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1 Introduction

In the Ramond-Neveu-Schwarz (RNS) formulation of superstring theory, supersymmetry
of the spectrum and of amplitudes is achieved by implementing the Gliozzi-Scherk-Olive
(GSO) projection. The gauge sector of the Heterotic string in terms of 32 Majorana-Weyl
fermions similarly requires an extension of the GSO projection to produce the E8×E8 or the
Spin(32)/Z2 anomaly free gauge groups. In both cases, the projections are implemented by
summing over the spin structures of the corresponding worldsheet fermions. On a Riemann
surface of genus g, the number of different spin structures is 22g and grows rapidly with
increasing genus.1 For genus one, a plethora of readily available Jacobi ϑ-function identities
(see for example [1]) greatly facilitates carrying out the summation explicitly, as was shown
in [2–7] for computations with external NS-sector states and [8–10] for external R-sector
states. As soon as the genus exceeds one, however, the corresponding identities between

1We recall that, for arbitrary genus, a spin structure is even (resp. odd) if and only if the number of
Dirac zero modes of a single worldsheet spinor is even (resp. odd). The number of even spin structures is
2g−1(2g + 1) while the number of odd spin structures is 2g−1(2g − 1), amounting to 10 even and 6 odd in
genus two. For all points in the genus-two moduli space, and at generic points for higher genus, the number
of zero modes is actually 0 for even spin structures, and 1 for odd spin structures.
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Riemann ϑ-functions are considerably more involved and not necessarily available. As a
result, the need to carry out the summation over spin structures is often regarded as a
drawback of string amplitude computations in the RNS formulation.

In this paper, we shall introduce a collection of novel identities for genus-two Riemann
surfaces that dramatically simplify the sum over even spin structures in multi-particle
amplitudes. Our techniques apply to the spin structure sums for an arbitrary number
of massless external NS states such as gravitons and, with minor modifications, also to
massive external NS states. The even spin structure contribution to the chiral amplitude
of these states precisely corresponds to the even parity contribution to the chiral amplitude,
while the odd spin structure part corresponds to the odd parity part. Thus, our results
will apply to the even parity part of Type I, Type II, and Heterotic string amplitudes with
external NS-sector states.

In the modern approach to genus-two string amplitudes in the RNS formulation based
on chiral splitting and the super-period matrix [11, 12] (reviewed in the lecture notes [13]),
the even spin structure dependence enters via three different ingredients. Firstly, spin struc-
ture dependence enters through the measure factor, which is universal and independent of
the number of external states; it was evaluated in [14–16] and re-derived using purely al-
gebraic geometry methods in [17]. Secondly, spin structure dependence enters through the
Szegö kernel (namely the Dirac propagator of the worldsheet fermions), which is used to
evaluate the correlators of the NS vertex operators and worldsheet supercurrent opera-
tors [18, 19]. Thirdly, spin structure dependence enters through the gauge-choice made for
the worldsheet gravitino field. Unitary gauge in which the gravitino slice is supported at two
spin-structure independent points q1, q2, was used successfully in the explicit calculation of
the 4-point functions in [18, 19] and again in the calculation of the 5-point functions in [20].2
The spin structure dependence of the Szegö kernels enters either via cyclic products of Szegö
kernels, or via a concatenated product of Szegö kernels along a linear chain stretching from
q1, to q2. It is the spin structure dependence of the cyclic product of Szegö kernels that will
be analyzed in this paper, while that of the linear chain will be relegated to a future paper.

The protagonist of this paper is the cyclic product of n Szegö kernels Sδ(zi, zj), an-
chored at generic insertion points zi, zj ∈ Σ of worldsheet fermions (i, j = 1, 2, · · · , n) on
an arbitrary genus-two Riemann surface Σ with an arbitrary even spin structure δ, denoted
as follows,

Cδ(z1, z2, · · · , zn) = Sδ(z1, z2)Sδ(z2, z3) · · ·Sδ(zn−1, zn)Sδ(zn, z1) (1.1)

We recall from [11, 23, 24] that the Szegö kernel Sδ(z, w) is a (1
2 , 0) form in z and in w

which, for even spin structure δ, is defined as the inverse of the chiral Dirac operator on Σ,

∂z̄Sδ(z, w) = 2πδ(z, w) (1.2)

For genus two and even spin structure δ the inverse is well-defined throughout moduli space
since the Dirac operator has no zero modes. The explicit expression for Sδ(z, w) will be
given in the hyper-elliptic formulation in (2.26) below.

2See also [21] for an earlier construction of genus-two 5-point amplitudes based on pure-spinor methods
and chiral splitting as well as [22] for their low-energy expansion and S-duality properties.
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The first key result of this paper will be to prove that the spin structure dependence
of the cyclic products Cδ may be reduced to a universal form which is independent of the
number n of insertion points. Specifically, we shall produce an explicit algorithm to reduce
all dependence of Cδ on the spin structure δ to quadratic polynomials in zi-independent
universal building blocks `abδ symmetric in its SL(2,C) indices a, b = 1, 2 to be defined
below. The remaining dependence on the points zi is through spin structure independent
functions and differential forms that we shall construct. We shall present explicit formulas
for this reduction of Cδ in the cases n = 2, 3, 4, 5, 6, 7, 8.

The second key result of this paper will be to produce explicit formulas for the spin
structure sums of the remaining spin structure dependence, namely through quadratic
polynomials in `abδ . The spin structure sums will be carried out against the genus-two
superstring measure for the supersymmetric chiral part of the Type II or Heterotic strings
and against the measure for the fermions representing the gauge algebras for the Heterotic
strings. Actually, these sums reduce to those of the n ≤ 4 case, which are well-known. Prior
to the present work, the spin structure sums for n ≤ 5 had been carried out at the cost of
laborious calculations using the Riemann identities, Fay identities, and other specialized
relations [19, 20], while for n > 5 they were beyond the reach of available methods.

The constructions leading to the above results will be carried out in the hyper-elliptic
formulation of genus-two Riemann surfaces, which we summarize in section 2 below. A fun-
damental role will be played by the SL(2,C) group-theoretic structure of the hyper-elliptic
formulation. The results will subsequently be translated into the language of Riemann
ϑ-functions, the prime form, and Thomae-type formulas in a companion paper [25].

The corresponding reduction of the cyclic products of Szegö kernels at genus one was
obtained by Tsuchiya in [5, 26], where the role of the `abδ is played by the three branch
points eδ of the genus-one curve and the role of the trilinear relations is played by the cubic
equation 4e3

δ − g2eδ − g3 = 0 they satisfy. Along with [27] these references also present
partial results for genus two, and propose a reduction of the spin structure dependence of
Cδ to polynomials of degree bn/2c in a quantity PIJ(Ωδ) that is similar to our `abδ . How-
ever, neither the further reduction of the spin structure dependence via trilinear relations,
nor a general algorithm for obtaining the coefficients of the polynomials in PIJ(Ωδ), nor
the explicit form of the spin structure independent terms, nor the summation over spin
structures beyond five points, was obtained there.

Organization. The remainder of this paper is organized as follows. In section 2, we
present a brief review of the hyper-elliptic formulation of genus-two Riemann surfaces,
including the Szegö kernel for even spin structures, and the role of modular and SL(2,C)
transformations. In section 3, we formulate the problem of reducing the spin structure
dependence of the cyclic product Cδ to the universal building blocks `abδ . In section 4,
we prove the trilinear relations. In section 5, we carry out the reduction of the spin
structure dependence of Cδ to the universal form, explicitly for the cases n = 3, 4, 5, 6 (see
appendix G for n = 7, 8), and in the form of a conjecture for the case of arbitrary n. Finally,
in section 6, we use the results obtained in the preceding sections for arbitrary n to sum
Cδ over spin structures against the measure of the chiral supersymmetric sector and the
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Heterotic chiral gauge sector. A crucial role will be played by finite-dimensional tensors and
representations of the group SL(2,C) of conformal automorphisms of the Riemann sphere
underlying the hyper-elliptic construction; its representation theory will be reviewed in
appendix A. Various derivations, proofs and examples are relegated to further appendices.

Main theorems. In order to complement the organization section above, we gather
here a summary of the main theorems where we obtain the reduction of the spin structure
dependence of cyclic products Cδ of Szegö kernels and the spin structure sums over these
cyclic products.

• In Theorem 3.1 all spin structure dependence of the cyclic product Cδ(1, · · · , n) of
an arbitrary number n of Szegö kernels is reduced to certain polynomials Qδ.

• In Theorem 3.2 all spin structure dependence for the two-point function Cδ(i, j) is
reduced to a symmetric bi-holomorphic form Lδ(i, j), which will be the fundamental
building block for all spin structure dependence of cyclic products of Szegö kernels
for arbitrary n. The bi-holomorphic form Lδ(i, j) uniquely corresponds to a spin
structure dependent rank-two symmetric SL(2,C) tensor `δ. A key ingredient in
the spin structure independent contribution for arbitrary n is a polynomial Z(i, j)
which is determined already by the two-point function. An explicit reduction of the
polynomials Qδ to simple combinations of Lδ(i, j) and Z(i, j) can be found in the
all-multiplicity conjecture (5.34).

• The trilinear relations in components of `δ, obtained in Theorem 4.1 and Corol-
lary D.1, are simplified in the form of SL(2,C) covariant tensorial relations in Theo-
rem 4.2. This theorem guarantees that all spin structure dependence of an arbitrary
cyclic product of Szegö kernels Cδ(1, · · · , n) may be reduced to degree-two polyno-
mials in components of `δ with δ-independent coefficients.

• The spin structure sums of monomials in `δ of degree ≤ 2 against the measures rel-
evant to Type I, Type II and Heterotic strings are obtained in Theorems 6.2, 6.14,
and 6.15. The analogous sums for higher powers of `δ may then be deduced using
the trilinear relations, and are presented for the supersymmetric sector in Corollar-
ies 6.4—6.6.

• Using the spin structure sums over multi-linears in `δ we obtain the spin structure
sums of cyclic products of Szegö kernels for the supersymmetric sector in Theo-
rems 6.8 for up to five points; 6.9 for six points; 6.10 for seven points; and 6.11 for
eight points. Spin structure sums for products of cyclic products are evaluated for
the supersymmetric measure in Corollaries 6.12 and 6.13 for up to six points. The
resulting expressions contain Parke-Taylor type poles and the key polynomial Z(i, j).

2 The hyper-elliptic representation for genus two

Every genus-two Riemann surface Σ is hyper-elliptic: it may be represented by a double
cover of the Riemann sphere Ĉ = C∪ {∞} ramified over six branch points u1, · · · , u6 ∈ Ĉ.
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Figure 1. The hyper-elliptic curve Σ is represented in terms of a double cover of the Riemann
sphere Ĉ, with distinct points at infinity P±∞. A choice of branch cuts and canonical homology
cycles A1,A2,B1,B2 is indicated in terms of the cycles A1 = Â1 and A2 = Â2 − Â1.

In the hyper-elliptic representation, every point z ∈ Σ may be parametrized by a pair
z = (x, s) where x ∈ Ĉ and s2 is given in terms of x and ur by,

s2 =
6∏
r=1

(x− ur) (2.1)

Away from the branch points (ur, 0) for r = 1, · · · , 6, every point x ∈ Ĉ maps to two
distinct points (x,±s) in Σ corresponding to the two possible signs of s given that s2 is
fixed in terms of x and ur by (2.1). As a result, Ĉ maps to the two sheets of Σ which
intersect at the six branch points (ur, 0), as shown in figure 1. In particular, each sheet has
its own point at infinity P±∞. The surface Σ is invariant under the holomorphic involution
I that interchanges the two sheets of Σ and acts by I(x, s) = (x,−s) where s obeys (2.1).

2.1 SL(2,C) transformations and tensors

In this paper, a fundamental role will be played by the group SL(2,C) of conformal auto-
morphisms of the Riemann sphere Ĉ which is isomorphic to the complex projective space
CP1. The points in CP1 may be parametrized by a doublet x of complex homogeneous coor-
dinates subject to the equivalence relation ∼ of rescaling by a non-zero complex number λ,

Ĉ = CP1 =

x =

x1

x2

 ∈ C2 \ {0}, with λx ∼ x, λ ∈ C \ {0}

 (2.2)

The group SL(2,C) of conformal automorphisms of Ĉ acts linearly on doublets,

x→ γx γ =

a b
c d

 ∈ SL(2,C) (2.3)

The tensor εab = −εba, normalized by ε12 = 1, defines the anti-symmetric pairing xa1 εab xb2,
and may be used to lower and raise doublet indices,3

xa = εab xb xa = −εab xb = xb εba (2.4)
3Throughout, we shall use the Einstein convention for the summation over repeated upper and lower

doublet indices a, b = 1, 2 or I, J = 1, 2. The relation εab = εac εbd ε
cd along with ε12 = 1 implies ε12 = 1.
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In the standard manner, the raising and lowering operations on doublet indices may be
generalized by tensor products to tensors of arbitrary rank.

In the coordinate patch on Ĉ where x2 6= 0, we may parametrize a doublet x in terms
of the ratio x = x1/x2 by choosing λ = 1/x2 in the definition of CP1. The doublets for a
generic point x and for the branch points ur for r = 1, · · · , 6 are then given as follows,

x =

x1

x2

 =

x
1

 ur =

u1
r

u2
r

 =

ur
1

 (2.5)

In this coordinate patch all of Ĉ is covered except for the point at infinity; the anti-
symmetric pairing reduces to the difference of their top entry, xa1 εab xb2 = x1 − x2; the
doublets transform as follows under SL(2,C),

x→ (cx+ d)−1 γx ur → (cur + d)−1 γur (2.6)

which reduce to the familiar Möbius transformation rules for the top entries of the doublets,

x→ ax+ b

cx+ d
ur →

aur + b

cur + d
(2.7)

The difference and the differential transform by,

x1 − x2 →
x1 − x2

(cx1 + d)(cx2 + d) dx→ dx

(cx+ d)2 (2.8)

while the function s(x), used to define the genus-two curve in (2.1), transforms as follows,

s(x)→ s(x)
(cx+ d)3Jγ

J2
γ =

6∏
r=1

(cur + d) (2.9)

SL(2,C) transformations are generated by infinitesimal translations T , dilatations, and
special conformal transformations. The latter may be obtained from translations T by
applying the inversion S : x → −1/x and thus are generated by ST S, while dilations
may be obtained from the commutator of T and ST S. Thus, all infinitesimal SL(2,C)
transformations are generated by combining T and S, whose action on x and ur is given by,

T x = ε T ur = ε Sx = −1/x Sur = −1/ur (2.10)

Throughout, it will be convenient to verify SL(2,C) invariance or covariance properties
by analyzing the behavior under the transformations T and S. We may set ε = 1 and
recall that T acts as a vector field via Leibniz’s rule of differentiation. Since there is no
infinitesimal version of the inversion S, its action on products departs from the Leibniz
property of T ,

T (a · b) = T (a) · b+ a · T (b) , S(a · b) = S(a) · S(b) (2.11)

– 6 –
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2.2 Holomorphic Abelian differentials

A standard choice for the canonical homology basis of AI and BI cycles for the intersection
pairing J(AI ,AJ) = J(BI ,BJ) = 0 and J(AI ,BJ) = δIJ on a genus-two surface Σ with
I, J = 1, 2 is depicted in figure 1. The space of holomorphic (1, 0)-forms is two-dimensional
and a standard basis ωI may be normalized on A-cycles as follows,∮

AI

ωJ = δIJ

∮
BI

ωJ = ΩIJ (2.12)

where ΩIJ are the components of the period matrix. By the Riemann relations the ma-
trix Ω is symmetric and has a positive definite imaginary part. A modular transformation
M ∈ Sp(4,Z) maps the cycles AI and BI into linear combinations with integer coefficients
that leave the intersection pairing J invariant, namely we have Mt JM = J with,B̃

Ã

 = M

B
A

 J =

0 −I
I 0

 M =

A B

C D

 (2.13)

The row-matrix of (1, 0)-forms ω and period matrix Ω transform as follows under M,

ω → ω̃ = ω(CΩ +D)−1

Ω → Ω̃ = (AΩ +B)(CΩ +D)−1 (2.14)

The action of the modular group Sp(4,Z) reduces to the action of the permutation group
S6 on the six branch points ur, as is shown in appendix I.1.4

In the hyper-elliptic formulation, a natural basis of holomorphic (1, 0)-forms is provided
instead in terms of the forms $a(z) and $a(z) = εab$

b(z) given by,

$1 = xdx

s
$2 = dx

s
$1 = dx

s
$2 = −x dx

s
(2.15)

where z = (x, s) and s is related to x by (2.1). The forms $a and $a are modular
invariant, since x and s are invariant under arbitrary permutations of the branch points.
They transform as a doublet under γ ∈ SL(2,C),$1

$2

→ Jγ γ

$1

$2

 (2.16)

where γ was given in (2.3) and the multiplicative factor Jγ was defined in (2.9).
The basis forms ωI and $a are linearly related to one another with z-independent, but

moduli dependent, coefficients σaI given by,5

ωI(z) = $a(z)σaI δIJ =
∮
AJ

$a σ
a
I (2.17)

4The action of the modular group Sp(4,Z) on the branch points should not be confused with the action
of the automorphic group SL(2,C). Although SL(2,C) allows one to fix three of the six branch points at
arbitrary points in Ĉ (leaving the remaining three branch points to parametrize the three complex moduli
of a genus-two surface), we shall refrain from making this choice, or any other choice, here and instead
maintain manifest SL(2,C) covariance by leaving all six branch points free. Doing so, the action of Sp(4,Z)
indeed reduces to the group S6 of permutations of the branch points, as stated in the body of the text.

5Throughout this paper, in order to clearly distinguish modular transformations from Möbius transfor-
mations, we shall use uppercase letters I, J,K, · · · = 1, 2 for indices in the Sp(4,Z) frame (such as AI ,BI , ωI)
and reserve lowercase letters a, b, c, · · · = 1, 2 for SL(2,C) doublet indices.
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One may think of σaI as analogous to a zweibein relating Sp(4,Z) and SL(2,C) frames.
The transformations of σ and detσ under M ∈ Sp(4,Z) are given by,

σaI → σaJ
[
(CΩ +D)−1]J

I

detσ → (detσ) det (CΩ +D)−1 (2.18)

which promotes detσ (to be encountered in numerous equations of section 6) into an
Sp(4,Z) Siegel modular form of weight −1. The transformation law of σ under SL(2,C) is
given by, σ1

I

σ2
I

→ Jγ γ

σ1
I

σ2
I

 detσ → J2
γ (detσ) (2.19)

The ubiquitous anti-symmetric bi-holomorphic form ∆, which is defined in terms of ωI by,

∆(z, w) = ω1(z)ω2(w)− ω2(z)ω1(w) (2.20)

may be expressed in terms of the hyper-elliptic basis for zi = (xi, si), as follows,

∆(z1, z2) = (detσ) (x1 − x2) dx1 dx2
s1 s2

(2.21)

Therefore, as a function of z1 = (x1, s1), the two zeros of the holomorphic (1, 0)-form
∆(z1, z2) are at z2 = (x2, s2) and its image under involution Iz2 = (x2,−s2). The form
∆(z1, z2) is a Siegel modular form of weight −1 under Sp(4,Z) in view of the factor detσ.

2.3 The Szegö kernel for even spin structures

The expression for the Szegö kernel for even spin structure in terms of ϑ-functions and
the prime form may be found, for example, in [13]. Our analysis of the cyclic products
of Szegö kernels Cδ in (1.1) will start from the hyper-elliptic representation of the Szegö
kernel, which we now review in detail.

For genus two there exists a one-to-one map between the 10 even spin structures,
generically denoted by δ, and the ten inequivalent partitions of the six branch points ur
for r = 1, · · · , 6 into two disjoint sets A,B of three branch points,6

δ ≡ A ∪B A = {r1, r3, r5} A ∩B = ∅
B = {r2, r4, r6} A ∪B = {1, · · · , 6} (2.22)

We take the opportunity here to express also the odd spin structures, generically denoted
by ν, in terms of the hyper-elliptic representation. For genus two there exists a one-to-one
map between the six odd spin structures and the six branch points,

νr ≡ ur r = 1, · · · , 6 (2.23)

which may be viewed as all inequivalent partitions of the six branch points into a set of
one branch point and its complement of five branch points. The functional extension of

6We note that for genus two all even spin structure are regular spin structures [23]. The choice of even
and odd labels for the subscript is a matter of convenient convention, following [16].
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the space of hyper-elliptic functions, needed to give the Szegö kernel, is by the square roots
sA(x) and sB(x) of the following cubic polynomials,

sA(x)2 =
∏
r∈A

(x− ur) sB(x)2 =
∏
r∈B

(x− ur) (2.24)

The relative sign in the square roots is fixed by requiring their product to be s(x), where
s(x)2 was given earlier in (2.1),

sA(x)sB(x) = s(x) (2.25)

The Szegö kernel for even spin structure δ and two arbitrary points zi = (xi, si) ∈ Σ is
given by,

Sδ(z1, z2) = sA(x1)sB(x2) + sB(x1)sA(x2)
2x12

(
dx1
s1

) 1
2
(
dx2
s2

) 1
2

(2.26)

where we employ the familiar notation x12 = x1,2 = x1−x2. The analytic structure of this
expression may be verified by noting that the denominator x12 produces simple poles at
(x1, s1) = (x2,±s2) but the pole at s1 = −s2 cancels since the numerator vanishes in view
of the relation (2.25). The remaining normalization is such that the pole (dx1 dx2)1/2/x12
has unit residue.

As mentioned earlier, Sp(4,Z) modular transformations act on the hyper-elliptic rep-
resentation by the permutation group S6 acting on the branch points. Since even and odd
spin structures are uniquely labeled by partitions of the branch points, the action of mod-
ular transformations on spin structures is induced from their action on the branch points.
As is well-known, and may be easily verified in terms of the representation via partitions of
the branch points, modular transformations map even spin structures to even spin struc-
tures and odd to odd. The precise expressions for these actions, along with the translation
in terms of half-integer characteristics, is provided in detail in appendix I.1 and [16]. The
action of an Sp(4,Z) modular transformation maps the Szegö kernel Sδ(z1, z2) into the
Szegö kernel Sδ̃(z1, z2) where δ̃ is the image of δ under the modular transformation.

Finally the Szegö kernel is invariant under SL(2,C) transformations,

γSδ(z1, z2) = Sδ(z1, z2) (2.27)

provided the points z1, z2, their differentials, the branch points ur, and the spin structure
in terms of the branch points are all transformed according to (2.7), (2.8), and (2.9).

3 Reduction of cyclic products of Szegö kernels

In this section, we shall initiate the process of reducing the spin structure dependence of
the cyclic product Cδ(z1, · · · , zn) of Szegö kernels, defined in (1.1), to a universal structure
that is independent of the number of points n. This process will be carried out in a number
of steps, and with the help of several intermediary functions that we shall introduce and
discuss below. The proposed reduction of Cδ will be carried out completely in this section
only for n = 2. But the structures uncovered for n = 2 will constitute the fundamental
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building blocks for the reduction of the higher point functions in section 5, to be carried
out with the help of the results of section 4 on the trilinear relations.

To begin, we express the Szegö kernels in Cδ in terms of the hyper-elliptic representa-
tion using (2.26), and organize the cyclic product as follows,7

Cδ(1, · · · , n) = Nδ(1, · · · , n)
n∏
i=1

dxi
2xi,i+1 si

Nδ(1, · · · , n) =
n∏
i=1

(
sA(i)sB(i+1) + sB(i)sA(i+1)

)
(3.1)

where we identify the labels n+1 ≡ 1. The simple poles at xi = xi+1 arise through the
Parke-Taylor factor (x12x23 · · ·xn−1,nxn1)−1 well-known from tree-level correlators. All the
dependence on the spin structure δ ≡ A ∪ B resides in the cyclically invariant numerator
Nδ. An equivalent but more useful expression for Nδ is given as follows,

Nδ(1, · · · , n) =
∑

σi=A,B
i=1,··· ,n

sσ1(1)sσ̄1(2)sσ2(2)sσ̄2(3) · · · sσn(n)sσ̄n(1) (3.2)

where σi takes the values A or B and σ̄i takes the value opposite to σi.

3.1 Isolating the spin structure dependence of the numerators Nδ

Each term in the expansion (3.2) ofNδ has precisely n factors sA and n factors sB. Products
sA(i)sB(i) are equated with si, which is independent of the spin structure. The number of
si factors thus obtained must always be even when n is even or odd when n is odd. The term
with the largest number of si factors is always twice the product of the n different si factors.

Using the above observations we decompose Nδ into a linear combination of prod-
ucts involving spin structure independent factors si1 · · · sip times spin structure dependent
factors. To capture the latter, we define the following combinations,

Qδ(i1, · · · , im|j1, · · · , jm) = sA(i1)2 · · · sA(im)2sB(j1)2 · · · sB(jm)2 + (A↔ B) (3.3)

where the labels i1, · · · , im, j1, · · · , jm are all distinct from one another. The properties
of Qδ follow from those of the polynomials sA(x)2 and sB(x)2 and may be conveniently
summarized as follows. The functions Qδ(i1, · · · , im|j1, · · · , jm) are,

• polynomial in xi1 , · · · , xim , xj1 , · · · , xjm of degree 3 in each variable;
• invariant under all permutations of i1, · · · , im. and all permutations of j1, · · · , jm;
• invariant under swapping the set {i1, · · · , im} with the set {j1, · · · , jm}.

7When no confusion is expected to arise, we shall often use the shorthand Sδ(i, j) = Sδ(zi, zj) in the
Szegö kernels and elsewhere, so that, Cδ(1, 2, · · · , n) = Sδ(1, 2)Sδ(2, 3) · · ·Sδ(n−1, n)Sδ(n, 1).
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For n ≤ 6, the decomposition may be easily worked out and we have,

Nδ(1, 2) = 2s1s2 +Qδ(1|2) (3.4)
Nδ(1, 2, 3) = 2s1s2s3 +

{
s1Qδ(2|3) + cycl(1, 2, 3)

}
Nδ(1, 2, 3, 4) = 2s1s2s3s4 +Qδ(1, 3|2, 4)

+
{
s1s2Qδ(3|4) + 1

2s1s3Qδ(2|4) + cycl(1, 2, 3, 4)
}

Nδ(1, 2, 3, 4, 5) = 2s1s2s3s4s5 +
{
s1Qδ(2, 4|3, 5) + s1s2s3Qδ(4|5)

+s1s2s4Qδ(3|5) + cycl(1, 2, 3, 4, 5)
}

Nδ(1, 2, 3, 4, 5, 6) = 2s1s2s3s4s5s6 +Qδ(1, 3, 5|2, 4, 6) +
{
s1s2s3s4Qδ(5|6)

+s1s2s3s5Qδ(4|6) + 1
2s1s2s4s5Qδ(3|6) + s1s2Qδ(3, 5|4, 6)

+s1s3Qδ(2, 5|4, 6) + 1
2s1s4Qδ(2, 5|3, 6) + cycl(1, 2, 3, 4, 5, 6)

}
The instruction to add cyclic permutations applies to every term enclosed by the same
curly brackets. The factors of 1

2 account for the symmetry of the configuration of points
under consideration and avoid overcounting when the cyclic images are added.

Theorem 3.1 For arbitrary n, the decomposition of Nδ into a linear combination of poly-
nomials Qδ with coefficients that are polynomials in the square roots si are obtained as
follows,

Nδ(1, · · · , n) = 2s1 · · · sn +
bn/2c∑
`=1

∑
1≤i1<j1<···<i`<j`≤n

Qδ(i1, · · · , i`|j1, · · · , j`)
∏

k 6=i1,··· ,i`
k 6=j1,··· ,j`

sk (3.5)

The proof of this theorem is elementary and proceeds from the representation (3.2) of Nδ

and by rearranging the summands in terms of Qδ of various orders.
The sum in (3.5) terminates after bn/2c+1 terms, the last term being given as follows,

n even Qδ(1, 3, · · · , n−1|2, 4, · · · , n) (3.6)
n odd s1Qδ(2, 4, , · · · , n−1|3, 5, · · · , n) + cycl(1, 2, · · · , n)

3.2 The two-point cyclic product Cδ(i, j) and its δ dependence

The decomposition carried out in the preceding subsection isolates all dependence of the
cyclic products Cδ in the polynomial functions Qδ. In the present subsection, we shall show
that all spin structure dependence in the two-point cyclic product,

Cδ(i, j) = Qδ(i|j) + 2sisj
4xijxji

× dxi dxj
si sj

(3.7)

may be further isolated to reside in a symmetric bi-holomorphic form in zi and zj , that we
shall identify explicitly, and that will play a central role in the sequel.
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Given an even spin structure δ corresponding to the partition
(ur1 , ur3 , ur5 |ur2 , ur4 , ur6) (2.22) of branch points, the polynomials s2

A, s
2
B and s2

may be expressed as follows,

sA(x)2 = (x− ur1)(x− ur3)(x− ur5) = x3 − α1x
2 + α2x− α3 (3.8)

sB(x)2 = (x− ur2)(x− ur4)(x− ur6) = x3 − β1x
2 + β2x− β3

s(x)2 = (x− u1) · · · (x− u6) = µ0x
6 − µ1x

5 + µ2x
4 − µ3x

3 + µ4x
2 − µ5x+ µ6

where α1, α2, α3, β1, β2, β3 are partially symmetric polynomials in triplets of branch points,

α1 = ur1 + ur3 + ur5 β1 = ur2 + ur4 + ur6

α2 = ur1ur3 + ur3ur5 + ur5ur1 β2 = ur2ur4 + ur4ur6 + ur6ur2

α3 = ur1ur3ur5 β3 = ur2ur4ur6 (3.9)

and the following symmetric polynomials of the 6 branch points are defined by µ0 = 1 and,8

µm =
∑

1≤r1<···<rm≤6
ur1 · · ·urm 1 ≤ m ≤ 6 (3.10)

The polynomials are related by the following identities,

µ1 = α1 + β1 µ4 = α1β3 + α3β1 + α2β2

µ2 = α2 + β2 + α1β1 µ5 = α2β3 + α3β2

µ3 = α3 + β3 + α1β2 + α2β1 µ6 = α3β3 (3.11)

While the symmetric polynomials µm are invariant under the full group S6 of permuta-
tions of the six branch points, the partially symmetric polynomials α1, α2, α3, β1, β2, β3 are
invariant only under the subgroup S3×S3 of S6. This subgroup leaves the spin structure
δ invariant, as does the swap (α1, α2, α3)↔ (β1, β2, β3). The dependence of αm and βm on
the spin structure δ will not be exhibited in order to avoid cluttering.

3.2.1 The auxiliary polynomial Pδ(i, j)

To isolate the spin structure dependence of Cδ(i, j) further than we have already done so
far in (3.7), we shall use a convenient auxiliary polynomial function Pδ(i, j) defined by,

Pδ(i, j) =
(
sA(i)2 − sA(j)2)(sB(j)2 − sB(i)2) (3.12)

Expanding the product, we see that this function is closely related to Qδ(i|j), as follows,

Pδ(i, j) = Qδ(i|j)− s2
i − s2

j (3.13)

The advantage of Pδ is that it is automatically divisible by x2
ij since we have,

sA(i)2 − sA(j)2 = xij
(
Xi,j + α1Yi,j + α2

)
Xi,j = x2

i + xixj + x2
j

sB(j)2 − sB(i)2 = xji
(
Xi,j + β1Yi,j + β2

)
Yi,j = −xi − xj (3.14)

8More precisely, µm denote the unique symmetric degree-m polynomials in the ui with i = 1, · · · , 6 that
are at most linear in each branch point.
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The spin structure dependence of these factors is simplified further in view of the fact that
they no longer depend on either α3 or β3. The disadvantage of using Pδ as an auxiliary
combination is that it does not enjoy good transformation properties under SL(2,C), in
contrast with Cδ and Qδ which transform homogeneously. Good manifest transformation
properties will be easily restored in the final results, as we shall see below.

Carrying out the product of the factors in (3.14) to obtain Pδ, we obtain,

Pδ(i, j) = xijxji
(
Xi,j + α1Yi,j + α2

)(
Xi,j + β1Yi,j + β2

)
= xijxji

(
X2
i,j + µ1Xi,jYi,j + µ2Xi,j + xixjφ2 − (xi + xj)φ3 + φ4

)
(3.15)

The second line has been derived from the first line using the relations of (3.11) to combine
all spin structure dependence in terms of the following three partially symmetric polyno-
mials in the branch points,

φ2 = α1β1

φ3 = α1β2 + α2β1

φ4 = α2β2 (3.16)

where the subscripts of φm, αm, βm indicate their polynomial degree in the branch points,
and we again keep the dependence on the spin structure implicit to avoid cluttering. The
key property of the polynomials φ2, φ3, φ4 is that they share the symmetry under the
group of permutations S3 ×S3 × Z2 with the even spin structure δ. Recall that the two
S3 factors generate the permutations of the branch points that leave αm and βm invariant,
respectively, while the Z2 factor swaps αm and βm variables. Therefore the variables
φ2, φ3, φ4 provide a minimal parametrization of the spin structure dependence, as will be
further clarified below. Substituting Pδ into Qδ and then into Cδ, we obtain,

Cδ(i, j) = Pδ(i, j) + (si+sj)2

4xijxji
× dxi dxj

si sj
(3.17)

Using the fact that the spin structure dependence of Pδ in (3.15) is localized in the last three
terms on the second line, namely those that involve the φm, we obtain upon substitution
into the above formula for Cδ,

Cδ(i, j) =
(
xixjφ2 − (xi + xj)φ3 + φ4

)dxi dxj
4 si sj

+ spin structure independent (3.18)

We readily observe that the spin structure dependence is entirely localized in a symmetric
bi-holomorphic form in zi, zj , as was announced at the beginning of this section, while the
double pole of Cδ(i, j) at xi = xj resides in its spin structure independent part.

3.2.2 Restoring manifest SL(2,C) invariance

A central guiding principle of this work is to organize the cyclic products Cδ and their
spin structure sums into tensors of SL(2,C). A key advantage of tensorial equations in
irreducible representations of SL(2,C) is that they can be derived or verified from a single
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component. Moreover, SL(2,C) tensors will facilitate the translation of our results to
ϑ-functions and modular tensors in the Sp(4,Z)-frame in follow-up work [25].

While Cδ(i, j) is manifestly SL(2,C) invariant, the use of the auxiliary function Pδ(i, j)
in (3.17) has obscured this invariance at intermediate stages. In particular, the spin struc-
ture dependent bi-holomorphic form, identified in (3.18), is not SL(2,C) invariant. To re-
store manifest SL(2,C) invariance, we begin by recording the transformations of φ2, φ3, φ4
and µm for 0 ≤ m ≤ 6, under infinitesimal translations T and inversions S,9

T µm = (7−m)µm−1 Sµm = (−)mµ6−m/µ6

T φ2 = 3µ1 Sφ2 = φ4/µ6

T φ3 = φ2 + 3µ2 Sφ3 = −φ3/µ6

T φ4 = 2φ3 Sφ4 = φ2/µ6 (3.19)

where it is understood that µ0 = 1 and µ−1 = 0. Using these transformation laws, along
with T xi = 1 and the Leibniz property of T , we readily evaluate the translation of the
holomorphic part in (3.18),

T
(
xixjφ2 − (xi + xj)φ3 + φ4

)
= 3µ1xixj − 3µ2(xi + xj) (3.20)

The right side of the above equation is manifestly independent of φ2, φ3, φ4 and thus inde-
pendent of the spin structure δ. It may be expressed as the translation of a spin-structure
independent combination that is uniquely determined as follows,

3µ1xixj − 3µ2(xi + xj) = T
(3

5µ2xixj −
9
10µ3(xi + xj) + 3

5µ4

)
(3.21)

Combining (3.20) with (3.21) we obtain a translation-invariant combination, that we shall
normalize and express as follows,

Lδ(i, j) = Lδ(i, j) ·
dxi dxj
si sj

= `abδ $a(i)$b(j) (3.22)

where the components `abδ are given by,

`11
δ = 1

4φ4 −
3
20µ4 = 1

4α2β2 −
3
20µ4

`12
δ = 1

4φ3 −
9µ3
40 = 1

4(α1β2 + α2β1)− 9µ3
40

`22
δ = 1

4φ2 −
3
20µ2 = 1

4α1β1 −
3
20µ2 (3.23)

and the holomorphic (1, 0)-forms $a(i) were defined in (2.15).10 Expressed in terms of the
components of `δ, the function Lδ(i, j) takes the form,

Lδ(i, j) = `11
δ − (xi + xj) `12

δ + xixj `
22
δ (3.24)

9Recall from section 2 that invariance under both T and S implies invariance under the full SL(2,C).
10It will be established in section 6 that the sum of `δ over all even spin structures against the unit

measure, namely
∑

δ
`δ, actually vanishes. This property might alternatively have been used to justify the

addition of the spin structure independent terms in (3.23).
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Combining the transformation laws T $1(z) = 0 and T $2(z) = −$1(z) with those of `abδ ,

T `11
δ = 2 `12

δ

T `12
δ = `22

δ

T `22
δ = 0 (3.25)

we readily verify that T Lδ(i, j) = T Lδ(i, j) = 0. Using the transformation properties of
φ2, φ3, φ4 and µm under S given in (3.19) along with the transformation law Sxi = −1/xi
of (2.10), we also verify that Lδ(i, j) is invariant under S. Since the combined invariance
under S and T implies invariance under the full SL(2,C) group, we conclude that the
symmetric bi-holomorphic form Lδ(i, j) in (3.22) is SL(2,C) invariant.

In particular this means that Lδ(i, j) and Lδ(i, j) may be expressed as combinations of
differences of the points xi, xj and the branch points. For a spin structure δ corresponding
to the partition (ur1 , ur3 , ur5 |ur2 , ur4 , ur6), we may render this property explicit as follows,

Lδ(i, j) = − 1
80
{[

(xi − ur1)(xj − ur2) + (i↔ j)
]
(ur3 − ur4)(ur5 − ur6)

+cycl(1, 3, 5)
}

+ perm(2, 4, 6) (3.26)

where perm(2,4,6) stands for the five remaining permutations of (2, 4, 6). The expression
may be readily verified to agree with (3.24) using maple.

The expansion of Lδ(i, j) in a basis of Abelian differentials ωI(zi)ωJ(zj) in the Sp(4,Z)
frame will drive the translation of our results into ϑ-functions [25] and make contact with
the spin structure dependent building blocks PIJ(Ωδ) of Cδ considered in [27].

3.3 Summary for the reduction of Qδ(i|j) and Cδ(i, j)

The result obtained earlier in this section may be summarized by the following theorem.

Theorem 3.2 The polynomial Qδ(i|j) in (3.3) and the cyclic product Cδ(i, j) admit the
following SL(2,C) covariant decompositions,

Qδ(i|j) = 4xijxjiLδ(i, j) + 2Z(i, j)

Cδ(i, j) = Lδ(i, j) + Z(i, j) + sisj
2xijxji

dxi dxj
si sj

(3.27)

where the spin structure dependent symmetric bi-holomorphic (1, 0)-form Lδ(i, j) was de-
fined in (3.22) while the spin structure independent function Z(i, j) is given by,

Z(i, j) = µ0x
3
ix

3
j −

µ1
2 (x3

ix
2
j + x2

ix
3
j ) + µ2

5 (xix3
j + x3

ixj + 3x2
ix

2
j ) (3.28)

−µ3
20(x3

i + x3
j + 9xix2

j + 9x2
ixj) + µ4

5 (x2
i + x2

j + 3xixj)−
µ5
2 (xi + xj) + µ6

An equivalent expression for Z(i, j) may be given in terms of the rank six symmetric
SL(2,C)-tensors M1 and Xij,

Z(i, j) = Ma1···a6
1 Xb1···b6

ij εa1b1 · · · εa6b6 (3.29)
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where εab is the anti-symmetric invariant tensor of SL(2,C) normalized to ε12 = 1 and the
components of the tensors M1 and Xij are given by,

M111111
1 = µ6 X111111

ij = x3
ix

3
j

M111112
1 = 1

6µ5 X111112
ij = 1

2(x3
ix

2
j + x2

ix
3
j )

M111122
1 = 1

15µ4 X111122
ij = 1

5(x3
ixj + xix

3
j + 3x2

ix
2
j )

M111222
1 = 1

20µ3 X111222
ij = 1

20(x3
i + x3

j + 9x2
ixj + 9xix2

j )

M112222
1 = 1

15µ2 X112222
ij = 1

5(x2
i + x2

j + 3xixj)

M122222
1 = 1

6µ1 X122222
ij = 1

2(xi + xj)

M222222
1 = µ0 X222222

ij = 1 (3.30)

To prove the theorem, we have already done most of the work by identifying the bi-
holomorphic form Lδ(i, j). It remains to show that Qδ(i|j) − 4xijxjiLδ(i, j) indeed gives
the expression for Z(i, j). We carry out this analysis by expressing Qδ in terms of Pδ,

Qδ(i|j)− 4xijxjiLδ(i, j)
= Pδ(i, j) + s2

i + s2
j − 4xijxji Lδ(i, j) (3.31)

= −x2
ij

(
X2
i,j + µ1Xi,jYi,j + µ2Xi,j + 3

5µ2xixj + 9
10µ3Yi,j + 3

5µ4

)
+ s2

i + s2
j

with Xi,j and Yi,j defined in (3.14). Using the relations xijXi,j = x3
i − x3

j and xijYi,j =
−x2

i + x2
j one readily observes that the terms of degree 6, 5, and 4 in xi and xj cancel

with the corresponding terms in s2
i + s2

j to yield twice the expression for Z(i, j) given
in (3.28). Recasting the expression in terms of the tensors M1 and Xij is straightforward
and completes the proof of the theorem.

We close this subsection by noting that the tensor M1 corresponds to a unique (up to
overall normalization) totally symmetric holomorphic (1, 0)⊗6 form given by,

M1(1, · · · , 6) = Ma1···a6
1 $a1(1) · · ·$a6(6) (3.32)

where $a(z) are the familiar (1, 0)-forms. In terms of the branch points, M1 is given by,

M1(1, · · · , 6) = 1
6!
∑
ρ∈S6

6∏
j=1

(
xj − uρ(j)

)dxj
sj

(3.33)

Setting the six points xj equal to x1, we have the relation M1(1, 1, 1, 1, 1, 1) = ψ(x1)2,
where ψ(x) is the (unique up to an overall normalization) holomorphic (3, 0)-form dx3/s2

whose six simple zeros are the branch points.

3.4 The function Pδ for the general case

To isolate the spin structure dependence of the polynomials Qδ(i1, · · · , im|j1, · · · , jm) for
arbitrary values ofm, we introduce a suitable generalization of the function Pδ(i, j) in (3.12)
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used for the case m = 1. The number of points appearing in Pδ will be even, given by n =
2m, and cyclically ordered as follows, Pδ(i1, j1, i2, j2, · · · , im, jm). We lighten the notation
by designating the points i1, j1, i2, j2, · · · , im, jm in this order simply by 1, 2, · · · , n, namely
arranged in the same cyclical order as the original cyclic product Cδ. The generalized
function Pδ(1, 2, · · · , n) is then defined by,

Pδ(1, · · · , n) = 1
2
(
sA(1)2 − sA(2)2)(sB(2)2 − sB(3)2)× · · ·

· · · ×
(
sA(n−1)2 − sA(n)2)(sB(n)2 − sB(1)2)+ (A↔ B) (3.34)

In the same way as Pδ(i, j) in (3.12) is automatically divisible by x2
ij , a key advantage

of its n-point generalization (3.34) is its divisibility by the Parke-Taylor denominator
x12x23 · · ·xn1 of Cδ(1, · · · , n). Note that the symmetrization in A and B will be essen-
tial, as this operation will guarantee that all the spin structure dependence of Pδ can be
expressed in terms of the partially symmetric functions φ2, φ3, φ4 in (3.16), as will be proven
in Lemma 3.4. In the remainder of this subsection we shall relate Pδ to Qδ while in the
next subsection we shall state Lemma 3.4.

To relate Pδ to Qδ we expand the products in (3.34) and use the relation sA(x)sB(x) =
s(x), to express the function Pδ as a linear combination of the functions Qδ with coefficients
that are polynomials in s1, · · · , sn. The simplest example for n = 2 was already given
in (3.13). For the case n = 4 we have,

Pδ(1, 2, 3, 4) = Qδ(1, 3|2, 4) + s2
1s

2
3 + s2

2s
2
4

−1
2
{
s2

1
(
Qδ(2|3) +Qδ(3|4)−Qδ(2|4)

)
+ cycl(1, 2, 3, 4)

}
(3.35)

where the cyclic permutations apply only to the last line. For the case n = 6, we have,

Pδ(1, 2, 3, 4, 5, 6) = Qδ(1, 3, 5|2, 4, 6)− s2
1s

2
3s

2
5 − s2

2s
2
4s

2
6

+
{1

2s
2
1
(
Qδ(2, 4|3, 6) +Qδ(2, 5|4, 6)−Qδ(2, 4|3, 5)−Qδ(2, 5|3, 6)−Qδ(3, 5|4, 6)

)
+ 1

4s
2
1s

2
4
(
Qδ(2|5) +Qδ(3|6)−Qδ(2|6)−Qδ(3|5)

)
+ 1

2s
2
1s

2
3
(
Qδ(4|5) +Qδ(5|6)−Qδ(4|6)

)
+ cycl(1, 2, 3, 4, 5, 6)

}
(3.36)

Equivalently, one may express Qδ in terms of Pδ only by eliminating the Qδ functions with
fewer variables in terms of Pδ functions with fewer variables. For example, the case n = 4
reduces as follows,

Qδ(1, 3|2, 4) = Pδ(1, 2, 3, 4)− 1
2Pδ(1, 3)(s2

2 + s2
4)− 1

2Pδ(2, 4)(s2
1 + s2

3)

+1
2
{
Pδ(1, 2)(s2

3 + s2
4) + cycl(1, 2, 3, 4)

}
+ s2

1s
2
3 + s2

2s
2
4 (3.37)
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while the case n = 6 becomes,

Qδ(1,3,5|2,4,6) = Pδ(1,2, · · · ,6)+ 1
4
{
Pδ(1,2,4,5)(s2

3 +s2
6)+cycl(1,2, · · · ,6)

}
+1

2
{
Pδ(1,2,3,4)(s2

5 +s2
6)−Pδ(1,2,3,5)(s2

4 +s2
6)+cycl(1,2, · · · ,6)

}
+1

2
{
Pδ(1,2)(s2

3s
2
5 +s2

4s
2
6)−Pδ(1,3)(s2

2s
2
5 +s2

4s
2
6)+cycl(1,2, · · · ,6)

}
+1

4
{
Pδ(1,4)(s2

2s
2
5 +s2

3s
2
6)+cycl(1,2, · · · ,6)

}
+s2

1s
2
3s

2
5 +s2

2s
2
4s

2
6 (3.38)

where the scope of the cyclic permutations is delimited by the respective braces. For the
case of arbitrary values of n = 2m, we have the following proposition, which was inferred
by inspection of the mathematica results for low values of m.

Proposition 3.3 The expression for Qδ in terms of the functions Pδ for arbitrary m is
given by the following relations,

Qδ(1, 3, · · · , 2m−1|2, 4, · · · , 2m) = s2
1s

2
3 · · · s2

2m−1 + s2
2s

2
4 · · · s2

2m + Pδ(1, 2, · · · , 2m) (3.39)

+ 1
2

m−1∑
`=1

∑
1≤i1<···<i2`≤2m

(−1)`+i1+i2+···+i2`Pδ(i1, i2, · · · , i2`) Φ(j1, · · · , j2m−2`)

The δ-independent function Φ(j1, · · · , j2m−2`) may be expressed in terms of the ordered set
of indices 1 ≤ j1 < j2 < · · · < j2m−2` ≤ 2m obtained by removing i1, i2, · · · , i2` from
{1, 2, · · · , 2m},

Φ(j1, · · · , j2m−2`) = s2
j1s

2
j3 · · · s

2
j2m−2`−1 + s2

j2s
2
j4 · · · s

2
j2m−2` (3.40)

We have proved the proposition using maple for the values m = 2, 3, 4, 5, 6, 7, 8. An
analytical proof for arbitrary values of m remains outstanding.

3.5 Spin structure dependence of Pδ
Having secured expressions for Qδ in terms of the Pδ defined by (3.34) in the preceding
subsection, we shall now reduce the spin structure dependence of Pδ to a standard form.
By construction, Pδ is divisible by the Parke-Taylor denominator x12x23 · · ·xn1 in the
expression (3.1) for Cδ. Its quotient will be denoted by Πδ, i.e.

Pδ(1, 2, · · · , n) = x12x23 · · ·xn1 Πδ(1, 2, · · · , n) n even (3.41)

Using the relations of (3.14), we obtain an explicit expression for Πδ in terms of the par-
tially symmetric polynomials αi, βi in (3.9), which generalizes the case n=2 studied earlier
in (3.15),

Πδ(1, · · · , n) =
(
X1,2 + α1Y1,2 + α2

)(
X3,4 + α1Y3,4 + α2

)
· · ·
(
Xn−1,n + α1Yn−1,n + α2

)
×
(
X2,3 + β1Y2,3 + β2

)(
X4,5 + β1Y4,5 + β2

)
· · ·
(
Xn,1 + β1Yn,1 + β2

)
+(α↔ β) (3.42)

Expanding the product on the first line above, we observe that the coefficient σa1,a2
A (X,Y )

of the monomial αa1
1 α

a2
2 is a symmetric polynomial in the variables X1,2, X3,4, · · · , Xn−1,n

and Y1,2, Y3,4, · · · , Yn−1,n which is
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• homogeneous of degree a1 in Y ;
• homogeneous of degree n− a1 − a2 in X;
• at most of combined degree 1 in Xi,j and Yi,j at fixed i, j.

Proceeding similarly for the coefficient σb1,b2
B (X,Y ) of the monomial βb1

1 β
b2
2 , the expres-

sion (3.42) for Πδ at even n = 2m can reorganized into

Πδ(1, · · · , 2m) =
∑

a1,a2,b1,b2≥0
a1+a2≤m
b1+b2≤m

σa1,a2
A (X,Y )σb1,b2

B (X,Y )
(
αa1

1 α
a2
2 β

b1
1 β

b2
2 + αb1

1 α
b2
2 β

a1
1 βa2

2

)

(3.43)
The coefficients σA and σB are manifestly independent of the spin structure. To narrow
down the precise nature of the spin structure dependence, we appeal to the following lemma.

Lemma 3.4 The spin structure dependence of Πδ has the following properties.

(a) Every polynomial in the variables α1, α2, β1, β2, which are defined in terms of the
branch points in (3.9), that is invariant under (α1, α2) ↔ (β1, β2) may be ex-
pressed as a polynomial in the variables φ2, φ3, φ4 defined in (3.16) with coefficients
in C[µ1, · · · , µ6].

(b) Equivalently, every such polynomial may be expressed as a polynomial in the variables
`abδ defined in (3.23) with coefficients in C[µ1, · · · , µ6].

(c) The function Πδ(1, · · · , n) for even n = 2m is a polynomial in φ2, φ3, φ4, whose allowed
monomials are subject to the following conditions,

φλ2
2 φλ3

3 φλ4
4 0 ≤ λ2, λ3, λ4 λ2 + λ3 + λ4 ≤ m (3.44)

In particular, this condition requires that λ2, λ3, λ4 ≤ m.

(d) The same inequalities on λ2, λ3, λ4 hold for the monomials,

(`22
δ )λ2(`12

δ )λ3(`11
δ )λ4 0 ≤ λ2, λ3, λ4 λ2 + λ3 + λ4 ≤ m (3.45)

that can appear in the expansion of Πδ.

The lemma is proven in appendix B by explicit construction. The practical significance
of the lemma is the following:

Corollary 3.5 All the spin structure dependence of Πδ, and thus of Pδ, Qδ and Cδ is local-
ized in a polynomial dependence on the functions φ2, φ3, φ4 or equivalently on the functions
`abδ .

An alternative, manifestly SL(2,C) covariant proof of Corollary 3.5 may be found in
appendix C. In the next section we shall show that this structure may be further reduced.
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4 The trilinear relations

In this section, we shall produce and prove three powerful related theorems on the functions
φ2, φ3, φ4 and their tensorial cousins `abδ . In a nutshell, the theorems state that these
functions obey a system of polynomial equations of degree 3, whose coefficients are elements
of the polynomial ring C[µ1, · · · , µ6] and therefore independent on the spin structure δ.
We shall refer to these equations as the trilinear relations. The trilinear relations will be
essential in the simplification of the cyclic product of any number of Szegö kernels and its
spin sum, which is why we now proceed with their derivation.

The existence of polynomial equations for the functions φ2, φ3, φ4 and their tensorial
cousins `abδ is expected on general grounds. Indeed, since the branch points u1, · · · , u6 are
the roots of the polynomial,

s(x)2 = x6 − µ1x
5 + µ2x

4 − µ3x
3 + µ4x

2 − µ5x+ µ6 (4.1)

they are algebraic numbers over the ring C[µ1, · · · , µ6]. Since the combinations
α1, α2, β1, β2 and thus φ2, φ3, φ4 are polynomials in the branch points, they are also alge-
braic numbers over the ring C[µ1, · · · , µ6] and therefore must satisfy polynomial equations
whose coefficients belong to C[µ1, · · · , µ6]. Our third and last theorem of this section will
show that these trilinear relations have a simple and beautiful interpretation in terms of
SL(2,C)-tensors.

We shall begin with an elementary derivation of two of the trilinear relations, and
then use SL(2,C) representation theory to construct all the trilinear relations. Some of the
intermediate formulas get to be pretty lengthy and will be relegated to appendix D.

4.1 Elementary derivation of two trilinear relations

The variables α1, α2, α3, β1, β2, β3 in (3.9) obey a set of equations that link them to φ2, φ3, φ4
in (3.16) and the symmetric polynomials µm as follows,

α1 + β1 = µ1 α1β1 = φ2 α1β2 + α2β1 = φ3

α2 + β2 = µ2 − φ2 α2β2 = φ4 α2β3 + α3β2 = µ5

α3 + β3 = µ3 − φ3 α3β3 = µ6 α3β1 + α1β3 = µ4 − φ4 (4.2)

Solutions to this system of nine equations for six unknowns α1, α2, α3, β1, β2, β3 will ex-
ist provided φ2, φ3, φ4 and µm satisfy certain relations that are obtained by eliminating
α1, α2, α3, β1, β2, β3 from the above system. Here we shall limit our attention to the deriva-
tion of only two equations that will suffice to establish all the trilinear relations.

We solve for α1, β1 using the first and third relations on the top line in (4.2) in terms
of µ1, φ3 and α2, β2, and similarly solve for α3, β3 using the first relation on the bottom
line in (4.2) and the third relation on the middle line in terms of µ3 − φ3, µ5 and α2, β2,

α1(α2 − β2) = −φ3 + µ1α2 α3(α2 − β2) = −µ5 + (µ3 − φ3)α2

β1(α2 − β2) = φ3 − µ1β2 β3(α2 − β2) = µ5 − (µ3 − φ3)β2 (4.3)
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Substituting the solution for α1, β1 into the second relation on the top line of (4.2), and
similarly substituting the solution for α3, β3 into the second relation on the bottom line
of (4.2) leaves two equations involving α2, β2,

(α2 − β2)2φ2 = −(φ3 − µ1α2)(φ3 − µ1β2)
(α2 − β2)2µ6 = −(µ5 − (µ3 − φ3)α2)(µ5 − (µ3 − φ3)β2) (4.4)

Both relations are symmetric under swapping α2 and β2 so that we may eliminate α2 and
β2 from them by using the first and second relations on the middle line of (4.2), to obtain,

(φ2
2 − 2µ2φ2 + µ2

2 − 4φ4)φ2 = −φ2
3 + µ1φ3(µ2 − φ2)− µ2

1φ4

(φ2
2 − 2µ2φ2 + µ2

2 − 4φ4)µ6 = −µ2
5 + µ5(µ3 − φ3)(µ2 − φ2)− (µ3 − φ3)2φ4 (4.5)

We may recast these relations as giving φ3
2 and φ2

3φ4, respectively, in terms of a polynomial
of degree two in φ2, φ3, φ4 with spin structure independent coefficients in C[µ1, · · · , µ6].
Furthermore, we observe that all monomials may be rendered homogeneous of degree three
in the combined set of variables µ and φ provided we insert appropriate powers of µ0 = 1.
The resulting expressions are then trilinear in the variables φ and µ and will be referred to
as trilinear relations. They are given as follows,

φ3
2 = 2µ2φ

2
2 − µ1φ2φ3 + 4µ0φ2φ4 − µ0φ

2
3 − µ2

2φ2 + µ1µ2φ3 − µ2
1φ4

φ2
3φ4 = −µ6φ

2
2 + µ5φ2φ3 + 2µ3φ3φ4 + 2µ2µ6φ2 − µ3µ5φ2 − µ2µ5φ3

−µ2
3φ4 + 4µ0µ6φ4 − µ2

2µ6 + µ2µ3µ5 − µ0µ
2
5 (4.6)

The first relation is the first entry in the list of trilinear relations of Theorem 4.1 stated
below, while the second relation is the second to last entry.

4.2 The complete set of trilinear relations

The trilinear relation for φ3
2 on the first line of (4.6) is seen to be invariant under the action

of the translation generator T of SL(2,C) using the rules of (3.19). But it is not invariant
under the action of the inversion S and instead maps it to a new relation,

φ3
4 = 4µ6φ2φ4 − µ6φ

2
3 − µ5φ3φ4 + 2µ4φ

2
4 − µ2

5φ2 + µ4µ5φ3 − µ2
4φ4 (4.7)

which is the last entry in Theorem 4.1 stated below. Under a translation T , the rela-
tion (4.7) is mapped to a descendant trilinear equation,

φ3φ
2
4 = µ6φ2φ3 + 1

2µ5φ2φ4 −
1
2µ5φ

2
3 + µ4φ3φ4 + µ3φ

2
4 −

1
2µ4µ5φ2 + 1

2µ3µ5φ3

−µ2µ6φ3 −
1
2µ2µ5φ4 − µ3µ4φ4 + 2µ1µ6φ4 + 1

2µ2µ4µ5 −
1
2µ1µ

2
5 (4.8)
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which is the next-to-last relation in Theorem 4.1. Further descendants are produced by
successive application of T in view of the relations,

T 1(φ3
4) = 6φ3φ

2
4

T 2(φ3
4) = 6 (4φ2

3φ4 + φ2φ
2
4) +O(φ2)

T 3(φ3
4) = 24 (3φ2φ3φ4 + 2φ3

3) +O(φ2)
T 4(φ3

4) = 72 (4φ2φ
2
3 + φ2

2φ4) +O(φ2)
T 5(φ3

4) = 720φ2
2φ3 +O(φ2)

T 6(φ3
4) = 720φ3

2 +O(φ2)
T 7(φ3

4) = O(φ2) (4.9)

where O(φ2) refers to terms of second, first and zeroth order in φ2, φ3, φ4. We have retained
only the contributions trilinear in φ; the full relations will be deferred to Theorem 4.1.
Including the relation (4.7) from which we initiated the process of descent, we obtain a
total of 7 trilinear relations. The last of those relation, namely corresponding to T 6(φ3

4),
is proportional to the first line in (4.6).

It is manifest from the list of descent equations that not all trilinear monomials in
φ2, φ3, φ4 are being produced in the descent. For example, φ2

3φ4 and φ2φ
2
4 are not produced

independently, but only appear in the combination 4φ2
3φ4 + φ2φ

2
4. However, the second

relation obtained in (4.6) precisely fills this gap. With the expression for φ2
3φ4 included,

we obtain three additional linearly independent trilinear relations. Since the combination
φ2φ4 − φ2

3 satisfies,
T (φ2φ4 − φ2

3) = 3µ2φ4 − 6µ2φ3 (4.10)

and contains no terms bilinear in φ, it will be convenient to initiate the descent for the addi-
tional trilinear relations from the combination (φ2φ4−φ2

3)φ4, which is linearly independent
of the combination 4φ2

3φ4 +φ2φ
2
4 that is produced by the descent (4.9) starting from φ3

4. We
then obtain three additional trilinear relations, corresponding to the following cubic terms,

(φ2φ4 − φ2
3)φm m = 2, 3, 4 (4.11)

These results establish Theorem 4.1 below, which encompasses all trilinear relations.

Theorem 4.1 The functions φ2, φ3, φ4 obey the following trilinear relations,

φ3
2 = 2µ2φ

2
2 − µ1φ2φ3 + 4µ0φ2φ4 − µ0φ

2
3 − µ2

2φ2 + µ1µ2φ3 − µ2
1φ4

φ2
2 φ3 = µ3φ

2
2 + µ2φ2φ3 + 1

2µ1φ2φ4 −
1
2µ1φ

2
3 + µ0φ3φ4 −

1
2µ1µ4φ2 + 2µ0µ5φ2

−µ2µ3φ2 − µ0µ4φ3 + 1
2µ1µ3φ3 −

1
2µ1µ2φ4 −

1
2µ

2
1µ5 + 1

2µ1µ2µ4

φ2
2 φ4 = µ4φ

2
2 − µ3φ2φ3 + 2µ2φ2φ4 + µ2φ

2
3 − 3µ1φ3φ4 + 5µ0φ

2
4

−4µ0µ6φ2 + µ1µ5φ2 − 2µ2µ4φ2 + µ2
3φ2 + 2µ0µ5φ3 + µ1µ4φ3 − µ2µ3φ3

−6µ0µ4φ4 + 3µ1µ3φ4 − µ2
2φ4 + µ2

1µ6 − µ1µ2µ5 − µ1µ3µ4 + µ2
2µ4 + µ0µ

2
4
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φ2 φ
2
3 = 2µ3φ2φ3 + µ1φ3φ4 − µ0φ

2
4 + 4µ0µ6φ2 − µ2

3φ2 − µ1µ4φ3

+2µ0µ4φ4 − µ1µ3φ4 − µ2
1µ6 + µ1µ3µ4 − µ0µ

2
4

φ2φ3φ4 = 1
2µ5φ

2
2 + 5

4µ3φ2φ4 + 1
4µ3φ

2
3 + 1

2µ1φ
2
4 −

1
4µ3µ4φ2 −

1
2µ2µ5φ2 + 1

2µ1µ6φ2

+µ0µ6φ3 −
1
4µ

2
3φ3 + 1

2µ0µ5φ4 −
1
2µ1µ4φ4 −

1
4µ2µ3φ4

−1
2µ0µ4µ5 + 1

4µ2µ3µ4 + 1
4µ1µ3µ5 −

1
2µ1µ2µ6

φ3
3 = −1

2µ5φ
2
2 + µ4φ2φ3 + 7

4µ3φ
2
3 −

1
4µ3φ2φ4 + µ2φ3φ4 −

1
2µ1φ

2
4 + 1

2µ2µ5φ2

−3
4µ3µ4φ2 + 3

2µ1µ6φ2 + 3µ0µ6φ3 − µ1µ5φ3 − µ2µ4φ3 −
3
4µ

2
3φ3 + 3

2µ0µ5φ4

+1
2µ1µ4φ4 −

3
4µ2µ3φ4 −

3
2µ0µ4µ5 + 3

4µ2µ3µ4 + 3
4µ1µ3µ5 −

3
2µ1µ2µ6

φ2φ
2
4 = 5µ6φ

2
2 − 3µ5φ2φ3 + 2µ4φ2φ4 + µ4φ

2
3 − µ3φ3φ4 + µ2φ

2
4 − 6µ2µ6φ2

+3µ3µ5φ2 − µ2
4φ2 + 2µ1µ6φ3 + µ2µ5φ3 − µ3µ4φ3 − 4µ0µ6φ4 + µ1µ5φ4

−2µ2µ4φ4 + µ2
3φ4 − µ1µ4µ5 + µ2

2µ6 − µ2µ3µ5 + µ2µ
2
4 + µ0µ

2
5

φ2
3φ4 = −µ6φ

2
2 + µ5φ2φ3 + 2µ3φ3φ4 + 2µ2µ6φ2 − µ3µ5φ2

−µ2µ5φ3 + 4µ0µ6φ4 − µ2
3φ4 − µ2

2µ6 + µ2µ3µ5 − µ0µ
2
5

φ3φ
2
4 = µ6φ2φ3 + 1

2µ5φ2φ4 −
1
2µ5φ

2
3 + µ4φ3φ4 + µ3φ

2
4 −

1
2µ4µ5φ2 − µ2µ6φ3

+1
2µ3µ5φ3 + 2µ1µ6φ4 −

1
2µ2µ5φ4 − µ3µ4φ4 + 1

2µ2µ4µ5 −
1
2µ1µ

2
5

φ3
4 = 4µ6φ2φ4 − µ6φ

2
3 − µ5φ3φ4 + 2µ4φ

2
4 − µ2

5φ2 + µ4µ5φ3 − µ2
4φ4 (4.12)

The first relation coincides with the first line of (4.6); the last relation with (4.7); the
next-to-last relation is (4.8); and the second to last relation is the second equation in (4.6).
All relations may be double-checked explicitly with maple or mathematica.

The use of the SL(2,C) transformations of translation T and inversion S in the proof
of Theorem 4.1 points towards a group theoretic underpinning of the system of trilinear re-
lations, which is obscured in Theorem 4.1 but will be made manifest in the next subsection.

4.3 SL(2,C) structure of the trilinear relations

While the trilinear relations of Theorem 4.1 were firmly established in the preceding sub-
sections, their SL(2,C) structure is not manifest. In this subsection, we shall show that the
trilinear relations enjoy a simple and beautiful reformulation in terms of SL(2,C) tensors.

We begin by recasting the trilinear relations of Theorem 4.1 in terms of the components
`abδ of the SL(2,C) tensor `δ, using their expressions (3.23) in terms of φm and µm. The
results are rather bulky and are relegated to Corollary D.1 of appendix D. However, they
are not yet much more illuminating than the relations of Theorem 4.1 themselves.
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4.3.1 Decomposition of the trilinear tensor `δ ⊗ `δ ⊗ `δ

To realize the SL(2,C) covariance in a manifest way, we consider the trilinear tensor product
`δ ⊗ `δ ⊗ `δ whose components,

`a1a2
δ `a3a4

δ `a5a6
δ (4.13)

precisely account for the terms in the trilinear equations that are trilinear in φ. We recall
that the symmetric rank-two tensor `δ itself transforms under the three-dimensional irre-
ducible representation of SL(2,C), denoted by 3. The rank six tensor `δ⊗`δ⊗`δ of SL(2,C)
is symmetric under swapping the entries in each pair (a1, a2), (a3, a4), (a5, a6) and sym-
metric under the permutations of the pairs. One establishes, either by inspection of Corol-
lary D.1, or by direct counting, that the tensor `δ⊗`δ⊗`δ has ten independent components,
and thus transforms under a ten-dimensional representation of SL(2,C). This counting pre-
cisely reproduces the number of trilinear relations listed in Theorem 4.1, as expected.

The representation `δ ⊗ `δ ⊗ `δ is reducible as may be seen by constructing it out of
the tensor product of three identical copies of the three-dimensional representation 3 of
SL(2,C) under which `δ transforms. The branching rules are as follows, see appendix A.1
for further details,

`δ ⊗ `δ = 5⊕ 1
`δ ⊗ `δ ⊗ `δ = 7⊕ 3 (4.14)

In the decomposition of the tensor product `δ⊗`δ the representation 3, which would occur
in the tensor product of distinct vectors, is absent here in the tensor product of identical
vectors. The representation 5, and a second copy of the 3, are absent in the tensor product
`δ ⊗ `δ ⊗ `δ for the same reason.

The remaining representation 7 ⊕ 3 accounts for the ten entries in Theorem 4.1 and
Corollary D.1. To see how this works, we start by rewriting the singlet in `δ⊗ `δ as follows

det (`δ) = 1
2`

a1a2
δ `b1b2

δ εa1b1εa2b2 = `11
δ `

22
δ − `12

δ `
12
δ (4.15)

The representation 3 in the decomposition of `δ⊗`δ⊗`δ corresponds to `a1a2
δ det (`δ), while

the 7 corresponds to the totally symmetrized tensor with components `(a1a2
δ `a3a4

δ `
a5a6)
δ .

Since both of these tensors are irreducible, one may obtain the components of each tensor
by successively applying the translation generator T to the corresponding highest weight
state, namely `11

δ det (`δ) for the 3 and `11
δ `

11
δ `

11
δ for the 7, as illustrated in the table below,

T
(
`11
δ `

11
δ `

11
δ

)
= 6 `12

δ `
11
δ `

11
δ T

(
`12
δ `

11
δ `

11
δ

)
= 4 `12

δ `
12
δ `

11
δ + `22

δ `
11
δ `

11
δ

T
(
`22
δ `

11
δ `

11
δ

)
= 4 `22

δ `
12
δ `

11
δ T

(
`12
δ `

12
δ `

11
δ

)
= 2 `22

δ `
12
δ `

11
δ + 2 `12

δ `
12
δ `

12
δ

T
(
`12
δ `

12
δ `

12
δ

)
= 3 `22

δ `
12
δ `

12
δ T

(
`22
δ `

12
δ `

11
δ

)
= 2 `22

δ `
12
δ `

12
δ + `22

δ `
22
δ `

11
δ

T
(
`22
δ `

12
δ `

12
δ

)
= 2 `22

δ `
22
δ `

12
δ T

(
`22
δ `

22
δ `

11
δ

)
= 2 `22

δ `
22
δ `

12
δ

T
(
`22
δ `

22
δ `

12
δ

)
= `22

δ `
22
δ `

22
δ T

(
`22
δ `

22
δ `

22
δ

)
= 0 (4.16)
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Similarly, under inversion, one has,

S
(
`11
δ `

11
δ `

11
δ

)
= +µ−1

6 `22
δ `

22
δ `

22
δ S

(
`12
δ `

11
δ `

11
δ

)
= −µ−1

6 `12
δ `

22
δ `

22
δ

S
(
`22
δ `

11
δ `

11
δ

)
= +µ−1

6 `11
δ `

22
δ `

22
δ S

(
`12
δ `

12
δ `

11
δ

)
= +µ−1

6 `12
δ `

12
δ `

22
δ

S
(
`12
δ `

12
δ `

12
δ

)
= −µ−1

6 `12
δ `

12
δ `

12
δ S

(
`22
δ `

12
δ `

11
δ

)
= −µ−1

6 `11
δ `

12
δ `

22
δ

S
(
`22
δ `

12
δ `

12
δ

)
= +µ−1

6 `11
δ `

12
δ `

12
δ S

(
`22
δ `

22
δ `

11
δ

)
= +µ−1

6 `11
δ `

11
δ `

22
δ

S
(
`22
δ `

22
δ `

12
δ

)
= −µ−1

6 `11
δ `

11
δ `

12
δ S

(
`22
δ `

22
δ `

22
δ

)
= +µ−1

6 `11
δ `

11
δ `

11
δ (4.17)

One may verify by inspection that the trilinear relations for (`11
δ )3 and (`22

δ )3 indeed map
into one another term by term under inversion. The corresponding behavior was already
established for the trilinear equations expressed in terms of φm variables in Theorem 4.1.

4.3.2 SL(2,C)-tensor formulation of the trilinear relations

Having decomposed the trilinear tensor `δ⊗`δ⊗`δ in the trilinear relations, it now remains
to find a similar representation for its contributions of homogeneity degree 2, 1, 0 in `δ. To
do so, we shall use the fact that the trilinear relations are homogeneous of combined degree
3 in `δ and µm (inserting µ0 = 1 to achieve homogeneity, if needed). We shall also use the
existence of the tensor M1 which is homogeneous in µm of degree 1, and whose components
were given in (3.30). Combining these group-theoretic properties, the general structure of
the trilinear relations thus takes the form,

`δ ⊗ `δ ⊗ `δ =
[
M1⊗ `δ ⊗ `δ

]
7⊕3 ⊕

[
M1⊗M1⊗ `δ

]
7⊕3 ⊕

[
M1⊗M1⊗M1

]
7⊕3 (4.18)

where
[
· · ·
]
7⊕3 indicates the projection onto the representation 7⊕3. We shall now obtain

the projections onto the two irreducible representations 3 and 7 in turn.

4.3.3 Projection onto the representation 7

The projection onto the 7 is obtained by symmetrizing the trilinear part `(a1a2
δ `a3a4

δ `
a5a6)
δ .

To obtain the components along the 7 of the bilinear, linear, and `δ-independent terms,
we use the following decompositions,

M1 ⊗ `δ ⊗ `δ 7⊗ (5⊕ 1) → 7⊕ 7
M1 ⊗M1 ⊗ `δ 7⊗ (9⊕ 7⊕ 5) → 7⊕ 7
M1 ⊗M1 ⊗M1 7⊗ (13⊕ 9⊕ 5⊕ 1) → 7⊕ 7 (4.19)

where the right-most entry gives the multiplicity of the representation 7 in the decompo-
sition. The corresponding decomposition in components is readily obtained, and we have,

`
(a1a2
δ `a3a4

δ `
a5a6)
δ = C1 Mb1b2(a1a2a3a4

1 `
a5a6)
δ `b3b4

δ εb1b3εb2b4

+C2 Mb1b2(a1a2a3a4
1 `

a5|b3
δ `

a6)b4
δ εb1b3εb2b4

+C3 M(a1a2a3a4
2 `

a5a6)
δ + C4 Ma1···a6b1b2

2 `b3b4
δ εb1b3εb2b4

+C5 M2 Ma1a2a3a4a5a6
1 + C6 Ma1a2a3a4a5a6

3 (4.20)
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where C1, · · · , C6 are coefficients that are not determined by SL(2,C) group theory, and the
vertical bar in the superscript of Mb1b2(a1a2a3a4

1 `
a5|b3
δ `

a6)b4
δ instructs to exclude b3 from the

symmetrization in a1, · · · , a6. The tensors M2 of ranks 0, 4, and 8 are defined as follows,

M2 = 1
2 Mb1···b6

1 Mc1···c6
1 εb1c1 · · · εb6c6

Ma1···a4
2 = 1

2 Mb1b2b3b4(a1a2
1 Ma3a4)c1c2c3c4

1 εb1c1 · · · εb4c4

Ma1···a8
2 = 1

2 Mb1b2(a1···a4
1 Ma5···a8)c1c2

1 εb1c1εb2c2 (4.21)

The projections onto the 3 and 7 of the tensor product M1⊗M1⊗M1 are given as follows
in components (the projections onto the remaining representations will not be needed),

Ma1a2
3 = Ma1a2b1b2b3b4

1 Mc1c2c3c4
2 εb1c1 · · · εb4c4

Ma1···a6
3 = Mb1b2(a1a2a3a4

1 Ma5a6)c1c2
2 εb1c1 εb2c2 (4.22)

The components of these tensors are given explicitly in terms of µm in appendix E.1, and
their generalizations Mw to degree 4 ≤ w ≤ 6 in the µm are introduced in appendix E.2.
A representation-theoretic method for counting the number of independent components of
the Ma1···ar

w -tensors at various ranks r and degrees of homogeneity w in µm is explained
in appendix A.2. Our normalization conventions for (anti-)symmetrizing k indices include
a prefactor 1

k! to ensure overall weight one, for instance,

`
(a1a2
δ `

a3a4)
δ = 1

3(`a1a2
δ `a3a4

δ + `a1a3
δ `a2a4

δ + `a1a4
δ `a2a3

δ ) (4.23)

To evaluate the coefficients C1, · · · , C6 in (4.20), it suffices to examine the highest weight
component in the representation 7 of the tensorial equation, as all other components may
be deduced from it by successive application of the translation generator. To this end we
set the free indices to a1 = · · · = a6 = 1 and evaluate (4.22) accordingly on this component,

(`11
δ )3 = C1 `

11
δ

(
M111122

1 `11
δ − 2M111112

1 `12
δ + M111111

1 `22
δ

)
+C2

(
M111111

1 (`12
δ )2 − 2M111112

1 `12
δ `

11
δ + M111122

1 (`11
δ )2

)
+C4

(
M11111111

2 `22
δ − 2M11111112

2 `12
δ + M11111122

2 `11
δ

)
+C3 M1111

2 `11
δ + C5 M2 M111111

1 + C6 M111111
3 (4.24)

We now match this expression with the first relation in Corollary D.1 by converting the
components of M1 into µm using (3.30). Identifying the terms proportional to `11

δ `
22
δ and

(`11
δ )2 readily gives C1 = 1 and C2 = −1

4 . All other terms bilinear in `δ then automatically
match. Identifying the terms linear in `δ gives C4 = 9

4 and C3 = 99
56 . Finally, identifying

the terms independent of `δ gives C5 = 9
32 and C6 = −27

16 .
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We note that the decomposition (4.20) may be recast in an alternative basis of tensors
using one or both of the following relations,

Mb1b2(a1a2a3a4
1 `

a5|c1
δ `

a6)c2
δ εb1c1εb2c2 = Mb1b2(a1a2a3a4

1 `
a5a6)
δ `c1c2

δ εb1c1εb2c2

−(det `δ)Ma1a2···a6
1

Mb1b2b3(a1a2a3
1 Ma4a5a6)c1c2c3

1 `ghδ εb1c1εb2c2εb3gεc3h = 2Ma1···a6b1b2
2 `c1c2

δ εb1c1εb2c2

−3
7M(a1···a4

2 `
a5a6)
δ (4.25)

4.3.4 Projection onto the representation 3

In addition to the totally symmetric combination in the 7, the tensor product `δ ⊗ `δ ⊗ `δ
also contains the 3 which is obtained by anti-symmetrizing one pair of indices,

`a1a2
δ `a3a4

δ `a5a6
δ εa4a6 = (det `δ) `a1a2

δ εa3a5 (4.26)

where (det `δ) is a singlet and our sign conventions for εab are fixed by ε12 = ε12 = 1,
leading to εabεcd = δcaδ

d
b − δdaδcb and hence εaeεed = −δda. The component decomposition is

as follows,

(det `δ) `a1a2
δ = D1 Ma1a2b1···b4

1 `c1c2
δ `c3c4

δ εb1c1 · · · εb4c4 +D2 M2 `
a1a2
δ

+D3 Ma1a2b1b2
2 `c1c2

δ εb1c1εb2c2 +D4 Ma1a2
3 (4.27)

where the coefficients D1, · · · , D4 are not determined by SL(2,C) group theory alone.
Identifying the terms bilinear in `δ we find D1 = 3

2 ; those linear in `12
δ and `22

δ give
D3 = −3

4 ; those linear in `11
δ give D2 = −3

8 ; and those independent of `δ give D4 = − 9
16 .

4.3.5 Summary of the tensorial representation of the trilinear relations

The results of the preceding subsections on the SL(2,C) tensorial structure of the trilinear
relations may be collected in the following theorem which is equivalent to Theorem 4.1.

Theorem 4.2 The component of the trilinear relations transforming under the 7 of
SL(2,C) is given as follows,

`
(a1a2
δ `a3a4

δ `
a5a6)
δ = Mb1b2(a1···a4

1 `
a5a6)
δ `b3b4

δ εb1b3εb2b4

−1
4 Mb1b2(a1···a4

1 `
a5|b3
δ `

a6)b4
δ εb1b3εb2b4

+99
56 M(a1···a4

2 `
a5a6)
δ + 9

4 Ma1···a6b1b2
2 `b3b4

δ εb1b3εb2b4

+ 9
32 M2 Ma1···a6

1 − 27
16 Ma1···a6

3 (4.28)

while its component transforming under the 3 of SL(2,C) is given as follows,

(det `δ) `a1a2
δ = 3

2 Ma1a2b1···b4
1 `c1c2

δ `c3c4
δ εb1c1 · · · εb4c4 −

3
8 M2 `

a1a2
δ

−3
4 Ma1a2b1b2

2 `c1c2
δ εb1c1εb2c2 −

9
16 Ma1a2

3 (4.29)
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The proof of both was given in the derivations of the preceding subsections. The tensor
relation of (4.28) is equivalent to the seven linear combinations of the trilinear relations
of Corollary D.1 that descend from (`11

δ )3, while the tensor relation of (4.29) is equivalent
to the trilinear relation (D.2) for (det `δ) `11

δ and its two descendants under SL(2,C). The
combined system of relations in (4.28) and (4.29) is equivalent to the system of trilinear
equations in Theorem 4.1 or equivalently in Corollary D.1.

Corollary 4.3 The trilinear relation for `a1a2
δ `b1b2

δ `c1c2
δ , considered without any additional

(anti-)symmetrization prescription for the indices a1, a2, b1, b2, c1, c2, transforms under the
reducible representation 7⊕ 3 of SL(2,C) and can be assembled from (4.28) and (4.29),

`a1a2
δ `b1b2

δ `c1c2
δ =

{4
3Ma1a2b1b2ef

1 `c1c2
δ `ghδ εegεfh−

1
12Ma1a2b1b2ef

1 `c1g
δ `c2h

δ εegεfh

−1
4
(
Ma1a2b1c1ef

1 `b2c2
δ +Ma1a2b1c2ef

1 `b2c1
δ +Ma1a2b2c1ef

1 `b1c2
δ +Ma1a2b2c2ef

1 `b1c1
δ

)
`ghδ εegεfh

+15
56
(
Ma1a2b1c1

2 `b2c2
δ +Ma1a2b1c2

2 `b2c1
δ +Ma1a2b2c1

2 `b1c2
δ +Ma1a2b2c2

2 `b1c1
δ

)
−27

56Ma1a2b1b2
2 `c1c2

δ − 3
40M2`

a1a2
δ

(
εb1c1εb2c2+εb1c2εb2c1

)
+3

4Ma1a2b1b2c1c2d1d2
2 `e1e2

δ εd1e1εd2e2−
9
16Ma1a2b1b2c1c2

3 + 3
32M2Ma1a2b1b2c1c2

1

− 9
80Ma1a2

3
(
εb1c1εb2c2+εb1c2εb2c1

)
+cycl(a1a2,b1b2,c1c2)

}
(4.30)

As indicated through the curly brackets, the cyclic symmetrization w.r.t. the three pairs
a1a2, b1b2, c1c2 of indices applies to the entire right-hand side (for instance adding the
images −27

56Mb1b2c1c2
2 `a1a2

δ and −27
56Mc1c2a1a2

2 `b1b2
δ of the term −27

56Ma1a2b1b2
2 `c1c2

δ on the
fourth line).

5 Isolating spin structure dependence for arbitrary n

In this section we shall use the results of section 3 on the generalized Qδ and Pδ functions
in (3.3) and (3.34) to extend the construction of the case n = 2 in subsection 3.3 to higher
values of n, starting with the low values n = 3, 4, 5, 6. Explicit formulas for simplified
cyclic products Cδ(z1, · · · , zn) at n > 6 will be relegated to appendix G. In each case
we shall obtain a decomposition of the cyclic product of Szegö kernels Cδ in terms of a
polynomial in the universal spin structure dependent symmetric bi-holomorphic (1, 0)-form
Lδ in (3.22). The coefficients are spin structure independent and built out of the function
Z(i, j) introduced in Theorem 3.2, as well as simple combinations of x−1

ij and si. We shall
show that each result simply and naturally matches the pole structure of Cδ.

According to the discussion in section 3.1, the entire spin structure dependence of
Cδ can be expressed in terms of the polynomials Qδ in (3.3). We present a conjectural
all-multiplicity formula in section 5.6 decomposing the Qδ into cyclic products of xij and
polynomials in two-point building blocks Lδ(i, j), Z(i, j). These expressions are the key
ingredient for the analogous decompositions of n-point Cδ.
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As will be detailed in appendix H, cyclic products Cδ(z1, · · · , zn) simplify further upon
symmetrization in the insertion points z1, · · · , zn. Symmetrized cyclic products for an arbi-
trary number of n ≥ 4 points are holomorphic in all of z1, · · · , zn, see (H.16), (H.24), (H.27)
and (H.28) for their simplified form at n = 4, 6, 8 and 10.

5.1 The case n = 2 recalled

For completeness we begin by recalling the solution for n = 2 and cast it in a language that
will be used for n > 2. The results given by Theorem 3.2 may be re-expressed as follows,

Qδ(i|j) = −4x2
ij Lδ(i, j) + 2Z(i, j)

Cδ(i, j) = Lδ(i, j) + W+
2 (i, j)

2xijxji
(5.1)

where the bi-holomorphic form Lδ(i, j) and the polynomial Lδ(i, j) were given in (3.22)
and (3.23), respectively. The spin structure independent combination W+

2 (i, j) is defined
by,

W±2 (i, j) =
(
sisj ± Z(i, j)

)dxi dxj
si sj

(5.2)

with Z(i, j) given in Theorem 3.2. We have additionally introduced the variant W−2 (i, j)
with opposite relative sign for later convenience, where both of W+

2 and W−2 obey the
symmetry W±2 (i, j) = W±2 (j, i). Recall that Lδ(i, j) is a symmetric bi-holomorphic (1, 0)
form while W+

2 (i, j) has a double zero as (xj , sj) → (xi,−si) so that Cδ(i, j) is regular in
this limit. Finally, the double pole of (5.1) as (xj , sj)→ (xi, si) has residue −1, as expected
from the definition of Cδ(i, j).

5.2 The case n = 3

For n = 3, the numerator function Nδ is given in terms of Qδ(i|j) by the second line
in (3.4). Using the decomposition of Qδ(i|j) in terms of Lδ(i, j) and Z(i, j) in (5.1), we
readily derive the expression for Nδ in terms of the latter objects,

Nδ(i, j, k) = −4six2
jk Lδ(j, k)− 4sjx2

ki Lδ(k, i)− 4skx2
ij Lδ(i, j)

+2siZ(j, k) + 2sjZ(k, i) + 2skZ(i, j) + 2sisjsk (5.3)

As a result, we have,

Cδ(i, j, k) = −xjk dxi2xijxki
Lδ(j, k)− xki dxj

2xjkxij
Lδ(k, i)−

xij dxk
2xkixjk

Lδ(i, j) + W+
3 (i, j, k)

4xijxjkxki

=
{
dxi Lδ(j, k) + dxj Lδ(i, k)

2xij
+ cycl(i, j, k)

}
+ W+

3 (i, j, k)
4xijxjkxki

(5.4)

where the form W+
3 (i, j, k) (along with its variant W−3 (i, j|k) to be encountered below) is

defined as follows,

W+
3 (i, j, k) =

(
siZ(j, k) + sjZ(k, i) + skZ(i, j) + sisjsk

)dxi dxj dxk
si sj sk

(5.5)

W−3 (i, j|k) =
(
skZ(i, j)− siZ(j, k)− sjZ(k, i) + sisjsk

)dxi dxj dxk
si sj sk
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Note that the combination W+
3 (i, j, k) is invariant under all permutations of i, j, k, while

W−3 (i, j|k) is invariant only under swapping j, k as indicated by the vertical bar.

5.2.1 Pole structure

The denominators in (5.4) produce simple poles as (xj , sj)→ (xi,±si) in individual terms
of the expression (5.4) for Cδ(i, j, k). The residues of these poles may be evaluated with
the help of the following limits,

lim
(xj ,sj)→(xi,±si)

Lδ(j, k) = ±Lδ(i, k)

lim
(xj ,sj)→(xi,±si)

Z(i, j) = s2
i

lim
(xj ,sj)→(xi,±si)

Z(j, k) = Z(i, k) (5.6)

The ± sign on the right side of the first line arises from the limit of the Abelian differential
dxj/sj → ±dxi/si. Using these limits, we readily establish that the poles as (xj , sj) →
(xi, si) produce the expected residues Cδ(i, k). The poles as (xj , sj) → (xi,−si) do not
occur in the original definition of Cδ(i, j, k) and must cancel in the sum of all terms in (5.4).
To verify this fact, we use the limits of (5.6) again and observe that all poles in the first three
terms of (5.4) cancel one another. In W+

3 the sum of the first two terms of the numerator
cancel one another using the last line in (5.6) and the fact that sj → −si, while the last
two terms cancel one another using the second line in (5.6). In view of the cyclic symmetry
of Cδ(i, j, k) all other spurious poles such as (xj , sj)→ (xk,−sk) also cancel in (5.4).

5.3 The case n = 4

Inspection of the relation between Nδ and Qδ given in (3.4) for the case n = 4 reveals that
only the 2- and 4-point combinations Qδ(1|2) and Qδ(1, 3|2, 4) are needed. The expression
for Qδ(1|2) in terms of Lδ(1, 2) and Z(1, 2) was already given in (5.1), while the analogous
expression for Qδ(1, 3|2, 4) is given by the following lemma.

Lemma 5.1 The polynomial Qδ(1, 3|2, 4) is given in terms of Lδ(i, j) and Z(i, j) as fol-
lows,

Qδ(1, 3|2, 4) = 8x12x23x34x41
(
Lδ(1, 2)Lδ(3, 4) + Lδ(1, 4)Lδ(2, 3)

)
+
{

2x2
24Z(1, 3)Lδ(2, 4)− 4x2

34Z(1, 2)Lδ(3, 4) + cycl(1, 2, 3, 4)
}

+2Z4(1, 2, 3, 4) (5.7)

where the combination Z4 is defined by,

Z4(a, b, c, d) = Z(a, b)Z(c, d) + Z(b, c)Z(d, a)− Z(a, c)Z(b, d) (5.8)

The proof of the lemma is relegated to appendix F.1.
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Substituting the expression for Qδ(1|2) given in (5.1) andQδ(1, 3|2, 4) given in (5.7) into
the relations (3.4) for n = 4 we obtain the following expression, after some simplifications,

Cδ(1, 2, 3, 4) = 1
2Lδ(1, 2)Lδ(3, 4) + 1

2Lδ(1, 4)Lδ(2, 3)

+
{
W+

2 (2, 3)Lδ(4, 1) +W+
2 (4, 1)Lδ(2, 3) +W−2 (1, 3)Lδ(2, 4) +W−2 (2, 4)Lδ(1, 3)

8x12x34

+W+
2 (1, 2)Lδ(3, 4) +W+

2 (2, 3)Lδ(4, 1) +W−2 (1, 3)Lδ(2, 4)
4x12x23

+ cycl(1, 2, 3, 4)
}

+W+
2 (1, 2)W+

2 (3, 4) +W+
2 (2, 3)W+

2 (4, 1)−W−2 (1, 3)W−2 (2, 4)
8x12x23x34x41

(5.9)

see (5.2) for the definition of both W+
2 (i, j) and W−2 (i, j).

5.3.1 Pole structure

The singularity structure of the cyclic product Cδ(1, 2, 3, 4) may be read off directly from
its expression in terms of the Szegö kernel Sδ(zi, zj) which has a single pole at zi = zj . The
only singularities of Cδ(1, 2, 3, 4) are simple poles when two neighboring points in the cyclic
product come together, and the residue is the corresponding three-point cyclic product,

Cδ(1, 2, 3, 4) = Cδ(2, 3, 4)
z1 − z2

+ regular in z1−z2 (5.10)

In particular, there are no poles when two non-neighboring points come together, a property
that is manifestly borne out by formula (5.9). The poles produced by the Parke-Taylor
factor between neighboring points zi, zj as (xj , sj)→ (xi, si) are simple and their residues
precisely match the expected 3-point value of (5.10). The poles of the Parke-Taylor factor
between neighboring points zi, zj as (xj , sj) → (xi,−si) are absent from (5.10) and must
cancel in the sum (5.9). To see this, we use the limits of (5.6) which imply,

lim
(xj ,sj)→(xi,−si)

W+
2 (i, j) = 0

lim
(xj ,sj)→(xi,−si)

W−2 (i, j) = 2dx2
i (5.11)

lim
(xj ,sj)→(xi,−si)

W±2 (j, k) = W∓2 (i, k)

The spurious poles all cancel one another in (5.9), as expected, since (5.11) leads to can-
cellations such as W+

2 (2, 3)Lδ(4, 1) +W−2 (1, 3)Lδ(2, 4)→ 0 under (x2, s2)→ (x1,−s1).

5.4 The case n = 5

Inspection of the relation between Nδ and Qδ given in (3.4) for the case n = 5 reveals
that again only the combinations Qδ(1|2) and Qδ(1, 3|2, 4) are needed. The expression for
Qδ(1|2) in terms of Lδ(1, 2) was already given in (5.1), while Qδ(1, 3|2, 4) was obtained in
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Lemma 5.1. Substituting these expressions into Cδ, we obtain,

Cδ(1, 2, 3, 4, 5) =
{
x41 dx5
4x45x51

[
Lδ(1, 2)Lδ(3, 4) + Lδ(1, 4)Lδ(2, 3)

]
(5.12)

−x
2
12Lδ(1, 2)W+

3 (3, 4, 5) + x2
13Lδ(1, 3)W−3 (4, 5|2)

8x12x23x34x45x51

+W+
2 (1, 2)W+

3 (3, 4, 5)−W−2 (1, 3)W−3 (4, 5|2)
32x12x23x34x45x51

+dx2 dx4 dx5W
−
2 (1, 3)

16x12x23x34x45x51
+ cycl(1, 2, 3, 4, 5)

}
− dx1dx2dx3dx4dx5

4x12x23x34x45x51

where W±2 and W±3 were introduced in (5.2) and (5.5), respectively. By rearranging all
numerator factors x2

ij to cancel the denominators, we can manifest the pole structure
of (5.12) to be of the form

Cδ(1, 2, 3, 4, 5) =
{N (5)

δ [12]
4x12

+ N
(5)
δ [1234]

8x12x23x34
+ N

(5)
δ [123, 45]

8x12x23x45
+ cycl(1, 2, 3, 4, 5)

}
+ N (5)[12345]

16x12x23x34x45x51
(5.13)

with numerators

N (5)
δ [12] = dx1

(
Lδ(2, 3)Lδ(4, 5) + Lδ(2, 5)Lδ(3, 4)

)
+ dx2

(
Lδ(1, 3)Lδ(4, 5) + Lδ(1, 5)Lδ(3, 4)

)
N (5)
δ [1234] = Lδ(4, 5)W+

3 (1, 2, 3)+Lδ(3, 5)W−3 (1, 2|4)
+Lδ(2, 5)W−3 (3, 4|1)+Lδ(1, 5)W+

3 (2, 3, 4) (5.14)

N (5)
δ [123, 45] = Lδ(3, 4)W+

3 (5, 1, 2) + Lδ(2, 4)W−3 (5, 1|3) + Lδ(1, 4)W−3 (2, 3|5)
+ Lδ(3, 5)W−3 (1, 2|4) + Lδ(2, 5)W−3 (3, 4|1) + Lδ(1, 5)W+

3 (2, 3, 4)

N (5)[12345] =
{1

2W
+
2 (1, 2)W+

3 (3, 4, 5)− 1
2W

−
2 (1, 3)W−3 (4, 5|2)

+ dx2dx4dx5W
−
2 (1, 3) + cycl(1, 2, 3, 4, 5)

}
− 4dx1dx2dx3dx4dx5

Note that the last numerator N (5)[12345] associated with five simultaneous poles is in-
dependent on δ, and the subtraction in the last line of (5.14) ensures that the overall
coefficient of dx1 · · · dx5 in N (5)[12345] is 1 rather than 5.

5.5 The case n = 6

The six-point relation between Nδ and Qδ given in (3.4) involves all of Qδ(1|2), Qδ(1, 3|2, 4)
and Qδ(1, 3, 5|2, 4, 6). The expressions for Qδ(1|2) and Qδ(1, 3|2, 4) in terms of Lδ(i, j)
and Z(i, j) were given in (5.1) and Lemma 5.1, while the analogous expression for
Qδ(1, 3, 5|2, 4, 6) is given by the following lemma, the proof of which is relegated to ap-
pendix F.2.
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Lemma 5.2 The polynomial Qδ(1, 3, 5|2, 4, 6) is given in terms of the functions Lδ(i, j)
and Z(i, j) as well as polynomials in xij by the following formula,

Qδ(1, 3, 5|2, 4, 6) = 32Lδ(1, 2, 3, 4, 5, 6)

+ 8
{
Z(1, 2)Lδ(3, 4, 5, 6)− Z(1, 3)Lδ(2, 4, 5, 6) + 1

2Z(1, 4)Lδ(2, 3, 5, 6) + cycl(1, · · · , 6)
}

+ 4
{
Z4(1, 2, 3, 4)Lδ(5, 6)− Z4(1, 2, 3, 5)Lδ(4, 6) + 1

2Z4(1, 2, 4, 5)Lδ(3, 6) + cycl(1, · · · , 6)
}

+ 2Z6(1, 2, 3, 4, 5, 6) (5.15)

where we employ the following combinations for the spin structure dependent terms,

Lδ(1, 2) = x12x21Lδ(1, 2) (5.16)

Lδ(1, 2, 3, 4) = x12x23x34x41
[
Lδ(1, 2)Lδ(3, 4) + Lδ(2, 3)Lδ(4, 1)

]
Lδ(1, 2, 3, 4, 5, 6) = x12x23x34x45x56x61

[
Lδ(1, 2)Lδ(3, 4)Lδ(5, 6) + Lδ(2, 3)Lδ(4, 5)Lδ(6, 1)

]
The bilinears in Z(i, j) have been regrouped into the form Z4 defined in (5.8), and we have
furthermore introduced

Z6(1, 2, 3, 4, 5, 6) = Z(1, 2)Z4(3, 4, 5, 6)− Z(1, 3)Z4(2, 4, 5, 6) + Z(1, 4)Z4(2, 3, 5, 6)
− Z(1, 5)Z4(2, 3, 4, 6) + Z(1, 6)Z4(2, 3, 4, 5) (5.17)

Based on the expressions for Qδ(1|2), Qδ(1, 3|2, 4) and Qδ(1, 3, 5|2, 4, 6) in (5.1), (5.7)
and (5.15), the numerator for n = 6 points in (3.4) yields,

Cδ(1, · · · , 6) = 1
2 Lδ(1, 2)Lδ(3, 4)Lδ(5, 6) + 1

2 Lδ(2, 3)Lδ(4, 5)Lδ(6, 1)

+
{N (6)

δ [123]
8x12x23

+ N
(6)
δ [12, 34]
8x12x34

+ N
(6)
δ [12, 45]
16x12x45

+ N (6)
δ [12345]

16x12x23x34x45
(5.18)

+ N (6)
δ [1234, 56]

16x12x23x34x56
+ N (6)

δ [123, 456]
32x12x23x45x56

+ cycl(1, · · · , 6)
}

+ N (6)[123456]
32x12x23x34x45x56x61

The numerators multiplying two simultaneous poles (xabxcd)−1 are bilinear in Lδ(i, j) and
may be most conveniently written as follows,

N (6)
δ [123] = Lδ(3, 4, 5, 6)W+

2 (1, 2) + Lδ(4, 5, 6, 1)W+
2 (2, 3) + Lδ(2, 4, 5, 6)W−2 (1, 3)

N (6)
δ [12, 34] = Lδ(2, 3, 5, 6)W+

2 (1, 4) + Lδ(4, 5, 6, 1)W+
2 (2, 3)

+ Lδ(2, 4, 5, 6)W−2 (1, 3) + Lδ(1, 3, 5, 6)W−2 (2, 4) (5.19)

N (6)
δ [12, 45] = Lδ(2, 3, 5, 6)W+

2 (1, 4) + Lδ(3, 4, 6, 1)W+
2 (2, 5)

+ Lδ(1, 3, 5, 6)W−2 (2, 4) + Lδ(2, 3, 4, 6)W−2 (1, 5)
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in terms of the bilinear combination,

Lδ(a, b, c, d) = Lδ(a, b)Lδ(c, d) + Lδ(b, c)Lδ(d, a) (5.20)

The numerators multiplying four simultaneous poles (xabxcdxefxgh)−1 in (5.18) are linear
in Lδ(i, j) and take the following form,

N (6)
δ [12345] = Lδ(5, 6)W+

4 (1, 2, 3, 4) + Lδ(4, 6)W−4 (1, 2, 3|5) + Lδ(3, 6)W−4 (1, 2|4, 5)
+ Lδ(2, 6)W−4 (3, 4, 5|1) + Lδ(1, 6)W+

4 (2, 3, 4, 5)

N (6)
δ [1234, 56] = Lδ(4, 5)W+

4 (6, 1, 2, 3) + Lδ(4, 6)W−4 (1, 2, 3|5) + Lδ(3, 5)W−4 (6, 1, 2|4)
+ Lδ(3, 6)W−4 (1, 2|4, 5) + Lδ(2, 5)W−4 (3, 4|6, 1) + Lδ(2, 6)W−4 (3, 4, 5|1)
+ Lδ(1, 5)W−4 (2, 3, 4|6) + Lδ(1, 6)W+

4 (2, 3, 4, 5) (5.21)

N (6)
δ [123, 456] = Lδ(3, 4)W+

4 (5, 6, 1, 2) + Lδ(3, 5)W−4 (6, 1, 2|4) + Lδ(3, 6)W−4 (1, 2|4, 5)
+ Lδ(2, 4)W−4 (5, 6, 1|3) + Lδ(2, 5)W−4 (6, 1|3, 4) + Lδ(2, 6)W−4 (3, 4, 5|1)
+ Lδ(1, 4)W−4 (5, 6|2, 3) + Lδ(1, 5)W−4 (2, 3, 4|6) + Lδ(1, 6)W+

4 (2, 3, 4, 5)

in terms of the following combinations,

W+
4 (a, b, c, d) = W+

2 (a, b)W+
2 (c, d) +W+

2 (a, d)W+
2 (b, c)−W−2 (a, c)W−2 (b, d)

W−4 (a, b, c|d) = W+
2 (a, b)W−2 (c, d) +W−2 (a, d)W+

2 (b, c)−W−2 (a, c)W+
2 (b, d) (5.22)

W−4 (a, b|c, d) = W+
2 (a, b)W+

2 (c, d) +W−2 (a, d)W−2 (b, c)−W+
2 (a, c)W+

2 (b, d)
W−4 (a|b|c|d) = W−2 (a, b)W−2 (c, d) +W−2 (a, d)W−2 (b, c)−W−2 (a, c)W−2 (b, d)

In contrast to the lower-point analogues W±2 in (5.2) and W±3 in (5.5), the four-
point objects W±4 come in four different variants that differ in relative signs.
The first variant W+

4 (a, b, c, d) also captures the contribution Cδ(1, 2, 3, 4) = · · · +
W+

4 (1, 2, 3, 4)/(8x12x23x34x41) to the four-cycle with four simultaneous poles in the last line
of (5.9). The last variantW−4 (a|b|c|d) does not yet enter the six-point building blocks (5.21)
but will appear in the eight-point cycle in appendix G.2.

Finally, the numerator multiplying six simultaneous poles (x12x23x34x45x56x61)−1

in (5.18) is independent on δ and given by,

N (6)[123456] =
{1

2W
+
2 (1, 4)W+

2 (2, 3)W+
2 (5, 6) + 1

2W
+
2 (1, 4)W−2 (2, 6)W−2 (3, 5)

−W+
2 (1, 2)W−2 (3, 5)W−2 (4, 6) + cycl(1, · · · , 6)

}
(5.23)

+W+
2 (1, 2)W+

2 (3, 4)W+
2 (5, 6) +W+

2 (2, 3)W+
2 (4, 5)W+

2 (6, 1)
−W+

2 (1, 4)W+
2 (2, 5)W+

2 (3, 6)

It can be formally obtained from the expression (5.17) for Z6(1, 2, · · · , 6) written as a
trilinear in Z(i, j) by promoting each Z(i, j) to W+

2 (i, j) if i−j is odd and to W−2 (i, j) if
i−j is even.
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5.6 Higher multiplicity

The analogous decompositions of the cyclic product Cδ(1, · · · , n) for the cases of n = 7, 8
points are given explicitly in appendix G.

The examples above illustrate that the bottleneck in the simplification of cyclic prod-
ucts Cδ(1, · · · , n) for higher multiplicity n stems from the Qδ-functions with the highest
numbers of points in (3.6). This subsection is dedicated to obtaining a conjectural expres-
sion for Qδ(1, 3, · · · , n−1|2, 4, · · · , n) at arbitrary n that generalizes the expressions (5.7)
and (5.16) at n = 4, 6 and makes the simplification of Cδ accessible at all multiplicities.

5.6.1 Towards higher-point building blocks

As a first step, we rewrite the examples at n = 2, 4 in terms of the quantities Lδ in (5.16),

Qδ(1|2) = 4Lδ(1, 2) + 2Z(1, 2)
Qδ(1, 3|2, 4) = 8Lδ(1, 2, 3, 4)− 4Lδ(1, 3)Z(2, 4)− 4Lδ(2, 4)Z(1, 3) (5.24)

+ 4
{
Lδ(1, 2)Z(3, 4) + cycl(1, 2, 3, 4)

}
+ 2Z4(1, 2, 3, 4)

which closely follows the structure of Qδ(1, 3, 5|2, 4, 6) in (5.15) and guides the extrapolation
to higher multiplicity. We furthermore note that both Z4 and Z6 in (5.8) and (5.17) can
be identified as Pfaffians of anti-symmetric matrices with entries ±Z(i, j), for instance

Z4(1, 2, 3, 4) = Pf


0 Z(1, 2) Z(1, 3) Z(1, 4)

−Z(1, 2) 0 Z(2, 3) Z(2, 4)
−Z(1, 3) −Z(2, 3) 0 Z(3, 4)
−Z(1, 4) −Z(2, 4) −Z(3, 4) 0

 (5.25)

The recursive structure of Z4 and Z6 in (5.8) and (5.17) can be straightforwardly uplifted
to define higher-point objects Zk at arbitrary even k of homogeneity degree k

2 in Z(i, j),

Zk(a1, · · · , ak) =
k∑
j=2

(−1)jZ(a1, aj)Zk−2(a2, a3, · · · , âj , · · · , ak) (5.26)

where the notation âj on the right-hand side instructs to omit the entry aj . One can
equivalently define Zk as the Pfaffian of the k × k matrix Zk with the following entries,

Zk(a1, · · · , ak) = Pf Zk (Zk)ij =


Z(ai, aj) : 1 ≤ i < j ≤ k
−Z(ai, aj) : 1 ≤ j < i ≤ k

0 : i = j

(5.27)

reducing to (5.25) at k = 4. As a higher-multiplicity uplift of the spin structure dependent
building blocks Lδ in (5.16), we define (assuming even k ≥ 4),

Lδ(1, 2, · · · , k) = x12x23 · · ·xk−1,kxk1 (5.28)
×
[
Lδ(1, 2)Lδ(3, 4) · · ·Lδ(k−1, k) + Lδ(2, 3)Lδ(4, 5) · · ·Lδ(k, 1)

]
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Just like the spin structure independent Zk, the Lδ are cyclically invariant at any multi-
plicity,

Lδ(1, 2, · · · , k) = Lδ(2, 3, · · · , k, 1)
Zk(1, 2, · · · , k) = Zk(2, 3, · · · , k, 1) (5.29)

5.6.2 Results at n = 6, 8, 10 points

By reorganizing the cyclic orbits of the six-point expression (5.15), we can bring it into the
following suggestive form associating all ordered subsets (a1, a2, · · · , ak) of {1, 2, 3, 4, 5, 6}
with even k to a factor of Zk

Qδ(1, 3, 5|2, 4, 6) = 32Lδ(1, 2, 3, 4, 5, 6) + 2Z6(1, 2, 3, 4, 5, 6) (5.30)

− 8
6∑

1≤a1<a2

(−1)a1+a2Z(a1, a2)Lδ(1, · · · , â1, · · · , â2, · · · , 6)

+ 4
6∑

1≤a1<a2<a3<a4

(−1)a1+a2+a3+a4Z4(a1, a2, a3, a4)Lδ(1, · · · , â1, · · · , â4, · · · , 6)

Based on the k-point building blocks Zk and Lδ in (5.26) and (5.28), this can be generalized
to a natural guess for the analogous eight- and ten-point expressions

Qδ(1, 3, 5, 7|2, 4, 6, 8) = 128Lδ(1, 2, · · · , 8) + 2Z8(1, 2, · · · , 8) (5.31)

− 32
8∑

1≤a1<a2

(−1)a1+a2Z(a1, a2)Lδ(1, · · · , â1, · · · , â2, · · · , 8)

+ 8
8∑

1≤a1<a2<a3<a4

(−1)a1+a2+a3+a4Z4(a1, a2, a3, a4)Lδ(1, · · · , â1, · · · , â4, · · · , 8)

− 4
8∑

1≤a1<a2<···<a6

(−1)a1+a2+···+a6Z6(a1, · · · , a6)Lδ(1, · · · , â1, · · · , â6, · · · , 8)

and

Qδ(1, 3, 5, 7, 9|2, 4, 6, 8, 10) = 512Lδ(1, 2, · · · , 10) + 2Z10(1, 2, · · · , 10) (5.32)

− 128
10∑

1≤a1<a2

(−1)a1+a2Z(a1, a2)Lδ(1, · · · , â1, · · · , â2, · · · , 10)

+ 32
10∑

1≤a1<a2<a3<a4

(−1)a1+a2+a3+a4Z4(a1, a2, a3, a4)Lδ(1, · · · , â1, · · · , â4, · · · , 10)

− 8
10∑

1≤a1<···<a6

(−1)a1+a2+···+a6Z6(a1, · · · , a6)Lδ(1, · · · , â1, · · · , â6, · · · , 10)

+ 4
10∑

1≤a1<···<a8

(−1)a1+a2+···+a8Z8(a1, · · · , a8)Lδ(1, · · · , â1, · · · , â8, · · · , 10)
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In each term, the subsets of vertex points associated with Zk and Lδ are ordered accord-
ing to the cycle 1, 2, · · · , n, and the accompanying powers of ±2 are fixed by analogy
with (5.30). Both (5.31) and (5.32) are numerically verified to reproduce the polynomials
in the definition (3.3) of Qδ.

5.6.3 All-multiplicity conjecture

The examples of Qδ at six, eight and ten points in (5.30), (5.31) and (5.32) motivate the
following all-multiplicity conjecture for k ≥ 2,

Qδ(1, 3, · · · , 2k−1|2, 4, · · · , 2k) = 22k−1Lδ(1, 2, · · · , 2k) + 2Z2k(1, 2, · · · , 2k) (5.33)

− 22k−3
2k∑

1≤a1<a2

(−1)a1+a2Z(a1, a2)Lδ(1, · · · , â1, · · · , â2, · · · , 2k)

+ 22k−5
2k∑

1≤a1<a2<a3<a4

(−1)a1+a2+a3+a4Z4(a1, a2, a3, a4)Lδ(1, · · · , â1, · · · , â4, · · · , 2k)

+ · · ·

+ (−1)k8
2k∑

1≤a1<···<a2k−4

(−1)a1+a2+···+a2k−4Z2k−4(a1, a2, · · · , a2k−4)

× Lδ(1, · · · , â1, · · · , â2k−4, · · · , 2k)

− (−1)k4
2k∑

1≤a1<···<a2k−2

(−1)a1+a2+···+a2k−2Z2k−2(a1, a2, · · · , a2k−2)

× Lδ(1, · · · , â1, · · · , â2k−2, · · · , 2k)

More precisely, the terms in the ellipsis in the fourth line can be spelt out through the
following alternating sum over m (where again k ≥ 2),

Qδ(1, 3, · · · , 2k−1|2, 4, · · · , 2k) = 22k−1Lδ(1, 2, · · · , 2k) + 2Z2k(1, 2, · · · , 2k)

+
k−2∑
m=1

(−1)m22k−1−2m
2k∑

1≤a1<a2<···<a2m

(−1)a1+a2+···+a2mZ2m(a1, a2, · · · , a2m)

× Lδ(1, · · · , â1, · · · , â2, · · · , · · · , â2m, · · · , 2k) (5.34)

− (−1)k4
2k∑

1≤a1<a2<···<a2k−2

(−1)a1+a2+···+a2k−2Z2k−2(a1, a2, · · · , a2k−2)

× Lδ(1, · · · , â1, · · · , â2, · · · , · · · , â2k−2, · · · , 2k)

The term in the last two lines has an irregular prefactor −(−1)k4 and thereby could not
be absorbed into an extension of the sum over m to m = k−1: such an extension would
give (−1)m22k−1−2m → −(−1)k2 instead of the desired factor of −(−1)k4.

It would be interesting to prove the above formulas for Qδ(1, 3, · · · , 2k−1|2, 4, · · · , 2k),
for instance via induction or the SL(2,C) covariant techniques of appendix C.
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6 Evaluating the sums over spin structures

While the previous sections were dedicated to studying the cyclic products Cδ of Szegö
kernels for a given spin structure δ, we shall now investigate the summation of Cδ over the
ten even spin structures δ. In particular, this sum will provide key parts of the parity-even
contribution to the genus-two chiral amplitudes for all perturbative superstring theories.

Our earlier results dramatically simplify these spin structure sums since Corollary 3.5
and Theorem 4.2 reduce all the spin structure dependence of the cyclic product Cδ of
an arbitrary number n of Szegö kernels to a linear combination of 1, `abδ and `abδ `cdδ with
spin structure-independent coefficients. Thus, the summation over spin structures of Cδ
has been reduced to the problem of the summation over spin structures of the three basic
ingredients 1, `abδ and `abδ `cdδ . In practice, it will be convenient to decompose the bilinear
combination into irreducible representations of SL(2,C), as was already done in section 4,
namely the representations 1 for (det `δ) and 7 for the symmetrized tensor product with
components `(ab

δ `
cd)
δ , where symmetrization of the indices is indicated by the parentheses

in the superscript.

6.1 Summation measures

From a mathematical point of view it may be natural to carry out the summation over
the even spin structures with unit measure. The result is given by the following theorem,
whose proof may be obtained using the hyper-elliptic representation of `abδ and by summing
over all permutations of the branch points.

Theorem 6.1 The spin structure sums with unit measure may be obtained by reducing all
spin structure dependence to expressions bilinear, linear, and independent of `abδ combined
with the following summation identities,∑
δ even

(1, `abδ ) = (10, 0)
∑
δ even

det `δ = 9
4 M2

∑
δ even

`
(ab
δ `

cd)
δ = 45

4 Mabcd
2 (6.1)

where the SL(2,C) scalar M2 and the rank-4 symmetric tensor Mabcd
2 were defined

in (4.21), and their components are given in (E.1) and (E.2) in terms of symmetric poly-
nomials µm.

From a physics point of view, however, the measure against which the summation over
spin structures is to be carried out is not the unit measure. To obtain the five critical
superstring theories in R10, or any flat toroidal compactification thereof, three different
measures are to be considered. The spin structure dependent parts of these measures on
the chiral amplitudes are given as follows,

Υ8[δ] supersymmetric sector
ϑ[δ](0)16 Heterotic Spin(32)/Z2 sector

ϑ[δ1](0)8 ϑ[δ2](0)8 Heterotic E8 × E8 sector (6.2)

The definitions and properties of Riemann ϑ-constants, Ψ10 and other Igusa modular forms,
as well as the composite form Υ8[δ] are briefly reviewed in appendix I. Their hyper-elliptic
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representations may be obtained using the Thomae formulas of (I.15) and may be found
in (I.14), (I.15), and (I.20), respectively. For each sector, the full chiral measure is obtained
by dividing the above expressions by the Igusa cusp form Ψ10.

The left- and right-moving sectors of Type II theories are both supersymmetric, while
for the Heterotic theories, only the right-moving sector is supersymmetric. The left-moving
sector of Heterotic strings, in the worldsheet fermion representation of the gauge degrees
of freedom, corresponds to the gauge group under consideration. The GSO projection
assigns independent spin structures to the left- and right-moving sectors of all the closed
superstring theories, and then sums over these spin structures independently of one another.
For the E8 × E8 Heterotic theory, the even spin structures δ1 and δ2 in (6.2) are summed
independently. The measure factor Υ8[δ] is the top component of the chiral measure on
supermoduli space [15, 16, 28]. The corresponding bottom component also enters into the
calculation, but involves linear chains rather than cyclic products of Szegö kernels. The
evaluation of the spin structure sums of its contribution to n-point amplitudes is relegated
to future work.

6.2 Spin structure sums in the supersymmetric sector

In the supersymmetric sector, the spin structure summation is carried out against the
measure Υ8[δ] in (I.18), and the results are given by the following theorem, whose proof may
be obtained using the hyper-elliptic representation of `abδ and Υ8[δ], derived in appendix I,
and by summing over all permutations of the branch points.

Theorem 6.2 The spin structure sums with the supersymmetric measure Υ8[δ] in (I.20)
may be obtained by reducing all spin structure dependence to expressions bilinear, linear,
and independent of `abδ combined with the following summation identities,∑

δ even
Υ8[δ] =

∑
δ even

Υ8[δ] `abδ = 0

∑
δ even

Υ8[δ]
Ψ10

`abδ `
cd
δ = 1

4(detσ)2 (εacεbd + εadεbc) (6.3)

where the matrix σaI was defined in (2.17). Equivalently, by decomposing the tensor `abδ `cdδ
into irreducible representations of SL(2,C), the spin sum (6.3) may be expressed as follows,

∑
δ even

Υ8[δ] `(ab
δ `

cd)
δ = 0

∑
δ even

Υ8[δ]
Ψ10

det `δ = 3
4(detσ)2 (6.4)

A few comments are in order. Firstly, the vanishing relations on the first line of (6.3) feed
into the non-renormalization theorems for the genus-two amplitudes with 0, 1, 2, and 3
external massless states in Type I, Type II, or Heterotic strings. Secondly, one readily
verifies that both sides of the second equation in (6.4) transform as Siegel modular forms
of weight −2 since Υ8 has weight 8, Ψ10 has weight 10, and detσ has weight −1. Finally,
we have the following corollary, which immediately follows from Theorem 6.2.
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Corollary 6.3 Expressed in terms of the differential forms Lδ(i, j) defined in (3.22), the
spin structure sums of Theorem 6.2 take the form [19],∑

δ even
Υ8[δ] =

∑
δ even

Υ8[δ]Lδ(1, 2) = 0

∑
δ even

Υ8[δ]
Ψ10

Lδ(1, 2)Lδ(3, 4) = 1
4
(
∆(1, 3)∆(2, 4) + ∆(1, 4)∆(2, 3)

)
(6.5)

The anti-symmetric bi-holomorphic form ∆ was defined in (2.20). On the second line, both
sides transform as Siegel modular forms of weight −2 as ∆ is a modular form of weight
−1.

6.2.1 Summation over higher powers of `δ
The basic spin structure sums of Theorem 6.2 may be generalized to summands that contain
higher powers of `δ, which will contribute to the spin structure sums for higher-point cyclic
products. These spin structure sums follow from reducing the spin structure dependence
of the summands with the help of the trilinear relations in Theorem 4.2 to those powers
whose spin structure sums are given by Theorem 6.2. Organizing the spin structure sums
by the degree of homogeneity of the summand, we have the following three corollaries,
which will suffice to evaluate all the spin structure sums in the supersymmetric sector for
up to the eleven-point cyclic products. The tensors M1, M2 and M3 on the right-hand
sides below can be found in (3.30), (4.21) and (4.22), respectively.

Corollary 6.4 The spin structure sums of trilinear combinations of `δ are given by,∑
δ even

Υ8[δ]
(
det `δ

)
`a1a2
δ = 0

∑
δ even

Υ8[δ]
Ψ10

`
(a1a2
δ `a3a4

δ `
a5a6)
δ = 9

16 (detσ)2 Ma1···a6
1 (6.6)

These equations show that the spin structure sum of trilinears in `δ projects the triple
tensor product of identical tensors `⊗3

δ = 3⊕ 7 onto the 7 of SL(2,C).

Corollary 6.5 The spin structure sums of quadri-linear combinations of `δ are given by,

∑
δ even

Υ8[δ]
Ψ10

(det `δ)2 = 9
16 (detσ)2 M2

∑
δ even

Υ8[δ]
Ψ10

(
det `δ

)
`

(a1a2
δ `

a3a4)
δ = 21

16 (detσ)2 Ma1a2a3a4
2

∑
δ even

Υ8[δ]
Ψ10

`
(a1a2
δ `a3a4

δ `a5a6
δ `

a7a8)
δ = 63

32 (detσ)2 Ma1···a8
2 (6.7)

which shows that the spin structure sum of quadri-linears realizes all the irreducible repre-
sentations of SL(2,C) on the right-hand side of `⊗4

δ = 1⊕5⊕9, associated with the tensors
Ma1···ar

2 of rank r = 0, 4, 8.

– 40 –



J
H
E
P
0
5
(
2
0
2
3
)
0
7
3

Corollary 6.6 The spin structure sums of penta-linear combinations of `δ are given by,∑
δ even

Υ8[δ]
Ψ10

(det `δ)2`a1a2
δ = 99

64 (detσ)2 Ma1a2
3

∑
δ even

Υ8[δ]
Ψ10

(
det `δ

)
`

(a1a2
δ `a3a4

δ `
a5a6)
δ = 81

128 (detσ)2 M2Ma1···a6
1 − 9

32 (detσ)2 Ma1···a6
3

∑
δ even

Υ8[δ]
Ψ10

`
(a1a2
δ `a3a4

δ `a5a6
δ `a7a8

δ `
a9a10)
δ = 705

256 (detσ)2 M(a1a2a3a4
2 Ma5···a10)

1 (6.8)

The spin structure sum again realizes all the SL(2,C) irreducible representations on the
right-hand side of `⊗5

δ = 3⊕ 7⊕ 11.
Based on (6.3) and (6.6) to (6.8), the spin structure sums of cyclic products Cδ of

up to eleven Szegö kernels are readily available in a simplified form. The analogous spin
structure sums over six powers of `abδ can be found in appendix J.1 which apply to cyclic
products of Szegö kernels up to thirteen points. We list spin structure sums over higher
powers of `abδ in appendix J.2.

All of the expressions in this section and appendix J may be proven using the basic
spin structure sums (6.3) and the trilinear relations in Theorem 4.2. In practice, we often
employ mathematica and maple to compare the hyper-elliptic representation of the spin
structure sums with an Ansatz for modular tensors of suitable degree of homogeneity in
the branch points and corresponding SL(2,C) representation properties. The multiplicities
of the various representations in the respective Ansätze are derived from the methods in
appendix A.2 and can be read off from table 2. Matching high-degree polynomials in
the branch points (including the cancellation of denominators (ui−uj)−1 required by the
presence of Ψ−1

10 ) is facilitated by fixing three branch points, say u4, u5, u6, at numerical
values using SL(2,C) covariance. Matching the Ansatz as a function of arbitrary values for
the remaining branch points u1, u2, u3 then provides an analytical proof of the Corollaries
by mathematica or maple.

6.2.2 Summation over three and four powers of Lδ
A major goal of this work is to set the stage for evaluating higher-point genus-two am-
plitudes of Type I, Type II or Heterotic strings, extending the five-point computations
in [20]. Here we shall specialize to the summation measure appropriate for the supersym-
metric chiral sector, and spell out the explicit form of spin structure sums with three and
four insertions of the tensor Lδ(i, j) in (3.22) which follows from the Corollaries 6.3—6.6.
In this way, the spin structure sums of cyclic products Cδ of up to eight Szegö kernels are
readily available in a simplified form.

The results for the spin structure sums involve a quadri-holomorphic form ∆(i, j|k, l)
that generalizes the bi-holomorphic form ∆(zi, zj) in (2.20), and is defined as follows,

∆(i, j|k, l) = ∆(i, k)∆(j, l) + ∆(i, l)∆(j, k) (6.9)

which is easily checked to obey the following identities,

∆(i, j|k, l) = ∆(j, i|k, l) = ∆(k, l|i, j)
∆(i, j|k, l) + ∆(i, k|l, j) + ∆(i, l|j, k) = 0 (6.10)
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We shall also use the following notation for the contractions of the tensors Ma1···ar
2 of (4.21)

of rank r = 4, 8 with the basis of holomorphic (1, 0) forms $a,

M2(1, · · · , r) = Ma1···ar
2 $a1(1) · · ·$ar(r) (6.11)

In terms of these quantities, we have the following Corollaries.

Corollary 6.7 The spin structure sums with the supersymmetric measure Υ8[δ] for the
product of three factors of Lδ is given as follows,

∑
δ even

Υ8[δ]
Ψ10

Lδ(1, 2)Lδ(3, 4)Lδ(5, 6) = 9
16 (detσ)2M1(1, 2, 3, 4, 5, 6) (6.12)

where the contraction M1(1, · · · , 6) of Ma1···a6
1 with $a1(1) · · ·$a6(6) is defined in (3.32).

The corresponding spin structure sum for the product of four factors of Lδ is given by,

∑
δ even

Υ8[δ]
Ψ10

Lδ(1, 2)Lδ(3, 4)Lδ(5, 6)Lδ(7, 8) = 63
32 (detσ)2M2(1, 2, 3, 4, 5, 6, 7, 8)

+ 3
16
{

∆(1, 2|3, 4)M2(5, 6, 7, 8) + ∆(1, 2|5, 6)M2(3, 4, 7, 8)

+ ∆(1, 2|7, 8)M2(3, 4, 5, 6) + ∆(3, 4|5, 6)M2(1, 2, 7, 8)

+ ∆(3, 4|7, 8)M2(1, 2, 5, 6) + ∆(5, 6|7, 8)M2(1, 2, 3, 4)
}

+ 3M2
80(detσ)2

{
∆(1, 2|3, 4)∆(5, 6|7, 8) + ∆(1, 2|5, 6)∆(3, 4|7, 8)

+ ∆(1, 2|7, 8)∆(3, 4|5, 6)
}

(6.13)

The identity (6.12) will play a key role in the evaluation of the genus-two six-point ampli-
tude.

6.3 Supersymmetric spin structure summations for Cδ

Using these summation formulas for `δ and Lδ, we may readily collect the results for the
summation of the full cyclic products Cδ of Szegö kernels, and products thereof, against the
supersymmetric chiral measure. We group the results in terms of the following theorems.

Theorem 6.8 By combining the expressions in (5.1) and (5.4) with (6.3) we obtain the
vanishing of the cyclic product for zero, two, and three points upon spin structure sum,∑

δ even
Υ8[δ] =

∑
δ even

Υ8[δ]Cδ(1, 2) =
∑
δ even

Υ8[δ]Cδ(1, 2, 3) = 0 (6.14)

By combining (5.9) with (6.5), we obtain the spin structure sum for the 4-point func-
tion [19],

∑
δ even

Υ8[δ]
Ψ10

Cδ(1, 2, 3, 4) = −1
8 ∆(1, 3|2, 4) = 1

8
(
∆(1, 4)∆(2, 3) + ∆(1, 2)∆(4, 3)

)
(6.15)
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By combining (5.12) with (6.5) we obtain the spin structure sum for the 5-point func-
tion [20],∑

δ even

Υ8[δ]
Ψ10

Cδ(1, · · · , 5) = −dx1 ∆(2, 4|3, 5) + dx2 ∆(1, 4|3, 5)
16x12

+ cycl(1, · · · , 5) (6.16)

Both sides of the equations transform as Siegel modular forms under Sp(4,Z) of weight −2.

Theorem 6.9 The six-point function in (5.18) introduces two types of non-vanishing spin
structure sums, both (6.5) over two powers of Lδ(i, j) and (6.12) over three powers,

∑
δ even

Υ8[δ]
Ψ10

Cδ(1, · · · , 6) = 9
16 (detσ)2M1(1, · · · , 6)− 1

32

{
N(6)[123]
x12 x23

+N(6)[12, 34]
x12 x34

+ N(6)[12, 45]
2x12 x45

+ cycl(1, · · · , 6)
}

(6.17)

where the numerators multiplying two simultaneous poles (xabxcd)−1 are given by

N(6)[123] = ∆(3, 5|4, 6)W+
2 (1, 2) + ∆(1, 5|4, 6)W+

2 (2, 3)
+∆(2, 5|4, 6)W−2 (1, 3)

N(6)[12, 34] = ∆(2, 5|3, 6)W+
2 (1, 4) + ∆(1, 5|4, 6)W+

2 (2, 3)
+∆(2, 5|4, 6)W−2 (1, 3) + ∆(1, 5|3, 6)W−2 (2, 4)

N(6)[12, 45] = ∆(2, 5|3, 6)W+
2 (1, 4) + ∆(1, 4|3, 6)W+

2 (2, 5)
+∆(2, 4|3, 6)W−2 (1, 5) + ∆(1, 5|3, 6)W−2 (2, 4) (6.18)

and the functions W±2 (i, j) are defined in (5.2).
The residues of the poles in x12x34 or x12x45 entirely stem from the limits W+

2 (i, j)→
sisj , while the linear part in Z(i, j) vanishes as x1 → x2 and x3 → x4 or x4 → x5. The
residues of the overlapping poles in x12x23, however, also receive contributions from the
Z(i, j), for instance ∆(3, 5|4, 6)Z(1, 2) + ∆(1, 5|4, 6)Z(2, 3)−∆(2, 5|4, 6)Z(1, 3) reduces to
∆(3, 5|4, 6)s2

2 as z1 → z2.

Theorem 6.10 The spin structure sum of the seven-point function may be obtained from
the representation (G.1) of Cδ(1, · · · , 7) and again receives non-vanishing contributions
from both (6.5) and (6.12),

∑
δ even

Υ8[δ]
Ψ10

Cδ(1, · · · , 7) = 9N(7)[12]
32x12

− N(7)[1234]
64x12 x23 x34

− N(7)[123, 45]
64x12 x23 x45

− N(7)[123, 56]
64x12 x23 x56

− N(7)[123, 67]
64x12 x23 x67

− N(7)[12, 34, 56]
64x12 x34 x56

+ cycl(1, · · · , 7) (6.19)

The instruction to add cyclic permutations applies to the entire right side of the formula.
The numerators are given by the following expressions,

N(7)[12] = (det σ)2[dx1M1(2, 3, 4, 5, 6, 7) + dx2M1(3, 4, 5, 6, 7, 1)
]

(6.20)
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multiplying a single pole x−1
12 and the following cyclically inequivalent cases for three simul-

taneous poles (xabxcdxef )−1,

N(7)[1234] = ∆(4, 6|5, 7)W+
3 (1, 2, 3) + ∆(3, 6|5, 7)W−3 (1, 2|4)

+ ∆(2, 6|5, 7)W−3 (3, 4|1) + ∆(1, 6|5, 7)W+
3 (2, 3, 4)

N(7)[123, 45] = ∆(3, 6|5, 7)W−3 (1, 2|4) + ∆(3, 6|4, 7)W+
3 (1, 2, 5)

+ ∆(2, 6|5, 7)W−3 (3, 4|1) + ∆(2, 6|4, 7)W−3 (1, 5|3)
+ ∆(1, 6|5, 7)W+

3 (2, 3, 4) + ∆(1, 6|4, 7)W−3 (2, 3|5)
N(7)[123, 56] = ∆(3, 6|4, 7)W+

3 (1, 2, 5) + ∆(3, 5|4, 7)W−3 (1, 2|6)
+ ∆(2, 6|4, 7)W−3 (1, 5|3) + ∆(2, 5|4, 7)W−3 (3, 6|1)
+ ∆(1, 6|4, 7)W−3 (2, 3|5) + ∆(1, 5|4, 7)W+

3 (2, 3, 6)
N(7)[123, 67] = ∆(3, 5|4, 7)W−3 (1, 2|6) + ∆(3, 5|4, 6)W+

3 (7, 1, 2)
+ ∆(2, 5|4, 7)W−3 (3, 6|1) + ∆(2, 5|4, 6)W−3 (7, 1|3)
+ ∆(1, 5|4, 7)W+

3 (2, 3, 6) + ∆(1, 5|4, 6)W−3 (2, 3|7)
N(7)[12, 34, 56] = ∆(2, 6|4, 7)W−3 (1, 5|3) + ∆(2, 5|4, 7)W−3 (3, 6|1)

+ ∆(2, 6|3, 7)W+
3 (1, 4, 5) + ∆(2, 5|3, 7)W−3 (1, 4|6)

+ ∆(1, 6|4, 7)W−3 (2, 3|5) + ∆(1, 5|4, 7)W+
3 (2, 3, 6)

+ ∆(1, 6|3, 7)W−3 (4, 5|2) + ∆(1, 5|3, 7)W−3 (2, 6|4) (6.21)

As for six points, some of the Z(i, j)-contributions to W±3 in (5.5) may cancel at the
residues of individual poles.

Theorem 6.11 The spin structure sum of the cyclic product of Szegö kernels for eight
points is given by,∑
δ even

Υ8[δ]
Ψ10

Cδ(1, · · · , 8) = 63
32 (detσ)2M2(1, · · · , 8) (6.22)

+
{ 3

32

(
∆(1, 2|3, 4)M2(5, 6, 7, 8) + 1

2∆(1, 2|5, 6)M2(3, 4, 7, 8)
)

+ 3 M2
320 (detσ)2

(
∆(1, 2|3, 4)∆(5, 6|7, 8) + 1

2∆(1, 2|5, 6)∆(3, 4|7, 8)
)

+ (detσ)2
[9N(8)[123]

64x12 x23
+ 9N(8)[12, 34]

64x12 x34
+ 9N(8)[12, 45]

64x12 x45
+ 9N(8)[12, 56]

128x12 x56

]
− N(8)[12345]

128x12 x23 x34 x45
− N(8)[1234, 56]

128x12 x23 x34 x56
− N(8)[1234, 67]

128x12 x23 x34 x67

− N(8)[1234, 78]
128x12 x23 x34 x78

− N(8)[123, 45, 78]
128x12 x23 x45 x78

− N(8)[123, 56, 78]
128x12x23 x56 x78

− N(8)[123, 45, 67]
128x12 x23 x45 x67

− N(8)[123, 456]
128x12 x23 x45 x56

− N(8)[123, 567]
256x12 x23 x56 x67

− N(8)[12, 34, 56, 78]
512x12 x34 x56 x78

+ cycl(1, 2, · · · , 8)
}
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The expressions for the numerators N(8) in the last five lines are lengthy and given in
appendix G.3.

6.3.1 Spin structure sums of products of cyclic products

The spin structure sums over products of Cδ at four and five points can be readily derived
from the representations (5.1) and (5.4) of the cyclic products Cδ of length two and three
as well as the spin structure sum (6.5), and are given by the following corollary.

Corollary 6.12 The spin structure sums, with the supersymmetric measure, of the prod-
ucts of Cδ(1, 2) with the cyclic product of two and three Szegö kernels are given by [19, 20],∑

δ even

Υ8[δ]
Ψ10

Cδ(1, 2)Cδ(3, 4) = 1
4 ∆(1, 2|3, 4) (6.23)

∑
δ even

Υ8[δ]
Ψ10

Cδ(1, 2, 3)Cδ(4, 5) = 1
8

{
dx1 ∆(2, 3|4, 5) + dx2 ∆(1, 3|4, 5)

x12
+ cycl(1, 2, 3)

}
There are three distinct factorized cyclic products contributing to the six-point function,
which may be evaluated using the above methods along with (5.9) and (6.12). The results
are given by the corollary below.

Corollary 6.13 The spin structure sums of factorized cyclic products of Szegö kernels
contributing to the six-point function are given by,∑

δ even

Υ8[δ]
Ψ10

Cδ(1, 2)Cδ(3, 4)Cδ(5, 6) = 9
16 (detσ)2M1(1, 2, · · · , 6) (6.24)

− 1
8

{
∆(1, 2|3, 4) W

+
2 (5, 6)
x2

56
+ ∆(1, 2|5, 6) W

+
2 (3, 4)
x2

34
+ ∆(3, 4|5, 6) W

+
2 (1, 2)
x2

12

}
as well as,

∑
δ even

Υ8[δ]
Ψ10

Cδ(1, 2, 3, 4)Cδ(5, 6) = 9
16 (detσ)2M1(1, 2, · · · , 6) + ∆(1, 3|2, 4)W+

2 (5, 6)
16x2

56

+
{
W+

2 (2, 3)∆(1, 4|5, 6)
32x12x34

+ W+
2 (4, 1)∆(2, 3|5, 6)

32x12x34

+ W−2 (2, 4)∆(1, 3|5, 6)
32x12x34

+ W−2 (1, 3)∆(2, 4|5, 6)
32x12x34

+ W+
2 (1, 2)∆(3, 4|5, 6)

16x12x23
+ W+

2 (2, 3)∆(1, 4|5, 6)
16x12x23

+ W−2 (1, 3)∆(2, 4|5, 6)
16x12x23

+ cycl(1, 2, 3, 4)
}

(6.25)

and finally,

∑
δ even

Υ8[δ]
Ψ10

Cδ(1, 2, 3)Cδ(4, 5, 6) = N(6)[12|45]
16x12x45

+ N(6)[12|56]
16x12x56

+ N(6)[12|64]
16x12x64

+ cycl(1, 2, 3) (6.26)
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where the instruction to add cyclic permutations applies to all terms on the right side of
the formula and we have used the following definition,

N(6)[12|45] = dx1 dx4 ∆(2, 3|5, 6) + dx1 dx5 ∆(2, 3|4, 6) (6.27)
+ dx2 dx4 ∆(1, 3|5, 6) + dx2 dx5 ∆(1, 3|4, 6)

All other components of these expressions have been defined earlier.

6.4 Spin structure sums in the E8 × E8 sector

In the E8 × E8 Heterotic string the 32 Majorana-Weyl fermions are partitioned into two
16-element sets, with all fermions in the first set of 16 carrying the same spin structure
δ1 and all fermions in the second set of 16 carrying the same spin structure δ2, where δ1
and δ2 are independent of one another. The spin structure sum then consists of summing
independently over δ1 and δ2. Thus, the entire spin structure sum required for the E8 ×
E8 Heterotic string factorizes into two independent spin structure sums for 16 fermions,
producing the measure factor ϑ[δ](0)8 noted in (6.2). The basic spin structure sums in a
single E8 sector are then given by the following theorem.

Theorem 6.14 The basic spin structure sums for a single E8 sector in the Heterotic E8×
E8 string are given by,

(detσ)4
∑
δ even

ϑ[δ](0)8 = 720
(

75 M4 − 4 M2
2

)
(6.28)

(detσ)4
∑
δ even

ϑ[δ](0)8`abδ = 1350
(

15 Mab
5 − 4 M2 Mab

3

)
(detσ)4

∑
δ even

ϑ[δ](0)8(det `δ) = 81
(

24 M3
2 − 300 M2 M4 − 125 M6

)
(detσ)4

∑
δ even

ϑ[δ](0)8`
(ab
δ `

cd)
δ = 405

2

(
25 M(ab

3 Mcd)
3 +

(
200 M4 − 16M2

2
)
Mabcd

2 −40 M2 Mabcd
4

)
where the tensors M2,M3 were defined in (4.21), (4.22), and the tensors M4,M5,M6 can
be found in appendix E.2.

The proof of Theorem 6.14 is obtained in the same manner as the proofs of Theorem 6.2
and Corollaries 6.4—6.6. We note that the combination 75 M4 − 4 M2

2 is proportional to
the Siegel modular form Ψ4 defined in (I.11).

6.5 Spin structure sums in the Spin(32)/Z2 sector

In the Spin(32)/Z2 Heterotic string, 32 Majorana-Weyl fermions are all in the same spin
structure so that the chiral measure includes the factor of ϑ[δ](0)16 in (6.2), and produces
the basic spin structure sums given in the following theorem.
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Theorem 6.15 The spin structure sums of the Heterotic Spin(32)/Z2 string are given by,

(detσ)8 ∑
δ even

ϑ[δ](0)16 = 129600
(
75 M4 − 4 M2

2

)2
(6.29)

(detσ)8 ∑
δ even

ϑ[δ](0)16 `abδ = 243000
(
75 M4 − 4 M2

2

)(
15Mab

5 − 4M2Mab
3

)
(detσ)8 ∑

δ even
ϑ[δ](0)16`

(ab
δ `

cd)
δ = 12150

(
(64M4

2 − 2000M2
2M4 + 15000M2

4)Mabcd
2

+ (300M2
2+1875M4)M(ab

3 Mcd)
3 − 3000M2M(ab

3 Mcd)
5

+ 5625M(ab
5 Mcd)

5 + 40M2(4M2
2−75M4)Mabcd

4

)
(detσ)8 ∑

δ even
ϑ[δ](0)16(det `δ) = 14580

(
75M4 − 4M2

2
)(

24M3
2 − 300M2M4 − 125M6

)
− 3

8(detσ)10Ψ10

These results remain expressible in terms of the tensors Mw=2,3 in (4.21), (4.22) and
Mw=4,5,6 in appendix E.2 as well as the Igusa cusp form Ψ10 in (I.11).

The proof of Theorem 6.15 is obtained in the same manner as the proofs of Theorem 6.2,
Corollaries 6.4—6.6, and Theorem 6.14 above.

7 Conclusion and outlook

In this work, we have described and implemented a procedure that organizes the evalua-
tion of cyclic products Cδ of an arbitrary number of Szegö kernels on a genus two Riemann
surface with arbitrary even spin structure δ. The procedure drastically simplifies the de-
pendence on δ and reduces all spin structure dependence to a degree-two polynomial in
the components `abδ of a symmetric rank-two tensor `δ under SL(2,C). The tensor `δ de-
pends on the branch points of the surface in the hyper-elliptic description but not on the
insertion points of the Szegö kernels. The dependence of Cδ on the insertion points of the
Szegö kernels is organized in simple SL(2,C) invariant building blocks that are identified
from the cyclic product of two Szegö kernels and suffice to evaluate cyclic products with an
arbitrary number of Szegö kernels. The explicit form of this reduction can be assembled
from the all-multiplicity conjecture (5.34) combined with the trilinear relations among the
variables `abδ in Theorem 4.2.

Our results dramatically simplify the summation of cyclic products of Szegö kernels
over even spin structures that arise in genus-two amplitudes of Type I, Type II and Het-
erotic strings. For a given string theory, only the spin structure sums over the ten mono-
mials in `abδ of degree 0, 1 and 2 are needed and given in terms of branch-point dependent
SL(2,C)-tensors in (6.3), (6.28) and (6.29). In future work we will apply these advances to
the evaluation of genus-two superstring amplitudes involving six or more massless external
NS states which are currently uncharted territory in both the RNS and the pure-spinor for-
mulation. The construction of these higher-point amplitudes, in the formulation of [18, 19],
will also require similar reductions of the spin structure dependence for products of Szegö
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kernels that form linear chains rather than closed cycles. The simplifications of such linear
chains may be obtained by methods similar to the ones used here, including the trilinear
relations, and they will greatly streamline the challenging steps in the assembly of the am-
plitudes. In a more immediate follow-up work [25], the building blocks of our results will be
translated into the language of genus-two theta functions and modular tensors of Sp(4,Z).

It is expected that, in the long run, the ideas developed here will lead to further
developments related to (i) string and field-theory scattering amplitudes; (ii) tests of the
S-duality of the low energy effective action of Type IIB string theory and its relation to
modular forms of higher genus; (iii) mathematical questions on iterated integrals on genus-
two surfaces; (iv) improving the understanding of the cohomology of chiral amplitudes at
fixed spin structure:

(i) The organization of supersymmetric chiral amplitudes at genus two as degree-two
polynomials in `abδ can be viewed as a space-time supersymmetry decomposition of
the particle content in the loops. In a string-theory context, combinations of `abδ that
drop out from maximally supersymmetric spin sums may contribute to genus-two
amplitudes in K3, Calabi-Yau, and orbifold compactifications with reduced super-
symmetry [29, 30], see also [4, 7] for analogous studies of Szegö kernels at genus one.
In a field-theory context, each monomial in `abδ can be associated with a different
combination of massless particle species in the two loops of the Feynman graphs that
arise in the low energy limit. This mechanism has also been studied in detail from
the viewpoint of ambi-twistor strings at genus one [31–33] and genus two [34–36].

(ii) The availability of explicit expressions for various amplitudes and their low energy
expansions has resulted in extensive checks on the S-duality of Type IIB superstring
contributions to the effective interactions, based on amplitudes with four external
states in [19, 37–39], and five external states in [22, 40–42]. The coefficients of
these genus-two low energy effective interactions may be reformulated in terms of
non-holomorphic genus-two modular graph forms [43, 44], which satisfy a wealth of
novel identities as functions on Torelli space [45]. Availability of the genus-two 6-
point amplitude will, for sure, add much insight into the structure of both the low
energy effective interactions and their significance to S-duality, as well as for the
understanding of genus-two modular graph functions.

(iii) At genus one, cyclic products of Szegö kernels and their spin structure sums generate
coefficients of the Kronecker-Eisenstein series [6] which can be used to construct el-
liptic polylogarithms and homotopy-invariant iterated integrals on a torus [46]. Not
withstanding recent progress in [47], the construction of iterated integrals on Riemann
surfaces of genus two and beyond is largely an open problem, which is of relevance
to both mathematicians and physicists. Our simple spin-structure independent func-
tions of the insertion points, encountered in the cyclic products of Szegö kernels at
genus two, are expected to provide guidance for the construction of integration ker-
nels on Riemann surfaces beyond genus one. In particular, it would be interesting to
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extract higher-genus generalizations of Kronecker-Eisenstein coefficients from Szegö
kernels and to make contact with the proposal for their generating series in [26, 27].

(iv) The relation between super-holomorphicity and holomorphicity of chiral superstring
n-point functions for NS bosons on a genus-two Riemann surface was shown to be en-
coded in a hybrid of both de Rham and Dolbeault cohomologies in [48]. The reduction
procedure developed in the present paper is expected to drastically simplify the con-
structive algorithm provided in [48] for the chiral amplitude cohomology classes and
their representatives. Investigations of these questions are relegated to future work.
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A Synopsis of SL(2,C) representations

In this appendix we collect some simple basic formulas on tensor products and tensor
powers of irreducible representations of SL(2,C).

We denote the irreducible finite-dimensional representations of SL(2,C) alternatively
by the standard symbol Dj or by its dimension written in bold face d = 2j+1 for half posi-
tive integer j. In this notation, the defining representation is denoted alternatively either by
D 1

2
or by 2, while the vector representation is denoted either by D1 or by 3. The latter is ac-

tually the representation under which the vectors `δ transform, while the tensor M1 trans-
forms under the representation denoted by either D3 or 7. The branching rule for the tensor
product of two arbitrary representations Dj1 and Dj2 is given by the standard formula,

Dj1 ⊗Dj2 =
j1+j2⊕

k=|j1−j2|
Dk (A.1)

where the sum proceeds in integer steps. For example, D1 ⊗Dj = Dj−1 ⊕Dj ⊕Dj+1.

A.1 Tensor powers of irreducible representations

We shall often need the tensor power of an irreducible representation, such as the tensor
power of `δ, the tensor power of M1, and the tensor product of n identical copies of an
irreducible representation d. We shall use the following notation for these tensor powers,

`⊗nδ = `δ ⊗ · · · ⊗ `δ
M⊗n

1 = M1 ⊗ · · · ⊗M1

d⊗n = d⊗ · · · ⊗ d (A.2)
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where each tensor product on the right contains n factors. The dimension of the represen-
tation d⊗n is generally smaller than dn because the tensor power involves identical tensors.
For example, the general rule gives 3 ⊗ 3 = 5 ⊕ 3 ⊕ 1. However, when the two factors in
the tensor product are identical tensors (as is always the case in a tensor power), the 3 in
the direct-sum decomposition is absent, and the dimension is reduced to 6. The following
lemma gives the dimension of the n-th tensor power d⊗n of an irreducible representation d.

Lemma A.1 The dimension D(d, n) of the tensor power d⊗n of an irreducible represen-
tation d of SL(2,C) is given by,

D(d, n) = dim
(
d⊗n

)
=
(
d+ n− 1
d− 1

)
(A.3)

To prove the lemma, we denote the components of the tensor by d = (ξ1, · · · , ξd). The
components of the tensor power d⊗n are then given by the monomials ξi1 · · · ξin for all
possible distinct orderings 1 ≤ i1 ≤ i2 ≤ · · · ≤ in−1 ≤ in ≤ d. To list all such monomials,
we begin with those whose first entry is ξ1, of which there are D(d, n−1). The remaining
monomials cannot contain the component ξ1 any more in view of the ordering we have
adopted, so their number is D(d−1, n), which gives the double recursion relation,

D(d, n) = D(d, n−1) +D(d−1, n) (A.4)

with the initial conditions D(d, 0) = D(1, n) = 1. The solution is given by Pascal’s triangle,
which completes the proof of the lemma. The lemma implies the following corollary.

Lemma A.2 The decomposition of `⊗nδ into irreducible representations is given by,

`⊗nδ = Dn ⊕Dn−2 ⊕ · · · ⊕D? (A.5)

each representation appearing with multiplicity 1. The representation D? equals D0 when
n is even and D1 when n is odd.

To prove this lemma we proceed as follows. From inspection of the contractions with
εab it is clear that we must have the following inclusion,

Dn ⊕Dn−2 ⊕ · · · ⊕D? ⊂ `⊗nδ (A.6)

each representation appearing with multiplicity 1. Thus we must have,

dim(Dn) + dim(Dn−2) + · · ·+ dim(D?) ≤ dim(`⊗nδ ) = 1
2(n+ 1)(n+ 2) (A.7)

where the last equality on the right side uses the result of Lemma A.1. However, computing
the dimension of Dn ⊕Dn−2 ⊕ · · · ⊕D? shows that the inequality in (A.7) is actually an
equality which proves the lemma.

Explicit results for low values of n are given as follows,

`⊗1
δ = 3 `⊗5

δ = 11⊕ 7⊕ 3
`⊗2
δ = 5⊕ 1 `⊗6

δ = 13⊕ 9⊕ 5⊕ 1
`⊗3
δ = 7⊕ 3 `⊗7

δ = 15⊕ 11⊕ 7⊕ 3
`⊗4
δ = 9⊕ 5⊕ 1 `⊗8

δ = 17⊕ 13⊕ 9⊕ 5⊕ 1 (A.8)
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n\h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4 3 3 2 2 1 1
3 1 1 2 3 4 5 7 7 8 8 8 7 7 5 4 3 2 1 1
4 1 1 2 3 5 6 9 10 13 14 16 16 18 16 16 14 13 10 9
5 1 1 2 3 5 7 10 12 16 19 23 25 29 30 32 32 32 30 29
6 1 1 2 3 5 7 11 13 18 22 28 32 39 42 48 51 55 55 58

Table 1. The numbers of monomials µj1µj2 · · ·µjn with h =
∑n
i=1 ji.

A.2 Representation theory of Mn tensors

In order to count the modular tensor with degree n in µj and components of homogeneity
degree h in uj , we enumerate the monomials µj1µj2 · · ·µjn with h = ∑n

i=1 ji and 0 ≤ ji ≤ 6.
Since the spectrum of such monomials is symmetric under µj ↔ µ6−j , the distribution of
homogeneity degrees in uj at given degree n is symmetric around h = 3n. The counting is
spelled out for n ≤ 6 in table 1 with the symmetry point h = 3n highlighted in red.11

The next step is to organize these monomials in µj into irreducible representations
(irreps) of SL(2,C). The µj themselves at n = 1 form the tensor M1 in (3.30) in the
seven-dimensional representation 7. At n ≥ 2, the entirety of degree-n modular tensors
furnishes the symmetric n-fold tensor product 7⊗sn which can be conveniently organized
into irreps of SL(2,C) by means of the entries of table 1:

(i) At given n, start from the average value of h = 3n and combine all the neighboring
entries at h = 3n±1, h = 3n±2, · · · with the same counting of µj-monomials into
one irrep. If there are m1 adjacent cells in table 1 with the same counting, this irrep
is the m1-dimensional one m1.

(ii) Remove the monomials in the above m1 from the table (i.e. subtract one from the rel-
evant entries) and once more identify the largest sequence of identical entries centered
around h = 3n. The length m2 of that sequence determines the next irrep m2.

(iii) Repeat the process of removing the entries of the irrep mk identified in the previous
step from the table and combining the leftover entries with the same counting
centered around h = 3n into the next irrep mk+1. The process terminates if the
removal of mk reduces the leftover entries of the table to zero.

At n = 2 for instance, the entries 1, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1, 1 of table 1 lead to identify a 1
in step (i) which leaves 5 neighboring entries 3 after lowering the central entry 4 highlighted
in red to 3. Step (ii) then identifies a 5 whose removal from the table leads to 9 neighboring

11From a representation-theoretic viewpoint, the more natural quantity is h → h−3n. In this way, the
“average value” of h is mapped to 0 and the spectrum of h becomes symmetric under the “inversion”
h→ −h of the shifted h.
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n\d 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
1 0 0 0 1
2 1 0 1 0 1 0 1
3 0 1 0 2 1 1 1 1 0 1
4 2 0 2 1 3 1 3 1 2 1 1 0 1
5 0 2 1 4 2 4 3 4 2 3 2 2 1 1 0 1
6 3 0 4 3 6 3 7 4 6 4 5 2 4 2 2 1
7 0 4 2 7 5 8 7 9 6 9 6 7 5 5 3 4
8 4 1 7 5 11 7 13 9 13 10 12 8 11 7 8 5

Table 2. Multiplicities of the decomposition of the tensor power 7⊗sn into irreducible representa-
tions d of SL(2,C). For tensor powers n ≥ 6, the multiplicities of (d ≥ 33)-dimensional irreps are
beyond the space limitations of this table.

entries 2 which form a 9. By also removing the latter from the table, one is finally left
with a 13 and we reproduce the decomposition

7⊗s2 = 13⊕ 9⊕ 5⊕ 1 (A.9)

The spectrum of irreps m at given degree n in µj can be found in table 2. Note that the
total number of degree-n monomials is

(n+6
n

)
, i.e. 7, 28, 84, 210, 462, 924, 1716, 3003, · · · at

n = 1, 2, 3, 4, 5, 6, 7, 8, · · · , as indeed predicted by Lemma A.1 for the case d = 7.
All the irreps in table 2 correspond to modular tensors obtained from contracting the

n-fold outer product of Ma1···a6
1 with ε-symbols. However, the spin sums and trilinear

relations of `abδ we shall be interested in always involve an even number of ε-contractions.
Tensors with an odd number of ε-contractions appear in the red entries of table 2 with odd
n + d−1

2 . These tensors are not expected to play any role in organizing cyclic products of
genus-two Szegö kernels. At n = 3, for instance, table 2 lists the irreps,

7⊗s3 = 19⊕ 15⊕ 13⊕ 11⊕ 9⊕ 7⊕ 7⊕ 3 (A.10)

but only the 19⊕15⊕11⊕7⊕7⊕3 representations are expected to enter the Szegö-kernel
discussion. Indeed, the 9 and 13 correspond to 8- and 12-index tensors that follow from
Ma1a2···a6

1 Mb1b2···b6
1 Mc1c2···c6

1 via contractions with an odd number of ε-symbols.

B Proof of Lemma 3.4

To prove part (a) of Lemma 3.4, it suffices to prove the statement of the lemma for arbitrary
symmetrized monomials out of which an arbitrary α ↔ β symmetric polynomial may
be built. We shall produce a simple proof by explicit construction and parametrize the
symmetrized monomials in the expression (3.43) for Πδ(1, · · · , n) as follows,

αa1
1 αa2

2 βb1
1 βb2

2 + αb1
1 αb2

2 βa1
1 βa2

2 (B.1)
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with integers a1, a2, b1, b2 ≥ 0 and αi, βi defined in (3.9). Without loss of generality, we
may assume that a2 ≥ b2, and factor out φb2

4 , see (3.16) for the definition of the φk. It
remains to prove that the lemma holds for symmetrized monomials of the form,

αa1
1 αc2

2 βb1
1 + αb1

1 βa1
1 βc2

2 (B.2)

with c2 = a2 − b2 ≥ 0. We proceed by distinguishing the cases c2 = 0 and c2 6= 0.

• For c2 = 0 we set c1 = |a1 − b1| and the symmetrized monomial (B.2) reduces to,

αa1
1 β

b1
1 + βa1

1 αb1
1 = φ

min(a1,b1)
2

(
αc1

1 + βc1
1
)

(B.3)

If c1 = 0, then the reduction is complete, while if c1 = 1 then the sum in the parentheses
equals µ1 so that the reduction is again complete. If c1 ≥ 2 we use the following two-step
recursion relation,

αc1
1 + βc1

1 = µ1(αc1−1
1 + βc1−1

1 )− φ2(αc1−2
1 + βc1−2

1 ) (B.4)

which may be solved in terms of a polynomial in µ1 and φ2. Thus, for c2 = 0, the mono-
mial (B.2) may be expressed as a polynomial in φ2, φ3, φ4 with coefficients in C[µ1, · · · , µ6].

• For c2 > 0 the reduction of the symmetrized monomial (B.2) is more involved. For
c2 ≥ 2 we use the following recursion relation,

αa1
1 α

c2
2 β

b1
1 + βa1

1 βc2
2 α

b1
1 = φ3

(
αa1

1 α
c2−1
2 βb1−1

1 + βa1
1 βc2−1

2 αb1−1
1

)
−µ1φ4

(
αa1

1 α
c2−2
2 βb1−1

1 + βa1
1 βc2−2

2 αb1−1
1

)
+φ4

(
αa1

1 α
c2−2
2 βb1

1 + βa1
1 βc2−2

2 αb1
1

)
(B.5)

? If b1 ≥ c2 then all three lines on the right side will terminate after at most c2 iterations
in a term of the reduced form αa1

1 β
b1
1 + βa1

1 αb1
1 when c2 is even plus a term of the reduced

form αa1
1 β

b1
1 α2 + βa1

1 αb1
1 β2 when c2 is odd, which includes the case c2 = 1. The first

reduced form satisfies the recursion relation already given in (B.3). The second reduced
form satisfies the following recursion relations for c1 = a1 − b1 ≥ 0,

αa1
1 β

b1
1 α2 + βa1

1 αb1
1 β2 = φb1

2

(
αc1

1 α2 + βc1
1 β2

)
(B.6)

For c1 ≥ 2 the combination inside the parentheses satisfies the following recursion relation,

αc1
1 α2 + βc1

1 β2 = µ1
(
αc1−1

1 α2 + βc1−1
1 β2

)
+ φ2

(
αc1−2

1 α2 + βc1−2
1 β2

)
(B.7)

while for c1 = 1, we have α1α2 + β1β2 = µ1(µ2 − φ2)− φ3.

? If b1 < c2 then the second and third lines in (B.5) will terminate as in the case b1 ≥ c2,
but the first line will terminate after b1 iterations in a term of the form αa1

1 α
c2−b1
2 +βa1

1 βc2−b1
2

with d2 = c2 − b1 > 0, which obeys the following recursion relation for d2 ≥ 2,

αa1
1 α

d2
2 + βa1

1 βd2
2 = (µ2 − φ2)

(
αa1

1 α
d2−1
2 + βa1

1 βd2−1
2

)
−φ4

(
αa1

1 α
d2−2
2 + βa1

1 βd2−2
2

)
(B.8)
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and
αa1

1 α2 + βa1
1 β2 = (µ2 − φ2)

(
αa1

1 + βa1
1

)
− αa1

1 β2 − βa1
1 α2 (B.9)

It remains to exhibit the reduction of the last two terms on the right side, αa1
1 β2 + βa1

1 α2.
For a1 = 1, this is just φ3. For a1 ≥ 2, we use the following recursion relation,

αa1
1 β2 + βa1

1 α2 = φ3(αa1−1
1 + βa1−1

1 )− φ2(αa1−2
1 α2 + βa1−2

1 β2) (B.10)

The reduction of the parentheses in the first term on the right was given in the second line
of (B.3) while the reduction of the parentheses in the second term was given in (B.7).

The proof of part (b) of the lemma follows immediately from part (a), using the
relations of (3.23) between φ2, φ3, φ4 and `abδ .

To prove part (c) of the lemma we use the fact that Πδ is a polynomial in φ2, φ3, φ4
as guaranteed by part (a). The combination Πδ also explicitly depends on the symmetric
polynomials µ1, µ2. To prove the formula on the total degree of a given monomial, we
reason by analyzing the degree of homogeneity in α1, β1 on the one hand and the degree
of homogeneity in α2, β2 on the other hand. Schematically, we have,

φ4 → α2
2, α2β2, β

2
2

φ3 → α1β2, β1α2

φ2 → α2
1, α1β1, β

2
1 (B.11)

The maximum value that λ4 can take is when all its α2 and β2 are assembled into φ4,
giving the maximum value

⌊
a2+b2

2

⌋
. However, this number may be decreased by a number

0 ≤ j ≤
⌊
a2+b2

2

⌋
when some of the α2 and β2 are collected into φ3. It will be convenient to

split up into the case where a2 + b2 is even or odd.

• For even a2 + b2 we have,

λ4 ≤
a2 + b2

2 − j λ3 ≤ 2j λ2 ≤
⌊
a1 + b1

2

⌋
− j (B.12)

The inequality for λ2 is obtained by using the fact that the presence of 2j factors of φ3
takes up 2j factors of α1 and β1 combined, which amounts to j factors of φ2. Adding up
these lines gives the following upper bound,

λ2 + λ3 + λ4 ≤
a2 + b2

2 +
⌊
a1 + b1

2

⌋
≤ a1 + a2 + b2 + b2

2 ≤ m (B.13)

where we have used the bounds a1 + a2 ≤ m and b1 + b2 ≤ m.

• For odd a2 + b2 we have instead,

λ4 ≤
a2 + b2 − 1

2 − j λ3 ≤ 2j + 1 λ2 ≤
⌊
a1 + b1

2

⌋
− j (B.14)

For λ3 we have added 1 in view of the fact that a2 + b2 is odd and the only way a term of
first order in α2 and β2 can be produced in the iterative process outlined earlier is through
one factor of φ3. Adding up these lines gives the following upper bound,

λ2 + λ3 + λ4 ≤
a2 + b2 − 1

2 + 1 +
⌊
a1 + b1

2

⌋
≤ a1 + a2 + b2 + b2

2 + 1
2 (B.15)

– 54 –



J
H
E
P
0
5
(
2
0
2
3
)
0
7
3

Using again the bounds a1 + a2 ≤ m and b1 + b2 ≤ m, we obtain λ2 + λ3 + λ4 ≤ m + 1
2 .

Since λ2, λ3, λ4 and m are integers, this implies λ2 + λ3 + λ4 ≤ m which completes the
proof of part (c) of the lemma.

Part (d) of the lemma follows immediately from part of (c) by using the relations
of (3.23) between φ2, φ3, φ4 and `abδ . This completes the proof of the lemma.

C Manifestly SL(2,C) invariant reduction of Qδ

In section 3 we developed a systematic and efficient procedure by which all spin structure
dependence of the cyclic product Cδ of an arbitrary number of Szegö kernels is reduced to
polynomials Qδ which, in turn, are expressed in terms of further reduced polynomials Pδ.
In appendix F the polynomials Pδ are shown to play a crucial role for the reformulations in
section 5 of the cyclic products of Szegö kernels solely in terms of the fundamental building
blocks Lδ(i, j), Z(i, j), and standard Parke-Taylor factors built from xij .

Efficient as the polynomials Pδ may be in carrying through the reduction process
reviewed above, their use is responsible for giving up manifest invariance under SL(2,C),
i.e. invariance term by term, at intermediate stages of the reduction. Indeed, the factors
(sA(i)2−sA(j)2) and (sB(i)2−sB(j)2), out of which Pδ is constructed, do not enjoy tensorial
SL(2,C) transformation properties. However, the final expressions we obtain in terms of
Lδ(i, j), Z(i, j), and Parke-Taylor factors are perfectly SL(2,C) invariant term by term.

This situation naturally raises the question as to whether a reduction procedure exists
that is manifestly SL(2,C) covariant at all stages of the reduction process, and avoids the
intermediate polynomials Pδ altogether. In this appendix, we shall outline precisely such
a construction which reduces Qδ(1, 3, · · · , 2m−1|2, 4, · · · , 2m) to a degree-m polynomial
in tensor components `abδ with δ-independent coefficients and thereby constitutes an alter-
native proof of Corollary 3.5. In practice, it remains to be seen whether the substantial
group-theoretic calculations required to complete this process are competitive with the use
of Pδ, whose efficiency has been established beyond a doubt in section 5 and appendix F.

C.1 The tensors A,B,X

To obtain good SL(2,C) tensorial expressions for Qδ we begin by rendering the tensorial
properties of sA(i)2 and sB(i)2 manifest. We represent the spin structure δ by a partition
A∪B of the branch points, where A = {ur1 , ur3 , ur5} and B = {ur2 , ur4 , ur6} and A∩B = ∅.
The partially symmetric polynomials α1, α2, α3 and β1, β2, β3, defined in terms of the
branch points in (3.9), and powers of the points xi may be arranged in terms of totally sym-
metric rank-3 tensors A,B, and Xi, respectively. Their components are given as follows,

A111 = α3 B111 = β3 X111
i = x3

i

A112 = 1
3α2 B112 = 1

3β2 X112
i = x2

i

A122 = 1
3α1 B122 = 1

3β1 X122
i = xi

A222 = 1 B222 = 1 X222
i = 1 (C.1)
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The combinatorial denominators are equal to the number of monomials in the sum. Each
one of these symmetric rank-3 tensors transforms in the 4 of SL(2,C). This property
may also be inferred from their representation as the following totally symmetrized tensor
products of the SL(2,C) doublets x,ur in (2.5),

A = ur1 ⊗ ur3 ⊗ ur5

∣∣∣
4

B = ur2 ⊗ ur4 ⊗ ur6

∣∣∣
4

Xi = x⊗3
i

∣∣∣
4

(C.2)

The prescription |4 stands for the projection onto the 4, which is obtained by symmetriza-
tion. The pairings of A and B with X give the polynomials sA(i)2 and sB(i)2 in (2.24),

Xa1a2a3
i Ab1b2b3εa1b1εa2b2εa3b3 = Xa1a2a3

i Aa1a2a3 = Xi ·A = sA(i)2

Xa1a2a3
i Bb1b2b3εa1b1εa2b2εa3b3 = Xa1a2a3

i Ba1a2a3 = Xi ·B = sB(i)2 (C.3)

Note that the pairing of two tensors of even rank is symmetric, while the pairing of two
tensors of odd rank is anti-symmetric, so that we have Xi ·A = −A ·Xi.

C.2 Expressing Qδ in terms of A,B,Xi

In terms of the tensors A,B and Xi the polynomial Qδ(i1, · · · , im|j1, · · · , jm) defined
by (3.3) takes the form,

Qδ(i1, · · · , im|j1, · · · , jm) =
(
Xi1 ·A

) (
Xj1 ·B

)
· · ·
(
Xim ·A

) (
Xjm ·B

)
+(A↔ B) (C.4)

More abstractly, but equivalently, one may view this object as an SL(2,C) singlet formed
out of the following tensor products,

Qδ(i1, · · · , im|j1, · · · , jm) =
(
Xi1 ⊗ · · · ⊗Xim ⊗Xj1 ⊗ · · · ⊗Xjm

)
· (A⊗m⊗B⊗m

)∣∣∣
1
(C.5)

suitably symmetrized in A and B. The components in the decomposition of the tensor
products A⊗m ⊗ B⊗m and Xi1⊗· · ·⊗Xim⊗Xj1⊗· · ·⊗Xjm into irreducible representations
may then be reorganized in terms of the functions Lδ(i, j), Z(i, j) and products of powers
of xij .

C.3 Tensor product decomposition of A⊗ B

Since A and B transform under the 4 of SL(2,C), the tensor product A⊗B decomposes
into the direct sum of the following irreducible representations 7 ⊕ 5 ⊕ 3 ⊕ 1. In this
decomposition, the 7 component is obtained by complete symmetrization, and is given by
the spin structure independent tensor M1 introduced earlier in (3.30),

Ma1a2a3a4a5a6
1 = A(a1a2a3Ba4a5a6) (C.6)

This relation may be readily verified by identifying the highest weight components, namely
M111111

1 = µ6 = α3β3 = A111B111 on both sides, and then using the translation operator
T to construct the full multiplets.
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The remaining components 5 ⊕ 3 ⊕ 1 of A ⊗B result from one, two, and three anti-
symmetrizations, followed by total symmetrization in the remaining indices, and may be
defined as follows,

Na1a2a3a4
δ = 1

2Ab(a1a2Ba3a4)c εbc

Na1a2
δ = 1

4Ab1b2(a1Ba2)c1c2 εb1c1εb2c2

Nδ = 1
8Ab1b2b3Bc1c2c3 εb1c1εb2c2εb3c3 (C.7)

Also, we use the same letter Nδ to designate the tensors of ranks 4, 2 and 0, following the
familiar notation introduced earlier for the tensors Mw. The multiplets of these irreducible
representations are completely determined by their highest weight components, which are
given as follows,

N1111
δ = 1

2(A111B112 −A112B111) = 1
6(α3β2 − α2β3)

N11
δ = 1

4(A111B122 + A122B111 − 2A112B112) = 1
36(3α3β1 + 3α1β3 − 2α2β2)

Nδ = 1
8
(
A111B222 − 3A112B122 + 3A122B122 −A222B111)

= 1
24
(
3α3 − 3β3 + α1β2 − α2β1

)
(C.8)

Comparison with the expression (3.23) for `11
δ then gives the following relation,

Nab
δ = −5

9 `
ab
δ (C.9)

We note that Ma1···a6
1 and Nab

δ are symmetric under the interchange of A and B, while
Na1a2a3a4
δ and Nδ are anti-symmetric. We may summarize the decomposition as follows,

Aa1a2a3Bb1b2b3 = Ma1a2a3b1b2b3
1 +

{
3εa1b1Na2a3b2b3

δ + 18
5 ε

a1b1εa2b2Na3b3
δ (C.10)

+2εa1b1εa2b2εa3b3Nδ symmetrized in (a1, a2, a3) and (b1, b2, b3)
}

where the symmetrization is to be carried out independently on the triplets of indices
(a1, a2, a3) and (b1, b2, b3).

Finally, symmetrization in A and B cancels all terms in Qδ that contain an odd
combined number of factors of Na1a2a3a4

δ and Nδ. For this reason, it will be useful to
express bilinear tensor products of Na1a2a3a4

δ and Nδ in terms of the purely even tensors
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M1 and Na1a2
δ , which are given as follows,

N2
δ = − 1

16M2−
5
18det`δ

NδN
a1a2a3a4
δ = −1

4Ma1a2a3a4
2 + 1

6Ma1a2a3a4b1b2
1 `c1c2

δ εb1c1εb2c2 + 2
9`

(a1a2
δ `

a3a4)
δ

Na1a2a3a4
δ Nb1b2b3b4

δ = −Ma1a2a3a4b1b2b3b4
2 + 2

3Ma1a2a3a4b1b2
1 `b3b4

δ + 2
3Mb1b2b3b4a1a2

1 `a3a4
δ

−16
9 Ma1a2a3b1b2b3

1 `a4b4
δ + 2

7ε
a1b1εa2b2Ma3a4b3b4

2 − 8
9ε

a1b1εa2b2`
(a3b3
δ `

a4b4)
δ

−εa1b1εa2b2εa3b3εa4b4

( 4
27det`δ+

1
30M2

)
symmetrized (C.11)

where the symmetrization in the last entry above is to be carried out independently on the
quadruplets (a1, a2, a3, a4) and (b1, b2, b3, b4), and the tensors Ma1···ar

2 of rank r = 8, 4, 0
are defined in (4.21).

C.4 Tensor product decomposition of Xi ⊗Xj

Since Xi and Xj transform under the 4 of SL(2,C), the tensor product Xi⊗Xj decomposes
into 7⊕ 5⊕ 3⊕ 1. The 7 component is obtained by total symmetrization of Xi ⊗Xj and
coincides with the rank-six tensor Xij introduced in (3.30), and we have,

Xa1···a6
ij = X(a1a2a3

i Xa4a5a6)
j (C.12)

The remaining 5⊕ 3⊕ 1 corresponds to tensors of ranks 4, 2 and 0, respectively, obtained
from (partial) anti-symmetrization and will be denoted by Yij with components,

Ya1a2a3a4
ij = 1

2Xb(a1a2
i Xa3a4)c

j εbc

Ya1a2
ij = 1

4Xb1b2(a1
i Xa2)c1c2

j εb1c1εb2c2

Yij = 1
8Xb1b2b3

i Xc1c2c3
j εb1c1εb2c2εb3c3 (C.13)

The multiplets of these irreducible representations are completely determined by their
highest weight components, which are given as follows,

Y1111
ij = 1

2(X111
i X112

j −X112
i X111

j ) = 1
2xijx

2
ix

2
j

Y11
ij = 1

4(X111
i X122

j + X122
i X111

j − 2X112
i X112

j

)
= 1

4x
2
ijxixj

Yij = 1
8
(
X111
i X222

j − 3X112
i X122

j + 3X122
i X112

j −X222
i X111

j

)
= 1

8x
3
ij (C.14)

We see that each anti-symmetrization in Xi ⊗Xj produces a factor of xij . Such factors
are indeed encountered in the decomposition of Qδ.
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C.5 Manifestly SL(2,C) invariant decomposition of Qδ(1|2)

The above tensor-product decompositions greatly facilitate a manifestly SL(2,C) invariant
derivation of the expression Qδ(i|j) = 4xijxjiLδ(i, j) + 2Z(i, j) in Theorem 3.2. The
symmetrization over A ↔ B directly projects the m = 1 instance of (C.4) to the 7 ⊕ 3
parts of Ac1c2c3Bd1d2d3 in (C.10),

Qδ(i|j) =
(
Xi ·A

)(
Xj ·B

)
+
(
Xi ·B

)(
Xj ·A

)
= Xa1a2a3

i Xb1b2b3
j εa1c1εa2c2εa3c3εb1d1εb2d2εb3d3

(
2Mc1c2c3d1d2d3

1 + 36
5 εc1d1εc2d2Nc3d3

δ

)
= 2Z(i, j)−16Yab

ij εacεbd`
cd
δ = 2Z(i, j)−4x2

ijLδ(i, j)

We have identified Yab
ij and `cdδ via (C.13) and (C.9) in passing to the last line, and the

last equality follows from the rewriting of (3.24) as

x2
ijLδ(i, j) = 4Ya1a2

ij `b1b2
δ εa1b1εa2b2 (C.15)

C.6 Manifestly SL(2,C) invariant decomposition of arbitrary Qδ

A key step in the above rewriting of Qδ(i|j) is the tensor-product decomposition (C.10) of
Ac1c2c3Bd1d2d3 and its projection to the even part under A↔ B. The analogous treatment
of higher-point Qδ will require an iterative use of (C.10) followed by a projection to terms
with an even combined number of factors Na1a2a3a4

δ and Nδ. At four points, for instance,
this will bring the spin structure dependence of (C.4) into the form of

Aa1a2a3Bb1b2b3Ac1c2c3Bd1d2d3 + (A↔ B) (C.16)

= 2
(
Ma1a2a3b1b2b3

1 − 2 εa1b1εa2b2`a3b3
δ

)(
Mc1c2c3d1d2d3

1 − 2 εc1d1εc2d2`c3d3
δ

)
+ 2

(
3εa1b1Na2a3b2b3

δ + 2εa1b1εa2b2εa3b3Nδ

)(
3εc1d1Nc2c3d2d3

δ + 2εc1d1εc2d2εc3d3Nδ

)
where independent symmetrizations in the triplets of ai, bi, ci, di are understood through-
out. On the one hand, a detailed analysis of the xi-dependence in the follow-up steps
of (C.16) and its generalization to higher points is beyond the scope of this work.
On the other hand, it is easy to explain via (C.16) that the entire δ-dependence of
Qδ(i1, · · · , im|j1, · · · , jm) can be arranged in a degree-m polynomial in `abδ .

Based on the identities (C.11) for bilinears in Nδ and Nabcd
δ , the third line of (C.16)

boils down to a degree-two-polynomial in `abδ with δ-independent coefficients. The same
kind of conversion can be found for the symmetrization of A⊗m⊗B⊗m in A↔ B at higher
points m ≥ 3 since each summand will have an even combined number of factors Na1a2a3a4

δ

and Nδ. All of them can be grouped into pairs of rank 0, 4 or 8 which reduce to degree-two
polynomials in `abδ with δ-independent coefficients by virtue of (C.11). Contributions to
Qδ(i1, · · · , im|j1, · · · , jm) from k such pairs are multiplied by a (m−2k) fold tensor power
of Ma1a2···a6

1 −2εa1a2εa3a4`a5a6
δ . This casts the entire dependence on the spin structure into

a polynomial in `abδ of total degree m, separately for any number k = 1, 2, · · · , bm/2c of
pairs in (C.11), and concludes a manifestly SL(2,C) invariant proof of Corollary 3.5.
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It would be interesting to prove the all-multiplicity conjecture (5.34) for the decom-
position of Qδ into Z(i, j) and Lδ(i, j) from the methods of this appendix. Already at
four points, it will require a variety of tensor rearrangements to derive the form (5.7) of
Qδ(1, 3|2, 4) from the contraction of (C.16) with the rank-three tensors X1,X2,X3,X4.
A major challenge in the higher-point proof is to obtain the Parke-Taylor numerator
xijxjk · · ·xmi in the building blocks Lδ of Qδ defined in (5.28) from the rank-three tensors
Xa1a2a3
i in (C.4).

D List of trilinear relations

In this appendix, we rewrite the trilinear relations of the φm in Theorem 4.1 in terms of
the SL(2,C)-tensor components `abδ .

Corollary D.1 The variables `abδ in (3.23) obey the following trilinear relations.

(`11
δ )3 = µ4(`11

δ )2

20 − µ5`
11
δ `

12
δ

4 +µ6`
11
δ `

22
δ −

µ6(`12
δ )2

4 + µ2
4`

11
δ

50 − 9µ3µ5`
11
δ

160 + 3µ2µ6`
11
δ

20 + µ4µ5`
12
δ

40

− 9µ3µ6`
12
δ

80 − µ
2
5`

22
δ

16 + 3µ4µ6`
22
δ

20 − 3µ3
4

2000 + 9µ3µ4µ5

1600 − 3µ2µ
2
5

320 −
81µ2

3µ6

6400 + 9µ2µ4µ6

400

(`11
δ )2`12

δ = µ3(`11
δ )2

40 − µ4`
11
δ `

12
δ

20 − µ5(`12
δ )2

8 + µ5`
11
δ `

22
δ

8 + µ6`
12
δ `

22
δ

4

+ µ3µ4`
11
δ

800 − µ2µ5`
11
δ

80 + µ1µ6`
11
δ

8 + 3µ2
4`

12
δ

200 − µ3µ5`
12
δ

40 − µ2µ6`
12
δ

40 − µ4µ5`
22
δ

80

+ 9µ3µ6`
22
δ

160 − 3µ3µ
2
4

8000 + 9µ2
3µ5

12800 + µ2µ4µ5

800 − µ1µ
2
5

128 −
9µ2µ3µ6

1600 + 3µ1µ4µ6

160

`11
δ (`12

δ )2 = µ3`
11
δ `

12
δ

20 − 3µ4(`12
δ )2

20 + µ5`
12
δ `

22
δ

4 − µ6(`22
δ )2

4

− µ
2
3`

11
δ

1600 + µ6`
11
δ

4 + 3µ3µ4`
12
δ

400 − µ2µ5`
12
δ

40 − µ3µ5`
22
δ

160 + µ2µ6`
22
δ

20

− 3µ2
3µ4

32000 + µ2µ3µ5

1600 −
µ2

5
64 −

µ2
2µ6

400 + 3µ4µ6

80

(`11
δ )2`22

δ = µ2(`11
δ )2

10 − µ3`
11
δ `

12
δ

4 + µ4(`12
δ )2

4 + µ4`
11
δ `

22
δ

5 − 3µ5`
12
δ `

22
δ

4 + 5µ6(`22
δ )2

4 + µ2
3`

11
δ

160

− µ2µ4`
11
δ

50 + µ1µ5`
11
δ

16 − µ6`
11
δ

4 + µ3µ4`
12
δ

80 − µ2µ5`
12
δ

20 + µ1µ6`
12
δ

8 − µ
2
4`

22
δ

100

+ 3µ3µ5`
22
δ

160 − 3µ2
3µ4

6400 + µ2µ
2
4

1000 + µ2µ3µ5

800 − µ1µ4µ5

160 + µ2
5

64 −
µ2

2µ6

80 + 9µ1µ3µ6

320 − 3µ4µ6

80

(`12
δ )3 =−µ1(`11

δ )2

8 + µ2`
11
δ `

12
δ

4 − 19µ3(`12
δ )2

80 − µ3`
11
δ `

22
δ

16 + µ4`
12
δ `

22
δ

4 − µ5(`22
δ )2

8

− µ1µ4`
11
δ

160 + 3µ5`
11
δ

32 − 3µ2
3`

12
δ

1600 + µ2µ4`
12
δ

80 − µ1µ5`
12
δ

16 + 3µ6`
12
δ

16 − µ2µ5`
22
δ

160 + 3µ1µ6`
22
δ

32

+ 27µ3
3

128000−
3µ2µ3µ4

3200 + 3µ1µ
2
4

1600 + 3µ2
2µ5

1600 −
3µ1µ3µ5

1280 − 3µ4µ5

320 −
3µ1µ2µ6

320 + 27µ3µ6

640

`11
δ `

12
δ `

22
δ = µ1(`11

δ )2

8 − 3µ2`
11
δ `

12
δ

20 + µ3(`12
δ )2

16 + 7µ3`
11
δ `

22
δ

80 − 3µ4`
12
δ `

22
δ

20 + µ5(`22
δ )2

8 − µ2µ3`
11
δ

400

+ µ1µ4`
11
δ

160 + µ5`
11
δ

32 + µ2
3`

12
δ

80 − 9µ2µ4`
12
δ

400 + µ6`
12
δ

16 − µ3µ4`
22
δ

400 + µ2µ5`
22
δ

160 + µ1µ6`
22
δ

32

− 9µ3
3

25600 + 19µ2µ3µ4

16000 − 3µ1µ
2
4

1600 −
3µ2

2µ5

1600 + µ1µ3µ5

256 − µ4µ5

320 −
µ1µ2µ6

320 + 9µ3µ6

640 (D.1a)
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(`12
δ )2`22

δ =− (`11
δ )2

4 + µ1`
11
δ `

12
δ

4 − 3µ2(`12
δ )2

20 + µ3`
12
δ `

22
δ

20

− µ1µ3`
11
δ

160 + µ4`
11
δ

20 + 3µ2µ3`
12
δ

400 − µ1µ4`
12
δ

40 − µ
2
3`

22
δ

1600 + µ6`
22
δ

4

− 3µ2µ
2
3

32000 + µ1µ3µ4

1600 −
µ2

4
400−

µ2
1µ6

64 + 3µ2µ6

80

`11
δ (`22

δ )2 = 5(`11
δ )2

4 − 3µ1`
11
δ `

12
δ

4 + µ2(`12
δ )2

4 + µ2`
11
δ `

22
δ

5 − µ3`
12
δ `

22
δ

4 + µ4(`22
δ )2

10 − µ
2
2`

11
δ

100

+ 3µ1µ3`
11
δ

160 + µ2µ3`
12
δ

80 − µ1µ4`
12
δ

20 + µ5`
12
δ

8 + µ2
3`

22
δ

160 −
µ2µ4`

22
δ

50 + µ1µ5`
22
δ

16

− µ6`
22
δ

4 − 3µ2µ
2
3

6400 + µ2
2µ4

1000 + µ1µ3µ4

800 − µ
2
4

80 −
µ1µ2µ5

160 + 9µ3µ5

320 + µ2
1µ6

64 −
3µ2µ6

80

`12
δ (`22

δ )2 = `11
δ `

12
δ

4 − µ1(`12
δ )2

8 + µ1`
11
δ `

22
δ

8 − µ2`
12
δ `

22
δ

20 + µ3(`22
δ )2

40 − µ1µ2`
11
δ

80

+ 9µ3`
11
δ

160 + 3µ2
2`

12
δ

200 − µ1µ3`
12
δ

40 − µ4`
12
δ

40 + µ2µ3`
22
δ

800 − µ1µ4`
22
δ

80 (D.1b)

+ µ5`
22
δ

8 − 3µ2
2µ3

8000 + 9µ1µ
2
3

12800 + µ1µ2µ4

800 − 9µ3µ4

1600 −
µ2

1µ5

128 + 3µ2µ5

160

(`22
δ )3 = `11

δ `
22
δ −

(`12
δ )2

4 − µ1`
12
δ `

22
δ

4 + µ2(`22
δ )2

20 − µ
2
1`

11
δ

16 + 3µ2`
11
δ

20 + µ1µ2`
12
δ

40 − 9µ3`
12
δ

80

+ µ2
2`

22
δ

50 − 9µ1µ3`
22
δ

160 + 3µ4`
22
δ

20 − 3µ3
2

2000 + 9µ1µ2µ3

1600 − 81µ2
3

6400 −
3µ2

1µ4

320 + 9µ2µ4

400
The following combination constructed from det `δ will also be useful,

(det `δ)`11
δ = µ2(`11

δ )2

10 − 3µ3`
11
δ `

12
δ

10 + µ4`
11
δ `

22
δ

5 + 2µ4(`12
δ )2

5 − µ5`
12
δ `

22
δ + 3µ6(`22

δ )2

2

−µ6`
11
δ

2 + µ1µ5`
11
δ

16 − µ2µ4`
11
δ

50 + 11µ2
3`

11
δ

1600 + µ1µ6`
12
δ

8 − µ2µ5`
12
δ

40

+µ3µ4`
12
δ

200 − µ2µ6`
22
δ

20 + µ3µ5`
22
δ

40 − µ2
4`

22
δ

100 −
3µ4µ6

40 + µ2
5

32 (D.2)

−µ1µ4µ5
160 + 9µ1µ3µ6

320 − µ2
2µ6

100 + µ2µ3µ5
1600 + µ2µ

2
4

1000 −
3µ2

3µ4
8000

E Modular tensors Mw

This appendix gathers definitions and components of the modular tensors Mw constructed
from symmetric polynomials µm in the branch points ui. The outer products of M1 and
the Mw≤6 tensors in this appendix span the irreducible representations of SL(2,C) in the
decomposition of 7⊗s≤6 noted in the black entries of table 2.

E.1 List of components of tensors M2 and M3

In this appendix we provide the expressions in terms of polynomials in µm, for the compo-
nents of the scalar M2; of the rank 4 and rank 8 totally symmetric tensors M2; and of the
rank 2 and rank 6 totally symmetric tensors M3, defined in (4.21) and (4.22), respectively.

The scalar M2 is given by,

M2 = µ0µ6 −
µ1µ5

6 + µ2µ4
15 − µ2

3
40 (E.1)
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The tensor Ma1···a4
2 transforms under the 5 of SL(2,C), and its components are given by,

M1111
2 = µ2µ6

15 − µ3µ5
30 + µ2

4
75 M2222

2 = µ0µ4
15 − µ1µ3

30 + µ2
2

75
M1112

2 = µ1µ6
12 − µ2µ5

60 + µ3µ4
300 M1222

2 = µ0µ5
12 − µ1µ4

60 + µ2µ3
300

M1122
2 = µ2

3
300 −

µ2µ4
150 + µ0µ6

6 (E.2)

The components of Ma1···a8
2 are given as follows,

M1···1
2 = µ4µ6

15 − µ2
5

36 M2···2
2 = µ0µ2

15 − µ2
1

36
M1···12

2 = µ3µ6
40 − µ4µ5

180 M12···2
2 = µ0µ3

40 − µ1µ2
180

M1···122
2 = µ2µ6

70 + µ3µ5
840 −

µ2
4

630 M112···2
2 = µ0µ4

70 + µ1µ3
840 −

µ2
2

630
M1···1222

2 = µ1µ6
84 + µ2µ5

315 −
µ3µ4
840 M1112···2

2 = µ0µ5
84 + µ1µ4

315 −
µ2µ3
840

M11112222
2 = µ0µ6

70 + µ1µ5
180 + µ2µ4

3150 −
µ2

3
1400 (E.3)

The components of the tensor Ma1a2
3 are given by,

M11
3 = 2µ0µ4µ6

15 − µ1µ3µ6
20 + 4µ2

2µ6
225 − µ0µ

2
5

18 + µ1µ4µ5
90 − µ2µ3µ5

900 − 2µ2µ
2
4

1125 + µ2
3µ4

1500

M12
3 = µ0µ3µ6

20 − µ1µ2µ6
90 − µ0µ4µ5

90 − µ1µ3µ5
90 + µ2

2µ5
150 + µ1µ

2
4

150 −
17µ2µ3µ4

4500 + µ3
3

1000

M22
3 = 2µ0µ2µ6

15 − µ0µ3µ5
20 + 4µ0µ

2
4

225 − µ2
1µ6
18 + µ1µ2µ5

90 − µ1µ3µ4
900 − 2µ2

2µ4
1125 + µ2µ

2
3

1500 (E.4)

Finally, the components of Ma1···a6
3 work out as follows,

M111111
3 = µ0µ

2
6

6 − µ1µ5µ6
36 − µ2µ4µ6

450 + µ2
3µ6

300 + µ2µ
2
5

180 −
µ3µ4µ5

300 + µ3
4

1125

M111112
3 = µ0µ5µ6

36 + µ2µ3µ6
300 − µ2

3µ5
900 + µ3µ

2
4

4500 −
µ1µ4µ6

90 + µ2µ4µ5
900

M111122
3 = −µ0µ4µ6

450 + µ0µ
2
5

180 −
µ2µ3µ5

2250 − µ1µ3µ6
300 + µ2

2µ6
375 −

µ2
3µ4

5625 + 7µ2µ
2
4

11250 −
µ1µ4µ5

900

M111222
3 = −µ0µ3µ6

150 + µ0µ4µ5
300 + 2µ2µ3µ4

5625 − µ1µ3µ5
450 + µ2

2µ5
4500 + µ1µ2µ6

300 − µ3
3

7500 + µ1µ
2
4

4500

M112222
3 = −µ0µ2µ6

450 + µ2
1µ6

180 −
µ1µ3µ4

2250 − µ0µ3µ5
300 + µ0µ

2
4

375 −
µ2µ

2
3

5625 + 7µ2
2µ4

11250 −
µ1µ2µ5

900

M122222
3 = µ0µ1µ6

36 + µ0µ3µ4
300 − µ1µ

2
3

900 + µ2
2µ3

4500 −
µ0µ2µ5

90 + µ1µ2µ4
900

M222222
3 = µ2

0µ6
6 − µ0µ1µ5

36 − µ0µ2µ4
450 + µ0µ

2
3

300 + µ2
1µ4

180 −
µ1µ2µ3

300 + µ3
2

1125 (E.5)

We note in every multiplet the invariance under inversion which swaps the top and bottom
component along with the other pairs.
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E.2 Higher-rank tensors Mw at 4 ≤ w ≤ 6

Similar to the modular tensors Mw=2,3 introduced in (4.21) and (4.22), we shall here
introduce shorthands Mw=4,5,6 that are used in higher-order computations such as section 6
or (H.28). At degree four in the µm, we have,

M4 = 1
2Ma1a2a3a4

2 Mb1b2b3b4
2 εa1b1εa2b2εa3b3εa4b4

Ma1a2a3a4
4 = 1

2Mb1b2(a1a2
2 Ma3a4)c1c2

2 εb1c1εb2c2 (E.6)

with highest weight components,

M4 = µ4
3

30000 −
µ2µ

2
3µ4

5625 + 7µ2
2µ

2
4

22500 −
µ1µ3µ

2
4

4500 + µ0µ
3
4

1125 −
µ2

2µ3µ5
4500 + µ1µ

2
3µ5

900

− µ1µ2µ4µ5
900 − µ0µ3µ4µ5

300 + µ0µ2µ
2
5

180 + µ3
2µ6

1125 −
µ1µ2µ3µ6

300

+ µ0µ
2
3µ6

300 + µ2
1µ4µ6
180 − µ0µ2µ4µ6

450 − µ0µ1µ5µ6
36 + µ2

0µ
2
6

12 (E.7)

M1111
4 = µ2

3µ
2
4

30000 −
µ2µ

3
4

11250 −
µ3

3µ5
9000 + µ2µ3µ4µ5

3000 − µ2
2µ

2
5

3600 + µ2µ
2
3µ6

4500 − µ2
2µ4µ6
2250

− µ1µ3µ4µ6
1800 + µ0µ

2
4µ6

450 + µ1µ2µ5µ6
360 − µ0µ3µ5µ6

180 − µ2
1µ

2
6

144 + µ0µ2µ
2
6

90

We furthermore employ a two-tensor at degree five and a scalar of degree six,

Ma1a2
5 = Ma1a2b1b2

2 Mc1c2
3 εb1c1εb2c2

M6 = 1
2Ma1a2

3 Mb1b2
3 εa1b1εa2b2 (E.8)

with highest weight components,

M11
5 = − µ4

3µ4
225000 + 2µ2µ

2
3µ

2
4

84375 − µ2
2µ

3
4

84375 −
µ1µ3µ

3
4

16875 + 4µ0µ
4
4

16875 + µ2µ
3
3µ5

135000 −
7µ2

2µ3µ4µ5
67500

+ µ1µ
2
3µ4µ5

6750 + µ1µ2µ
2
4µ5

3375 − 4µ0µ3µ
2
4µ5

3375 + µ3
2µ

2
5

4500 −
µ1µ2µ3µ

2
5

1350 + µ0µ
2
3µ

2
5

675

+ 7µ2
2µ

2
3µ6

67500 − µ1µ
3
3µ6

3000 − 4µ3
2µ4µ6

16875 + 13µ1µ2µ3µ4µ6
13500 + µ0µ

2
3µ4µ6

4500 − µ2
1µ

2
4µ6

540

+ 2µ0µ2µ
2
4µ6

1125 − µ1µ
2
2µ5µ6

1350 + µ2
1µ3µ5µ6

270 − 17µ0µ2µ3µ5µ6
2700 + µ0µ1µ4µ5µ6

270

− µ2
0µ

2
5µ6

108 − µ2
1µ2µ

2
6

540 + 8µ0µ
2
2µ

2
6

675 − µ0µ1µ3µ
2
6

60 + µ2
0µ4µ

2
6

45 (E.9)
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as well as

M6 =− µ6
3

1000000 +µ2µ
4
3µ4

125000−
337µ2

2µ
2
3µ

2
4

20250000 −
19µ1µ

3
3µ

2
4

1350000 + 4µ3
2µ

3
4

1265625 + 53µ1µ2µ3µ
3
4

1012500 +µ0µ
2
3µ

3
4

84375

− µ2
1µ

4
4

22500−
8µ0µ2µ

4
4

253125 −
19µ2

2µ
3
3µ5

1350000 +µ1µ
4
3µ5

45000 + 53µ3
2µ3µ4µ5

1012500 − 11µ1µ2µ
2
3µ4µ5

162000 −µ0µ
3
3µ4µ5

90000

− 13µ1µ
2
2µ

2
4µ5

101250 + 11µ2
1µ3µ

2
4µ5

81000 −µ0µ2µ3µ
2
4µ5

67500 + 7µ0µ1µ
3
4µ5

20250 − µ4
2µ

2
5

22500 + 11µ1µ
2
2µ3µ

2
5

81000

−µ
2
1µ

2
3µ

2
5

8100 +µ0µ2µ
2
3µ

2
5

54000 +µ2
1µ2µ4µ

2
5

8100 +µ0µ
2
2µ4µ

2
5

4050 −µ0µ1µ3µ4µ
2
5

1350 −µ
2
0µ

2
4µ

2
5

900 −µ0µ1µ2µ
3
5

1620

+µ2
0µ3µ

3
5

360 +µ3
2µ

2
3µ6

84375 −
µ1µ2µ

3
3µ6

90000 −µ0µ
4
3µ6

10000 −
8µ4

2µ4µ6
253125 −

µ1µ
2
2µ3µ4µ6

67500 +µ2
1µ

2
3µ4µ6

54000

+µ0µ2µ
2
3µ4µ6

1800 +µ2
1µ2µ

2
4µ6

4050 − 8µ0µ
2
2µ

2
4µ6

50625 − 23µ0µ1µ3µ
2
4µ6

13500 + 8µ2
0µ

3
4µ6

3375 + 7µ1µ
3
2µ5µ6

20250

−µ
2
1µ2µ3µ5µ6

1350 − 23µ0µ
2
2µ3µ5µ6

13500 + 13µ0µ1µ
2
3µ5µ6

3600 −µ
3
1µ4µ5µ6
1620 + 11µ0µ1µ2µ4µ5µ6

4050

−µ
2
0µ3µ4µ5µ6

180 +µ0µ
2
1µ

2
5µ6

324 −µ
2
0µ2µ

2
5µ6

135 −µ
2
1µ

2
2µ

2
6

900 + 8µ0µ
3
2µ

2
6

3375 +µ3
1µ3µ

2
6

360

−µ0µ1µ2µ3µ
2
6

180 −µ
2
0µ

2
3µ

2
6

400 −µ0µ
2
1µ4µ

2
6

135 + 4µ2
0µ2µ4µ

2
6

225 (E.10)

F Proof of the lemmas for Qδ

In this appendix, we provide the proofs for the Lemmas 5.1 and 5.2 that reduce Qδ(1, 3|2, 4)
and Qδ(1, 3, 5|2, 4, 6) to the spin structure dependent polynomial Lδ(i, j) and the spin
structure independent polynomial Z(i, j).

F.1 Proof of Lemma 5.1

Lemma 5.1 provides an expression for Qδ(1, 3|2, 4) in terms of Lδ(i, j) and Z(i, j), which we
prove in this appendix. The starting point consists of the expression (3.35) for Qδ(1, 3|2, 4)
in terms of Pδ(1, 2, 3, 4) and Qδ(i|j) for various values of i, j; the relation between Pδ and
Πδ in (3.41); and the expression for Πδ in terms of the partially symmetric polynomials
α1, α2, β1, β2 given in (3.42). Combining these relations, we obtain the following expression
for Qδ(1, 3|2, 4) in terms of Πδ(1, 2, 3, 4) and Qδ(i|j),

Qδ(1, 3|2, 4) = x12x23x34x41 Πδ(1, 2, 3, 4)− s2
1s

2
3 − s2

2s
2
4

+
(1

2s
2
1
(
Qδ(2|3) +Qδ(3|4)−Qδ(2|4)

)
+ cycl(1, 2, 3, 4)

)
(F.1)

where Πδ is given in terms of α1, α2, β1, β2 by,

Πδ(1, 2, 3, 4) = 1
2
(
X1,2 + α1Y1,2 + α2

)(
X2,3 + β1Y2,3 + β2

)(
X3,4 + α1Y3,4 + α2

)
×
(
X4,1 + β1Y4,1 + β2

)
+ (α↔ β) (F.2)

The polynomials Qδ(i|j) on the second line of (F.1) may be readily expressed in terms
of Lδ(i, j) and Z(i, j) using Theorem 3.2. Furthermore, Lemma 3.4 prescribes that the
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spin structure dependence of Πδ(1, 2, 3, 4) may be expressed as a polynomial in `abδ whose
total degree is 2. Combining these observations shows that all spin structure dependence
of Qδ(1, 3|2, 4) may be reduced to a degree-two polynomial in `abδ . Below we shall extract
the terms bilinear, linear, and independent in `δ.

F.1.1 Terms bilinear in `δ

The contributions to (F.1) bilinear in `δ can arise only from Πδ and are readily extracted
from (F.2). They may be regrouped entirely in terms of the functions Lδ of Theorem 3.2,

Qδ(1, 3|2, 4)
∣∣∣
`2
δ

= 8x12x23x34x41
(
Lδ(1, 2)Lδ(3, 4) + Lδ(1, 4)Lδ(2, 3)

)
(F.3)

F.1.2 Terms linear in `δ

The contributions to (F.1) linear in `δ may be parametrized by a symmetric rank-two
SL(2,C) tensor Hab, which is independent of the spin structure δ,

Qδ(1, 3|2, 4)
∣∣∣
`1
δ

= Ha1a2(1, 2, 3, 4) `b1b2
δ εa1b1εa2b2 (F.4)

The coefficients of `δ in Qδ(i|j) and Πδ(1, 2, 3, 4) are homogeneous of degree 1 in the sym-
metric polynomials µm (including µ0 = 1 for homogeneity where needed), so that the tensor
H must be homogeneous of degree 1 in µm or equivalently, using (3.30), in the tensor M1.

Homogeneity of the tensor H in M1 allows us to parametrize Ha1a2 as follows,

Ha1a2(1, 2, 3, 4) = Mb1···b6
1 Ha1a2|c1···c6

1 (1, 2, 3, 4) εb1c1 · · · εb6c6 (F.5)

where the tensor H1 depends on x1, x2, x3, x4 but is independent of µm. To determine
the components of H and H1, we proceed as follows. The symmetric rank-two tensor
H transforms under the 3 of SL(2,C). As a result H is determined completely by the
lowest weight component H22 or equivalently by H22|c1···c6

1 . The components of H22|c1···c6
1

may be determined in turn by successively applying the translation generator T to its
component H22|111111

1 . As usual, the remaining components of H1 may be determined by
applying the inversion generator S. Finally, the components H22|111111

1 may be obtained

– 65 –



J
H
E
P
0
5
(
2
0
2
3
)
0
7
3

from Qδ(1, 3|2, 4) in (F.1) by extracting the terms linear in `δ and proportional to µ0,12

H22|111111
1 = 2x3

1x
3
3x

2
24 − 4x3

1x
3
2x

2
34 + cycl(1, 2, 3, 4)

H22|211111
1 = (x3

1x
2
3 + x2

1x
3
3)x2

24 − 2(x3
1x

2
2 + x2

1x
3
2)x2

34 + cycl(1, 2, 3, 4)

H22|221111
1 = 2

5(x3
1x3 + x1x

3
3 + 3x2

1x
2
3)x2

24 −
4
5(x3

1x2 + x1x
3
2 + 3x2

1x
2
2)x2

34 + cycl(1, 2, 3, 4)

H22|222111
1 = 1

10(x3
1 + x3

3 + 9x2
1x3 + 9x1x

2
3)x2

24 + cycl(1, 2, 3, 4)

−1
5(x3

1 + x3
2 + 9x2

1x2 + 9x1x
2
2)x2

34 + cycl(1, 2, 3, 4)

H22|222211
1 = 2

5(x2
1 + x2

3 + 3x1x3)x2
24 −

4
5(x2

1 + x2
2 + 3x1x2)x2

34 + cycl(1, 2, 3, 4)

H22|222221
1 = (x1 + x3)x2

24 − 2(x1 + x2)x2
34 + cycl(1, 2, 3, 4)

H22|222222
1 = 2x2

24 − 4x2
34 + cycl(1, 2, 3, 4) (F.6)

Appealing to the components of the tensor Xij which were defined in (3.30), we may
recast the above expressions and its corresponding expressions for H12|c1···c6

1 and H11|c1···c6
1

as follows,

H22|c1···c6
1 = 2Xc1···c6

13 x2
24 − 4Xc1···c6

12 x2
34 + cycl(1, 2, 3, 4)

H12|c1···c6
1 = Xc1···c6

13 (x2 + x4)x2
24 − 2Xc1···c6

12 (x3 + x4)x2
34 + cycl(1, 2, 3, 4)

H11|c1···c6
1 = 2Xc1···c6

13 x2x4x
2
24 − 4Xc1···c6

12 x3x4x
2
34 + cycl(1, 2, 3, 4) (F.7)

The coefficients of x2
24X13 and x2

34X12 contract with the tensor `δ to form the combinations
Lδ, and contracting with the tensor M1 to produce H, we obtain,

Ha1a2(1, 2, 3, 4) `b1b2
δ εa1b1εa2b2

= Ma1···a6
1

(
2Xb1···b6

13 x2
24Lδ(2, 4)− 4Xb1···b6

12 x2
34Lδ(3, 4)

)
εa1b1 · · · εa6b6 + cycl(1, 2, 3, 4)

= 2Z(1, 3)x2
24Lδ(2, 4)− 4Z(1, 2)x2

34Lδ(3, 4) + cycl(1, 2, 3, 4) (F.8)

where we have used the definition of Z(i, j) in (3.29) to present the result in its final from
on the last line above. In summary, we have,

Qδ(1, 3|2, 4)
∣∣∣
`1
δ

= 2Z(1, 3)x2
24 Lδ(2, 4)− 4Z(1, 2)x2

34 Lδ(3, 4) + cycl(1, 2, 3, 4) (F.9)

F.1.3 Terms independent of `δ

Extracting the terms independent of `δ from the expression for Qδ(1, 3|2, 4) given in (F.1),
we observe that they are homogeneous of degree 2 in µm (including µ0 = 1 for homogeneity

12The tensor H1 is symmetric in its first two indices and separately symmetric in its last six indices but it
is not symmetric in all its indices. Therefore, it corresponds to a reducible representation of SL(2,C), whose
dimension is 21, and which is readily identified as 9⊕ 7⊕ 5 of SL(2,C). One verifies that T H22|222222

1 = 0
as expected. One also readily verifies that the tensor H1 is not totally symmetric by evaluating for example
the component H22|222221

1 −H12|222222
1 = 2(x1 + x3 − x2 − x4)(x1 + x2 − x3 − x4)(x1 + x4 − x2 − x3) 6= 0.
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where needed) and thus are also homogeneous of degree 2 in M1. Collecting all terms and
expressing the result in terms of the tensors M1 and Xij , we find,

Qδ(1, 3|2, 4)
∣∣∣
`0
δ

= 2(M1 ·X12)(M1 ·X34) + 2(M1 ·X23)(M1 ·X41)

−2(M1 ·X13)(M1 ·X24) (F.10)

Expressing the contractions M1 · Xij = Ma1···a6
1 Xb1···b6

ij εa1b1 · · · εa6b6 in terms of Z(i, j)
using (3.29), we obtain our final expression for the `δ-independent contribution Z4 in (5.8),

Qδ(1, 3|2, 4)
∣∣∣
`0
δ

= 2Z(1, 2)Z(3, 4) + 2Z(2, 3)Z(4, 1)− 2Z(1, 3)Z(2, 4) (F.11)

Assembling all contributions to Qδ(1, 3|2, 4), we recover the result of (5.7) and thereby have
completed the proof of Lemma 5.1.

F.2 Proof of Lemma 5.2

The function Qδ(1, 3, 5|2, 4, 6) is given in terms of Πδ(1, · · · , 6) = Πδ(1, 2, 3, 4, 5, 6), as well
as Qδ(i, j|k, l) and Qδ(i|j) by (3.36) and (3.41) for n = 6, and takes the following form,

Qδ(1, 3, 5|2, 4, 6) = x12x23x34x45x56x61 Πδ(1, · · · , 6) + s2
1s

2
3s

2
5 + s2

2s
2
4s

2
6

−
(1

2s
2
1
(
Qδ(2, 4|3, 6) +Qδ(2, 5|4, 6)−Qδ(2, 4|3, 5)−Qδ(2, 5|3, 6)−Qδ(3, 5|4, 6)

)
+ 1

4s
2
1s

2
4
(
Qδ(2|5) +Qδ(3|6)−Qδ(2|6)−Qδ(3|5)

)
(F.12)

+ 1
2s

2
1s

2
3
(
Qδ(4|5) +Qδ(5|6)−Qδ(4|6)

)
+ cycl(1, 2, 3, 4, 5, 6)

)
Since the functions Qδ(i|j) and Qδ(i, j|k, l) were already expressed in terms of Lδ(i, j) and
Z(i, j) in equations (5.1) and (5.7), it remains only to show that Πδ(1, · · · , 6) may also be
decomposed in terms of these functions. The starting point is formula (3.42) for the case
n = 6,

Πδ(1, · · · , 6) =
(
X1,2 + α1Y1,2 + α2

)(
X3,4 + α1Y3,4 + α2

)(
X5,6 + α1Y5,6 + α2

)
×
(
X2,3 + β1Y2,3 + β2

)(
X4,5 + β1Y4,5 + β2

)(
X6,1 + β1Y6,1 + β2

)
+(α↔ β) (F.13)

By Lemma 3.4 all spin structure dependence of Πδ(1, · · · , 6) resides in a polynomial in
`abδ of degree 3, containing trilinear, bilinear, linear and `δ-independent terms. The re-
duction of the dependence of Πδ on α1, α2, β1, β2 to its expression in terms of `δ may be
carried out with the algorithm used in appendix B, and is best performed using maple or
mathematica.

F.2.1 Terms trilinear in `δ
From the outset the case n = 6 involves an important new twist, whose presence will
persist to all higher orders n ≥ 3. Indeed, the trilinear relations of Theorem 4.2, written
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out in components in Corollary D.1 of appendix D, guarantee that all trilinear dependence
on `δ may be reduced to a polynomial in `δ of degree 2. Thus, we are faced with a choice as
to how the final expressions for Πδ(1, · · · , 6) and Qδ(1, 3, 5|2, 4, 6) should be presented. A
propitious choice turns out to be one that naturally generalizes the structure of Qδ(i|j) and
Qδ(i, j|k, l), namely whose top power is represented by a sum of cyclic products of Lδ func-
tions. As no trilinear contribution to Qδ(1, 3, 5|2, 4, 6) arise from Qδ(i|j) and Qδ(i, j|k, l)
all trilinear terms arise from Πδ(1, · · · , 6) and may be brought into the following form,

Qδ(1, 3, 5|2, 4, 6)
∣∣∣
`3
δ

= 32x12 x23 x34 x45 x56 x61 (F.14)

×
(
Lδ(1, 2)Lδ(3, 4)Lδ(5, 6) + Lδ(2, 3)Lδ(4, 5)Lδ(6, 1)

)
as seen the first line of (5.15). Actually, the straightforward reduction of the product
in (F.13), following the algorithm of appendix B, will produce, in addition to the trilinear
contribution of (F.14), also a single term proportional to (`22

δ )3. The precise form of this
extra term will, in general, depend on exactly how the reduction is carried out as different
reduction algorithms may dissimulate the trilinear relations in different ways. Whatever
the extra terms may be, it will be our choice to convert all trilinear terms, other than
those collected in (F.14), into a degree two polynomial in `δ. In the sequel, we shall
assume that these operations have been carried out.

F.2.2 Terms bilinear in `δ
Having eliminated the (`22

δ )3 term using the trilinear relations, as explained above, we
isolate the contributions bilinear in `δ. This process yields a unique answer. The terms
bilinear in `δ transform under the representation 3⊗3 of SL(2,C) with identical 3-vectors.
This representation reduces to 1⊕5, namely the singlet det (`δ) and the totally symmetrized
combination. Accordingly, the terms bilinear in `δ may be parametrized as follows,

Qδ(1, 3, 5|2, 4, 6)
∣∣∣
`2
δ

= K1 det (`δ) + Ka1a2a3a4
5 `b1b2

δ `b3b4
δ εa1b1 · · · εa4b4 (F.15)

where the SL(2,C) scalar K1 and the symmetric rank-four tensor K5 depend only on xi
and µm. Inspection of the terms in Qδ(i|j), Qδ(i, j|k, l) and Πδ(1, · · · , 6) shows that their
dependence on µm is via a homogeneous polynomial of degree 1, so that they must be
linear in the tensor M1.

• Evaluating the contribution of K5. To determine the symmetric tensor K5
in (F.15), it suffices to start from its lowest weight vector K2222

5 which we obtain using
maple analysis, and immediately re-express in terms of the functions Z(i, j) as follows,

K2222
5 = 16Z(1, 2)x34 x45 x56 x63 − 16Z(1, 3)x24 x45 x56 x62

+8Z(1, 4)x23 x35 x56 x62 + cycl(1, · · · , 6) (F.16)

Cyclic permutations cycl(1, · · · , 6) = cycl(1, 2, 3, 4, 5, 6) are to be applied to both lines. To
obtain the other components of the symmetric tensor K5, we use the familiar methods of

– 68 –



J
H
E
P
0
5
(
2
0
2
3
)
0
7
3

group theory: we obtain K1111
5 from K2222

5 by applying the inversion generator S,

K1111
5 = 16Z(1, 2)x34 x45 x56 x63 x3 x4 x5 x6 − 16Z(1, 3)x24 x45 x56 x62 x2 x4 x5 x6

+8Z(1, 4)x23 x35 x56 x62 x2 x3 x5 x6 + cycl(1, · · · , 6) (F.17)

and then use the T generator to obtain the remaining descendant components,

K1112
5 = 4Z(1, 2)x34 x45 x56 x63 (x4 x5 x6 + x3 x5 x6 + x3 x4 x6 + x3 x4 x5)

−4Z(1, 3)x24 x45 x56 x62 (x4 x5 x6 + x2 x5 x6 + x2 x4 x6 + x2 x4 x5)
+2Z(1, 4)x23 x35 x56 x62 (x2 x5 x6 + x3 x5 x6 + x3 x2 x6 + x3 x2 x5)
+cycl(1, · · · , 6)

3 K1122
5 = 8Z(1, 2)x34 x45 x56 x63 (x3x4 + x3x5 + x3x6 + x4x5 + x4x6 + x5x6)

−8Z(1, 3)x24 x45 x56 x62 (x2x4 + x2x5 + x2x6 + x4x5 + x4x6 + x5x6)
+4Z(1, 4)x23 x35 x56 x62 (x3x2 + x3x5 + x3x6 + x2x5 + x2x6 + x5x6)
+cycl(1, · · · , 6)

K1222
5 = 4Z(1, 2)x34 x45 x56 x63 (x3 + x4 + x5 + x6)

−4Z(1, 3)x24 x45 x56 x62 (x2 + x4 + x5 + x6)
+2Z(1, 4)x23 x35 x56 x62 (x3 + x2 + x5 + x6)
+cycl(1, · · · , 6) (F.18)

It is readily verified that T K1222
5 = K2222

5 from this last explicit expression, as expected.
Expressing the result in terms of the functions Lδ(i, j) and Z(i, j), we obtain,

Ka1a2a3a4
5 `b1b2

δ `b3b4
δ εa1b1 · · ·εa4b4 = 16

3 x34x45x56x63Z(1,2)
{
Lδ(3,4)Lδ(5,6)+cycl(4,5,6)

}
−16

3 x24x45x56x62Z(1,3)
{
Lδ(2,4)Lδ(5,6)+cycl(4,5,6)

}
+8

3 x23x35x56x62Z(1,4)
{
Lδ(2,3)Lδ(5,6)+cycl(3,5,6)

}
+cycl(1, · · · ,6) (F.19)

The instruction to add cyclic permutations applies to the entire expression on the right
side.

• Evaluating the contribution of K1. The singlet contribution K1 is homogeneous of
degree one in µm and may be expressed as the contraction of M1 with a tensor K0 which
has rank 6 and only depends on xi,

K1 = Ma1···a6
1 Kb1···b6

0 εa1b1 · · · εa6b6 (F.20)

The lowest weight component K222222
0 of the tensor K0 may be obtained using maple,

K222222
0 = −8

3 x
2
12 x23 x

2
34 x41 −

8
3 x12 x

2
23 x34 x

2
41 −

4
3 x

2
12 x24 x

2
45 x51

+8
3 x

2
12 x23 x

2
35 x51 + 8

3 x12 x
2
23 x35 x

2
51 −

4
3 x12 x

2
24 x45 x

2
51

+cycl(1, · · · , 6) (F.21)
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Since it is a sum of products of differences xij , we manifestly have T K222222
0 = 0 as

expected. By inversion, we get,

K111111
0 = −8

3 x
2
12 x23 x

2
34 x41 x

3
5x

3
6 −

8
3 x12 x

2
23 x34 x

2
41 x

3
5x

3
6 −

4
3 x

2
12 x24 x

2
45 x51 x

3
3x

3
6

+8
3 x

2
12 x23 x

2
35 x51 x

3
4x

3
6 + 8

3 x12 x
2
23 x35 x

2
51 x

3
4x

3
6 −

4
3 x12 x

2
24 x45 x

2
51 x

3
3x

3
6

+cycl(1, · · · , 6) (F.22)

The descent to obtain the remaining components of K0 by successively applying the gener-
ator T follows the pattern of the descent in the expression for Z(i, j) and may be verified
by a direct maple calculation, resulting in

K1 = −8
3x12x23x34x41(x12x34+x23x41)Z(5,6)− 4

3x12x24x45x51(x12x45+x24x51)Z(3,6)

+8
3x12x23x35x51(x12x35+x23x51)Z(4,6)+cycl(1,··· ,6) (F.23)

Upon multiplication with det (`δ), the contributions (xij xkl+xjk xli) in the round brackets
may be combined with the determinant via

xi` xjk det (`δ) = Lδ(i, j)Lδ(k, `)− Lδ(i, k)Lδ(j, `) (F.24)

and we obtain,

K1 det`δ = 8
3 x12x23x34x41Z(5,6)

(
Lδ(1,4)Lδ(2,3)+Lδ(1,2)Lδ(3,4)−2Lδ(1,3)Lδ(2,4)

)
+4

3 x12x24x45x51Z(3,6)
(
Lδ(1,5)Lδ(2,4)+Lδ(1,2)Lδ(4,5)−2Lδ(1,4)Lδ(2,5)

)
−8

3 x12x23x35x51Z(4,6)
(
Lδ(1,5)Lδ(2,3)+Lδ(1,2)Lδ(3,5)−2Lδ(1,3)Lδ(2,5)

)
+cycl(1, · · · ,6) (F.25)

To combine this expression with the contribution arising from K5, we cyclically permute
the arguments so that the functions Z are evaluated at Z(1, 2), Z(1, 3), and Z(1, 4) only,

K1 det`δ = 8
3 x34x45x56x63Z(1,2)

(
Lδ(3,6)Lδ(4,5)+Lδ(3,4)Lδ(5,6)−2Lδ(3,5)Lδ(4,6)

)
+4

3 x56x62x23x35Z(1,4)
(
Lδ(3,5)Lδ(2,6)+Lδ(5,6)Lδ(2,3)−2Lδ(2,5)Lδ(3,6)

)
−8

3 x45x56x62x24Z(1,3)
(
Lδ(2,4)Lδ(5,6)+Lδ(4,5)Lδ(2,6)−2Lδ(4,6)Lδ(2,5)

)
+cycl(1, · · · ,6) (F.26)

• Assembling the terms bilinear in `δ. Combining the contributions from K1
in (F.26) and K5 in (F.19), we have,

Qδ(1, 3, 5|2, 4, 6)
∣∣∣
`2
δ

= 8
[
Z(1, 2)Lδ(3, 4, 5, 6)− Z(1, 3)Lδ(2, 4, 5, 6)

+1
2Z(1, 4)Lδ(2, 3, 5, 6) + cycl(1, 2, · · · , 6)

]
(F.27)

where Lδ(a, b, c, d) is defined in (5.16).
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F.2.3 Terms linear in `δ
The terms linear in Lδ may be read off directly from the maple calculation, and we have,

Qδ(1, 3, 5|2, 4, 6)
∣∣∣
`1
δ

= −4x2
12 Lδ(1, 2)

(
Z(3, 4)Z(5, 6) + Z(3, 6)Z(4, 5)− Z(3, 5)Z(4, 6)

)
+4x2

13 Lδ(1, 3)
(
Z(2, 4)Z(5, 6) + Z(2, 6)Z(4, 5)− Z(2, 5)Z(4, 6)

)
−2x2

14 Lδ(1, 4)
(
Z(2, 3)Z(5, 6) + Z(3, 5)Z(2, 6)− Z(3, 6)Z(2, 5)

)
+cycl(1, · · · , 6) (F.28)

where the instruction to add cyclic permutations applies to all three lines. These contri-
butions are represented via permutations of ±4Z4(1, 2, 3, 4)Lδ(5, 6) in (5.15).

F.2.4 Contributions to Qδ(1, 3, 5|2, 4, 6) independent of `δ
The terms independent of `δ may be read off directly from the maple calculation,

Qδ(1, 3, 5|2, 4, 6)
∣∣∣
`0
δ

= 2
3 Z(1, 2)Z(3, 4)Z(5, 6)− 1

3 Z(1, 4)Z(2, 5)Z(3, 6)

+Z(1, 2)Z(3, 6)Z(4, 5) + Z(1, 3)Z(2, 5)Z(4, 6)
−2Z(1, 2)Z(3, 5)Z(4, 6) + cycl(1, · · · , 6) (F.29)

which matches twice the expression (5.17) for Z6(1, 2, 3, 4, 5, 6).

G Simplified cyclic products Cδ for 7 and 8 points

In this appendix, we generalize the simplified results of (5.1), (5.4), (5.9), (5.13) and (5.18)
for the cyclic products Cδ(1, · · · , n) = Cδ(z1, · · · , zn) to higher multiplicity n, with n = 7
in appendix G.1 and n = 8 in appendix G.2. Furthermore, we gather the numerators N(8)

of the eight-point spin structure sum (6.22) in appendix G.3. Throughout the points zi are
represented in the hyper-elliptic representation by zi = (xi, si).

G.1 Seven points

The spin structure dependence of the cyclic product of seven Szegö kernels may be iso-
lated based on the expressions for Qδ(1|2), Qδ(1, 3|2, 4) and Qδ(1, 3, 5|2, 4, 6) provided
in (5.1), (5.7) and (5.15), respectively, leading to,

Cδ(1, · · · , 7) =
{N (7)

δ [12]
4x12

+ N (7)
δ [1234]

16x12x23x34
+ N

(7)
δ [123, 45]

16x12x23x45
+ N

(7)
δ [123, 56]

16x12x23x56

+ N
(7)
δ [123, 67]

16x12x23x67
+ N

(7)
δ [12, 34, 56]
16x12x34x56

+ N (7)
δ [123456]

32x12x23x34x45x56

+ N (7)
δ [12345, 67]

32x12x23x34x45x67
+ N (7)

δ [1234, 567]
32x12x23x34x56x67

+ cycl(1, · · · , 7)
}

+ N (7)[1234567]
64x12x23x34x45x56x67x71

(G.1)
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The numerator function on one simultaneous pole is given by,

N (7)
δ [12] = dx1

(
Lδ(2, 3)Lδ(4, 5)Lδ(6, 7) + Lδ(2, 7)Lδ(3, 4)Lδ(5, 6)

)
(G.2)

+ dx2
(
Lδ(1, 3)Lδ(4, 5)Lδ(6, 7) + Lδ(1, 7)Lδ(3, 4)Lδ(5, 6)

)
The numerators on 3 simultaneous poles are conveniently expressed in terms of Lδ(a, b, c, d)
and W±3 defined in (5.20) and (5.5),

N (7)
δ [1234] = Lδ(4, 5, 6, 7)W+

3 (1, 2, 3) + Lδ(3, 5, 6, 7)W−3 (1, 2|4)
+ Lδ(2, 5, 6, 7)W−3 (3, 4|1) + Lδ(1, 5, 6, 7)W+

3 (2, 3, 4)

N (7)
δ [123, 45] = Lδ(3, 5, 6, 7)W−3 (1, 2|4) + Lδ(3, 4, 6, 7)W+

3 (1, 2, 5)
+ Lδ(2, 5, 6, 7)W−3 (3, 4|1) + Lδ(2, 4, 6, 7)W−3 (1, 5|3)
+ Lδ(1, 5, 6, 7)W+

3 (2, 3, 4) + Lδ(1, 4, 6, 7)W−3 (2, 3|5)

N (7)
δ [123, 56] = Lδ(3, 4, 6, 7)W+

3 (1, 2, 5) + Lδ(3, 4, 5, 7)W−3 (1, 2|6)
+ Lδ(2, 4, 6, 7)W−3 (1, 5|3) + Lδ(2, 4, 5, 7)W−3 (3, 6|1)
+ Lδ(1, 4, 6, 7)W−3 (2, 3|5) + Lδ(1, 4, 5, 7)W+

3 (2, 3, 6) (G.3)

as well as,

N (7)
δ [123, 67] = Lδ(3, 4, 5, 7)W−3 (1, 2|6) + Lδ(3, 4, 5, 6)W+

3 (7, 1, 2)
+ Lδ(2, 4, 5, 7)W−3 (3, 6|1) + Lδ(2, 4, 5, 6)W−3 (7, 1|3)
+ Lδ(1, 4, 5, 7)W+

3 (2, 3, 6) + Lδ(1, 4, 5, 6)W−3 (2, 3|7)

N (7)
δ [12, 34, 56] = Lδ(2, 4, 6, 7)W−3 (1, 5|3) + Lδ(2, 4, 5, 7)W−3 (3, 6|1)

+ Lδ(2, 3, 6, 7)W+
3 (1, 4, 5) + Lδ(2, 3, 5, 7)W−3 (1, 4|6)

+ Lδ(1, 4, 6, 7)W−3 (2, 3|5) + Lδ(1, 4, 5, 7)W+
3 (2, 3, 6)

+ Lδ(1, 3, 6, 7)W−3 (4, 5|2) + Lδ(1, 3, 5, 7)W−3 (2, 6|4) (G.4)

For the next set of numerators, on 5 simultaneous poles,

N (7)
δ [123456] = Lδ(6, 7)W+

5 (1, 2, 3, 4, 5) + Lδ(5, 7)W−5 (1, 2, 3, 4|6)
+ Lδ(4, 7)W−5 (1, 2, 3|5, 6) + Lδ(3, 7)W−5 (4, 5, 6|1, 2)
+ Lδ(2, 7)W−5 (3, 4, 5, 6|1) + Lδ(1, 7)W+

5 (2, 3, 4, 5, 6)

N (7)
δ [12345, 67] = Lδ(5, 7)W−5 (1, 2, 3, 4|6) + Lδ(5, 6)W+

5 (7, 1, 2, 3, 4)
+ Lδ(4, 7)W−5 (1, 2, 3|5, 6) + Lδ(4, 6)W−5 (7, 1, 2, 3|5)
+ Lδ(3, 7)W−5 (4, 5, 6|1, 2) + Lδ(3, 6)W−5 (7, 1, 2|4, 5)
+ Lδ(2, 7)W−5 (3, 4, 5, 6|1) + Lδ(2, 6)W−5 (3, 4, 5|7, 1)
+ Lδ(1, 7)W+

5 (2, 3, 4, 5, 6) + Lδ(1, 6)W−5 (2, 3, 4, 5|7)

N (7)
δ [1234, 567] = Lδ(4, 7)W−5 (1, 2, 3|5, 6) + Lδ(4, 6)W−5 (7, 1, 2, 3|5)

+ Lδ(4, 5)W+
5 (6, 7, 1, 2, 3) + Lδ(3, 7)W−5 (4, 5, 6|1, 2)

+ Lδ(3, 6)W−5 (7, 1, 2|4, 5) + Lδ(3, 5)W−5 (6, 7, 1, 2|4)
+ Lδ(2, 7)W−5 (3, 4, 5, 6|1) + Lδ(2, 6)W−5 (3, 4, 5|7, 1)
+ Lδ(2, 5)W−5 (6, 7, 1|3, 4) + Lδ(1, 7)W+

5 (2, 3, 4, 5, 6)
+ Lδ(1, 6)W−5 (2, 3, 4, 5|7) + Lδ(1, 5)W−5 (2, 3, 4|6, 7) (G.5)
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we need new building blocks W±5 that generalize the W±4 in (5.22). They are defined by,

W+
5 (a, b, c, d, e) = 1

2

{
W+

2 (a, b)W+
3 (c, d, e) +W+

2 (b, c)W+
3 (d, e, a)

+W+
2 (c, d)W+

3 (e, a, b) +W+
2 (d, e)W+

3 (a, b, c) +W+
2 (e, a)W+

3 (b, c, d)
}

− 1
2

{
W−2 (a, c)W−3 (d, e|b) +W−2 (b, d)W−3 (e, a|c)

+W−2 (c, e)W−3 (a, b|d) +W−2 (a, d)W−3 (b, c|e) +W−2 (b, e)W−3 (c, d|a)
}

+ dxadxcdxdW
−
2 (b, e) + dxbdxddxeW

−
2 (a, c) + dxadxcdxeW

−
2 (b, d)

+ dxadxbdxdW
−
2 (c, e) + dxbdxcdxeW

−
2 (a, d)− 4dxadxbdxcdxddxe (G.6)

as well as

W−5 (a, b, c, d|e) = 1
2

{
W+

2 (a, b)W−3 (c, d|e) +W+
2 (b, c)W−3 (d, a|e) +W+

2 (c, d)W−3 (a, b|e)

+W−2 (d, e)W+
3 (a, b, c) +W−2 (e, a)W+

3 (b, c, d)
}

− 1
2

{
W−2 (a, c)W−3 (b, e|d) +W−2 (b, d)W−3 (e, c|a) +W+

2 (c, e)W−3 (a, b|d)

+W−2 (a, d)W+
3 (b, c, e) +W+

2 (b, e)W−3 (c, d|a)
}

+ dxadxcdxdW
+
2 (b, e) + dxbdxddxeW

−
2 (a, c) + dxadxcdxeW

−
2 (b, d)

+ dxadxbdxdW
+
2 (c, e) + dxbdxcdxeW

−
2 (a, d)− 4dxadxbdxcdxddxe

W−5 (a, b, c|d, e) = 1
2

{
W+

2 (a, b)W−3 (d, e|c) +W+
2 (b, c)W−3 (d, e|a) +W−2 (c, d)W−3 (a, b|e)

+W+
2 (d, e)W+

3 (a, b, c) +W−2 (e, a)W−3 (b, c|d)
}

− 1
2

{
W−2 (a, c)W+

3 (b, d, e) +W+
2 (b, d)W−3 (e, c|a) +W+

2 (c, e)W+
3 (a, b, d)

+W+
2 (a, d)W+

3 (b, c, e) +W+
2 (b, e)W−3 (a, d|c)

}
+ dxadxcdxdW

+
2 (b, e) + dxbdxddxeW

−
2 (a, c) + dxadxcdxeW

+
2 (b, d)

+ dxadxbdxdW
+
2 (c, e) + dxbdxcdxeW

+
2 (a, d)− 4dxadxbdxcdxddxe (G.7)

Finally, the numerator on 7 simultaneous poles is given by

N (7)[1234567] =
( 7∏
j=1

dxj
sj

)(
s1s2 · · · s7 +

7∑
1≤i<j

Z(i, j)s1 · · · ŝi · · · ŝj · · · s7

+
7∑

1≤i<j<k<l
Z4(i, j, k, l)s1 · · · ŝi · · · ŝj · · · ŝk · · · ŝl · · · s7 (G.8)

+
{
s1Z6(2, 3, 4, 5, 6, 7) + cycl(1, · · · , 7)

})

where the notation ŝi in the first two lines instructs to omit the factor of si, and Z4, Z6
are defined in (5.8), (5.17).

G.2 Eight points

The spin structure dependence of the cyclic product of eight Szegö kernels is isolated
using the expressions for Qδ(1|2), Qδ(1, 3|2, 4), Qδ(1, 3, 5|2, 4, 6) and Qδ(1, 3, 5, 7|2, 4, 6, 8)
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provided in (5.1), (5.7), (5.15) and (5.31), respectively, leading to the following expression,

Cδ(1, · · · ,8) = 1
2Lδ(1,2)Lδ(3,4)Lδ(5,6)Lδ(7,8)+ 1

2Lδ(2,3)Lδ(4,5)Lδ(6,7)Lδ(8,1)

+
{N (8)

δ [123]
8x12x23

+N
(8)
δ [12,34]
8x12x34

+N
(8)
δ [12,45]
8x12x45

+N
(8)
δ [12,56]
16x12x56

+ N (8)
δ [12345]

32x12x23x34x45

+ N
(8)
δ [1234,56]

32x12x23x34x56
+ N

(8)
δ [1234,67]

32x12x23x34x67
+ N

(8)
δ [1234,78]

32x12x23x34x78
+N

(8)
δ [123,45,78]

32x12x23x45x78

+N
(8)
δ [123,56,78]

32x12x23x56x78
+N

(8)
δ [123,45,67]

32x12x23x45x67
+ N

(8)
δ [123,456]

32x12x23x45x56
+ N

(8)
δ [123,567]

64x12x23x56x67

+N
(8)
δ [12,34,56,78]

128x12x34x56x78
+ N (8)

δ [1234567]
64x12x23x34x45x56x67

+ N (8)
δ [123456,78]

64x12x23x34x45x56x78

+ N (8)
δ [12345,678]

64x12x23x34x45x67x78
+ N (8)

δ [1234,5678]
128x12x23x34x56x67x78

+cycl(1,2, · · · ,8)
}

+ N (8)[12345678]
128x12x23x34x45x56x67x78x81

(G.9)

The numerators along with two simultaneous poles are,

N (8)
δ [123] = W+

2 (1, 2)Lδ(3, 4, 5, 6, 7, 8) +W−2 (1, 3)Lδ(2, 4, 5, 6, 7, 8)
+W+

2 (2, 3)Lδ(4, 5, 6, 7, 8, 1)

N (8)
δ [12, 34] = W+

2 (1, 4)Lδ(2, 3, 5, 6, 7, 8) +W−2 (1, 3)Lδ(2, 4, 5, 6, 7, 8)
+W+

2 (2, 3)Lδ(4, 5, 6, 7, 8, 1) +W−2 (2, 4)Lδ(1, 3, 5, 6, 7, 8)

N (8)
δ [12, 45] = W+

2 (1, 4)Lδ(2, 3, 5, 6, 7, 8) +W−2 (1, 5)Lδ(2, 3, 4, 6, 7, 8)
+W+

2 (2, 5)Lδ(1, 3, 4, 6, 7, 8) +W−2 (2, 4)Lδ(1, 3, 5, 6, 7, 8)

N (8)
δ [12, 56] = W+

2 (1, 6)Lδ(2, 3, 4, 5, 7, 8) +W−2 (1, 5)Lδ(2, 3, 4, 6, 7, 8)
+W+

2 (2, 5)Lδ(1, 3, 4, 6, 7, 8) +W−2 (2, 6)Lδ(1, 3, 4, 5, 7, 8) (G.10)

where W±2 are defined in (5.2) and we introduced,

Lδ(a, b, c, d, e, f) = Lδ(a, b)Lδ(c, d)Lδ(e, f) + Lδ(b, c)Lδ(d, e)Lδ(f, a) (G.11)

see (5.20) and (5.22) for the analogous definition of Lδ(a, b, c, d) and W±4 . The numerators
along with four simultaneous poles are given by,

N (8)
δ [12345] = W+

4 (1, 2, 3, 4)Lδ(5, 6, 7, 8) +W−4 (1, 2, 3|5)Lδ(4, 6, 7, 8)
+W−4 (1, 2|4, 5)Lδ(3, 6, 7, 8) +W−4 (3, 4, 5|1)Lδ(2, 6, 7, 8)
+W+

4 (2, 3, 4, 5)Lδ(6, 7, 8, 1)

N (8)
δ [1234, 56] = W−4 (1, 2, 3|5)Lδ(4, 6, 7, 8) +W−4 (1, 2|4, 5)Lδ(3, 6, 7, 8)

+W−4 (3, 4, 5|1)Lδ(2, 6, 7, 8) +W+
4 (2, 3, 4, 5)Lδ(6, 7, 8, 1)

+W+
4 (1, 2, 3, 6)Lδ(4, 5, 7, 8) +W−4 (6, 1, 2|4)Lδ(3, 5, 7, 8)

+W−4 (3, 4|6, 1)Lδ(2, 5, 7, 8) +W−4 (2, 3, 4|6)Lδ(5, 7, 8, 1)

N (8)
δ [1234, 67] = W+

4 (1, 2, 3, 6)Lδ(4, 5, 7, 8) +W−4 (6, 1, 2|4)Lδ(3, 5, 7, 8)
+W−4 (3, 4|6, 1)Lδ(2, 5, 7, 8) +W−4 (2, 3, 4|6)Lδ(5, 7, 8, 1)
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+W−4 (1, 2, 3|7)Lδ(4, 5, 6, 8) +W−4 (1, 2|4, 7)Lδ(3, 5, 6, 8)
+W−4 (3, 4, 7|1)Lδ(2, 5, 6, 8) +W+

4 (2, 3, 4, 7)Lδ(5, 6, 8, 1)

N (8)
δ [1234, 78] = W−4 (1, 2, 3|7)Lδ(4, 5, 6, 8) +W−4 (1, 2|4, 7)Lδ(3, 5, 6, 8)

+W−4 (3, 4, 7|1)Lδ(2, 5, 6, 8) +W+
4 (2, 3, 4, 7)Lδ(5, 6, 8, 1)

+W+
4 (8, 1, 2, 3)Lδ(4, 5, 6, 7) +W−4 (8, 1, 2|4)Lδ(3, 5, 6, 7)

+W−4 (3, 4|8, 1)Lδ(2, 5, 6, 7) +W−4 (2, 3, 4|8)Lδ(5, 6, 7, 1)

N (8)
δ [123, 45, 78] = W−4 (1, 2|4, 7)Lδ(3, 5, 6, 8) +W−4 (8, 1, 2|4)Lδ(3, 5, 6, 7)

+W−4 (1, 2, 5|7)Lδ(3, 4, 6, 8) +W+
4 (1, 2, 5, 8)Lδ(3, 4, 6, 7)

+W−4 (3, 4, 7|1)Lδ(2, 5, 6, 8) +W−4 (8, 1|3, 4)Lδ(2, 5, 6, 7)
+W−4 (1|3|5|7)Lδ(2, 4, 6, 8) +W−4 (5, 8, 1|3)Lδ(2, 4, 6, 7)
+W+

4 (2, 3, 4, 7)Lδ(1, 5, 6, 8) +W−4 (2, 3, 4|8)Lδ(1, 5, 6, 7)
+W−4 (7, 2, 3|5)Lδ(1, 4, 6, 8) +W−4 (2, 3|5, 8)Lδ(1, 4, 6, 7)

N (8)
δ [123, 56, 78] = W−4 (1, 2, 5|7)Lδ(3, 4, 6, 8) +W−4 (1|3|5|7)Lδ(2, 4, 6, 8)

+W−4 (7, 2, 3|5)Lδ(1, 4, 6, 8) +W+
4 (8, 1, 2, 5)Lδ(3, 4, 6, 7)

+W−4 (5, 8, 1|3)Lδ(2, 4, 6, 7) +W−4 (2, 3|5, 8)Lδ(1, 4, 6, 7)
+W−4 (1, 2|6, 7)Lδ(3, 4, 5, 8) +W−4 (3, 6, 7|1)Lδ(2, 4, 5, 8)
+W+

4 (2, 3, 6, 7)Lδ(1, 4, 5, 8) +W−4 (8, 1, 2|6)Lδ(3, 4, 5, 7)
+W−4 (8, 1|3, 6)Lδ(2, 4, 5, 7) +W−4 (2, 3, 6|8)Lδ(1, 4, 5, 7)

N (8)
δ [123, 45, 67] = W−4 (6, 1, 2|4)Lδ(3, 5, 7, 8) +W−4 (6, 1|3, 4)Lδ(2, 5, 7, 8)

+W−4 (2, 3, 4|6)Lδ(1, 5, 7, 8) +W−4 (1, 2|4, 7)Lδ(3, 5, 6, 8)
+W−4 (3, 4, 7|1)Lδ(2, 5, 6, 8) +W+

4 (2, 3, 4, 7)Lδ(1, 5, 6, 8)
+W+

4 (1, 2, 5, 6)Lδ(3, 4, 7, 8) +W−4 (5, 6, 1|3)Lδ(2, 4, 7, 8)
+W−4 (2, 3|5, 6)Lδ(1, 4, 7, 8) +W−4 (1, 2, 5|7)Lδ(3, 4, 6, 8)
+W−4 (1|3|5|7)Lδ(2, 4, 6, 8) +W−4 (7, 2, 3|5)Lδ(1, 4, 6, 8) (G.12)

as well as,

N (8)
δ [123, 456] = W−4 (1, 2|4, 5)Lδ(3, 6, 7, 8) +W−4 (6, 1, 2|4)Lδ(3, 5, 7, 8)

+W+
4 (1, 2, 5, 6)Lδ(3, 4, 7, 8) +W−4 (3, 4, 5|1)Lδ(2, 6, 7, 8)

+W−4 (6, 1|3, 4)Lδ(2, 5, 7, 8) +W−4 (5, 6, 1|3)Lδ(2, 4, 7, 8)
+W+

4 (2, 3, 4, 5)Lδ(1, 6, 7, 8) +W−4 (2, 3, 4|6)Lδ(1, 5, 7, 8)
+W−4 (2, 3|5, 6)Lδ(1, 4, 7, 8)

N (8)
δ [123, 567] = W+

4 (1, 2, 5, 6)Lδ(3, 4, 7, 8) +W−4 (5, 6, 1|3)Lδ(2, 4, 7, 8)
+W−4 (2, 3|5, 6)Lδ(1, 4, 7, 8) +W−4 (1, 2, 5|7)Lδ(3, 4, 6, 8)
+W−4 (1|3|5|7)Lδ(2, 4, 6, 8) +W−4 (7, 2, 3|5)Lδ(1, 4, 6, 8)
+W−4 (1, 2|6, 7)Lδ(3, 4, 5, 8) +W−4 (3, 6, 7|1)Lδ(2, 4, 5, 8)
+W+

4 (2, 3, 6, 7)Lδ(1, 4, 5, 8)

N (8)
δ [12, 34, 56, 78] = W−4 (1|3|5|7)Lδ(2, 4, 6, 8) +W−4 (5, 8, 1|3)Lδ(2, 4, 6, 7)

+W−4 (3, 6, 7|1)Lδ(2, 4, 5, 8) +W−4 (8, 1|3, 6)Lδ(2, 4, 5, 7)
+W−4 (1, 4, 5|7)Lδ(2, 3, 6, 8) +W+

4 (1, 4, 5, 8)Lδ(2, 3, 6, 7)
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+W−4 (6, 7|1, 4)Lδ(2, 3, 5, 8) +W−4 (8, 1, 4|6)Lδ(2, 3, 5, 7)
+W−4 (7, 2, 3|5)Lδ(1, 4, 6, 8) +W−4 (5, 8|2, 3)Lδ(1, 4, 6, 7)
+W+

4 (2, 3, 6, 7)Lδ(1, 4, 5, 8) +W−4 (2, 3, 6|8)Lδ(1, 4, 5, 7)
+W−4 (4, 5|7, 2)Lδ(1, 3, 6, 8) +W−4 (4, 5, 8|2)Lδ(1, 3, 6, 7)
+W−4 (6, 7, 2|4)Lδ(1, 3, 5, 8) +W−4 (2|4|6|8)Lδ(1, 3, 5, 7) (G.13)

Finally, the numerators on six simultaneous poles are,

N (8)
δ [1234567] = W+

6 (1, 2, 3, 4, 5, 6)Lδ(7, 8) +W−6 (1, 2, 3, 4, 5|7)Lδ(6, 8)
+W−6 (1, 2, 3, 4|6, 7)Lδ(5, 8) +W−6 (1, 2, 3|5, 6, 7)Lδ(4, 8)
+W−6 (4, 5, 6, 7|1, 2)Lδ(3, 8) +W−6 (3, 4, 5, 6, 7|1)Lδ(2, 8)
+W+

6 (2, 3, 4, 5, 6, 7)Lδ(1, 8)

N (8)
δ [123456, 78] = W−6 (1, 2, 3, 4, 5|7)Lδ(6, 8) +W−6 (1, 2, 3, 4|6, 7)Lδ(5, 8)

+W−6 (1, 2, 3|5, 6, 7)Lδ(4, 8) +W−6 (4, 5, 6, 7|1, 2)Lδ(3, 8)
+W−6 (3, 4, 5, 6, 7|1)Lδ(2, 8) +W+

6 (2, 3, 4, 5, 6, 7)Lδ(1, 8)
+W+

6 (8, 1, 2, 3, 4, 5)Lδ(6, 7) +W−6 (8, 1, 2, 3, 4|6)Lδ(5, 7)
+W−6 (8, 1, 2, 3|5, 6)Lδ(4, 7) +W−6 (8, 1, 2|4, 5, 6)Lδ(3, 7)
+W−6 (3, 4, 5, 6|8, 1)Lδ(2, 7) +W−6 (2, 3, 4, 5, 6|8)Lδ(1, 7) (G.14)

as well as

N (8)
δ [12345, 678] = W−6 (1, 2, 3, 4|6, 7)Lδ(5, 8) +W−6 (1, 2, 3|5, 6, 7)Lδ(4, 8)

+W−6 (4, 5, 6, 7|1, 2)Lδ(3, 8) +W−6 (3, 4, 5, 6, 7|1)Lδ(2, 8)
+W+

6 (2, 3, 4, 5, 6, 7)Lδ(1, 8) +W−6 (8, 1, 2, 3, 4|6)Lδ(5, 7)
+W−6 (8, 1, 2, 3|5, 6)Lδ(4, 7) +W−6 (8, 1, 2|4, 5, 6)Lδ(3, 7)
+W−6 (3, 4, 5, 6|8, 1)Lδ(2, 7) +W−6 (2, 3, 4, 5, 6|8)Lδ(1, 7)
+W+

6 (7, 8, 1, 2, 3, 4)Lδ(5, 6) +W−6 (7, 8, 1, 2, 3|5)Lδ(4, 6)
+W−6 (7, 8, 1, 2|4, 5)Lδ(3, 6) +W−6 (3, 4, 5|7, 8, 1)Lδ(2, 6)
+W−6 (2, 3, 4, 5|7, 8)Lδ(1, 6)

N (8)
δ [1234, 5678] = W−6 (1, 2, 3|5, 6, 7)Lδ(4, 8) +W−6 (4, 5, 6, 7|1, 2)Lδ(3, 8)

+W−6 (3, 4, 5, 6, 7|1)Lδ(2, 8) +W+
6 (2, 3, 4, 5, 6, 7)Lδ(1, 8)

+W−6 (8, 1, 2, 3|5, 6)Lδ(4, 7) +W−6 (8, 1, 2|4, 5, 6)Lδ(3, 7)
+W−6 (3, 4, 5, 6|8, 1)Lδ(2, 7) +W−6 (2, 3, 4, 5, 6|8)Lδ(1, 7)
+W−6 (7, 8, 1, 2, 3|5)Lδ(4, 6) +W−6 (7, 8, 1, 2|4, 5)Lδ(3, 6)
+W−6 (3, 4, 5|7, 8, 1)Lδ(2, 6) +W−6 (2, 3, 4, 5|7, 8)Lδ(1, 6)
+W+

6 (6, 7, 8, 1, 2, 3)Lδ(4, 5) +W−6 (6, 7, 8, 1, 2|4)Lδ(3, 5)
+W−6 (6, 7, 8, 1|3, 4)Lδ(2, 5) +W−6 (2, 3, 4|6, 7, 8)Lδ(1, 5) (G.15)

Apart from the building block of the six-point cyclic product in (5.23),

W+
6 (1, 2, 3, 4, 5, 6) = W+

2 (1, 2)W+
2 (3, 4)W+

2 (5, 6) +W+
2 (2, 3)W+

2 (4, 5)W+
2 (6, 1)

−W+
2 (1, 2)W−2 (3, 5)W−2 (4, 6)−W+

2 (2, 3)W−2 (4, 6)W−2 (1, 5)
−W+

2 (3, 4)W−2 (1, 5)W−2 (2, 6)−W+
2 (4, 5)W−2 (2, 6)W−2 (1, 3)
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−W+
2 (5, 6)W−2 (1, 3)W−2 (2, 4)−W+

2 (1, 6)W−2 (2, 4)W−2 (3, 5)
+W+

2 (1, 4)W+
2 (2, 3)W+

2 (5, 6) +W+
2 (2, 5)W+

2 (3, 4)W+
2 (1, 6)

+W+
2 (3, 6)W+

2 (4, 5)W+
2 (1, 2) +W+

2 (1, 4)W−2 (2, 6)W−2 (3, 5)
+W+

2 (2, 5)W−2 (1, 3)W−2 (4, 6) +W+
2 (3, 6)W−2 (2, 4)W−2 (1, 5)

−W+
2 (1, 4)W+

2 (2, 5)W+
2 (3, 6) (G.16)

we employed three additional variants in (G.14) and (G.15), namely,

W−6 (1, 2, 3, 4, 5|6) = W+
2 (1, 2)W+

2 (3, 4)W−2 (5, 6) +W+
2 (2, 3)W+

2 (4, 5)W−2 (6, 1)
−W+

2 (1, 2)W−2 (3, 5)W+
2 (4, 6)−W+

2 (2, 3)W+
2 (4, 6)W−2 (1, 5)

−W+
2 (3, 4)W−2 (1, 5)W+

2 (2, 6)−W+
2 (4, 5)W+

2 (2, 6)W−2 (1, 3)
−W−2 (5, 6)W−2 (1, 3)W−2 (2, 4)−W−2 (1, 6)W−2 (2, 4)W−2 (3, 5)
+W+

2 (1, 4)W+
2 (2, 3)W−2 (5, 6) +W+

2 (2, 5)W+
2 (3, 4)W−2 (1, 6)

+W−2 (3, 6)W+
2 (4, 5)W+

2 (1, 2) +W+
2 (1, 4)W+

2 (2, 6)W−2 (3, 5)
+W+

2 (2, 5)W−2 (1, 3)W+
2 (4, 6) +W−2 (3, 6)W−2 (2, 4)W−2 (1, 5)

−W+
2 (1, 4)W+

2 (2, 5)W−2 (3, 6)
W−6 (1, 2, 3, 4|5, 6) = W+

2 (1, 2)W+
2 (3, 4)W+

2 (5, 6) +W+
2 (2, 3)W−2 (4, 5)W−2 (6, 1)

−W+
2 (1, 2)W+

2 (3, 5)W+
2 (4, 6)−W+

2 (2, 3)W+
2 (4, 6)W+

2 (1, 5)
−W+

2 (3, 4)W+
2 (1, 5)W+

2 (2, 6)−W−2 (4, 5)W+
2 (2, 6)W−2 (1, 3)

−W+
2 (5, 6)W−2 (1, 3)W−2 (2, 4)−W−2 (1, 6)W−2 (2, 4)W+

2 (3, 5)
+W+

2 (1, 4)W+
2 (2, 3)W+

2 (5, 6) +W−2 (2, 5)W+
2 (3, 4)W−2 (1, 6)

+W−2 (3, 6)W−2 (4, 5)W+
2 (1, 2) +W+

2 (1, 4)W+
2 (2, 6)W+

2 (3, 5)
+W−2 (2, 5)W−2 (1, 3)W+

2 (4, 6) +W−2 (3, 6)W−2 (2, 4)W+
2 (1, 5)

−W+
2 (1, 4)W−2 (2, 5)W−2 (3, 6)

W−6 (1, 2, 3|4, 5, 6) = W+
2 (1, 2)W−2 (3, 4)W+

2 (5, 6) +W+
2 (2, 3)W+

2 (4, 5)W−2 (6, 1)
−W+

2 (1, 2)W+
2 (3, 5)W−2 (4, 6)−W+

2 (2, 3)W−2 (4, 6)W+
2 (1, 5)

−W−2 (3, 4)W+
2 (1, 5)W+

2 (2, 6)−W+
2 (4, 5)W+

2 (2, 6)W−2 (1, 3)
−W+

2 (5, 6)W−2 (1, 3)W+
2 (2, 4)−W−2 (1, 6)W+

2 (2, 4)W+
2 (3, 5)

+W−2 (1, 4)W+
2 (2, 3)W+

2 (5, 6) +W−2 (2, 5)W−2 (3, 4)W−2 (1, 6)
+W−2 (3, 6)W+

2 (4, 5)W+
2 (1, 2) +W−2 (1, 4)W+

2 (2, 6)W+
2 (3, 5)

+W−2 (2, 5)W−2 (1, 3)W−2 (4, 6) +W−2 (3, 6)W+
2 (2, 4)W+

2 (1, 5)
−W−2 (1, 4)W−2 (2, 5)W−2 (3, 6) (G.17)

Finally, the δ-independent numerator of the Parke-Taylor factor in (G.9) is given by

N (8)[12345678] =
( 8∏
j=1

dxj
sj

){
s1s2 · · · s8 +

8∑
1≤i<j

Z(i, j)s1 · · · ŝi · · · ŝj · · · s8

+
8∑

1≤i<j<k<l
Z4(i, j, k, l)s1 · · · ŝi · · · ŝj · · · ŝk · · · ŝl · · · s8 (G.18)

+
8∑

1≤i<j
Z6(1, · · · , î, · · · , ĵ, · · · , 8)sisj + Z8(1, 2, · · · , 8)

}
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G.3 The spin structure sum of the eight-point Cδ
This appendix gathers the numerators N(8) in the eight-point spin structure sum (6.22).

The numerator functions with two simultaneous poles are given by,

N(8)[123] = W+
2 (1, 2)M1(3, 4, 5, 6, 7, 8) +W−2 (1, 3)M1(2, 4, 5, 6, 7, 8)

+W+
2 (2, 3)M1(4, 5, 6, 7, 8, 1)

N(8)[12, 34] = W+
2 (1, 4)M1(2, 3, 5, 6, 7, 8) +W−2 (1, 3)M1(2, 4, 5, 6, 7, 8)

+W+
2 (2, 3)M1(4, 5, 6, 7, 8, 1) +W−2 (2, 4)M1(1, 3, 5, 6, 7, 8)

N(8)[12, 45] = W+
2 (1, 4)M1(2, 3, 5, 6, 7, 8) +W−2 (1, 5)M1(2, 3, 4, 6, 7, 8) (G.19)

+W+
2 (2, 5)M1(1, 3, 4, 6, 7, 8) +W−2 (2, 4)M1(1, 3, 5, 6, 7, 8)

N(8)[12, 56] = W+
2 (1, 6)M1(2, 3, 4, 5, 7, 8) +W−2 (1, 5)M1(2, 3, 4, 6, 7, 8)

+W+
2 (2, 5)M1(1, 3, 4, 6, 7, 8) +W−2 (2, 6)M1(1, 3, 4, 5, 7, 8)

The remaining numerators all have four simultaneous poles and are given by,

N(8)[12345] = W+
4 (1, 2, 3, 4)∆(5, 7|6, 8) +W−4 (1, 2, 3|5)∆(4, 7|6, 8)

+W−4 (1, 2|4, 5)∆(3, 7|6, 8) +W−4 (3, 4, 5|1)∆(2, 7|6, 8)
+W+

4 (2, 3, 4, 5)∆(6, 8|7, 1)
N(8)[1234, 56] = W−4 (1, 2, 3|5)∆(4, 7|6, 8) +W−4 (1, 2|4, 5)∆(3, 7|6, 8)

+W−4 (3, 4, 5|1)∆(2, 7|6, 8) +W+
4 (2, 3, 4, 5)∆(6, 8|7, 1)

+W+
4 (1, 2, 3, 6)∆(4, 7|5, 8) +W−4 (6, 1, 2|4)∆(3, 7|5, 8)

+W−4 (3, 4|6, 1)∆(2, 7|5, 8) +W−4 (2, 3, 4|6)∆(5, 8|7, 1)
N(8)[1234, 67] = W+

4 (1, 2, 3, 6)∆(4, 7|5, 8) +W−4 (6, 1, 2|4)∆(3, 7|5, 8)
+W−4 (3, 4|6, 1)∆(2, 7|5, 8) +W−4 (2, 3, 4|6)∆(5, 8|7, 1)
+W−4 (1, 2, 3|7)∆(4, 6|5, 8) +W−4 (1, 2|4, 7)∆(3, 6|5, 8)
+W−4 (3, 4, 7|1)∆(2, 6|5, 8) +W+

4 (2, 3, 4, 7)∆(5, 8|6, 1)
N(8)[1234, 78] = W−4 (1, 2, 3|7)∆(4, 6|5, 8) +W−4 (1, 2|4, 7)∆(3, 6|5, 8)

+W−4 (3, 4, 7|1)∆(2, 6|5, 8) +W+
4 (2, 3, 4, 7)∆(5, 8|6, 1)

+W+
4 (8, 1, 2, 3)∆(4, 6|5, 7) +W−4 (8, 1, 2|4)∆(3, 6|5, 7)

+W−4 (3, 4|8, 1)∆(2, 6|5, 7) +W−4 (2, 3, 4|8)∆(5, 7|6, 1)
N(8)[123, 45, 78] = W−4 (1, 2|4, 7)∆(3, 6|5, 8) +W−4 (8, 1, 2|4)∆(3, 6|5, 7)

+W−4 (1, 2, 5|7)∆(3, 6|4, 8) +W+
4 (1, 2, 5, 8)∆(3, 6|4, 7)

+W−4 (3, 4, 7|1)∆(2, 6|5, 8) +W−4 (8, 1|3, 4)∆(2, 6|5, 7)
+W−4 (1|3|5|7)∆(2, 6|4, 8) +W−4 (5, 8, 1|3)∆(2, 6|4, 7)
+W+

4 (2, 3, 4, 7)∆(1, 6|5, 8) +W−4 (2, 3, 4|8)∆(1, 6|5, 7)
+W−4 (7, 2, 3|5)∆(1, 6|4, 8) +W−4 (2, 3|5, 8)∆(1, 6|4, 7) (G.20)

as well as

N(8)[123, 56, 78] = W−4 (1, 2, 5|7)∆(3, 6|4, 8) +W−4 (1|3|5|7)∆(2, 6|4, 8)
+W−4 (7, 2, 3|5)∆(1, 6|4, 8) +W+

4 (8, 1, 2, 5)∆(3, 6|4, 7)
+W−4 (5, 8, 1|3)∆(2, 6|4, 7) +W−4 (2, 3|5, 8)∆(1, 6|4, 7)
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+W−4 (1, 2|6, 7)∆(3, 5|4, 8) +W−4 (3, 6, 7|1)∆(2, 5|4, 8)
+W+

4 (2, 3, 6, 7)∆(1, 5|4, 8) +W−4 (8, 1, 2|6)∆(3, 5|4, 7)
+W−4 (8, 1|3, 6)∆(2, 5|4, 7) +W−4 (2, 3, 6|8)∆(1, 5|4, 7)

N(8)[123, 45, 67] = W−4 (6, 1, 2|4)∆(3, 7|5, 8) +W−4 (6, 1|3, 4)∆(2, 7|5, 8)
+W−4 (2, 3, 4|6)∆(1, 7|5, 8) +W−4 (1, 2|4, 7)∆(3, 6|5, 8)
+W−4 (3, 4, 7|1)∆(2, 6|5, 8) +W+

4 (2, 3, 4, 7)∆(1, 6|5, 8)
+W+

4 (1, 2, 5, 6)∆(3, 7|4, 8) +W−4 (5, 6, 1|3)∆(2, 7|4, 8)
+W−4 (2, 3|5, 6)∆(1, 7|4, 8) +W−4 (1, 2, 5|7)∆(3, 6|4, 8)
+W−4 (1|3|5|7)∆(2, 6|4, 8) +W−4 (7, 2, 3|5)∆(1, 6|4, 8)

N(8)[123, 456] = W−4 (1, 2|4, 5)∆(3, 7|6, 8) +W−4 (6, 1, 2|4)∆(3, 7|5, 8)
+W+

4 (1, 2, 5, 6)∆(3, 7|4, 8) +W−4 (3, 4, 5|1)∆(2, 7|6, 8)
+W−4 (6, 1|3, 4)∆(2, 7|5, 8) +W−4 (5, 6, 1|3)∆(2, 7|4, 8)
+W+

4 (2, 3, 4, 5)∆(1, 7|6, 8) +W−4 (2, 3, 4|6)∆(1, 7|5, 8)
+W−4 (2, 3|5, 6)∆(1, 7|4, 8)

N(8)[123, 567] = W+
4 (1, 2, 5, 6)∆(3, 7|4, 8) +W−4 (5, 6, 1|3)∆(2, 7|4, 8)

+W−4 (2, 3|5, 6)∆(1, 7|4, 8) +W−4 (1, 2, 5|7)∆(3, 6|4, 8)
+W−4 (1|3|5|7)∆(2, 6|4, 8) +W−4 (7, 2, 3|5)∆(1, 6|4, 8)
+W−4 (1, 2|6, 7)∆(3, 5|4, 8) +W−4 (3, 6, 7|1)∆(2, 5|4, 8)
+W+

4 (2, 3, 6, 7)∆(1, 5|4, 8)
N(8)[12, 34, 56, 78] = W−4 (1|3|5|7)∆(2, 6|4, 8) +W−4 (5, 8, 1|3)∆(2, 6|4, 7)

+W−4 (3, 6, 7|1)∆(2, 5|4, 8) +W−4 (8, 1|3, 6)∆(2, 5|4, 7)
+W−4 (1, 4, 5|7)∆(2, 6|3, 8) +W+

4 (1, 4, 5, 8)∆(2, 6|3, 7)
+W−4 (6, 7|1, 4)∆(2, 5|3, 8) +W−4 (8, 1, 4|6)∆(2, 5|3, 7)
+W−4 (7, 2, 3|5)∆(1, 6|4, 8) +W−4 (5, 8|2, 3)∆(1, 6|4, 7)
+W+

4 (2, 3, 6, 7)∆(1, 5|4, 8) +W−4 (2, 3, 6|8)∆(1, 5|4, 7)
+W−4 (4, 5|7, 2)∆(1, 6|3, 8) +W−4 (4, 5, 8|2)∆(1, 6|3, 7)
+W−4 (6, 7, 2|4)∆(1, 5|3, 8) +W−4 (2|4|6|8)∆(1, 5|3, 7) (G.21)

H Symmetrized cyclic products of Szegö kernels

The purpose of this appendix is to obtain an SL(2,C) group-theoretic decomposition of
the symmetrized cyclic product of Szegö kernels, which we define as follows,

Csym
δ (1, 2, · · · , n) = 1

n!
∑
σ∈Sn

Sδ(σ(1), σ(2))Sδ(σ(2), σ(3)) · · ·Sδ(σ(n), σ(1))

= 1
(n−1)!

∑
σ∈Sn−1

Sδ(1, σ(2))Sδ(σ(2), σ(3)) · · ·Sδ(σ(n), 1) (H.1)

where Sn is the group of permutations of n elements, and we have inserted the customary
n! normalization factor. By construction, Csym

δ is a symmetric function of its arguments
z1, · · · , zn. The expression in the second line follows from the cyclic invariance of the
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product over Sδ(σ(j), σ(j+1)) in the first line. The simplicity of the function Csym
δ is

illustrated by the following lemma.

Lemma H.1 The symmetrized cyclic product Csym
δ (1, · · · , n) vanishes for n odd and is a

holomorphic (1, 0) form in each point zi for even n ≥ 4. It may be decomposed as follows,

Csym
δ (1, · · · , n) = Λa1···an

δ $a1(1) · · ·$an(n) (H.2)

where Λa1···an
δ is a zi-independent rank n symmetric SL(2,C) tensor whose components are

polynomials in µm.
The proof proceeds as follows. If n is odd, the sum over permutations of every con-

catenated product includes also the product where the cycle is traversed in the opposite
direction. But since Sδ is odd under interchange of its arguments, and the number of Szegö
kernels in the product is odd, we conclude that the whole sum must vanish.

For even n in turn, we start from the sum over permutations Sn−1 of {2, 3, · · · , n} in
the second line of (H.1). To show holomorphicity in the zi for n ≥ 4, it suffices to show
that Csym

δ has no poles in z1 at the point z2 since the function Csym
δ is symmetric in all zi.

The pole in z1 at z2 receives contributions from those permutations σ ∈ Sn−1 that have
either σ(2) = 2 or σ(n) = 2,

Csym
δ (1, 2, · · · , n) = Sδ(1, 2)

(n−1)!
∑

σ∈Sn−2

Sδ(2, σ(3)) · · ·Sδ(σ(n), 1) (H.3)

−Sδ(1, 2)
(n−1)!

∑
σ∈Sn−2

Sδ(1, σ(2)) · · ·Sδ(σ(n−1), 2) + regular in z1−z2

where σ in the first sum permutes the points z3, · · · , zn while σ in the second sum maps the
points z2, · · · , zn−1 to the points z3, · · · , zn and then permutes those points as in the first
sum. To evaluate the residue at the pole, we set z2 = z1 under the two summation signs,
and verify that the sums cancel one another. Being a holomorphic (1, 0)-form in each zi,
it is immediate that Csym

δ admits the decomposition into the basis of holomorphic (1, 0)
forms $a of a single variable. Since each Szegö kernel is SL(2,C) invariant, so is Csym

δ

and therefore Λδ is a tensor under SL(2,C) whose zi-independence will become clear from
Lemma H.3 below. This completes the proof for even n ≥ 4. The degenerate case of n = 2,
however, does not admit any distinction or cancellation between terms with σ(2) = 2 and
σ(n) = 2, and we find a double pole in Csym

δ (1, 2) = −Sδ(1, 2)2 as z1 → z2.

H.1 SL(2,C) building blocks of symmetrized cyclic products

Henceforth, we shall assume that n = 2m ≥ 4 is even with m ∈ N. In the hyper-elliptic
representation, this object takes the following form,

Csym
δ (1, 2, · · · , n) = Λδ(1, 2, · · · , n)

n∏
i=1

dxi
si

Λδ(1, 2, · · · , n) = 1
2n n!

∑
σ∈Sn

Nδ

(
σ(1), σ(2), · · · , σ(n)

)
(xσ(1) − xσ(2)) · · · (xσ(n) − xσ(1))

(H.4)
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where we have introduced Nδ earlier, and repeat it here for convenience,

Nδ(1, 2, · · · , n) =
n∏
i=1

(
sA(i)sB(i+1) + sB(i)sA(i+1)

)
(H.5)

The following lemma gives a simplification in terms of the polynomials Qδ introduced
earlier,

Qδ(i1, · · · , im|j1, · · · , jm) = sA(i1)2 · · · sA(im)2 sB(j1)2 · · · sB(jm)2

+sB(i1)2 · · · sB(im)2 sA(j1)2 · · · sA(jm)2 (H.6)

Lemma H.2 The function Λδ admits the following expression as a rational function of
x1, · · · , xn in terms of the polynomials Qδ where n = 2m is even,

Λδ(1, 2, · · · , n) =
∑
σ∈Sn

Qδ
(
σ(1), σ(3), · · · , σ(n−1)

∣∣σ(2), σ(4), · · · , σ(n)
)

2n n! (xσ(1) − xσ(2)) · · · (xσ(n) − xσ(1))
(H.7)

With the above arrangement of arguments, the polynomial Qδ shares the cyclic sym-
metry of the Parke-Taylor factor. It is also invariant under permutations of the left set of
m arguments and the right set of m arguments separately, but these symmetries are not
shared by the Parke-Taylor factor.

The function Λδ may be decomposed into permutation sums of the form,

F [a1, · · · , an](x1, · · ·xn) =
∑
σ∈Sn

xa1
σ(1) · · ·x

an
σ(n)

(xσ(1) − xσ(2)) · · · (xσ(n) − xσ(1))
(H.8)

Introducing the symmetric degree-m polynomials κ(n)
m in n variables x1, · · · , xn which are

at most linear in each xi,

κ
(n)
0 = 1
κ

(n)
1 = x1 + · · ·+ xn

κ
(n)
2 = x1x2 + · · ·+ xn−1xn

· · ·
κ(n)
n = x1 · · ·xn (H.9)

we list the transformation properties of F under SL(2,C),

T F [a1, · · · , an] =
n∑
i=1

aiF [a1, · · · , ai−1, · · · an]

S F [a1, · · · , an] = (κ(n)
n )−1 F [3−a1, · · · , 3−an] (H.10)

We shall now establish the following lemma, valid for 0 ≤ ai ≤ 3, which is the only range
of the exponents required here since the degrees of the polynomials s2

A and s2
B is three.

Lemma H.3 The function F [a1, · · · , an](x1, · · · , xn), for exponents 0 ≤ ai ≤ 3, and sum
of exponents N = a1 + · · · + an with 0 ≤ N ≤ 3n and n ≥ 4 even, has the following
properties,
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1. F is a symmetric function of x1, · · · , xn which is homogeneous of degree N − n;
2. F is holomorphic in x1, · · · , xn;
3. F vanishes for odd n when the array [a1, · · · , an] is invariant under ai → an−i rever-

sal;
4. F vanishes for N < n;
5. F vanishes for N > 2n;
6. For n ≤ N ≤ 2n the function F equals the symmetric polynomial κ(n)

N−n times an
integer that depends on the array [a1, · · · , an].

Item 1 holds by construction. To prove item 2, we reorganize the sum over permuta-
tions by first summing over the group of cyclic permutations Cn of order n,

F [a1, · · · , an](x1, · · ·xn) =
∑

σ∈Sn/Cn

F̂ [a1, · · · , an](xσ(1), · · · , xσ(n))
(xσ(1) − xσ(2)) · · · (xσ(n) − xσ(1))

F̂ [a1, · · · , an](x1, · · ·xn) =
∑
ρ∈Cn

xa1
ρ(1) · · ·x

an
ρ(n) (H.11)

We then proceed as for the proof of the holomorphicity of Csym
δ around (H.3). To prove

that F has no poles in xi, it suffices to prove that it has no poles in x1 at x2 in view of
item 1. To do so we fix σ(1) = 1, in which case the poles at x2 arise from σ(2) = 2 and
σ(n) = 2. Thus, the residue of the pole in x1 at x2 is given by,

Resx1=x2F [a1, · · · , an](x1, · · ·xn) =
∑

σ∈Sn−2

F̂ [a1, · · · , an](x2, x2, xσ(3), · · · , xσ(n))
(x2 − xσ(3)) · · · (xσ(n) − x2) (H.12)

−
∑

σ∈Sn−2

F̂ [a1, · · · , an](x2, xσ(2), · · · , xσ(n−1), x2)
(x2 − xσ(2)) · · · (xσ(n−1) − x2)

The cyclic property of F̂ guarantees that the two sums on the right cancel one another for
n ≥ 4, which proves item 2. If F̂ is also invariant under reversal of the ordering of the
exponents, then we use the same argument as we did for the product of the Szegö kernels to
conclude that F vanishes for odd n, which proves item 3. To prove item 4, we use the fact
that a holomorphic rational function F of the xi which is homogeneous of degree N−n < 0
must vanish since F admits a Taylor expansion at xi = 0. Item 5 then follows from item 4
by using the action (H.10) of inversion. Finally, to prove item 6, we use the fact that F is
at most of degree 1 in each variable xi. To see this, it suffices to fix all variables but xi and
let xi →∞. The numerator is of degree at most 3 in xi since ai ≤ 3, and the denominator
is always of degree 2. Hence, F grows at most linearly in xi as xi → ∞. Since F is a
symmetric polynomial in the xi, at most linear in each xi and of degree N − n, it must be
proportional to κ(n)

N−n.

H.2 Procedure of evaluation

To evaluate the functions Λδ in (H.4) and (H.7), for any given even n it suffices to evaluate
either the highest or lowest weight components, Λ2···2

δ or Λ1···1
δ , respectively, which are

related to one another by inversion. Consider the case of highest weight Λ1···1
δ which is the
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component of degree zero in each one of the xi. Using Lemma H.3, we see that this compo-
nent must arise entirely from those contributions in Qδ that are of total combined degree
n in the variables xi, namely from linear combinations of the following permutation sums,

F [a1, · · · , an](x1, · · · , xn) a1 + · · ·+ an = n (H.13)

But this function evaluates to a combination that is, in fact, independent of the xi. Thus, to
evaluate it, we may take advantage of a convenient choice of the xi, such as xj = j for j =
1, · · · , n. This renders evaluation essentially straightforward. Alternatively, to compute
Λ2···2
δ directly, instead of by inversion from Λ1···1

δ , we may retain in Qδ those contributions
that are of total combined degree 2n in the variables xi. The result of summation against
the Parke-Taylor factor will then produce terms that are all proportional to the product
x1 · · ·xn. One may again set xj = j for all j = 1, · · · , n to evaluate Λ2···2

δ upon dividing
by an extra factor of n! in order to account for the evaluation of the factor x1 · · ·xn.

We do not have a closed formula for arbitrary values of n, but it is possible to evaluate
this quantity for low values of n, which we consider to be even.

H.2.1 Evaluating Λδ for n = 4

For n = 4, the function Λδ takes the form,

Λδ(1, 2, 3, 4) = sA(1)2sB(2)2sA(3)2sB(4)2 + (A↔ B)
24 3!x12x23x34x41

+ perm(2, 3, 4) (H.14)

where the sum is over all the six permutations of 2, 3, 4. To compute Λ2222
δ , it suffices

to retain in the numerator only the terms that have combined degree 8 in the xi. Upon
summation over all permutations, they will give a term proportional to κ(n)

4 = x1x2x3x4,
and provide the component Λ2222

δ . maple gives,

24 3! Λ2222
δ = 6φ2

2 − 12µ0φ4 + 4µ1φ3 − 8µ2φ2 + 4µ0µ4 − 2µ1µ3 + 2µ2
2

24 3! Λ1111
δ = 6φ2

4 − 12µ6φ2 + 4µ5φ3 − 8µ4φ4 + 4µ2µ6 − 2µ3µ5 + 2µ2
4 (H.15)

It is readily verified that T Λ2222
δ = 0, and that the two entries are related to one another

by inversion, as expected. The remaining components of Λa1a2a3a4
δ may be obtained from

Λ1111
δ by successively applying T . Eliminating the φm and µm variables in favor of `abδ

via (3.23) as well as the tensors M1 and M2 in (3.30) and (4.21), the expression for all the
components of the tensor Λδ becomes,

Λa1a2a3a4
δ = `

(a1a2
δ `

a3a4)
δ − 1

2Ma1a2a3a4b1b2
1 `c1c2

δ εb1c1εb2c2 −
1
2Ma1a2a3a4

2 (H.16)

H.2.2 Comparison with earlier reductions of Cδ at n = 4

The holomorphicity of the symmetrized cyclic product is not manifest from the decom-
position of Cδ(1, 2, 3, 4) in (5.9). We shall now pinpoint the non-trivial identities between
Mw, Z(a, b) and rational functions of xij needed to establish the agreement of (5.9) with
the expression for the tensor Λa1a2a3a4

δ in (H.16),

Λa1a2a3a4
δ $a1(1)$a2(2)$a3(3)$a4(4) = 1

3
[
Cδ(1, 2, 3, 4) + Cδ(1, 2, 4, 3) + Cδ(1, 3, 2, 4)

]
(H.17)
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where we have used the reflection symmetry Cδ(1, 2, 3, 4) = Cδ(1, 4, 3, 2) to simplify the
symmetrization (H.1) to three terms.

In order to match the contributions to (H.17) linear in `δ, one needs to demonstrate
that,

− 1
2x1a1x2a2x3a3x4a4M

a1a2a3a4b1b2
1 `c1c2

δ εb1c1εb2c2

= 1
6

{
Z(2,3)Lδ(1,4)+Z(1,4)Lδ(2,3)−Z(1,3)Lδ(2,4)−Z(2,4)Lδ(1,3)

x12x34
+cycl(2,3,4)

}
+ 1

6

{
Z(1,3)Lδ(2,4)−Z(2,3)Lδ(1,4)

x31x12
+ Z(1,3)Lδ(2,4)−Z(1,2)Lδ(3,4)

x13x32
+cycl(1,2,3,4)

}
= Z(1,2)Lδ(3,4)x2

34 +Z(3,4)Lδ(1,2)x2
12

6x13x32x24x41
+cycl(2,3,4) (H.18)

where the components xiai of the two-vectors (1,−xi)t in (2.4) arise from $ai(i) = xiai dxisi .
The differences within the numerators in the second and third line ensure that the residues
of the poles in xij cancel. Upon isolating the coefficients of `δ, this is equivalent to,

Mabc1c2c3c4
1 x1c1x2c2x3c3x4c4 = −x(a

3 xb)4 x
2
34Z(1, 2) + x(a

1 xb)2 x
2
12Z(3, 4)

3x13x32x24x41
+ cycl(2, 3, 4) (H.19)

which we have verified via mathematica.
The contributions to (H.17) independent on `δ in turn agree if,

x1a1x2a2x3a3x4a4M
a1a2a3a4
2 = 1

6

{
Z(1, 3)Z(2, 4)
x12x23x34x41

+ cycl(2, 3, 4)
}

(H.20)

= 1
6

{
Z(1, 3)Z(2, 4)− Z(1, 4)Z(2, 3)

x12x23x34x41
+ Z(1, 2)Z(3, 4)− Z(1, 4)Z(2, 3)

x13x32x24x41

}
which is readily established via mathematica as well.

Finally, the contributions to (H.17) bilinear in `δ are readily seen to match, which
completes our comparison of the two different expressions for Csym

δ (1, 2, 3, 4).

H.2.3 Evaluating Λδ for n = 6

For n = 6, the function Λδ takes the form,

Λδ(1, 2, 3, 4, 5, 6) = sA(1)2sB(2)2sA(3)2sB(4)2sA(5)2sB(6)2 + (A↔ B)
26 5!x12x23x34x45x56x61

+perm(2, 3, 4, 5, 6) (H.21)

where the sum is over all the 120 permutations of 2, 3, 4, 5, 6. To compute Λ222222
δ , it

suffices to retain in the numerator only the terms that have combined degree 12 in the
xi. Upon summation over all permutations, this will give a term proportional to κ(n)

6 =
x1x2x3x4x5x6, and provide the component Λ222222

δ . maple gives,

26 5! Λ222222
δ = 120µ0φ2φ4 − 120µ0φ

2
3 +

(
120µ0µ2 − 80µ2

1
)
φ4 +

(
32µ1µ2 + 72µ0µ3

)
φ3

+
(
72µ4µ0 − 48µ1µ3 + 16µ2

2
)
φ2 + 96µ2

0µ6 − 16µ0µ1µ5

−56µ0µ2µ4 + 8µ2
1µ4 − 24µ0µ

2
3 + 24µ1µ2µ3 − 16µ3

2 (H.22)
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We have chosen a final form for Λ222222
δ in which no terms cubic or trilinear in φ2, φ3, φ4

occur. This is done by eliminating φ3
2 in favor of terms of order at most two using the

trilinear equation for φ3
2. Note that we have included the factors of µ0 = 1 to render the

relation homogeneous, and allow for its immediate inversion,

26 5! Λ111111
δ = 120µ6φ2φ4 − 120µ6φ

2
3 +

(
120µ4µ6 − 80µ2

5
)
φ2 +

(
32µ4µ5 + 72µ3µ6

)
φ3

+
(
72µ2µ6 − 48µ3µ5 + 16µ2

4
)
φ4 + 96µ0µ

2
6 − 16µ1µ5µ6

−56µ2µ4µ6 + 8µ2µ
2
5 − 24µ6µ

2
3 + 24µ3µ4µ5 − 16µ3

4 (H.23)

Converting φm into `δ, and µm into Mw tensors, we obtain,

Λa1···a6
δ = 1

4(det `δ) Ma1···a6
1 + 45

56 M(a1···a4
2 `

a5a6)
δ + 3

2 Ma1···a6b1b2
2 `c1c2

δ εb1c1εb2c2

+ 27
160 M2 Ma1···a6

1 − 15
16 Ma1···a6

3 (H.24)

H.2.4 Evaluating Λδ for n = 8

For n = 8, the function Λδ takes the form,

Λδ(1,2,3,4,5,6,7,8) = sA(1)2sB(2)2sA(3)2sB(4)2sA(5)2sB(6)2sA(7)2sB(8)2 + (A↔ B)
28 7!x12x23x34x45x56x67x78x81

+perm(2, 3, 4, 5, 6, 7, 8) (H.25)

where the sum is over all the 7! permutations of 2, 3, 4, 5, 6, 7, 8. To compute Λ11111111
δ it

suffices to retain in the numerator only the terms that have combined degree 8 in the xi.
Upon summation over all permutations, this will give a term independent of xi and provide
the component Λ11111111

δ . maple gives,

28 · 7! Λ11111111
δ =

(
4032µ2µ6 + 336µ2

4 − 1008µ3µ5
)
φ2

4 +
(
672µ4µ5 − 6048µ3µ6

)
φ3φ4

+
(
280µ2

5 + 3360µ4µ6
)
φ2

3 +
(
6720µ4µ6 − 1960µ2

5
)
φ2φ4

−10080µ5µ6φ2φ3 + 15120µ2
6φ

2
2

+
(
3888µ2

3µ6 − 6336µ2µ4µ6 − 200µ2µ
2
5 − 17280µ2

6 − 608µ3
4

+1392µ3µ4µ5 + 2400µ1µ5µ6
)
φ4

+
(
2880µ1µ

2
6 + 5088µ2µ5µ6 − 2304µ3µ4µ6 − 312µ3µ

2
5 − 480µ2

4µ5
)
φ3

+
(
1176µ4µ

2
5 + 9072µ3µ5µ6 − 18144µ2µ

2
6 − 4032µ2

4µ6
)
φ2

−288µ1µ3µ
2
6 − 1088µ1µ4µ5µ6 − 360µ1µ

3
5 + 5328µ2

2µ
2
6

−5232µ2µ3µ5µ6 + 2368µ2µ
2
4µ6 + 264µ2µ4µ

2
5 + 384µ2

3µ4µ6

+176µ2
3µ

2
5 − 544µ3µ

2
4µ5 + 272µ4

4 − 960µ4µ
2
6 + 4720µ2

5µ6 (H.26)

– 85 –



J
H
E
P
0
5
(
2
0
2
3
)
0
7
3

which can be converted to the following tensorial expression:

Λa1···a8
δ =−5

8(det `δ)Ma1a2···a8
2 + 3

16Mb1b2(a1a2a3a4
1 Ma5a6a7a8)b3b4

1 `c1c2
δ `c3c4

δ εb1c1εb2c2εb3c3εb4c4

+ 3
2Mb1b2(a1a2a3a4a5a6

2 `
a7a8)
δ `c1c2

δ εb1c1εb2c2 + 3
7M(a1a2a3a4

2 `a5a6
δ `

a7a8)
δ

− 43
56M(a1a2···a6

3 `
a7a8)
δ − 3

56Mb1b2(a1a2
2 Ma3a4···a8)

1 `c1c2
δ εb1c1εb2c2

+ 1
12M2M(a1a2···a6

1 `
a7a8)
δ + 3

56M(a1a2a3a4
2 Ma5a6a7a8)b1b2

1 `c1c2
δ εb1c1εb2c2

− 27
448M2Ma1a2···a8

2 + 55
448M(a1a2a3a4

2 Ma5a6a7a8)
2 − 1

28M(a1a2
3 Ma3a4···a8)

1 (H.27)

H.2.5 Evaluating Λδ for n = 10

The strategy of the previous sections leads to the following expression for the ten-point
instance of the Λδ tensor in (H.2)

Λa1a2···a10
δ = 19

144M2M(a1···a6
1 `a7a8

δ `
a9a10)
δ + 5

16M(a1···a6
1 `a7a8

δ Ma9a10)b1b2
2 `c1c2

δ εb1c1εb2c2

− 25
42M(a1···a6

3 `a7a8
δ `

a9a10)
δ + 25

112M(a1a2a3a4
2 `a5a6

δ Ma7···a10)b1b2
1 `c1c2

δ εb1c1εb2c2

+ 5
16M(a1···a6

1 Ma7···a10)b1b2b3b4
2 `c1c2

δ `c3c4
δ εb1c1εb2c2εb3c3εb4c4

+ 5
8M(a1···a8

2 Ma9a10)b1b2b3b4
1 `c1c2

δ `c3c4
δ εb1c1εb2c2εb3c3εb4c4 + 15

448(det `δ)M(a1···a4
2 Ma5···a10)

1

+ 1
36M2M(a1···a6

1 Ma7···a10)b1b2
1 `c1c2

δ εb1c1εb2c2 + 5
32M(a1···a4

2 Ma5···a10)b1b2
2 `c1c2

δ εb1c1εb2c2

− 15
224M(a1···a8

2 Ma9a10)b1b2
2 `c1c2

δ εb1c1εb2c2 −
395
1344M(a1···a6

3 Ma7···a10)b1b2
1 `c1c2

δ εb1c1εb2c2

− 13
48M2M(a1···a8

2 `
a9a10)
δ + 1355

2688M(a1···a4
2 Ma5···a8

2 `
a9a10)
δ + 95

1344M(a1···a6
1 Ma7a8

3 `
a9a10)
δ

+ 155
4608M2M(a1···a4

2 Ma5···a10)
1 − 1625

5376M(a1···a4
2 Ma5···a10)

3

− 25
128M(a1···a8

2 Ma9a10)
3 − 75

448M(a1···a4
4 Ma5···a10)

1 (H.28)

where the tensor M4 in the last line generalizing M2,M3 in (4.21), (4.22) is defined by (E.6).

I Hyper-elliptic form of the superstring measure

In this appendix, we translate the genus-two superstring measure for even spin structures,
which was derived in the language of Riemann ϑ-functions [14, 16], into the language of the
hyper-elliptic formulation used in this paper. We begin by reviewing key results on Riemann
ϑ-functions for arbitrary spin structures, and use the Thomae formulas to carry out the
translation. The Riemann ϑ-functions with arbitrary characteristics κ are defined by,

ϑ[κ](ζ|Ω) =
∑
n∈Z2

exp
(
iπ(n+ κ′)tΩ(n+ κ′) + 2πi(n+ κ′)t(ζ + κ′′)

)
(I.1)

where Ω takes values in the Siegel upper half space H2, the two-component vector ζ ∈ C2

is often taken to live in the Jacobian variety of a genus-two surface, and κ = [κ′, κ′′] is
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an array of column matrices κ, κ′′ ∈ {0, 1
2}

2. The parity of the ϑ-function, and the spin
structure κ, is defined to be the parity of the integer 4κ′ ·κ′′. For every odd spin structure ν,
there exists a Riemann identity between the ϑ-constants ϑ[δ](0|Ω) of even spin structures δ,∑

δ

〈ν|δ〉ϑ[δ](0|Ω)4 = 0 (I.2)

where the pairing 〈κ|λ〉 = 〈λ|κ〉 between two arbitrary characteristics κ = [κ′, κ′′] and
λ = [λ′, λ′′] is given by,

〈κ|λ〉 = exp
{
4πi(κ′λ′′ − λ′κ′′)

}
(I.3)

For arbitrary half-integer characteristics κ, λ, needed here to represent spin structures, the
pairing is symmetric and takes the possible value 〈κ|λ〉 = ±1.

I.1 Modular transformations

Genus-two modular transformations form the group Sp(4,Z) which is defined as follows,

M =

A B

C D

 ∈ Sp(4,Z) Mt JM = J J =

0 −I
I 0

 (I.4)

Its action on the period matrix is given by,

Ω→ Ω̃ = (AΩ +B)(CΩ +D)−1 (I.5)

and on an arbitrary spin structure κ may be found in [23],κ′′
κ′

→
κ̃′′
κ̃′

 =

 A −B
−C D

κ′′
κ′

+ 1
2 diag

ABt

CDt

 (I.6)

The congruence subgroup Γ(2), defined by,

Γ(2) =
{
M ∈ Sp(4,Z) such that M ≡ I (mod 2)

}
(I.7)

is a normal subgroup of Sp(4,Z), whose quotient gives the following isomorphisms,

Sp(4,Z)/Γ(2) ≈ Sp(4,Z2) ≈ S6 (I.8)

where Z2 is the cyclic group Z2 = {0, 1} and S6 is the permutation group on 6 elements.
The group Γ(2) leaves each spin structure invariant, while Sp(4,Z2) acts transitively on the
set of spin structures, transforming even into even and odd into odd spin structures. In fact,
one may view this action of S6 directly on the six odd spin structures, and then deduce the
action on even spin structures by expressing each even spin structure as a partition of the
six distinct odd spin structures into two subsets of three distinct odd spin structures each.

The following product of pairings forming a closed 3-cycle of arbitrary spin structures,

e(κ1, κ2, κ3) = 〈κ1|κ2〉〈κ2|κ3〉〈κ3|κ1〉 (I.9)
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is invariant under Sp(4,Z) and thus under Sp(4,Z2). For an arbitrary triplet of distinct odd
spin structures ν1, ν2, ν3, the product obeys e(ν1, ν2, ν3) = −1. While Sp(4,Z2) acts transi-
tively on even spin structures, its action on a triple (δ1, δ2, δ3) of distinct even spin structures
decomposes into two distinct orbits, referred to as a syzygous triple when e(δ1, δ2, δ3) = +1
and an asyzygous triple when e(δ1, δ2, δ3) = −1.

Finally, the ϑ-function transforms as follows under Sp(4,Z),

ϑ[δ̃](0|Ω̃) = ε(δ,M) det (CΩ +D)
1
2ϑ[δ](0|Ω)

ϑ[δ̃](0|Ω̃)8 = det (CΩ +D)4 ϑ[δ](0|Ω)8 (I.10)

provided the half-integer characteristics δ transforms into δ̃ according to (I.6) (see [49], page
85). The factor ε(δ,M) is independent of Ω and satisfies ε(δ,M)8 = 1. Its explicit expression
is complicated and may be found in [49], but will not be needed here. The last equation
shows that ϑ[δ](0|Ω)8 is a Siegel modular form of weight 4 under Γ(2), while ϑ[δ](0|Ω)4

transforms as a Siegel modular form, up to a sign factor (also referred to as a multiplier
system). In the Riemann identities (I.2) this sign is compensated for a corresponding
sign produced by the transformation of the pairing 〈ν|δ〉 so that the system of Riemann
identities transforms into itself under modular transformations.

I.2 Igusa classification of Sp(4,Z) modular forms

We define the following combinations of ϑ-constants involving even spin structures [49],

Ψ4k = 1
4
∑
δ

ϑ[δ]8k Ψ10 =
∏
δ

ϑ[δ]2 (I.11)

as well as the combination,

Ψ6 = 1
4

∑
δ1,δ2,δ3

e(δ1,δ2,δ3)=1

σ(δ1, δ2, δ3)ϑ[δ1]4 ϑ[δ2]4 ϑ[δ3]4 (I.12)

where the sign factor σ(δ1, δ2, δ3) are chosen to be consistent with modular transformations.
The syzygous triplets are given in [49] and explicitly in appendix B of [50] in the basis of
spin structures adopted from [16]. The functions Ψ4k(Ω),Ψ10(Ω),Ψ6(Ω) are holomorphic
in Ω and transform as follows under Sp(4,Z) modular transformations,

Ψ4k(Ω̃) = det (CΩ +D)4k Ψ4k(Ω)
Ψ10(Ω̃) = det (CΩ +D)10 Ψ10(Ω)
Ψ6(Ω̃) = det (CΩ +D)6 Ψ6(Ω) (I.13)

so that they are Siegel modular forms of weights 4k, 10 and 6, respectively. It is well-know
that Ψ8(Ω) = Ψ4(Ω)2 and that Ψ10(Ω) is a cusp form, namely it vanishes on the separat-
ing degeneration. At weight 12, there are 3 linearly independent modular forms, namely
Ψ3

4,Ψ2
6,Ψ12. Igusa has shown that the space of Sp(4,Z) modular forms is a polynomial

ring generated by Ψ4,Ψ6,Ψ10,Ψ12 and a generator Ψ35 whose square Ψ2
35 is a polynomial

in Ψ4,Ψ6,Ψ10,Ψ12.
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I.3 The Thomae formulas

The ϑ-constants for spin structures given by a partition δ ≡ A ∪ B of the branch points
may be expressed in terms of the hyper-elliptic representation by [23, 51],

ϑ[δ](0)8 = (detσ)−4 ∏
i<j∈A

(ui − uj)2 ∏
k<l∈B

(uk − ul)2 (I.14)

The action of Sp(4,Z2) ≈ S6 is given on the ϑ-constants by (I.10), while on the branch
points it is given by permutations. The results are summarized in the following table,
where the overall sign has been arbitrarily chosen to be + for the first entry,

(detσ)2ϑ[ν1+ν2+ν3](0)4 = +(u1−u2)(u1−u3)(u2−u3) · (u4−u5)(u4−u6)(u5−u6)
(detσ)2ϑ[ν1+ν2+ν4](0)4 = +(u1−u2)(u1−u4)(u2−u4) · (u3−u5)(u3−u6)(u5−u6)
(detσ)2ϑ[ν1+ν2+ν5](0)4 = +(u1−u2)(u1−u5)(u2−u5) · (u3−u4)(u3−u6)(u4−u6)
(detσ)2ϑ[ν1+ν2+ν6](0)4 = +(u1−u2)(u1−u6)(u2−u6) · (u3−u4)(u3−u5)(u4−u5)
(detσ)2ϑ[ν1+ν3+ν4](0)4 = −(u1−u3)(u1−u4)(u3−u4) · (u2−u5)(u2−u6)(u5−u6) (I.15)
(detσ)2ϑ[ν1+ν3+ν5](0)4 = −(u1−u3)(u1−u5)(u3−u5) · (u2−u4)(u2−u6)(u4−u6)
(detσ)2ϑ[ν1+ν3+ν6](0)4 = −(u1−u3)(u1−u6)(u3−u6) · (u2−u4)(u2−u5)(u4−u5)
(detσ)2ϑ[ν1+ν4+ν5](0)4 = −(u1−u4)(u1−u5)(u4−u5) · (u2−u3)(u2−u6)(u3−u6)
(detσ)2ϑ[ν1+ν4+ν6](0)4 = −(u1−u4)(u1−u6)(u4−u6) · (u2−u3)(u2−u5)(u3−u5)
(detσ)2ϑ[ν1+ν5+ν6](0)4 = −(u1−u5)(u1−u6)(u5−u6) · (u2−u3)(u2−u4)(u3−u4)

The matrix σ in these formulas was defined in (2.17). We may now use these expressions
to translate various modular forms that are given by sums of products ϑ-constants into the
hyper-elliptic formulation. For example, the Igusa cusp form Ψ10 of [49] may be defined
either as the discriminant of the curve, or as the product over all even ϑ-functions squared,

Ψ10 =
∏
δ even

ϑ[δ](0)2 = (detσ)−10 ∏
i<j

(ui − uj)2 (I.16)

As derived from the formulas for ϑ[δ](0)4, the right-most expression would be determined
only up to a sign. This sign may be fixed, however, by inspection of the various degener-
ations, and was determined to be + in [16]. This guarantees that the right-hand side is
positive for real values of the branch points ui, as is the left side since the period matrix is
then purely imaginary and the entries of σ are real.

I.4 Translating the superstring measure Υ8

For an even spin structure δ with the following decomposition,

δ =
∑
i∈A

νi (I.17)

the superstring measure Υ8[δ] = ϑ[δ](0)4 Ξ6[δ], in the notations of [16], is given as follows
in terms of Riemann ϑ-constants,

Υ8[δ] =
∑
i<j∈A

〈νi|νj〉
∏
b 6=i,j

ϑ[νi + νj + νb](0)4 (I.18)
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The modular transformation law of Υ8[δ](Ω) is given by,

Υ8[δ̃](Ω̃) = det (CΩ +D)8 Υ8[δ](Ω) (I.19)

The quantity Υ8[δ] may be expressed uniquely in terms of the hyper-elliptic representation:
since the number of ϑ4 factors in each term is even the overall sign choice, that was made
earlier in the translation, drops out. Denoting the partition of the branch points u1, · · · , u6
corresponding to the spin structure δ by A = {a1, a2, a3} and B = {b1, b2, b3},

(detσ)8 Υ8[δ] = (a1 − a2)4(a2 − a3)(a3 − a1)
∏

1≤i<j≤3
(bi − bj)2

3∏
k=1

(a1 − bk)(a2 − bk)

+ cycl(a1, a2, a3) (I.20)

Although the expression on the right side might appear to be asymmetrical in A and B, it
actually is invariant under swapping A and B.

J Higher-order spin structure sums

This appendix generalizes the spin structure sums of section 6.2.1 involving the supersym-
metric measure Υ8[δ] in (I.20) to higher orders in `δ.

J.1 Six powers of `δ

Similar to the presentation of the spin structure sums over four and five powers of `δ in (6.7)
and (6.8), we project six powers of `δ into the irreducible representations 1 ⊕ 5 ⊕ 9 ⊕ 13
of SL(2,C). The four independent spin sums are given by

1
(detσ)2

∑
δ even

Υ8[δ]
Ψ10

(det `δ)3 = 189
256 M2

2 −
117
64 M4 (J.1)

1
(detσ)2

∑
δ even

Υ8[δ]
Ψ10

(det `δ)2`
(a1a2
δ `

a3a4)
δ = 423

32 Ma1a2a3a4
4 + 9

4 M2Ma1a2a3a4
2

in terms of M4 scalars and tensors defined in (E.6) as well as

1
(detσ)2

∑
δ even

Υ8[δ]
Ψ10

det`δ `(a1a2
δ `a3a4

δ `a5a6
δ `

a7a8)
δ

= 459
256 M2Ma1a2···a8

2 + 243
128 M(a1a2a3a4

2 Ma5a6a7a8)
2 + 99

64 M(a1a2···a6
1 Ma7a8)

3 (J.2)

1
(detσ)2

∑
δ even

Υ8[δ]
Ψ10

`
(a1a2
δ `a3a4

δ `a5a6
δ `a7a8

δ `a9a10
δ `

a11a12)
δ

= 4185
512 M(a1a2···a8

2 Ma9a10a11a12)
2 − 855

512 M(a1a2···a6
1 Ma7a8···a12)

3 + 441
512 M2M(a1a2···a6

1 Ma7a8···a12)
1
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J.2 Higher powers of `δ

The following spin structure sums illustrate the appearance of the higher-weight scalar M6
and the two-tensor Mab

5 defined in (E.8), namely

1
(detσ)2

∑
δ even

Υ8[δ]
Ψ10

(det `δ)4 = 405
512M3

2 −
639
256M2M4 + 4833

512 M6 (J.3)

1
(detσ)2

∑
δ even

Υ8[δ]
Ψ10

(det `δ)5 = 14823
16384 M4

2 −
9315
1024 M4M2

2 + 64395
1024 M2

4 + 125145
4096 M2M6

as well as

1
(detσ)2

∑
δ even

Υ8[δ]
Ψ10

(det `δ)3 `abδ = 243
64 Mab

5 + 1269
512 M2Mab

3 (J.4)
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