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Cubic chiral magnets exhibit a remarkable diversity of two-dimensional
topological magnetic textures, including skyrmions. However, the experimental
confirmation of topological states localized in all three spatial dimensions remains
challenging. In this paper, we investigate a three-dimensional topological state
called a heliknoton, which is a hopfion embedded into a helix or conic
background. We explore the range of parameters at which the heliknoton can
be stabilized under realistic conditions using micromagnetic modeling, harmonic
transition state theory, and stochastic spin dynamics simulations. We present
theoretical Lorentz TEM images of the heliknoton, which can be used for
experimental comparison. Additionally, we discuss the stability of the
heliknoton at finite temperatures and the mechanism of its collapse. Our study
offers a pathway for future experimental investigations of three-dimensional
topological solitons in magnetic crystals.
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1 Introduction

Cubic chiral magnets have attracted significant theoretical and experimental attention
due to the vast diversity of experimentally observed topological magnetic solitons. These
materials include various Si- and Ge-based alloys with B20-type crystal structures, such as
Fe1−xCox[1]; [2], [3]; [4]; [5]; [6], [7], and others [8]. The competition between the
Heisenberg exchange interaction and the chiral Dzyaloshinskii-Moriya interaction [9];
[10] (DMI) stabilizes topological solitons in these materials. The most extensively
studied types of magnetic solitons in these systems are magnetic skyrmions [11]; [12].
Skyrmions are vortex-like strings or tubes characterized by a topological index Q = −1.
Experimental observations have revealed that clusters of skyrmion tubes can form complex
three-dimensional superstructures, such as skyrmion braids [13]. Additionally, the skyrmion
antiparticle, antiskyrmions, with topological chargeQ = +1, have been observed in thin films
of FeGe [14]. Skyrmion bags with arbitrary topological charge and skyrmions with chiral
kinks are other solitons that have been reported [15]; [16]; [17]. Recently, the experimental
observation of skyrmion bags with positive topological charge and their current-induced
motion has been reported by Tang et al. [18].

Skyrmions, antiskyrmions, and skyrmion bags are two-dimensional (2D) topological
solitons that are localized in the plane of the sample and confined by the free surfaces of the
sample in the third dimension. The homotopy classification of these solitons is based on the
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continuous mapping between two spheres, S2 → S2. Where the pre-
image is a sphere that is homeomorphic to the two-dimensional
region where the skyrmion is localized, while the image is a sphere
that corresponds to a parameter space of the magnetization unit
field, given by n(r) =M(r)/Ms. For the magnetic texture in xy-plane
the corresponding topological charge [19]:

Q � 1
4π

∫ F · êz( )dxdy, (1)
where the vector field

F �
n · zyn × zzn[ ]
n · zzn × zxn[ ]
n · zxn × zyn[ ]⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ (2)

is the curvature vector of the vector field n and is frame-invariant,
meaning it does not depend on the choice of coordinate frame
[20,21]. For an unambiguous definition of Q, the direction of the z-

axis should be chosen consistently with the magnetization n0 around
the region of texture localization such that êz · n0 > 0, see details in
Refs. [22]; [23].

Three-dimensional (3D) topological magnetic solitons belong to
a distinct class of solutions that are localized in all three spatial
dimensions. The classification of 3D magnetic solitons is based on
the mapping S3 → S2, which was originally proposed by Hopf [24].
The Hopf index H, which is the 3D analog of the topological
invariant Q, was derived by Whitehead [25] and is given by:

H � − 1
16π2

∫ F · V( )dxdydz, (3)

where V is a vector potential satisfying ∇ ×V = F. For localized 3D
magnetic textures without singularities, the Hopf index H is an
integer that has the following meaning: twomorphologically distinct
magnetic textures with identicalH can be continuously transformed
into each other without the appearance of singularities, whereas

FIGURE 1
The images illustrate the spin texture inside the simulated box of the size 4LD × 4LD in the xy-plane and thickness of 2LD along the z-axis. The first
column of images correspond to the hopfion anzatz (5). The second column represents the hopfion ansatz after applying the spiralization (6) with the k-
vector of the spiral parallel to the y-axis, |k| = 2π/LD. The third column of images corresponds to the spin texture after the energy minimization assuming
periodical boundary conditions in the xy-plane and free boundaries along the z-axis. The fourth column illustrates the relaxed spin texture after
applying despiralization. The first row of images shows the isosurfaces nz = 0. The images depicted in the second, third, and fourth rows illustrate the
magnetization field in the middle planes. For illustrative purposes, these images are bounded by the blue box of the size 2.5LD × 2.5LD × 2LD depicted in
the top left image. The scale bar in the bottom right image corresponds to 1LD.
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continuous transformations between magnetic configurations with
different H are impossible. Statically stable structures with non-zero
Hopf index are commonly referred to as Hopf solitons or hopfions.
It should be noted that the topological charge Q is zero for any
hopfion cross-section. An example of a hopfion texture withH = 1 is
depicted in the first column of Figure 1.

Theoretical studies of hopfions in various models of magnetic
crystals began in the 1970s and continue to the present day [26];
[27]; [28]; [29]; [30]; [31]; [32]; [33]; [34]. There is also some limited
experimental evidence for direct observation of such magnetic
textures [35]; [23]. An intriguing type of hopfion has been
predicted in cubic chiral magnets [31], but has not been observed
so far. This hopfion is embedded not in a collinear ferromagnetic
state but in a helical spin spiral state. We refer to it as a heliknoton
following the terminology used in Refs.[36]; [31].

The primary goal of this study is to investigate the stability of the
heliknoton under realistic conditions, taking into account the
demagnetizing field effects, and estimate its stability range in
films of different thicknesses. Additionally, we explore how the
contrast in theoretical Lorentz transmission electron microscopy
(TEM) images changes with film thickness and suggest optimal
conditions for experimental observations of the heliknoton.
Furthermore, we estimate the stability of the heliknoton at finite
temperatures using two complementary methods: harmonic
transition state theory (HTST) [37]; [38] and stochastic spin
dynamics [39].

2 Model

To estimate the stability of heliknoton in the films of finite
thickness, we use a micromagnetic model, which contains the
Heisenberg exchange term, the DMI, the Zeeman interaction,
and the self-energy of the demagnetizing field [13]; [40]:

E � ∫
R3

A|∇n|2 +Dn · ∇ × n( ) −Msn · B + |∇ × A|2
2μ0

[ ]dr, (4)

where n(r) is the magnetization unit vector field,Ms is the saturation
magnetization, A is the exchange stiffness constant, D is the
constant of isotropic bulk DMI, and μ0 is the vacuum
permeability. The magnetic field B(r) in Eq. 4 represents the sum
of a homogeneous external magnetic field Bext and the
demagnetizing field produced by the sample itself, B = Bext +
∇ ×A, where A(r) is the magnetic vector potential due to the
presence of the magnetization field M(r) = Msn. It should be
noted that while the unit vector n is defined only within the
volume of the sample, the vector potential A(r) is defined in the
entire space ofR3. As a result, the integration for the first three terms
in Eq. 4 must be carried out only within the sample volume. For the
present analysis, we will consider an infinite plate lying in the xy-
plane and assume that the external magnetic field is parallel to the z-
axis.

The static equilibrium heliknoton was obtained by numerically
minimizing (4) with respect to the pair of fields n and A using a
nonlinear conjugate gradient method (for details, see Ref. [13]). The
simulated domain was discretized on a regular mesh with 256 ×
256 × 181 nodes along the x, y, and z axes, respectively. To simulate

an extended film, periodic boundary conditions were applied in the
xy-plane. The results presented below for the micromagnetic
calculations were obtained using GPU-accelerated software
Excalibur [41]. Additionally, the results were verified with the
publicly available software MuMax3 [42]. For definiteness, we
used the material parameters for FeGe [43]: A � 4.75 pJm−1, D �
0.853 mJm−2, and Ms = 384 kAm−1. To ensure that our results are
generally applicable, we utilize reduced units for the external
magnetic fields and distances throughout the paper. Specifically,
we employ units concerning the cone saturation field BD �
D2/2MsA and the equilibrium period of the spin spiral at the
ground state LD � 4πA/D (70 nm for FeGe). As has been shown
earlier [43], when accounting for demagnetizing fields, the critical
field for cone saturation changes to Bc = BD + μ0Ms (682 mT for
FeGe), and Bc = BD (199 mT for FeGe) only if the demagnetizing
field is neglected.

3 Results

3.1 Initial guess

The initial configuration for heliknoton can be obtained in two
steps. First, we insert in the simulated domain the classical
hedgehog-based ansatz [24]; [44] for a hopfion in the
ferromagnetic background:

n � 2 sin2 G

r2

xz
−yz
z2

⎛⎜⎝ ⎞⎟⎠ + 1
r

y sin 2G
x sin 2G
r cos 2G

⎛⎜⎝ ⎞⎟⎠, (5)

where function G = G(r) with r � 
x2 + y2 + z2

√
describes the

skyrmion-like profile: G (r = 0) = π and G (r → ∞) = 0. In our
simulations we use G(r) = 2 arctan (exp (−2r)/r). The first column in
Figure 1 illustrates the spin texture obtained with the ansatz (5).
Note the opposite chirality of the spin texture in x and y directions.

In the second step, we implemented the spiralization procedure,
which involves rotating all spins by an angle dependent on their
coordinate along the wavevector k of the spiral. This transforms the
ferromagnetic background into a helical one. Note that we applied
this procedure to the entire volume, including the area containing
the hopfion. For the case k‖ey the spiralization procedure can be
written as

n′ �
cosφ 0 sinφ
0 1 0

−sinφ 0 cosφ

⎛⎜⎝ ⎞⎟⎠n, φ � 2π
LD

y. (6)

where n corresponds to the ansatz (5) and n′ is the ansatz for the
hopfion in the helical background. The second column in Figure 1
illustrates the spin texture obtained after applying the spiralization
(6) to the initial hopfion ansatz (5). The spin texture after energy
minimization is shown in the third column of Figure 1. The quality
of our ansatz is seen from the comparison of the spin textures before
and after energy minimization. To better visualize the spin texture of
the heliknoton, we utilize the despiralization procedure, which is
illustrated in the last column of Figure 1. This procedure serves as
the inverse of the spiralization operation (6). After the energy
minimization or capturing a snapshot of the magnetic texture,
we apply the transformation (6) with φ↦ − φ to obtain the
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despiralized spin texture. By using this procedure, one can gain a
better understanding of the heliknoton’s spin texture.

3.2 Demagnetizing field effect

To estimate the demagnetizing field effect on the stability of
heliknoton in a film of finite thickness, we performed systematic
energy minimization at different external magnetic fields and film
thickness starting with the ansatz (5)-(6). The results of these
calculations performed with and without demagnetizing fields are
presented in Figure 2. In these calculations, we keep the size of the
simulated domain in xy-plane fixed, 4LD × 4LD, and vary only the
film thickness between 0.5LD and 3.5LD. We have checked the
interaction between heliknotons due to the periodic boundary
conditions and found that it is relatively weak for this size of the
simulation domain and does not significantly affect the heliknoton
stability. Since the absolute values of the critical fields for the cases
with and without demagnetizing fields are very different, we provide
the critical fields in reduced units with respect to the saturation field
of conical phase, Bc. This approach objectively estimates the range of
heliknoton stability in both cases.

As follows from the diagram in Figure 2, taking into account the
demagnetizing fields reduces the heliknoton stability range down to
~ 0.3Bc, which for the material parameters of FeGe corresponds to
~ 200 mT. This is a reasonably high range of fields accessible in most
of the experimental setups.

At the film thickness below LD, the heliknoton does not fit the
size of the film and becomes unstable in both cases, with and without
demagnetizing fields. With increasing thickness, the critical
heliknoton fields tend to saturate in both cases. Near the
thicknesses commensurate to the period of helical modulations,

e.g., L/LD = 2, the critical fields show minor picks. Similar but less
pronounced pick is also seen at L/LD = 3 for the case with
demagnetizing field only. We attribute the non-monotonic
behavior of the collapse field to the chiral surface twist effect
[45]. This effect manifests as an additional twist of magnetization
near the free edges of the sample, which can penetrate into the
volume of the sample. In the case of thin films with L/LD ≲ 3, these
twists can distort the magnetic texture of the heliknoton. It is worth
noting that the twist of magnetization near the free edges of the
sample is also supported by the demagnetizing fields. The major
difference is that the demagnetizing field does not favor a particular
chirality of the surface twist, while the chiral surface twist gains
energy only for the chirality favorable by the DMI. Thus, when we
take into account the demagnetizing field, these two effects exhibit a
cumulative effect. The most distinguishing is the behavior of the
heliknoton in the thickness range between 1LD and 1.5LD. In this
range, without demagnetizing fields, the solution remains stable only
in the presence of the external field. Such anomaly in the stability of
heliknoton in this case can be explained as the absence of cumulative
effect from the chiral surface twist and demagnetizing fields. At
realistic conditions, with demagnetizing fields, however, it is not the
case, and the heliknoton is stable in the whole range of L > 1.1LD
even at zero magnetic fields. The thickness of ~ 1.1LD can be
thought of as the lower bound for experimental observations of
heliknotons.

3.3 Theoretical analysis of Lorentz TEM
contrast

According to the diagram shown in Figure 2, there is no upper
bound limit for the sample thickness, and even in a bulk crystal, a
heliknoton can exist. However, the thickness of the sample plays a
crucial role in experimental observation. In particular, the sample’s
thickness is a significant factor for the applicability of Lorentz TEM.
In our previous studies [13], we estimated the upper limit for the
thickness of the FeGe sample to be approximately 300 nm. Above
this thickness, the sample becomes no longer transparent for
electrons. In the case of thicker samples beyond 300 nm, one
must use a TEM setup with an acceleration voltage above
300 kV, the standard voltage for the most modern TEM
instruments. Besides that, it is well known that for some
magnetic textures, the Lorentz deflection forces can be
completely canceled and thus give no contrast in non-tilted
samples [46]; [47].

Since the heliknoton is the texture localized in all three
dimensions, it is natural to expect that the contrast it produces
in Lorentz TEM is thickness dependent. Figure 3 shows the Lorentz
TEM contrast provided by the heliknoton in films of different
thicknesses, which we calculated assuming material parameters
for FeGe. For these calculations, we used a well-established
method based on the phase object approximation [48]. For
details of implementation, see Ref. [13].

As seen from Figure 3A, above the thickness of ≥ 2.5LD (~ 170
nm for FeGe), the characteristic features in both over-focus and
under-focus images of heliknoton are hardly seen. The quality of the
contrast can be improved by varying the defocus distance, as shown
in Figure 3B. However, in real experiments this is not always

FIGURE 2
The diagram of stability for heliknoton in extended film
calculated with and without demagnetizing field. For consistency, the
external fields for both cases are given in reduced units with respect to
the saturation field of the cone phase, Bc = BD + μ0Ms and Bc =
BD, for the casewith andwithout demagnetizing filed, respectively. For
B20-type FeGe, Bc = BD + μ0Ms = 0.682 T and LD = 70 nm, see the top
axis.
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possible, mainly due to diffraction from the crystal structure, which
usually also contributes to the Lorentz TEM contrast. Based on a
comparison of the theoretical Lorentz TEM images and the stability
diagram, the optimal thickness range for observing heliknotons in a
TEM experiment is between 1.5LD and 2LD (around 100 nm and
140 nm, respectively, for FeGe).

3.4 Minimum energy path calculations and
HTST analysis

To estimate the stability of heliknoton at finite temperature
within HTST, we use an effective atomistic spin Hamiltonian
defined on a simple cubic lattice:

E � −J ∑
〈i,j〉

ni · nj − ∑
〈i,j〉

Dij · ni × nj[ ] − μ∑
i

Bext · ni, (7)

were ni is the unit vector along the magnetic moment at the lattice
site i, J and D � Dr̂ij are the Heisenberg exchange constant and
Dzyaloshinskii-Moriya (DM) vector, respectively, r̂ij is the unit
vector along the segment connecting sites i and j, μ is the
magnitude of the magnetic moment at each site. The symbol
〈i, j〉 denotes the summation over the nearest neighbor pairs
over all lattice sites.

Here we ignore the demagnetizing field effect and introduce
characteristic parameters LD = 2πJa/D and BD = D2/(Jμ) for the
atomistic model (7), where a is the lattice constant. The calculations
for heliknoton energy barriers and lifetime provided below were
performed at zero external magnetic field, Bext = 0.

First, we apply HTST to estimate the lifetime of a particular
magnetic state and the possible mechanisms of its collapse. Within
the HTST, the rate of transition between states X and Y at
temperature T is described by the Arrhenius law,

kX→Y � ]X→Y exp −ΔE
X→Y

kBT
( ), (8)

where the energy barrier ΔEX→Y can be computed knowing the
minimal energy path (MEP) connecting X and Y states on the energy
surface as the energy difference between the highest point along the

MEP—The first-order saddle point (SP) on the energy surface of the
system—And the minimum at X. The pre-exponential factor ]X→Y

incorporates dynamical ]dyn and entropic ]ent contributions to the
transition rate

]X→Y � 1
2π

]dyn]ent.

Within the harmonic approximation, the energy of the system in
the vicinity of a stationary state is approximated by a quadratic form
that allows the prefactors to be determined explicitly [49]. The quadratic
forms for the minimum nX and the saddle point nSP are determined by
the corresponding Hessian matrices HX and HSP, respectively. The
entropy of the states is expressed in terms of determinants of the
matrices. If the energy is an invariant of some transformation, e.g., the
energy of the hopfion is preserved during translations, then some
eigenvalues of the Hessians are zero, and the corresponding modes are
called zero modes. In the harmonic approximation, the contribution of
zero-modes to the state nX and saddle point nSP which have ZX and ZSP,
respectively, the zero-modes are estimated by their volumesVX andVSP.
The entropy prefactor is given by

]ent � 2πkBT( )ZX−ZSP
2

VSP

VX


detHX

|detHSP|

√
,

where the Hessians are restricted to subspaces consisting of non-
zero modes.

The dynamical prefactor is expressed in terms of the negative
eigenvalue ζ of the Hessian HSP with the corresponding
eigenvector e,

]dyn �

b ·HSPb

|ζ |

√
, bi � γζ

μ
nSP
i × ei.

The index i numbers the lattice sites.
The heliknoton in bulk has at least two zeromodes corresponding

to translations in directions orthogonal to the helical axis. We
eliminate one of the zero modes by pinning the spins at the
boundaries x = const and y = const in such a way that the
direction of the magnetic moments coincides with one of the helix.
The pinned spins were not affected by the optimization procedures

FIGURE 3
(A) The theoretical Lorentz TEM images of heliknoton at zero external field in the plate of different thicknesses. The thicknesses in reduced units with
respect to the period of helical modulations LD are indicated on the top of each pair of over-focus and under-focus images. The defocus distance is
400 μm. (B) The over-focus and under-focus Lorentz TEM images of heliknoton in the film of thickness 2LD calculated for different defocus distances.
The scale bar in (A, B) corresponds to 70 nm.

Frontiers in Physics frontiersin.org05

Kuchkin et al. 10.3389/fphy.2023.1201018

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1201018


and were not included as degrees of freedom to the Hessians. On the
surfaces z = const the boundary conditions are free, which allows us to
simulate the escape through the boundary. Translation along the z-
axis becomes a quasi-zero mode because of the effect of the boundary.

The computation ofMEPwas performed inCartesian coordinates
with constraints on the magnetic moments length taking into account
by introduction of Lagrange multipliers, which allows us to avoid
singularities and the necessity to transform coordinates while
changing the map in the atlas [50]. The string method [51] with
stable tangent estimate [52] was used for MEP calculation.

The most challenging part of the computation of the transition
rate is the calculation of the determinants. When a standard LU or
QR decomposition is used, the complexity of the problem isO(N3),
where N is the number of spins. Taking into account the block band
structure of the Hessian matrix for close-range interactions in the

absence of the demagnetization field, the complexity can be reduced
to O(N7/3) [49]. Nevertheless, the problem remains time-
consuming, especially for the domain of size 5LD × 5LD × 2LD
used in our calculations.

To find the optimal mesh density, we calculated the MEPs at
different mesh densities of LD equal to.

To find the optimal mesh density, we calculated the MEPs at
different mesh densities of LD equal to 12a, 24a, 36a, and 48a. While
the coarsest grid of 12a gives significantly different values of both the
Heliknoton energy and the activation barrier, the results for the
three densest grids (with 24a, 36a, and 48a) are only slightly
different (see right inset in Figure 4A). Therefore, we used the
discretization density LD = 24a for the transition rate computation.

The results of the HTST analysis are summarized in Figure 4.
The MEPs presented in Figure 4A correspond to two distinct

FIGURE 4
(A) The minimum energy paths for two distinct mechanisms for heliknoton collapse in the film: the escape through the free edges of the plate (blue
curve) and the decay inside the film via the nucleation of a pair of Bloch points (red curve). The saddle points are indicated by hollow symbols. The right
inset illustrates the convergence of the energies of the heliknoton, EH, and the energy barrier for the decay, ΔED, to the micromagnetic limits with
increasingmesh density, LD/a. (B) The lifetime of heliknoton as a function of temperature. The escapemechanism (blue line) is less probable than the
decay mechanism for all temperatures. Insets in (B) show the contributions of the exponent (activation barrier) in Arrhenius law to the lifetime. (C)
Snapshots of the system along the minimum energy path for heliknoton decay. The spin texture after despiralization is represented by the isosurfaces
mz = 0. The number above each image corresponds to the reaction coordinate, r. Similar to Figure 1, the images show the volume confined by the blue
box of the size 2.5LD × 2.5LD × 2LD—The quarter of the whole simulated domain of the size 5LD × 5LD × 2LD. (D) Snapshots of the system along the
minimum energy path for heliknoton escape through the free surface. The field of view and notations are the same as in (C). In (C, D), the images in the
middle correspond to the saddle points of corresponding MEPs.

Frontiers in Physics frontiersin.org06

Kuchkin et al. 10.3389/fphy.2023.1201018

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1201018


mechanisms for heliknoton collapse, which we refer to as decay and
escape. The decay mechanism is similar to the collapse of hopfions
in a model of a frustrated magnet [33]; [34]. In this case, the
heliknoton collapses via the emergence of a pair of magnetic
singularities, namely Bloch points of opposite signs.
Representative images along the MEP corresponding to
heliknoton decay are shown in Figure 4C.

As seen from the images in Figure 4D, when the heliknoton escapes
through the boundary,magnetic singularities do not appear at any point
along the MEP. Surprisingly, the escape mechanism for the heliknoton
collapse is characterized by a higher energy barrier compared to
heliknoton decay for sufficiently dense lattices. Thereby, unlike the
case of hopfions in the model of frustrated magnets [32], the escape
through the boundary for the heliknoton requires overcoming some
activation barrier, which we attribute to the emergence of the chiral
surface twist effect [53]. The latter suggests that the heliknoton in a thin
plate of a chiral magnet may be more promising for experimental
observations due to its finite energy barrier for escape.

The total transition rate for ametastable state is the sumof transition
rates for all mechanisms of the collapse. The main contributions to the
mean lifetime (inverse to the transition rate) of the heliknoton are the
decay and escape mechanisms, with decay dominating:

τ � 1
kdecay + kescape

≈
1

kdecay
.

The dependence of the heliknoton lifetime on temperature is
shown in Figure 4B. The inverse to the transition rate for the decay
mechanism gives an estimate of the lifetime of the heliknoton in
thick films because the escape transition rate is inversely
proportional to the film thickness.

Overall, our HTST analysis sheds light on the decay mechanisms
of the heliknoton and highlights potential avenues for its experimental
observation, especially at low temperatures. For instance, at T =
0.455J/kB (or 0.35Tc), the lifetime for heliknoton is τ ~ 106 in
dimensionless time units scaled by Jγμ−1, see Figure 4B. For J =
112 meV and μ = 1030μB, we obtain the heliknoton lifetime of ~ 1000

seconds, which is quite reasonable for experimental observation.
Assuming every model spin ni corresponds to a cluster of 73

atoms, where each atom has a magnetic moment of 3μB and a
lattice constant of 5Å, the diameter of the observable heliknotons
should be in the order of 100 nm. Note that the temperature of 0.35Tc
for FeGe corresponds to ~ 95 K, which is accessible for the experiment
performed at liquid nitrogen temperature.

3.5 Stochastic LLG dynamics

The stochastic LLG equation can be written as

zni

zt
� ni ×

1
J

zE

zni
− Bi

fluc( ) + αni ×
zni

zt
, (9)

where t is a dimensionless time scaled by Jγμ−1, with γ being the
gyromagnetic ratio, α is the Gilbert damping parameter, Bi

fluc is the
fluctuating field representing uncorrelated Gaussian white noise
with a prefactor proportional to the temperature, T. For the
numerical integration of Eq. 9, we use the semi-implicit method
provided in Ref. [54] implemented in the publicly available software
Magnoom [55]; [56]. For the chosen coupling parameters, we
estimate the critical temperature, Tc ≃ 1.345J/kB (see Ref. [57]).
The simulations were performed at zero external magnetic field with
α = 0.3 and a fixed time step of Δt = 0.01. We perform ten
independent simulations on a domain with Lx = Ly = 4LD, Lz =
2LD and discretization density LD/a = 32. We use periodic boundary
conditions in the xy-plane. To increase the probability of heliknoton
collapse in a reasonable time, the simulations were performed at an
elevated temperature of T = 1.0J/kB (~ 0.74Tc). The total simulation
time of each run is t = 105 (107 iterations).

To visualize the heliknoton isosurface nz = 0 in the presence of
strong thermal fluctuations, we first apply Fourier filtering as
described in Ref. [57]. After that, we apply the despiralization
procedure as introduced above, Figure 5. Among the few
independent runs of the LLG simulations, we chose the two most

FIGURE 5
Snapshots of the system in two different stochastic LLG simulations are shown. The set of images in row (A) corresponds to the heliknoton collapse
through the nucleation of Bloch points, while images in row (B) correspond to its escaping through the free surface of the plate. The shown box has size
2LD in each dimension.
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representative examples illustrated in Figures 5A, B; Supplementary
Movies S1, S2. In agreement with the results of HTST presented in
the previous section, we observe two mechanisms of heliknoton
collapse. In particular, Figure 5A shows the snapshots of the systems
during the heliknoton collapse via the decay, accompanied by the
Bloch points nucleation. Figure 5B illustrates the case when
heliknoton collapses via escape through the top free surface of
the plate. These are the only two mechanisms observed in
stochastic LLG simulations. In the first case, the heliknoton
shrinks until the tor hole completely disappears. At this moment,
a pair of Bloch points of the opposite charge appears, and we see the
transition from the heliknoton to the dipole string or toron [57]. The
dipole string represents a non-stable state at these parameters and
collapses through shrinking. In the second case, we observe the
shifting of the heliknoton to the open surface as a result of its
Brownian motion. The escaping happens if the distance between the
heliknoton and the surface is smaller than the critical one. It is worth
noting that despite the temporal fluctuations, the escape through the
free surface represents a smooth transition. Remarkably, the
heliknoton remains stable near the surface of the plate for a
noticeably long time. That might indicate the existence of a
metastable state resembling surface modulations. Details of the
investigation of such localized states will be provided elsewhere.

Among ten independent simulations, we observed the collapse
of the heliknoton in the times range between 2 × 104 to 8 × 104 in
reduced time units. Using these results, we estimated the lifetime of
the heliknoton at T = 1.0J/kB to be approximately τ ~ 104. This result
agrees with the findings of the HTST calculations presented in
Figure 4B, which suggest a lifetime of τ ~ 103 for this temperature.
The limited sampling (only ten independent runs) may account for
the observed discrepancy. However, given the variation of the
heliknoton’s lifetime by ten orders of magnitude for different
temperatures, we consider the agreement between the simulations
and HTST calculations to be satisfactory.

4 Conclusion

In this study, we investigated the stability and decay mechanisms
of the heliknoton in realistic conditions using direct energy
minimization, stochastic LLG simulations, and HTST calculations.
Our results showed that the heliknoton is stable in a wide range of
magnetic fields and plate thicknesses, as demonstrated by the stability
diagram calculated at zero temperature. However, our calculations
indicated that for plate thicknesses above 2.5LD, the magnetic contrast
in Lorentz TEM becomes too weak for reliable observations.

Based on our findings, we estimate the optimal plate thickness
for heliknoton observations to be 2LD ± 0.5LD (140 ± 35 nm for
FeGe parameters). Our analysis using the GNEB method revealed
two main mechanisms of heliknoton decay: collapse via the
formation of Bloch points and escape through the plate surface.
The LLG simulations at finite temperatures supported these
observations and showed reasonable agreement with the
estimation of heliknoton lifetime, at least at elevated
temperatures. Moreover, the HTST calculations allowed us to
estimate heliknoton lifetimes at different temperatures. Overall,
our results suggest that the heliknoton should be stable with a
reasonably long lifetime at the standard measurement temperature

of liquid nitrogen (T = 95 K) used in TEM experiments. We
anticipate that these findings will stimulate further experimental
observations of heliknotons in magnetic systems.
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