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Efficient and fast manipulation of antiferromagnets has to date remained a challenging task, hindering their
application in spintronic devices. For ultrafast operation of such devices, it is highly desirable to be able to control
the antiferromagnetic order within picoseconds—a timescale that is difficult to achieve with electrical circuits.
Here, we demonstrate that bursts of spin-polarized hot-electron currents emerging due to laser-induced ultrafast
demagnetization are able to efficiently excite spin dynamics in antiferromagnetic Mn2Au by exerting a spin-
transfer torque on femtosecond timescales. We combine quantitative superdiffusive transport and atomistic spin-
model calculations to describe a spin-valve-type trilayer consisting of Fe|Cu|Mn2Au. Our results demonstrate
that femtosecond spin-transfer torques can switch the Mn2Au layer within a few picoseconds. In addition, we
find that spin waves with high frequencies up to several THz can be excited in Mn2Au.

DOI: 10.1103/PhysRevB.107.174424

I. INTRODUCTION

Antiferromagnets (AFMs) are promising materials for
future spintronic devices. Among the advantages over fer-
romagnets (FMs) are the faster spin dynamics, the lack of
stray fields, the low susceptibility to magnetic fields, and the
abundance of materials [1–3]. A challenging aspect in the field
of AFM spintronics has been, for decades, the fact that their
order parameter is difficult to read and control due to their
lack of macroscopic magnetization. Recently, progress was
made by the discovery that electrically induced Néel-spin-
orbit torques [4] can be used to switch the magnetic order in a
certain class of AFMs with broken inversion symmetry, such
as CuMnAs [5–7] and Mn2Au [4,8–13]. An important issue
for future device applications is to know in what way, and
how fast, such a switching process could best proceed.

A different line of research showed recently that femtosec-
ond laser excitation of a FM creates a burst of spin-polarized
current that contributes substantially and in a nonlocal fashion
to its ultrafast demagnetization [14–22]. Moreover, it was
demonstrated that these spin-current pulses can give rise to an
ultrafast spin-transfer torque (STT) [23,24] and excite high-
frequency spin waves in an adjacent Fe layer [25,26]. Earlier
works have suggested that STTs arising from spin currents
transmitted through AFM layers can induce large torques
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and even switching [27–29]. An intriguing question is what
happens when ultrashort spin-current pulses act on an AFM.

Here, we present a quantitative theoretical study to inves-
tigate AFM dynamics due to femtosecond STTs emerging
from laser-induced demagnetization of a FM. We com-
bine superdiffusive spin-transport calculations and ab initio
parametrized [12] atomistic spin-dynamics simulations to
study a spin-valve-type trilayer consisting of Fe|Cu|Mn2Au,
see Fig. 1(a). Solving numerically the atomistic Landau-
Lifshitz-Gilbert (LLG) [30], we demonstrate the formation of
thickness-dependent spin-wave spectra with significant peaks
at frequencies of up to several THz. Remarkably, we reveal
that the laser-induced spin currents can induce Néel-vector
switching within 2 ps, opening a pathway for the ultrafast and
efficient control of the magnetic order in AFMs.

II. METHODOLOGY

To model the spin current emerging due to the ultrafast
laser-induced demagnetization of Fe, we use the superdiffu-
sive spin-transport theory [14] and its extension to magnetic
heterostructures consisting of a FM and a nonmagnetic (NM)
layer [31]. The model assumes that the laser pulse excites
two channels of spin-up and -down electrons, respectively, in
the FM layer. Since in the FM layer the two channels have
different transport properties (i.e., lifetime and velocities of
electrons), the resulting net current is a spin-polarized current
which strongly contributes to the femtosecond demagnetiza-
tion of the FM layer when the current is injected in the NM
layer, see Supplemental Material (SM) for details [32].

We model the external laser source Sext
σ that generates

the nonthermal electron population as a Gaussian pulse
Sσ (E , z) ∝ Nσ (E , z)exp{− (t−t0 )2

2�2 }, where t0 is the time posi-
tion of the pulse peak, � is the standard deviation of the pulse,
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FIG. 1. (a) Sketch of the studied trilayer structure Fe|Cu|Mn2Au.
Magnetic moments are represented by arrows. The Fe layer is ex-
cited by an ultrafast laser pulse (purple). The demagnetization of
Fe generates a spin current of hot electrons (green balls), which
is transmitted through the Cu layer into Mn2Au, where it exerts a
femtosecond STT on the magnetic moments. The two Mn sublattices
are illustrated by red and blue spheres and the Au atoms are shown
in gold. (b) Laser fluence (LF) of the laser pulse with total fluence of
1 mJ/ cm2 and a FWHM of 40 fs and calculated superdiffusive spin
current js per atom at the interface between Cu and Mn2Au. Note
that the maximum of the laser pulse is at t0 = 300 fs.

and Nσ (E , z) is the number of excited electrons per spin σ in
the material. In particular, we assume that the laser has a finite
penetration length (λlaser), so the number of excited electrons
decays far from the surface Nσ (E , z) = N0 exp (−z/λlaser ),
and N0 is a quantity directly proportional to the laser
fluence.

Solving the superdiffusive transport equation gives the
spin-current density js(z, t ), shown in Fig. 1(b), which is
defined as the difference between spin-up and spin-down elec-
trons flowing in and out at each position z [33].

All results presented below were obtained for laser pulses
with full width at half maximum (FWHM) [34] of 40 fs and
thicknesses of 16 nm and 4 nm of the Fe and Cu films, respec-
tively. The impact of varying the FWHM on the spin-current
pulse and the switching dynamics is discussed in the SM [32].

When the current js is transmitted from the Cu layer
into Mn2Au, it exerts a STT [35–37] on the Mn moments.
To describe the time evolution of the localized Mn mo-
ments under this torque, we numerically solve the LLG
equation [30,38]:

∂Si

∂t
= − γ

μs
Si × Heff

i + αSi × ∂Si

∂t

+ js(z, t )

μs
Si × (Si × ẑ). (1)

Si are the normalized magnetic moments, μs = 3.74 μB is the
saturation magnetic moment [12], γ = 1.76 × 1011 s−1T−1 is
the absolute value of the gyromagnetic ratio, and α is the di-
mensionless Gilbert damping parameter. Note that we treat α

as a free parameter since no values, neither from experiments
nor calculations, are reported in literature. The effective field

Heff
i = −∂H/∂Si is generated by exchange interaction with

neighboring Mn moments and anisotropy terms (see below).
We also consider an additional (third) term due to the

femtosecond STT, which acts as an antidamping torque term
and is a result of the absorption of the spin current in Mn2Au
[27,29,39]. This term is proportional to the spin-current am-
plitude js of the hot electrons at the interface between Cu and
Mn2Au, the temporal evolution of which we calculate using
the superdiffusive spin-transport theory described above. For
the setup shown in Fig. 1(a), the polarization of the spin
current is along the ẑ direction, which is orthogonal to the
initial orientation of the Mn moments. It has been demon-
strated for FMs that the typical length scale at which spin
currents orthogonal to the localized moments are absorbed is
at most a few nanometers [25,40,41]. Due to its layered AFM
configuration along ẑ, the propagation of electrons through
Mn2Au can be viewed as electrons passing through an array of
FM layers, in each of which some spin momentum is absorbed
by the localized Mn moments. We model this by assuming the
following spatial profile of the spin current:

js(z, t ) = js(0, t )
exp(−z/λSTT)∑
z exp(−z/λSTT)

, (2)

where we introduce a penetration depth λSTT [26]. As a
general feature of our simulations, we found that larger pene-
tration depths lead to less pronounced peaks in the frequency
spectra, as was also demonstrated in Ref. [26], and that
they obstruct efficient switching (the latter aspect is also dis-
cussed below). Unless stated otherwise, all results presented
hereinafter are for λSTT = 1 nm, comparable to experimental
values [41].

The spin-model Hamiltonian for Mn2Au we use here has
been parameterized in Ref. [12] using ab initio calculations
and reads

H = −1

2

∑
i �= j

Ji jSi · S j − dz

∑
i

S2
i,z

− dzz

∑
i

S4
i,z − dxy

∑
i

S2
i,xS2

i,y. (3)

This Hamiltonian includes exchange between Mn moments
at different lattice sites i and j beyond nearest neighbors
and the anisotropy terms reflect the tetragonal symmetry
of the unit cell. The exchange parameters Ji j alternate in
sign depending on the distance between the two magnetic
moments [12]. The values of the anisotropy constants are
dz = −0.62 meV, dzz = −0.024 meV, and dxy = 0.058 meV.
These parameters give rise to a layered AFM ground state
where the Néel vectors ni = (m2i−1 − m2i )/2, with m2i−1/2i

being the alternating magnetization (i.e., the sum over the
spins in one layer) of the layers along the z axis, are aligned
collinearly along the diagonals of the x-y plane (shown in
Fig. 1). Given the symmetry of Mn2Au, the states with the
Néel vector along the crystallographic directions [110], [1̄10],
[11̄0], and [1̄1̄0] are equivalent. Note that solving the model
used here [42] predicts a critical temperature of 1680 K [12],
which is in reasonable agreement with what was reported
experimentally [43].
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FIG. 2. Amplitudes of excited spin waves (see text) as a function
of frequency for different Mn2Au thicknesses.

III. RESULTS

A. THz spin-wave excitation

To begin, we investigate the formation of standing spin
waves (SSWs) that are excited by a laser pulse with an
absorbed fluence of 0.24 mJ/ cm2 during the first 40 ps for
Mn2Au layers with thicknesses ranging from 853.9 pm to
30.7 nm. The femtosecond STT excites high-frequency spin
waves, which propagate through the Mn2Au layer and can
be reflected multiple times before decaying. We obtain the
spectrum of appearing frequencies by performing a Fourier
transformation on the time domain of the magnetization in the
last layer (note that all spins in the last layer belong to the
same sublattice). In Fig. 2, we show the spin-wave frequency
spectra for different thicknesses of Mn2Au. To obtain the
amplitude, we calculate the vector length consisting of the
absolute values of Fourier transforms of the magnetization in
the last layer, i.e., [|m̃x( f )|2 + |m̃y( f )|2 + |m̃z( f )|2]1/2 with

m̃( f ) = 1√
Nsteps

Nsteps−1∑
n=0

mN (tn) exp(−i2π f tn), (4)

where Nsteps is the number of time steps and tn = n�t . The fre-
quency spectra reveal multiple peaks indicating the formation
of SSWs of up to several THz. Such high-frequency spin-
wave modes have become attractive recently for spintronics
operating at THz frequencies [44–46]. The lowest lying peak
represents an antiferromagnetic resonance (AFMR) mode and
appears for all shown thicknesses at the same frequency of
about 0.8 THz. By increasing the thickness d of the Mn2Au
layer, the number of peaks in the displayed range increases
since the interval between the peaks decreases (for d =
30.7 nm, the first two peaks even become indistinguishable).
This is consistent with the fact that, as a general aspect of
standing wave formation, the thickness d of the propaga-
tion medium is a multiple of the allowed wavelengths and,
henceforth, that the allowed wave vectors scale inversely,
i.e., kn = nπ/d . Since dispersion relations typically feature a
monotonic increase in frequency with absolute value of the

wave vector, this results in an increased number of peaks
within a certain interval for thicker Mn2Au layers. Note that
it is impossible to construct the dispersion relation for spin
waves in Mn2Au solely from the frequency spectra shown in
Fig. 2 and the condition for SSW, kn = nπ/d . This is because
the dispersion relation of Mn2Au has more than one branch,
which obstructs the unambiguous identification of the nth
peak in the spectrum as belonging to the wave vector kn (we
discuss this in more detail in the Appendix).

Instead, the dispersion relation of Mn2Au can be obtained
using linear spin-wave theory. In the vicinity of the ground
state, the Hamiltonian Eq. (3) can be mapped onto a biaxial
system with the easy axis along the [110] direction, with an
easy axis anisotropy value of dxy, while the hard axis keeps its
orientation along the z axis. If only (AFM) nearest-neighbor
exchange is assumed, we can use literature formulas for the
two emerging AFMR modes [47]:

f a
0 = γ

2πμs
[2J interdxy]1/2 ≈ 0.85 THz, (5)

f b
0 = γ

2πμs
[2J inter (dxy − dz )]1/2 ≈ 2.9 THz. (6)

The effective intersublattice exchange coupling obtained by
summing up interactions up to a spatial cutoff of 0.9 nm is
given by J inter = 371.13 meV [12]. Albeit the approximations
described above, the value for f a

0 agrees well with the simula-
tion results. Based on our calculations within linear spin-wave
theory, we would expect a second thickness-independent
AFMR peak at f b

0 in the spectra. However, due to the finite
linewidth and the density of the peaks in the vicinity of f b

0 ,
such a peak cannot unambiguously be identified.

B. AFM switching

Upon increasing the laser fluence, the femtosecond STT
due to the emerging spin current eventually becomes strong
enough to drive the magnetic moments near the interface over
the energy barrier induced by the in-plane anisotropy dxy.
This excitation propagates through the Mn2Au layer and can
ultimately lead to 90◦ switching of the Néel vector at the
timescale of few picoseconds, see Fig. 3.

This rapid switching is a result of the so-called exchange
enhancement, which is characteristic for AFM dynamics
[8,12,48–50]. The STT in the LLG Eq. (1) is quadratic in
the magnetization and thus has the same direction on each
sublattice. This gives rise to a canting between the sublattices
and the emerging intersublattice exchange field then leads to
a fast precessional motion of the magnetic moments.

Next, we show in Fig. 4 that repeated laser pulses at the
same fluence lead to a cyclic switching of the Mn2Au layer.
Each excitation switches the Néel vector by 90◦ in a counter-
clockwise direction around the z axis. Note that reversing
the polarization of the Fe layer leads to a sign change in
the femtosecond STT in Eq. (1) and, hence, to switching in
a clockwise direction. The sublattice canting is visible in a
small, but finite total magnetization during switching.

Further increase of the laser fluence leads to more canting,
so the precessional motion of the magnetic moments close
to the interface persists for a longer time. Depending on the
timescale of the relaxation back to antiparallel alignment of
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FIG. 3. Components of the Néel vector ni of Mn2Au versus dis-
tance from the interface to Cu (located at z = 0) during the switching
process from [110] to [1̄10] at different points in time. The laser
pulse starts at t = 0 and the STT starts at about 300 fs. The absorbed
laser fluence has a value of 6.51 mJ/ cm2 and the damping used is
α = 0.01.

the sublattice magnetizations—which crucially depends on
the Gilbert damping parameter α—the rotation of the Néel
order parameter can even be larger than 90◦. On the other
hand, a larger thickness d of the Mn2Au layer can obstruct
the switching because the energy barrier that needs to be
overcome scales linearly with d , whereas the total torque due
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excitation. Initially, the Néel vector is along the [110] direction.

to the absorption of the spin current close to the interface
does not depend on d , as long as d is not comparable to the
penetration depth. These features of the switching dynamics
are summarized in Fig. 5.

We also want to point out the key role of the highly
localized absorption of the spin current in the vicinity of
the CuMn2Au interface. Our results indicate that, in gen-
eral, larger penetration depths hinder efficient switching, with
greatly decreased dynamics in the limit of λSTT → ∞, i.e.,
for spatially homogeneous STT, and much larger fluences are
required for switching. As such, describing the switching of
AFM layers by ultrafast STT using a two-sublattice macrospin
model, as done in Refs. [28,29] for NiO, greatly overestimates
the threshold laser fluences as compared to the spatially re-
solved spin dynamics simulations done here. In addition, our
findings indicate that the timescales at which the STTs are
present have a decisive impact on the switching threshold:
for a constant total laser fluence, higher FWHMs obstruct
switching. These aspects are analyzed in more detail in the
SM [32].

In Ref. [12], it was demonstrated that thermal activation
plays a crucial role in the switching of Mn2Au via Néel-
spin-orbit torques, leading to—in some cases—zero switching
probability in the absence of thermal fluctuations and almost
deterministic switching at temperatures slightly above room
temperature. Here we find, using the stochastic LLG [30], that
the temperature enhancement of switching probability is less
pronounced; e.g., for d = 20.5 nm, α = 0.01 and an absorbed
laser fluence of 5.68 mJ/ cm2 (which is slightly below the
threshold fluence for switching; see Fig. 5), the switching
probability only increases up to around 15% at room tem-
perature and to about 35% at 600 K. This difference can be
attributed to the fact that here the torques act on the timescale
of femtoseconds, in contrast to the 20 ps in Ref. [12]. The
impact of temperature on the switching dynamics is discussed
in more detail in the SM [32].

IV. CONCLUSION

To summarize, we have studied theoretically the laser-
induced excitation of THz spin waves and switching in an
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Fe|Cu|Mn2Au trilayer structure. The spin current emerg-
ing from the laser-induced ultrafast demagnetization of Fe
was calculated using the superdiffusive spin-transport the-
ory. These spin-current pulses excite spin dynamics in AFM
Mn2Au via femtosecond STTs that were modeled using
ab initio parametrized atomistic spin-dynamics simulations.
Our results reveal the formation of thickness-dependent fre-
quency spectra, demonstrating the formation of SSWs with
frequencies of up to several THz. At larger laser fluences, the
spin-current pulse leads to ultrafast switching of the Mn2Au
layer. Our quantitative findings predict an efficient way to ex-
cite AFMs dynamics—THz spin waves and switching—using
trilayer structures and femtosecond laser pulses. As such, they
open a pathway for the efficient and ultrafast manipulation of
magnetic order in antiferromagnets.
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APPENDIX: DISPERSION RELATION OF
SPIN WAVES IN Mn2Au

Spin-wave dispersion relations for arbitrary systems can be
efficiently calculated using linear spin-wave theory (LSWT)
(see, e.g., Ref. [51]). This approach rests on an expansion
of the spin Hamiltonian to second order in the deviations
from a reference state, typically the ground state (or any other
metastable state).

Here, we map the spin Hamiltonian for Mn2Au, Eq. (3),
onto a one-dimensional biaxial antiferromagnet that extends
along the z axis and where only an effective nearest-neighbor
exchange is considered. We do this because, for such a system,
analytical solutions exist in literature [47].

In the ground state, the Néel vectors of Mn2Au are oriented
along the [110] direction (or any other crystallographically
equivalent axis). Thus, as a first step, we rotate the coordinate
system by π

4 around the z axis. In this new basis (indicated
by ∼), the ground-state Néel vector S̃0 is parallel to a ba-
sis vector; without loss of generality we assume that S̃0 =
(±1, 0, 0)T. Keeping only terms up to quadratic order in the
components orthogonal to the ground state, which we denote
by S̃

⊥
i , and assuming homogeneity of the spin configuration

within the x-y plane, we can map Eq. (3) onto an effective
one-dimensional spin Hamiltonian that reads

H̃ = H̃0 − J inter
Nlay−1∑

i=1

S̃
⊥
i · S̃

⊥
i+1 − dz

Nlay∑
i=1

S̃2
i,z − dxy

Nlay∑
i=1

S̃2
i,y,

(A1)
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FIG. 6. Spin-wave dispersion relation for Mn2Au. Solid lines are
numerical results obtained using LSWT. Dotted lines are analyti-
cal predictions for the two positive AFMR frequencies f a

0 and f b
0 .

The symbols represent the dispersion relation obtained for various
Mn2Au thicknesses using the method described in Ref. [26].

with H̃0 being the irrelevant ground-state energy and Nlay

being the number of Mn layers along the z axis. Note that we
have also replaced the long-range exchange interactions with
an effective nearest-neighbor exchange. The corresponding
exchange constant was calculated in Ref. [12] and has a value
J inter = 371.13 meV.

The two emergent (positive) AFMR frequencies for this
effective spin Hamiltonian, i.e., the spin-wave eigenmodes for
which the wave number k is zero, can be calculated using
formulas from the literature [47],

f a
0 = γ

2πμs

√
2J interdxy ≈ 0.85 THz, (A2)

f b
0 = γ

2πμs

√
2J inter (dxy − dz ) ≈ 2.9 THz. (A3)

For the evaluation of the full spin-wave dispersion we use
numerical methods that are explained in detail in the litera-
ture, e.g., in Ref. [52]. The two branches of the spin-wave
dispersion with positive frequencies close to the Brillouin
zone center are shown in Fig. 6 as solid lines. The two dotted
lines are placed at the analytical predictions for the AFMR
frequencies f a

0 and f b
0 calculated above.

In Ref. [26], a different approach was used to obtain the
spin-wave dispersion relation for Fe. There, the authors also
calculated the frequency spectra of spin waves excited by
femtosecond spin-transfer torques for varying thicknesses.
Using the condition for standing spin waves, i.e., kn = n π

d ,
the authors were able to unambiguously relate the nth peak
in the spectrum with the wave number kn. The spin-wave
dispersion for Fe constructed in this way agrees well with
analytical predictions based on LSWT. If we follow the same
procedure for Mn2Au, we obtain what is shown as symbols in
Fig. 6. While for frequencies below f b

0 the dispersion relation
obtained this way agrees reasonably well with the results of
LSWT—the small deviations could be a result of finite size
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effects since they are smaller for larger thicknesses—it is
completely off for f � f b

0 . The reason for this is that above
f b
0 the peaks in the frequency spectrum could belong to either

of the two branches. Moreover, due to the finite linewidth,
multiple peaks can overlap, possibly obstructing the unam-
biguous identification of individual peaks.
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