.

36

Time [ms]

Time [ms]

4.0 1

3.5 1

3.0 1

.[\)
W
1

g
=]
1

0.5 1

0.0 -

no flags

I Time

|

[Memory

Switch Function Pointers Array of Structs

o ~ o o
Memory [kB]

T
(3]

T
—_

Basic State

State-Table

Hierarchical State

Figure 21: Result from the case study compiled without optimisation flags.

T
(=]

3.0 1

2.5 1

g
=]
1

—_
(%))
1

1.0 1

0.5 1

0.0 -

I Time

-02

[Memory

Switch Function Pointers Array of Structs

@ -
Memory [kB]

T
(3]

T
—_

Basic State

State-Table

Hierarchical State

Figure 22: Result from the case study compiled with the -O2 optimisation flag.

37

T
(=]

4.4 State Machine Interaction Benchmarks
4.4.1 Global Switch

In Tables 13 & 14 and Figure 23, the run time and memory measurements are displayed using the Global
Switch method. For the best case scenario of n actions the timings are consistent and seem to scale well
for both the optimised and unoptimised case, with small variations from noise. For n? — n actions the
run time is high for measurements with 300+ states, which is dampened when using optimisation.

Timings [ms]
States [n] | Iterations | Flags | n Actions | n? —n Actions
10 10° no flags 3.652 3.798
25 10° no flags 3.515 3.849
50 10° no flags 3.631 3.757
100 10° no flags | 3.594 4.305
200 10° no flags 3.450 3.774
300 10° no flags 3.455 6.826
400 10° no flags 3.467 9.278
500 10° no flags 3.516 14.376
750 10° no flags 3.538 -
1000 10° no flags 3.709 -
10 10° -02 2.954 2.956
25 10° -02 3.109 3.050
50 10° -02 3.149 3.049
100 10° -02 2.907 3.014
200 10° -02 2.889 3.050
300 10° -02 2.930 5.084
400 10° -02 2.916 5.380
500 10° -02 3.052 7.803
750 10° -02 2.983 -
1000 10° -02 2.921 -

Table 13: Run time using switch statements in the event handlers with global variables.

38

Time [ms]

Memory |B|
States [n] | Flags | n Actions | n® —n Actions

10 no flags 8 851 14 451
25 no flags 19 379 55 891
50 no flags | 37011 185 059)
100 no flags 72 355 668 307
200 no flags 143 123 2 536 003
300 no flags | 213 971 5603 107
400 no flags | 284 771 9 870 211
500 no flags | 355 523 15 337 299
750 no flags | 532 563 34 255 059
1000 no flags | 709 539 60 672 803
10 -02 8 051 11 619
25 -02 17 475 40 115
50 -02 33 267 123 731
100 -02 64 771 387 971
200 -02 127 763 1414 163
300 -02 190 771 3 080 371
400 -02 253 763 5 386 563
500 -02 316 771 8332 771
750 -02 474 275 -
1000 -02 631 763 -

Table 14: Executable size using switch statements in event handlers with global variables.

! ———q

2
—-==n°

—-n

Actions

! no flags -02

—_n

— n°-n

104 4

Memory [kB]
2

=== n"-n

Actions

no flags -02

-—=n

T
600
States

T T
200 400

(a) Time (b) Size

Figure 23: Performance measurements for interaction using switch statements in the event handlers with global state
machine variables.

4.4.2 Mediator Pattern

Using a mediator as communication we obtain the results given in Tables 15 & 16 and Figure 24. With
n actions, the run time increases slightly for growing amounts of states. The timings for n? — n shows
an increase for more states, but then erratically decreases for 500 states. There is likely more noise in
these measurements. The optimised timings point to a significant improvement for both the n and n% —n
cases, as well as slight scaling improvements. For n actions with optimisation the timings are close to
constant. Memory size is reduced greatly as well.

39

Timings [ms]

States [n] | Iterations | Flags | n Actions | n? —n Actions
10 10° no flags 3.836 3.796
25 10° no flags 3.771 3.698
50 10° no flags 3.722 3.876
100 10° no flags 3.796 3.847
200 10° no flags 3.795 4.051
300 10° no flags 3.824 4.595
400 10° no flags 3.855 4.549
500 10° no flags 3.904 4.354
750 10° no flags 4.059 -

1000 10° no flags 4.217 -
10 10° -02 3.079 3.097
25 10° -02 3.086 3.172
50 10° -02 3.107 3.081
100 10° -02 3.091 3.095
200 10° -02 3.101 3.260
300 10° -02 3.119 3.841
400 10° -02 3.225 3.980
500 10° -02 3.181 3.556
750 10° -02 3.284 -

1000 10° -02 3.280 -

Table 15: Run time using the mediator pattern.
Memory [B]
States [n] | Flags | n Actions | n? —n Actions
10 no flags 9 059 15 363
25 no flags 19 923 60 803
50 no flags 38 099 203 603
100 no flags 74 531 740 403
200 no flags 147 539 2 820 211
300 no flags 220 547 6 239 411
400 no flags | 293 523 10 998 611
500 no flags 366 579 17 097 811
750 no flags 549 027 38 208 307
1000 no flags | 731 523 -
10 -02 8 227 11 523
25 -02 17 891 40 163
50 -02 34 067 123 987
100 -02 66 371 418 371
200 -02 130 963 1 535 763
300 -02 195 571 3349 171
400 -02 260 163 5 866 563
500 -02 324 771 9084 771
750 -02 486 275 20 190 275
1000 -02 647 763 -

Table 16: Executable size using the mediator pattern.

40

Time [ms]

@ ol by » » »
(=)} o0 (=}] - (=}
L L ! ! L L

7/

»
IS
L

hed
IS}
L

no flags

—-———n

Actions

—_n

T
400
States

(a) Time

600 800

1000

Memory [kB]

10% 4

)

102 4

10! 4

Actions
no flags -02

—-—=n

—_n

—_— n

2
=== n"-n

—-n

200

T
400
States

(b) Size

600

800

Figure 24: Performance measurements for interaction using the mediator pattern.

4.4.3 Message Passing

Results for adding message passing can be seen in Tables 17 & 18 and Figure 25. With both no
The

optimisation and optimisation for n actions, the timings are fairly consistent until 1000 states.

timings for n? — n actions with no flags record the highest timings for any of the interaction methods.
With the -O2 optimisation flag, the run time is improved for all cases, but most noticably for n? — n
actions. Adding the message structs and message queue makes the implementation use more memory
than for the Global Switch and Mediator Pattern methods. With optimisation the memory size instead

increases.

Timings [ms]
States [n] | Iterations | Flags | n Actions | n? —n Actions
10 10° no flags 4.002 4.340
25 10° no flags 4.116 4.015
50 10° no flags 4.076 4.389
100 10° no flags 4.119 5.304
200 10° no flags 4.182 8.995
300 10° no flags 4.201 11.202
400 10° no flags 4.357 21.052
500 10° no flags | 4.436 28.044
750 10° no flags 4.357 63.307
1000 10° no flags 4.831 -
10 10° -02 3.051 3.279
25 10° -02 3.301 3.456
50 10° -02 3.068 3.654
100 10° -02 3.180 4.027
200 10° -02 3.330 8.001
300 10° -02 3.058 6.155
400 10° -02 3.217 9.471
500 10° -02 3.208 13.364
750 10° -02 3.223 -
1000 10° -02 4.089 -

Table 17: Run time using message passing.

41

1000

Memory |B|

States [n] | Flags | n Actions | n? —n Actions
10 no flags 13 971 28 627
25 no flags 26 835 125 011
50 no flags 48 371 449 731
100 no flags 91 491 1714 083
200 no flags | 177 939 6 703 971

300 no flags | 264 339 14 973 283
400 no flags | 350 723 26 522 579
500 no flags | 437 155 41 351 875
750 no flags | 653 091 -
1000 no flags | 869 091 -
10 -02 15 411 36 083

25 -02 30 563 166 435
50 -02 55 923 612 115
100 -02 107 651 2 487 427
200 -02 212 323 9772 819
300 -02 316 899 21 856 627
400 -02 421 251 38 740 419
500 -02 525 939 -

750 -02 787 587 -
1000 -02 1 049 155 -

Table 18: Executable size using message passing.

Actions

Actions ;
60 no flags -02 / no flags -02
—-—-n —_—n / -—=n —_—n
2 2 / 2 2
=== n--n —nt—-n / 104_ === n--n n-—n
504 /7
’
’
’
’
401 /
z 4 E)
B / 203
= / . 10°
o / 8
] /
£ 301 / g
/ =

204

T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
States States

(a) Time (b) Size

Figure 25: Performance measurements for interaction using message passing.

4.4.4 Function Pointer 3D array

Results for the 3D array approach is given in Tables 19 & 20 and Figure 26. This method was not able
to compile for two generated interacting state machines with states more than 100 states. This was due
to running out of memory when the array was stack allocated. When trying to run for a heap allocated
array instead, the code was too long from initializing the non-empty values which also made the code not
compile. Nonetheless, it is seen that the difference in memory required between the best and worst case
scenario is low, close to a factor of 2. The number of data points from the run time measurements in are
not enough, and thus makes it not possible to see any real result.

42

Timings [ms|

2

Table 20: Executable size using 3D arrays.

43

States per machine [n] | Iterations | Flags | n Actions | n® —n Actions
10 10° no flags 3.821 3.518
25 10° no flags 3.693 3.570
50 10° no flags 3.728 3.619
100 10° no flags 3.640 3.820
200 10° no flags - -
300 10° no flags - -
400 10° no flags - -
500 10° no flags - -
750 10° no flags - -

1000 105 no flags - -
10 10° -02 3.066 3.122
25 10° -02 3.285 3.163
50 10° -02 3.196 3.478
100 10° -02 3.525 3.794
200 10° -02 - -
300 10° -02 - -
400 10° -02 - -
500 10° -02 - -
750 105 -02 - -
1000 10° -02 - -

Table 19: Run time using 3D arrays.
Memory [B]
States [n] | Flags n Actions | n? —n Actions
10 no flags 18 615 34 615
25 no flags 254 031 504 023
50 no flags 2 006 295 4 006 295
100 no flags | 16 010 903 32 010 903
200 no flags | 128 020 103 -
300 no flags - -
400 no flags - -
500 no flags - -
750 no flags - -
1000 no flags - -
10 -02 18 639 34 639
25 -02 254 103 504 095
50 -02 2 006 479 4 006 479
100 -02 16 011 279 32 011 279
200 -02 128 020 879 -
300 -02 - -
400 -02 - -
500 -02 - -
750 -02 - -
1000 -02 - -

Time [ms]
w b » » bl el
w - wn (=} ~ o
L L L L . L

w
o
L

w
L

Actions
no flags -02
m— g

—== n*-n n*—n

20 40 60 80 100
States

(a) Time

105 4

104 4

Memory [kB]

10° 4

no flags

Actions
-02

T
100
States

75

(b) Size

125

Figure 26: Performance measurements for interaction using 3D arrays.

4.5 Comparing Interaction Methods

The run time and memory scalability results for generated state machines with n actions and n? — n

150

175 200

actions are presented in the plots in Figure 27. As one might expect, it is seen that only having a switch

statement in the event handler is the most efficient memorywise for low amounts of actions in the n

actions plot. It increases the least in time between states as well which makes it scale the best. Next up
is the addition of a mediator which performs slightly slower than the pure switch statement with global
variables. Message passing gives the slowest run time and scales the worst. Memory size of the state
machines are by far at the highest using 3D arrays for any case. The other interaction implementations
are closer with message passing taking up the most space and global switch using the least.

4.8 1

4.6 4

Time [ms]

&
o
L

3.8 1

3.6

344

n Actions
Global Switch
Mediator Pattern
Message Passing

3D array

400 600 800 1000

States

200

=

(a) Time n

44

105 4

104 4

Memory [kB]

10° 4

n Actions
Global Switch
Mediator Pattern
Message Passing
3D array

=

200

400
States

(b) Size n

600

1000

n®—n Actions
601 —— Global Switch
~ Mediator Pattern
——— Message Passing "
509 — 3p array 107 4
- 40 A E
£ > 10°
2 £ 107 4
g
& 30 g
- =
207 102 4 n?—n Actions
—— Global Switch
104 ——— Mediator Pattern
——— Message Passing
= 3D array
T T T T T T T T 10" 1 T T T T T
0 100 200 300 400 500 600 700 0 200 400 600 800 1000

States States

(c) Time n? —n (d) Size n? —n

Figure 27: Performance for different interaction methods compiled without optimisation flags.

If we look at the results when including optimisation flags instead in Figure 28, the message passing
method is more on par with using a mediator, until reaching 1000 states for n actions. The Global
Switch approach still is the fastest and the 3D array implementation does not seem to perform well with
the limited data points. In the memory department, the 3D array approach is still the worst by a great
margin, with the Message Passing, Mediator and Global Switch approach being closer to each other. For
n? —n actions the switch performs worse than the mediator pattern, but the measurements are relatively
noisy. The memory required in this case using message passing is higher with optimisation, and the
mediator and switch approach is still close.

n Actions 10° 4 n Actions
40+ — Global Switch —— Global Switch
~ Mediator Pattern ~ Mediator Pattern
—— Message Passing ——— Message Passing
3.8 4 — 3Darray 104 4 —— 3D array
- 361 5
g =
o E‘ 103 4
E £
=] 4 S
34 =
324 10% 4
3.01
10" 4
T T

0 200 400 600 800 1000
States

(a) Time n

45

T
400
States

(b) Size n

600

Time [ms]

n*—n Actions
— Global Switch
~ Mediator Pattern
—— Message Passing
= 3D array

States

(c) Time n

2

- n

Memory [kB]

10%

10°

10

10!

n*—n Actions

Global Switch
~ Mediator Pattern
——— Message Passing
—— 3D array

T T T T T T
200 300 400 500 600 700
States

(d) Size n? —n

Figure 28: Performance for different interaction methods compiled with the -O2 optimisation flag.

46

5 Discussion

5.1 State Machine Implementations

When looking at the results from the scalability benchmarks and focusing primarily on run time and
memory size, three of the implementations stands out: Nested Switch, Array of Structs, and Basic State
Pattern. The results depend on what type of optimisation the state machine will be subjected to, and
whether run time or memory usage is of top priority.

When running without optimisation flags, the Array of Structs, and Basic State Pattern implementations
results in similar run times, with a slight edge for Array of Structs when considering larger state machines.
The Array of Structs implementation also turns out to be the most memory efficient, hence we can consider
the Array of Structs implementation to have the best general performance in an environment without
optimisation flags. However, if memory usage is not a priority, the Basic State Pattern implementation
might be preferred because of its more robust design pattern.

In an environment with the -O2 optimisation flag, in terms of run time, the Array of Structs implementation
lags behind while the Nested Switch implementation catches up to the Basic State Pattern implementation.
The Nested Switch implementation just about surpasses the Array of Structs implementation in terms of
memory usage, consequently when only considering the best performance the Nested Switch implementation
can be considered the winner. However, due to the somewhat inconsistent run time results, and the in
our opinion messier code design and more demanding maintenance, the Nested Switch implementation
might not be the optimal choice. Instead, the Basic State Pattern might be preferred if run time is the
priority, while the Array of Structs implementation might be preferred if memory usage is the priority.

5.1.1 Maintainability

Using the state pattern based design requires more memory than some of the more straightforward,
non-pattern based approaches, but it provides some advantages in terms of design. Since the state-specific
behavior is encapsulated, the code is more modular and maintainable. The states are all independent from
one another, so adding or changing a state is simple. Changing and adding transitions is also easy, boiling
down to adding a function pointer in the specific state struct if using the "Basic State Pattern" method
or changing an entry in the matrix if using the "State-Table Pattern". The transition logic used lessens
the need for long conditional statements used in the Nested Switch approach. In the Array of Structs
and Function Pointers implementations the basic transition logic is assembled in a structured way and all
additional transition logic is contained within the eventHandler functions. In our opinion, this makes the
code both readable and maintainable, especially with a tool such as the interactive code editor. For more
complex state machine specifications however, states may need to know about each other which makes the
code harder to understand and maintain as state become more coupled. There is a slight learning curve
to pattern-based design as well. This is amplified when introducing hierarchy, history and concurrency in
the Hierarchical State Pattern that need even more structure to correctly model complicated behavior. If
memory or code size is of importance, the state pattern can be problematic due to the general structure
needed to encapsulate state specific behavior. In the Basic State Pattern and Hierarchical State Pattern,
there is an explosion of structs, one for each state, and the extra for the interfaces and other functionality.
Compared to the Array of Structs and Function Pointers implementations that use enumerate types for
states and events, this is a notable difference in data.

5.2 Case Study

The results from the case study shows that the Array of Structs implementation performs the best in
the no optimisation flags environment with regards to both run time and memory usage. When using
the -O2 optimisation flag the Basic State Pattern implementation results in the fastest run time while
the Nested Switch implementation needs the least amount of memory. These results are inline with the
results from the scalability benchmarks, and the same motivation can be used again to discourage using
the messier Nested Switch implementation because the performance difference is small for state machines
of this size.

47

5.3 State Machine Interaction

While noise is hard to fully eliminate in any setting, it was highly apparent in these measurements, which
hurts the validity of these run time results. A run time measurement for a lower amount of states should
be either the same or less than the run time for a higher amount of states, except in some special cases.
We tried retiming these outliers, but it did not really give any improved results. In general there are
problems with comparing interaction methods in a sequential setting. First of all, in some way, you
need to check the state of the other state machine when performing the action. Unless this is handled
through a matrix/table, this will always boil down to an if/switch statement somewhere in the code, most
often the event handlers. This will make the Global Switch approach the obvious winner always when
comparing run time of the interaction methods since it only checks the state with a switch statement
without any communication which works only when the other state machine object is a global object.
The other implementations barring the 3D array one does the same but with some added means of
communication. Therefore, it might be better to look at the results as a sort of performance loss when
adding extra communication. For all the implementations, the Basic State Pattern approach from the
previous benchmark was used as the base state machine for the interacting state machines. This might
be less beneficial for some of the interaction methods.

Judging from the results for n actions the message passing approach is the slowest out of the three,
due to the communication overhead in form of the extra messaging functions and message queue array
needed to be accessed every time an event happens. The 4th approach using 3D arrays has close to no
results making it impossible to comment on. It could be an interesting approach to use for smaller sized
state machines but even then the memory usage is so high that one would be better off using one of the
other approaches or a hash table. In the case of using the -O2 optimisation flag the interesting case is
how the message passing and mediator pattern seem to compete in run time. Results for the n? —n case
show a similar trend. It suggests that using a mediator performs better then the Global Switch method
by a great amount in some points, when the difference should at best be small if not negligible which is
seen at the lower states.

5.3.1 Maintainability

The global state machine variables with the switch statement for interaction performs the best both in
terms of run time and memory size but there is a tradeoff in terms of software design and maintainability
of the code. As always with switch statements, for larger, complex state machines they become longer
and harder for future developers to understand. On top of that, having the context objects being global
makes the code more difficult to maintain due to there being a tighter coupling between the context
object and transition functions since it expects the global variable to be known.

As previously mentioned with the mediator, it helps decouple dependencies in the code and simplifies
interaction as all communication goes through the mediator. This makes the code easier to maintain as
the components of the code are then more independent, and makes them easier to update and debug.
For simpler state machines as the one worked on in this report, this works well but if the state machine
is more complex, the mediator can quickly gain too much functionality and responsibilities, turning into
what is called a god object.

Message passing for interaction has the benefit of making more modular code, as the event handlers
of the state machine only use relevant messages to change state and work well independently if there are
no messages. The real problem arrives when managing a great size of messages, if not done well there
are scalability and performance issues by the communication overhead, which was seen in the results.

Using an array to handle the interactions provides more structure and is easy to comprehend. For
large state machines, maintaining the array can prove to be a challenge with the increasing size of the
arrays. If one would need to add an event or state for a complex state machine the structure of the
arrays would need to be changed. While more structure can be provided with this approach there is great
memory issue as the results suggested.

48

5.4 Iterative Code Editor

The iterative code editor allows for easy updates of the Array of Structs implementation through console
commands. It ensures that the structure of the implementation stays intact and reduces the risk of bugs
outside of the eventHandler functions. Overall, it is a simple precaution to ensure safe programming.

49

6 Conclusions

In this report, the main goal was to suggest a way of working with state machine from model-to-code
following some different implementations of state machine design and compare these in the form of a
benchmark, looking at performance primarily. The second part suggested a way to iteratively update the
generated code and performance measures for interaction between two sequential state machines.

The suggested way of working with state machines was to model a given specification in the UML modeling
language, use the XML /XMI output file from the model in a script (in our case written in Python) that
parses and finds the components, and writes the C code following an implementation. Implementations
suggested were taken from related work in the area and traditional implementations. They consisted of
the Nested Switch, Function Pointers, Array of Structs, Basic State Pattern, State-Table Pattern and
Hierarchical State Pattern implementations. Run time of the implementations were measured by running
the generated state machines of different sizes through 10° randomly generated valid events and run on
simple state machines consisting only of states and transitions. Memory was measured as the size of
the source file containing the implementations, and the implementations were compiled both with and
without the -O2 optimisation flag. The results favoured the Array of Structs and Basic State Pattern
implementations and the choice depends on the optimisation used and the priority between run time and
memory.

An iterative code editor was implemented for the Array of Structs implementation, it allows the user
to update the basic structure of state machine code without the risk of introducing bugs.

Run time results from adding interaction between two state machines, mainly for state machines implemented
with the state pattern design had using the mediator pattern for communication as the best option.
Declaring the state machines as global variables and using a switch statement was treated as the default
approach since it adds no extra communication overhead to the code, and while it performed better than
using a mediator it has big challenges in regards to code design (modularity, maintainability) and is most
likely not used in practice. The second best option was therefore the mediator pattern both in run time
and memory size. Other proposed ideas consisted of using message passing and a 3D array of function
pointers.

a0

7 Future Work

7.1 Code Generator Functionality

The code generators can be expanded with support for additional features. One of such is generation
of unit tests and model validation tests. Unit tests makes sure individual units of the state machine
works correctly, with an example being verifying transitions working as intended. One way this could be
done is generating assert statements in the C code that checks the active state after a transition. Model
validation instead looks at the context of the whole system and ensures that it behaves correctly.

7.2 State Machine Structure

The analysis conducted here only looked at the case of "flat" state machines, with only states and
transitions caused by external events. A similar benchmark could be done for other types of state
machines with added features (e.g. composite states, orthogonal regions) if that is what the systems use.

7.2.1 Event and Transition Logic

In this project we have treated each state transition as a separate external event. In practice there might
be different state transitions triggered by the same external event depending on the current state. It
could be interesting to look at how reducing the number of events for the same number of transition
would effect the performance of the implementations. It would reduce the number of events but probably
require some sort of conditional statement directing the external event to the correct transition.

7.3 Maintainability

The iterative code editor can help with maintainability by adding and deleting states and events in the
code part of the state machine. A truly maintainable state machine could go a step further and enable
code-to-model transformation by update the graphical state machine model with regard to changes in
the code.

7.4 Parallelization

Communication between state machines were conducted here with the state machines run sequentially.
It could be interesting to look at parallelization for systems with several state machines and see how well
it performs in terms of speedup and scaled speedup.

7.5 Additional Implementations

The analysis conducted here used six different implementations for state machine design, and four different
ways to handle interaction between two state machines. Naturally, there are more implementations out
there to try. The state pattern is only one of several different design patterns in software design [10]. If
state machines with more functionality are of interest, most modern research covers proposals on how
to implement the full semantics of UML specifications. Another idea is to test the performance of the
generated code from this analysis with the generated code from available tools.

o1

References

[1] Microsoft 365. Visio. https://www.microsoft.com/sv-se/microsoft-365/visio/
flowchart-software/. (accessed: 2023-05-22).

[2] A. Kumar. How to implement finite state machine in C. aticleworld.com, August 2017.

[3] A. Myers. State machines. CS 211, May 2006.

[4] David Harel. Statecharts in the making: a personal account, June 2007.

[5] E. Doherty. What is object-oriented programming? OOP explained in depth. educative, April 2020.

[6] E. Dominguez, B. Pérez, A. L. Rubio, and M. Zapata. A systematic review of code generation
proposals from state machine specifications. Information and Software Technology, 54:1045-1066,
Oct 2012.

™

[7] Eclipse Foundation. Eclipse Papyrus
2023-05-22).

https://www.eclipse.org/papyrus/. (accessed:

[8] Python Software Foundation. xml.etree.ElementTree — The ElementTree XML API. https://
docs.python.org/3/library/xml.etree.elementtree.html, 2023 (accessed Feb. 2023).

[9] 1. Jacobson G. Booch, J. Rumbaugh. Unified Modeling Language User Guide, The. Addison Wesley,
1998.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: FElements of Reusable
Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., December 1994.

[11] A. S. Gillis. What is model-driven development (MDD). TechTarget, June 2018.
[12] S. Kumar. Mediator design pattern. GeeksforGeeks, September 2022.

[13] I. A. Niaz and J. Tanaka. CODE GENERATION FROM UML STATECHARTS. Proceedings of the
TASTED International Conference on Software Engineering and Applications, 7, Oct 2003.

[14] OMG. XML Metadata Interchange (XMI) Specification - Version 2.5.1. OMG.org, June 2015.

[15] OMG.org. ABOUT THE UNIFIED MODELING LANGUAGE SPECIFICATION VERSION 2.5.1.
https://www.omg.org/spec/UML/2.5.1/About-UML. (accessed: 2023-05-04).

[16] OMG.org. MISSION & VISION. https://www.omg.org/spec/UML/2.5.1/About-UML. (accessed:
2023-05-04).

[17] OMG.org. OMG Unified Modeling Language” (OMG UML) Version 2.5.1. UML.org, December
2017.

[18] Visual Paradigm. About US. https://www.visual-paradigm.com/aboutus/. (accessed:
2023-05-22).

[19] S. Lignos. Working with State Machines in Angular. medium.com, June 2019.

[20] A. V. Saude, R. Victorio, and G. Countinho. Persistent State Pattern. PLOP ’10: Proceedings of
the 17th Conference on Pattern Languages of Programs, pages 1-16, October 2010.

[21] B. Selic. The Pragmatics of Model-Driven Development. IEEE Software, 20:19-25, September 2003.

[22] V. Spinke. An object-oriented implementation of concurrent and hierarchical state machines.
Information and Software Technology, 55:1726-1740, March 2013.

[23] E. V. Sunitha and P. Samuel. Automatic Code Generation From UML State Chart Diagrams. IEEE
Access, 7:8591 — 8608, jan 2019.

[24] UML.org. INTRODUCTION TO OMG’S UNIFIED MODELING LANGUAGE" (UML®).
UML.org, Jul 2005.

92

https://www.microsoft.com/sv-se/microsoft-365/visio/flowchart-software/
https://www.microsoft.com/sv-se/microsoft-365/visio/flowchart-software/
https://www.eclipse.org/papyrus/
https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://www.omg.org/spec/UML/2.5.1/About-UML
https://www.omg.org/spec/UML/2.5.1/About-UML
https://www.visual-paradigm.com/aboutus/

	Introduction
	Background
	Ericsson
	Problem statement
	Division of Labour

	Theory
	State Machine
	UML
	UML State Machine
	Hierarchy and composite state
	History state

	XML and XMI
	Modeling Software
	Model-To-Code Generation
	Code Generator Design
	State Machine Implementations
	Nested Switch/If Statements
	Array of Structs
	Function Pointers
	State Pattern
	State-Table Pattern
	Hierarchical State Pattern

	Interacting State Machines
	Switch statement with global variables
	Function Pointers
	Message Passing
	Mediator Pattern

	Iterative Code Editor
	Test Case
	Performance Parameters
	Run Time
	Memory usage
	Scalability

	Code metrics
	Maintainability
	Modularity

	Implementation
	Modeling
	Parsing
	Code Generation
	eventHandler Functions
	Nested Switch
	Function Pointers
	Array of Structs
	OOP in C
	Basic State Pattern
	State-Table Pattern
	Hierarchical State Pattern
	State Machine Interaction
	Global Switch
	Mediator Pattern
	Message Passing
	3D array

	Iterative Code Editor
	Add State
	Add Event
	Delete State
	Delete Event

	Benchmarking

	Results
	Benchmarks
	Nested Switch
	Function Pointers
	Array Of Structs
	Basic State Pattern
	State-Table Pattern
	Hierarchical State Pattern

	Comparing Benchmarks
	Case Study
	State Machine Interaction Benchmarks
	Global Switch
	Mediator Pattern
	Message Passing
	Function Pointer 3D array

	Comparing Interaction Methods

	Discussion
	State Machine Implementations
	Maintainability

	Case Study
	State Machine Interaction
	Maintainability

	Iterative Code Editor

	Conclusions
	Future Work
	Code Generator Functionality
	State Machine Structure
	Event and Transition Logic

	Maintainability
	Parallelization
	Additional Implementations

