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Abstract 

Information is often stored and transmitted through electrical signals. This information may need 

refinement, which may be done by processing and altering the electrical signals, in which it is 

transmitted. When refining a signal, a frequency selective filter is often used. It can be 

implemented through digital signal processing (DSP). DSP is a concept where signals are 

refined using a digital compute system. Digital systems are designed to replace their analog 

counterpart, mitigating their flaws in scalability, complexity and cost. A DSP system is typically 

implemented using software on a small computer, while analog systems are implemented 

through various electronic components.  

The objective of this project is to design a DSP system that filters analog input data using 

automatically synthesised filters from user-defined input specifications. The DSP system is 

implemented using a microcontroller. The system designed the filters and found the filter 

coefficients. It then uses analog to digital converter (ADC) to sample an input signal and applies 

the filter. Lastly, it uses the digital to analog converter (DAC) to reconstruct a filtered, analog 

result. A user interface is not designed for the system, and only a limited number of filters are 

implemented. However, the system is successful in designing filters and finding their 

coefficients. 
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Sammanfattning

Information lagras och överförs ofta genom elektriska signaler. Denna information kan
behöva förfinas, vilket kan göras genom att bearbeta och ändra de elektriska signalerna
i vilka den överförs. När man förfinar en signal används ofta ett frekvensselektivt filter.
Det kan implementeras genom digital signalbehandling (DSP). DSP är ett koncept
där signaler förfinas med hjälp av ett digitalt beräkningssystem. Digitala system
är utformade för att ersätta sina analoga motsvarigheter, och mildra deras brister i
skalbarhet, komplexitet och kostnad. Ett DSP-system implementeras vanligtvis med
hjälp av programvara på en liten dator medan analoga system implementeras genom
olika elektroniska komponenter.

Målet med detta projekt är att utforma ett DSP-system som filtrerar analog indata
med hjälp av automatiskt syntetiserade filter från användardefinierade specifikationer.
DSP-systemet implementeras med hjälp av en mikrokontroller. Systemet utformar
filtren och hittar filterkoefficienterna. Det använder sedan en analog till digital omvandlare
(ADC) för att sampla en insignal och applicera filtret. Slutligen använder det en
digital till analog omvandlare (DAC) för att återskapa ett filtrerat, analogt resultat.
Ett användargränssnitt utformas inte för systemet, och endast ett begränsat antal
filter implementeras. Systemet lyckas dock med att utforma filter och hitta deras
koefficienter.
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ADC - Analog to Digital Converter
BP - Band Pass
BS - Band Stop
CPU - Central Processing Unit
DAC - Digital to Analog Converter
DMA - Direct Memory Access
DSP - Digital Signal Processing
FIR - Finite Impulse Response
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ISR - Interrupt Service Routine
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1 Introduction

1.1 Background

Information can be carried by multiple methods, such as text, sounds or electric signals.
Processing these signals can be viewed as a refinement of information. The information
may be optimized for a specific task, analyzed with a specific focus, or corrected for
artifacts through signal processing. Certain aspects of the information may be modified,
made prominent, isolated, or removed. Removing certain aspects of the presented
information is often referred to as filtering. Filtering may be performed to transmit
the relevant information for the right application. For example, a common application
of filtering is in home theaters. The system consists of multiple speakers specified for
the playback of different spectra of sound. Tweeters are solely good at reproducing
high-frequency sounds, woofers reproduce mid-frequency sounds and sub-woofers are
solely good at reproducing low-frequency sounds. The system needs to filter the sound
so that each speaker only receives information with its specified spectra isolated for
optimal performance.

Such filtering systems are traditionally constructed using analog electrical circuits
containing resistors, capacitors and inductors. Such analog systems are, however,
hard to tune and make modifications to, while also being expensive. Once they are
designed and produced, it will be challenging to correct for flaws. Limitations of analog
systems may be addressed by implementing the signal processing system digitally on
computers. Such digital systems are software driven and therefore easier to apply on
cheap computational devices with low power consumption. The filters may then also be
modified using software updates and features to adapt settings according to individual
user preferences with more flexibility may be implemented. A sophisticated digital
system is also more scalable at a lower cost than an analog system, as software can be
implemented in cheap hardware without alteration and without variation in quality. A
high-quality digital filter with high performance is desirable to design a scalable system
to address analog filters’ flaws.

Filters are needed if information shall be extracted, removed, or enhanced in a signal.
They can remove noise from the signal and they can specify within what frequency
range a signal is to be transmitted. Filters allow us to not only find a signal that
has been sent and isolate it, but also to send multiple different signals simultaneously
using different frequencies for each. These characteristics are required for any digital
communication, and for multiple electronic communication devices, such as phones and
wireless headphones to operate in proximity to each other.
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1.2 Project goals and delimitations

The goal of the project is to create a digital signal processing system that filters analog
input data using automatically synthesized filters from user-defined input specifications.
The system shall include windowed finite impulse response (FIR) low pass, high pass,
band pass and band stop filers, as well as low pass, high pass, band pass, and band
stop Butterworth and Chebychev infinite impulse response (IIR) filters. The system is
also to include the ability to use an analog input signal, apply the filter digitally, and
output the resulting signal using an analog output.

The focus of the project is to implement filter creation from specifications, and not
to develop a consumer friendly product. There are therefore limitations on the system’s
user interface, its robustness, and instructions on how the system is implemented.
There is no dedicated user interface for the system, which would be required for a
consumer-level product. The user can make the system inoperable if text is entered as
input instead of numbers, or if a line of code is deleted. Similarly, the ease of use of
hardware connections and interfaces is not considered. The system also only performs a
set number of pre-defined filters as stated above, although the system may be expanded
with additional filters. For evaluations, the tools are limited to an oscilloscope, which
is used to perform the result measurements.

1.3 Project description

The project aims at creating a system for designing and applying filters that are to be
run on an easy-to-use hardware platform. The filter design process is to use user data
inputs such as filter type, cut-off and sampling frequencies, as well as the number of
poles. The poles affect the properties of how the system filters the information and its
stability. The user shall be able to set any filter parameters and receive a means to
filter input data accordingly by calculating and applying filter coefficients specific to
the user preferences. These coefficients are applied to the input signal coming from the
analog to digital converter (ADC) to find the digitally filtered output signal. When
the output is found, it is reconstructed using the digital to analog converter (DAC).
The hardware platform used for the project is Atmel’s AVR UC3-A3 XPLAINED and
the programming language C is used to create the application software. The filters are
applied in real time using features such as direct memory access (DMA), and interrupt
service routine (ISR).

An overview of the system is shown in Figure 1. The filter is designed using user
inputs and outputs filter coefficients. This is solely done once for a filter, and the
coefficients remain static for the user inputs. The ADC has an internal buffer that is
always loading new data in an internal buffer using DMA. The buffer is loaded in an
array that is used to process the data. The input data is then loaded into the filter
application along with the filter coefficients when a trigger is pressed. The DAC is
always reconstructing analog data using an internal buffer handled by DMA. The filter
output is transferred to the DAC’s internal buffer to update what signal is outputted.
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Figure 1: Block diagram of the system.

The platform has low cost, consumes little power, and meets the fundamental
hardware properties required for a well-designed digital signal processing system to
address the flaws of analog signal processing. The system requires little effort to
reconstruct and is able to run as a low-power battery electric system. The user will be
able to set the following software parameters.

• Filter type,

• window type for FIR filter,

• Butterworth or Chebyshev filter for IIR filter,

• low pass, high pass, band pass or band stop filter,

• burst or continuous buffer mode,

• sampling frequency,

• buffer size,

• cut-off frequencies,

• number of poles,

• ripple for Chebyshev filter.
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2 Theory

2.1 Hardware

A microcontroller is being used as the main hardware platform. The microcontroller
is a package of smaller circuitry on one computer chip. Properties and features can be
adjusted depending on the device’s intended application. A microcontroller generally
has low power consumption and is suitable for computationally light tasks. The device
used for the project is Atmel’s AVR UC3-A3 XPLAINED. Its features and capabilities
are visualized in the block diagram in Figure 2 [1]. Some of the modules used in this
project are the input and output functionalities, ADC, audio bitstream DAC, universal
synchronous/asynchronous receiver/transmitter (USART), and DMA. All these modules
have limited resolution and need to be complemented with external hardware if higher
precision is required.

Figure 2: Block diagram of the used microcontroller’s architecture [1].
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2.1.1 Buffering

Buffering is the process of moving data within the system. Data is moved to and from
the random-access memory (RAM) either using the central processing unit (CPU) or
DMA. DMA is a hardware module that can perform data read and write operations
independently from the CPU and eases its operational load. The CPU simply initiates
the memory transfer and receives an interrupt once the transfer has been completed [2].
The CPU is typically involved in the whole process of moving data from one memory
location to another. The DMA is used when data is required to be moved at the same
time as when the CPU is to perform operations. The CPU is unavailable for any other
task while performing these operations, as it solely can perform one computation at a
time. This proves an inconvenience for tasks where large amounts of data need to be
recorded and processed continuously. Such instances may be when inputs are processed
through the ADC and when outputs are processed through the DAC. The filters may
then be applied by the CPU while the DMA applies the ADC and DAC.

There are two buffer modes available. The first mode is continuous where a new
output is calculated to replace the previous output calculation once it is finished. There
will thereby always be a new and updated output under calculation in this mode. The
second mode is to calculate outputs in bursts. The DMA is still collecting data for the
ADC continuously, but the data is not used. The output is also paused and the same
signal remains at the output. A new set of input values are loaded from the ADC and
processed through the system if a hardware indicator is triggered.

2.1.2 Interrupt Service Routine

A software is typically compiled starting from the first row of code, and ending at the
last. It computes one task at a time, and this is sufficient in many applications. There
is a feature used in the project called interrupt service routine (ISR) that makes it
possible to execute a block of code with an external trigger. The trigger may be a timer
or physical switch and once the specified event occurs, the ISR pauses the main code,
while the associated method is executed [1].

The ISR needs a specified criterion for activating and performing a task. For the
ISR to activate, an interrupt flag needs to be triggered. This can for example be done
through an external event or on a predetermined basis using a timer. Different use
cases for the ISR require different triggering methods. An ISR can for example be used
for starting a memory buffer transfer through DMA or changing a flag to indicate that
a setting has changed. The ISR allows for the program to run more efficiently by, for
example, only initiating a new DMA transfer once its buffer has completed its task of
moving data.

2.1.3 USART

Serial communication is used through the standard USART. It is used to send data
between the microcontroller and the PC using low hardware complexity. USART is
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based on RS-232 and can be set up differently depending on what application it is to
be used for [3].

The synchronous mode is used for communication bidirectional communication. It
has a clock signal and data is sent at a fixed rate. The asynchronous mode is used for
unidirectional communication. It does not have a clock signal and data is sent at a
bit-by-bit rate rather than sending data blocks. The asynchronous mode has a higher
bandwidth than the synchronous mode given that all other aspects are kept the same.
USART requires two connections that are named RxD and TxD that are used to receive
and transmit data respectively. It is configured as shown in Figure 3.

Figure 3: Interface of USART connection between two devices.

2.2 Conversion between analog and digital signals

Signal processing involves interacting with both analog and digital signals. The complete
system’s input and output are analog, while the signal processing is computed digitally.
Analog signals are converted into digital representations, and digital signals are converted
into analog representations. The conversions are illustrated in Figure 4.

Figure 4: Conversions between Analog and Digital data.

2.2.1 Sampling

Sampling is the process of taking a measurement of a signal at instances with a constant
time interval. The rate of sampling is measured through the sampling frequency fs.
A sampling frequency should be chosen carefully as it affects the discretized signal in
multiple ways.
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A too low sampling frequency causes the output to be an incorrect representation of
the original signal. It will then not be possible to recreate the original signal with the
gathered information. The phenomenon is called aliasing and is illustrated in Figure
5 [4]. First, seven data points are shown from which a signal is to be recreated. Two
possible signals are then shown that have vastly different frequencies although both fit
the data points.

Figure 5: Aliasing illustrated from discrete data points.

Aliasing can be removed by increasing the sampling frequency, and reducing the
components of the signal with frequencies that are too high. It is found that the
sampling frequency needs to be set to at least double of the signal’s contained highest
frequency in order to remove aliasing and gain valuable information from the discretized
signal. This particular frequency is named the Nyquist frequency fN and is calculated
by

fN =
fs
2
, (1)

where fs is the sampling frequency. The Nyquist frequency is thereby the highes possible
frequency that is detectable by the system. An analog antialiasing filter is also applied
to remove irrelevant high-frequency components of a signal that cannot be recreated
using the ADC.
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2.2.2 Analog to Digital Conversion

The ADC compares the incoming analog signal with a set of predetermined values.
The predetermined values are spread between the minimum and maximum voltage of
the ADC [4]. The voltage span that the analog signal is compared to can be similarly
sized, or vary in size to achieve a higher resolution for voltage levels of interest. The
output of each individual comparison will be 0 if the signal does not reach the baseline
value, and 1 if the signal is larger than the baseline value, creating an array of ones and
zeros. These digital values are fed into a converter that outputs a compressed digital
interpretation of the analog signal.

The concepts of sampling and quantization are applied and adjusted to the system’s
required specifications. Quantization is the process of measuring the amplitude of a
signal at an instance in time and converting it into a digital representation. Limitations
of quantization include the range of the analog values that may be stored and the digital
data’s resolution [4].

Resolution is a measure of how precisely the original signal’s amplitude can be
determined. The resolution indicates the span of the digital value’s representation in
the analog domain. The resolution of an electrical signal can be calculated through

Q =
Vhigh − Vlow

2N
(2)

if linear quantization is used, where Q is resolution, N is the number of bits, Vhigh

is the ADC upper voltage limit, and Vlow is the lower. A larger amount of bits on
a fixed voltage value range results in a higher resolution. Each interval represented
by a bit corresponds to a smaller data interval with a higher resolution and gives a
more precise approximation of the input value. A resolution that is too low causes loss
of information, and a too high resolution causes unnecessary load on the CPU. The
resolution should be chosen high enough to record relevant information and maintain a
high signal-to-noise ratio.

2.2.3 Digital to Analog Conversion

The DAC converts a digital signal into an analog one. The constructed analog signal
is a continuous waveform with varying amplitude and frequency, but is to contain a
digital representation of the information provided by the analog signal. A commonly
used DAC method is the resistor ladder. The method converts digital signals to analog
effectively and its structure can be seen in Figure 6.
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Figure 6: Structure of a 4 bit R-2R DAC ladder.

The R-2R ladder is based on the configuration of the resistors in the setup. The
resistors’ value need to be precise when compared to each other. Specifically, about
half of the resistors need to be as close as possible to the exact same resistance R, and
the remaining need to have double the resistance of R.

As the total resistance from each digital input to Vout is different, the inputs have
an individual effect on the output as individual input voltages are added. Each VIN

represents a bit in the digital format and is represented by a voltage that is common
between the inputs. The number of input bits is directly related to the resolution of
the DAC, and how often the VIN ’s can be updated represents the system’s sampling
frequency. The R-2R ladder DAC in Figure 6 is constructed such that analog values can
be constructed, varying between ground and the voltage of the logic bit. An amplifier
can be used if higher voltage levels are required.

2.3 Filters

2.3.1 Background

A filter can take many forms. It may be a physical device that separates solids from
liquids or a system that removes information of a certain criterion. They can generally
be described as a method of sorting out objects or information from an initial set.
Filters that manage information are often constructed using electrical equipment, in
the analog or digital form.

The filter separates information with set parameters by adding a barrier that only
the information of certain criteria can pass. A filter can have several different properties
and can be constructed in different ways, but a common parameter used to filter
information is its frequency. Two possible basic features of frequency selective linear
filters are low pass filters and high pass filters. Those filters can then be combined to
construct band pass filters and band stop filters. A filter’s name corresponds to what
effect the filter has on the input signal. A low pass filter lets low frequency parts of a
signal through while stopping higher frequency components. The high pass does the
opposite. The band pass and band stop filters create a span in the frequency spectrum
where the signal is passed through, respectively stopped.
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A digital filter is expressed through equations, where its output y[n] is expressed
as a convolution between its impulse response h[n] and input x[n] when in the time
domain through

y[n] = h[n] ∗ x[n]. (3)

The impulse response is the concept of how a system responds when an impulse is used
as an input. A unit impulse signal δ[n] reaches an amplitude of 1 at one instance in
time and has an amplitude of 0 at all other instances according to

δ[n] =

{
1 , n = 0

0 , n ̸= 0
. (4)

As components of a signal are hard to identify when it is analyzed in the time
domain, the filter system is often transformed into the frequency domain. A general
system’s function in the discrete z-domain is expressed as

Y [z] = H[z]X[z], (5)

where Y [z] is its output, H[z] is the transfer function, and X[z] is its input in the
discrete z-domain. The z-domain is a representation of the frequencies contained in
a discrete time signal. The transfer function can be used to understand the system’s
characteristics and is defined as [5]

H[z] =
a0 + a1z

−1 + a2z
−2 + a3z

−3 + ...

1− b1z−1 − b2z−2 − b3z−3 − ...

H[z] =

∑N
i=0 aiz

N−i

1 +
∑N

i=1 biz
N−i

.

(6)

N is the filter’s number of poles, and ai and bi are the filter coefficients. The ai and bi
coefficients define the characteristics of the filter and its features, such as stability. The
filter coefficients are found through the filter design process.

Digital filters are implemented as Finite Impulse Response (FIR) or Infinite Impulse
Response (IIR) filters. FIR filters have an impulse response with a finite number of
nonzero samples in their impulse response, while IIR filters have an infinite number of
nonzero samples [5].

The number of nonzero samples in the impulse response indicates how long time
the filter requires to settle when an impulse signal is sent as input. FIR filters thereby
reach an output of 0 and preserve the input after a finite number of time steps, while
IIR filters require an infinite number of time steps. FIR filters only use past and present
output values for their present output while IIR filters also use their past outputs.

2.3.2 Poles

A filter’s poles describe its features, such as its impulse response and stability. The
impulse response describes how effectively the filter archives its steady output after an
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input has been entered. The stability describes if the filter archives a steady result or
if oscillations will be caused by the filter [5]. The poles can be found through rewriting
(6) as the pole-zero form

H[z] = k
(z − z1)(z − z2)...(z − zm)

(z − p1)(z − p2)...(z − pn)
= k

∑m
i=1(z − zi)∑n
i=1(z − pi)

(7)

where k is a gain constant, m and n are the number of zeros and poles respectively, zi
are the zeros and pi are the poles. Filters can have poles where z = 0 and z = ∞. A
system that has a pole at z = ∞ also has a zero at z = 0, which attenuates DC gain.
Pole locations at z = ∞ also make the system non-causal, meaning that the system is
not only dependent on present and past inputs but also future inputs. This can however
be solved by introducing a delay in the system. These poles where z = ∞ are often
neglected when counted as they do not affect the signal’s amplitude and only do add a
time delay to the system.

Additionally to describe a filter’s features, the poles can be used effectively when
designing a filter. In order to design a stable discrete time system, a plot of poles and
zeros can be used. The plot is a representation of the system’s transfer function in the
complex plane as seen in Figure 7. The poles’ placement affects the system’s stability
and phase response. The poles need to be placed in the shaded region inside of the
dashed circle, representing the unit circle, for a discrete-time system to achieve stability.
The filter type is then the base for deciding the distribution, angle and distance from
the origin of the poles. The number of poles is directly related to the filter’s order.

Figure 7: Filter design process.

11



2.3.3 Overview of filter design

The filter design process used for the project is outlined in Figure 8. The first option
that needs to be selected is whether an IIR or a FIR filter is to be designed. Secondly,
the characteristic of low pass, high pass, band pass or band stop needs is decided.
Lastly, the windowing method is decided for FIR filters. For the IIR filter, Butterworth
or Chebychev filter type is selected. All filters need information on cut-off frequencies,
sampling frequencies and their order. The Chebychev filter needs additional information
on the ripple introduced, expressed in percent.

Figure 8: Filter design process.

2.4 Finite Impulse Response filters design

2.4.1 Background

FIR filters are not recursive, and the result of the filter does solely depend on its input
and pre-set parameters. A general FIR filter can be described according to

y[n] = b0x[n] + b1x[n− 1] + ...+ bNx[n−N ] =
N∑
i=0

bix[n− i] (8)

that is derived from (6) [6]. A FIR filter has a finite number of nonzero samples in its
impulse response, found through

h[n] =
N∑
i=0

biδ[n− i]. (9)

It will make a linear phase possible and result in a stable output. The filter is a
linear phase if and only if the system’s coefficients are symmetrical around its center
coefficient. A filter with a linear phase keeps the main characteristics of the signal
intact where all frequencies present will be time shifted by the same amount and be
a linear function with respect to frequency. The FIR filter has no analog counterpart
and is computationally heavy to perform on input data compared to IIR filters. This is
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due to IIR filters’ utilization of previous outputs, reducing the number of computations
required for each output value and reducing the system’s required filter order. The
filter and window type need to be decided first when designing a finite impulse response
filter. The filter type decides the system’s response to frequencies, and the window type
decides what dampening effect is used on the filter. The filter can be applied to discrete
data inputs when the filter coefficients have been calculated using the Cauchy product

y[n] =
N∑
i=0

h[i]x[n− i], (10)

where y[n] is the convoluted result of the system of the impulse response h[i] and system
input x[i]. The Cauchy product is used as an algorithm to compute the convolution of
two data sets in discrete time.

2.4.2 Filter types

An impulse response corresponding to the chosen filter type is used as the base of the
filter. The impulse response characterizes how the filter reacts to its input. The used
impulse response for the low pass filter is

hlp[n] =
ωcl

π
sinc

ωcl(n−M)

π
, (11)

while the high pass filter uses the impulse response [6]

hhp[n] =
ωcl

π
sinc

ωcl(n−M)

π
(−1)n. (12)

The band pass filter’s impulse response is

hbp[n] =
ωcu

π
sinc

ωcu(n−M)

π
− ωcl

π
sinc

ωcl(n−M)

π
, (13)

and the band stop filter’s impulse response is [6]

hbs[n] = sinc(n−M)− ωcu

π
sinc

ωcu(n−M)

π
− ωcl

π
sinc

ωcl(n−M)

π
. (14)

The impulse response has N coefficients, n is an index iterated from 0 to N , ω is the
angular frequency, and M is calculated through

M =
N − 1

2
. (15)

A longer array of filter impulse response coefficients results in a computationally heavier
filter that will take a longer time to apply.
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2.4.3 Windowing

Windowing is a method of modifying the sinc function to reduce undesirable effects.
The sinc function’s truncated ends reduce performance in the form of introduced ripple
and a reduced attenuation. The windowing is thereby a means of increasing the
performance. The purpose of applying a window is to mitigate the discontinuity, which
reduces ripple and increases attenuation. There are different windows that have different
characteristics, such as rectangular, Hamming and Hann windows that are used in the
project. The rectangular window is calculated through

w[i] = 1, 0 ≥ i ≥ M, (16)

and has an amplification of one across the impulse response and does therefore not alter
the filter coefficients [7]. M is is the window’s width and i is iterated from zero to M .
Using the same variables, the Hamming window is calculated through

w[i] = 0.54− 0.46cos

(
2π

i

M

)
, 0 ≥ i ≥ M, (17)

and the Hann window is calculated through [8] [9]

w[i] =
1

2

(
1− cos

(
2π

i

M

))
, 0 ≥ i ≥ M. (18)

The rectangular window does retain the magnitude 1 across its span and does
therefore not affect the sinc function. The Hamming and Hann windows have a
dampening effect as the maximum gain is 1 for each. The Hamming and Hann windows
are shaped like curves with slightly different features. Both have a gain of 1 in the middle
of the span. The gain then decreases towards the edges of the windows. The Hamming
window has a gain close to 0.1 while the Hann window has a minimum gain close to
zero. The three implemented windows are visualized in Figure 9.
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Figure 9: Plot of coefficients of Rectangular, Hamming and Hann windows.

2.5 Infinite impulse response filters design

2.5.1 Background

IIR filters are characterized as filters that are recursive. This implies that the filter is
dependent on its input, pre-set variables as well as previous outputs. An IIR filter is
computationally light and can therefore perform computations quicker than FIR filters,
although, it is not necessarily stable. The system can start to oscillate and cause all
information of the signal to be lost if the filter is not set up correctly. A general recursive
filter can be described according to

y[n] = a0x[n] + a1x[n− 1] + b1y[n− 1] + a2x[n− 2] + b2y[n− 2] + ...

=
n∑

i=0

aix[n− i] +
n∑

i=1

biy[n− i]
(19)

where the filter’s coefficients need to be found before applying equation [4]. The
coefficients depend on filter settings such as cut-off frequency and filter type. The
two implemented IIR filter types are the Butterworth and the Chebyshev filters. The
two filter types have slightly different characteristics. A Butterworh filter has a near
flat frequency pass band while a Chebychev filter has ripples. The Chebychev filter does
however have a steeper roll-off compared to a Butterworth filter, given the two filters
are of the same order. This relation can be visualized in Figure 10 where a general
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Butterworth filter’s frequency response is plotted alongside a general Chebychev filter
with 0.5% ripple as well as one with 20% ripple [4].

Figure 10: Example of how the characteristics of Butterworth and Chebychev filters.

The poles have to be found when designing a Butterworth or Chebychev filter. They
need to be within the criterion of stability for discrete-time systems. A Butterworth
filter has its poles placed symmetrically in a circle within the unit circle with equal
angles between each point, and the Chebychev filter has its poles placed in an ellipse.
A low pass filter is then designed, which then may be converted into a high pass filter.
The coefficients are found, and the gain is normalized. A low pass filter and a high pass
filter are combined in cascade to form a band pass filter, or parallel to form a band stop
filter.

2.5.2 Coefficients of low pass and high pass filters

Four user parameters are needed to find the coefficients of the IIR filter. The cut-off
frequency, whether it is an HP or LP filter, the filter’s ripple and the filter’s number of
poles. The number of poles needs to be even to design a stable IIR filter.

The poles of the Butterworth filter are found by distributing them in the stable
region inside the unit circle in the complex frequency domain. The real part of the
poles, named as p below, of the filter are placed on the unit circle in the complex plane
through

Re{p} = − cos

(
π

N · 2
+

(i− 1) · π
N

)
(20)

for the real part, and the complex part is found through [4]

Im{p} = − sin

(
π

N · 2
+

(i− 1) · π
N

)
. (21)
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The variable N represents the number of poles and the integer variable i is iterated
from 1 to the filter’s number of pole pairs. The poles found through (20) and (21)
are placed in a way that they can be used directly for designing a Butterworth filter.
Further alteration of the poles is however required to design a Chebyshev filter, where
the height of the circle needs to be altered, turning the circle into an ellipse. The ellipse’s
height is controlled with respect to the introduced ripple. The ripple is introduced as a
percent of the filter’s maximum gain. The real part of the Chebychev pole in the ellipse
is calculated through

Re{p} = Re{p} · sinh (vx)
kx

(22)

and the complex part through

Im{p} = Im{p} · cosh (vx)
kx

. (23)

The original Re{p} comes from (20), and the original Im{p} comes from (21). vx and
kx are calculated as

vx =
1

N
· sinh −1

(
1

es

)
(24)

and
kx = cosh

(
1

N
· cosh−1

(
1

es

))
, (25)

where es is found through

es =

√(
100

100− pr

)2

− 1. (26)

pr is a user specification, indicating the amount of ripple. pr is a percentage for
Chebychev filters and zero for Butterworth filters.

The poles need to be converted from the continuous complex frequency domain in
which they are found into the discrete complex frequency domain (z-domain) as the
signal processing is digital. This conversion is done through the bilinear transformation
for two poles at a time, constructing one second order filter for each iteration. This
transformation is then performed for each pole pair, resulting in the coefficients for a
low pass filter with a cutoff frequency of 1. The coefficients are found through

x0 =
t2

D
, (27)

x1 =
2T 2

D
, (28)

x2 =
T 2

D
, (29)

y1 =
8− 2MT 2

D
, (30)
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and
y2 =

−4− 4Re{p}T −MT 2

D
. (31)

The values of T , ω, M and D are found through

T = 2 tan

(
1

2

)
, (32)

M = Re{p}2 + Im{p}2, (33)

and
D = 4− 4Re{p}T +MT 2. (34)

The results found from (27) - (31) are used to find the low pass or high pass
coefficients for one pole pair of a filter through

a0 =
x0 − x1k + x2k

2

E
(35)

a1 =
−2x0k + x1 + x1k

2 − 2x2k

E
, (36)

a2 =
x0k

2 − x1k + x2

E
, (37)

b1 =
2k + y1 + y1k

2 − 2y2k

E
(38)

and
b2 =

−k2 − y1k + y2
E

(39)

where E is found as
E = 1 + y1k − y2k

2. (40)

The filter coefficients are found by transforming from an original low pass filter with a
cutoff frequency of one to either a low pass filter with an altered cutoff through

k =
sin

(
1
2
− ωc

2

)
sin

(
1
2
+ ωc

2

) (41)

or a high pass filter with an altered cutoff through

k = −
cos

(
ωc

2
+ 1

2

)
cos

(
ωc

2
− 1

2

) , (42)

where
ωc = 2πfc. (43)

The method described by (20) - (43) is iterated for every pole pair, resulting in
separate coefficient values for a0, a1, a2, b1 and b2 for each. Each set of coefficients

18



represents one second-order filter. These second-order filters are then combined in
series to construct thebase of the final system according to (19). Before the coefficients
are complete and can be used, the variables a1 and b1 need to be multiplied with −1
when calculated for a high pass filter, and the filter’s gain needs to be normalized for
the filter output to be a good representation of the information passed through. The
gain is normalized when all filter coefficients are calculated and all poles have been
processed. All of the a-coefficients are divided by the gain

K =

∑N
i=0 a[i]

1−
∑N

i=0 b[i]
(44)

for low pass filters and

K =

∑N
i=0 a[i](−1)i

1−
∑N

i=0 b[i](−1)i
(45)

for high pass filters before they can be used in (19) along with bi.

2.5.3 Coefficients of Band Pass and Band Stop filters

Band pass and band stop filters are built by combining a low pass and a high pass filter.
The two filters can be combined in cascade or in parallel into a single system. The two
filters form a band pass filter if they are cascaded, and they form a band stop filter if
they are combined in parallel.

When a band pass or band stop filter is to be created, a low pass filter and a high
pass filter is constructed with the same number of poles and the same ripple, but with
individual cut-off frequencies. The both filters’ coefficients, ai and bi are found through
Section 2.5.2. The values in bi are multiplied with −1 and the value of b0 in the arrays is
set to 0. The band pass filter is two cascaded systems and is calculated by multiplying
the low pass and high pass filter coefficients as [4]

HBP [z] = HLP [z] ·HHP [z]. (46)

The operation of cascading two systems is illustrated in Figure 11.

Figure 11: Two cascaded systems.

The band stop filter is calculated by having the low pass filter and high pass filter
in parallel, which is done by addition between the two systems as [4]

HBP [z] = HLP [z] +HHP [z]. (47)
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The operation is illustrated in Figure 12.

Figure 12: Two parallel systems.

where the predetermined coefficients of the low pass and high pass filters can be
inserted.

The denominators are calculated in the same way for both parallel and cascaded
systems. The numerators are however calculated by different algorithms, whereas the
paralleled system is more complex. Lastly, all coefficients of the denominator of the
resultant system are multiplied by −1. The filter coefficients for the band pass and
band stop filters will be twice as many as for low pass and high pass filters for the same
number of user entered poles.

2.5.4 Second order sections

IIR filters have a tendency to become unstable when the number of poles is increased.
This may cause a conflict between the desired performance of the filter, which may
require more poles, and its stability. A method of increasing the performance of the
system while mitigating the issue of stability is to split the higher order filter in cascaded
lower-order ones.

The effect of a 10th order filter can be achieved by applying five 2nd order filters
after each other, as demonstrated in Figure 13. The output of the first 2nd order filter
is thereby used as input to the second filter. This method is iterated until the desired
order equivalent is reached before the output becomes the finished filtered signal. This
requires the filter design process to be slightly different than ordinary IIR filters. All
filter coefficients will be designed for second order filters, rather than the order the user
requested. The filtering properties of a higher order filter will be achieved through the
application method.
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Figure 13: Increasing stability using 2nd order filter.
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3 Implementation

The system is implemented through hardware and software. Software is however where
the project’s main focus lies. The system is designed in a way that allows the user to
set the parameters of the filters freely, and the system will calculate the parameters
and coefficients required to design the filter. The filter will then be run on the selected
input channel using either the continuous or burst buffer mode.

The final system is composed of a microcontroller with the finished code, a custom
experimental breadboard, a PicoScope that reads the system’s output, and a computer
to generate the filter’s input signal and to view the result from the PicoScope. A
computer running Microchip Studio and Flip is also used to alter the DSP filters. A
visual representation of the system can be seen in Figure 14.

Figure 14: System overview.

3.1 Hardware

The used hardware devices perform or measure the results of the filter computations.
The main devices used in the project are the microcontroller, the custom breadboard,
the oscilloscope and a computer.

3.1.1 Microcontroller

The microcontroller used throughout the project is the Atmel UC3-A3 XPLAINED and
is used as the computational center of the application. Its basic layout can be seen in
Figure 15. The microcontroller uses universal serial bus (USB) interface to a computer
for flashing new software onto the device. USB is an industry standard used by most
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computational devices. The standard describes the specifications for cables, connectors
and software in order for devices to be able to communicate with each other [1]. The
interface RS-232 is also used for the microcontroller to communicate with a separate
computer digitally to print text, numbers or symbols on its screen using the software
Putty. RS-232 is a serial communication protocol for the transmission of data. It has
low data transmission capabilities and can only be used with short cables. The RS-232
standard has widely been replaced by USB.

The USB connector is used to flash the microcontroller with new software. Header
J2’s ADC1 connector pin is used to measure the system’s input signal. A 10-bit
resolution and a maximum voltage of 3.6V is used for the ADC. The approximate
resolution is 3.5mV and is calculated through (2). Header J3’s VCC_P5V0 and GND
connector pins are used to power the custom breadboard. Header J4’s TXD and
RXD-connector pins are used for the controller’s RS-232 connection with a PC for
digital output communication. J4’s SCK channel also provides the processed analog
printout from the system.

Figure 15: AVR layout.

3.1.2 Custom breadboard

The analog input signal is received through the custom breadboard through a 3.5mm
headphone jack. The signal is led through an analog low pass filter built from resistors
and capacitors, acting as an antialiasing filter that removes high frequencies. The signal
is thereby pre-processed before it is transmitted to the microcontroller’s analog input
channel. The filter is driven by the operational amplifier LM358N. The board is able
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to transmit one input and one output to and from the microcontroller simultaneously.
The board and its layout can be viewed in Figure 16.

Figure 16: Custom breadboard.

3.1.3 Oscilloscope

The analog signals are measured using an oscilloscope in order to analyze them. The
oscilloscope used is a PicoScope 2207A and does not have its own display. It does instead
connect to a PC and uses its screen. It can simultaneously measure two independent
channels. It has a resolution of 8 bits at 1 GS/s and a bandwidth of 100MHz [10]. It
also has a signal generator that can be used to simulate certain signals. The oscilloscope
can be viewed in Figure 17.
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Figure 17: PicoScope 2207A.

3.2 Software

The software used in the project includes Microchip Studio, Matlab, Batchisp, Flip,
and the project-specific C-code that was constructed in Microchip Studio.

• Microchip Studio: An Integrated Development Environment is a software that
is used to develop applications. Microchip Studio allows for development in C,
C++ or assembly code for microcontrollers. It supports most microcontrollers
from Microchip. The software is a version of Microsoft’s Visual Studio that has
been specifically adapted for the purpose of creating code for microcontrollers. It
includes basic methods and libraries to ease development and lets the developer
to some extent focus more on the problem at hand. When a program, or solution,
is compiled, it outputs a file of type .hex. It is used to flash the microcontroller
using the software Batchisp.

• Batchisp: A part of the software package Flip, is used to load software onto the
microcontroller using the USB interface. The class library USB Device Firmware
Upgrade is used to upgrade the microcontroller’s firmware without the use of
specific programmer hardware. Flip requires the .hex-file that is outputted by
Microchip Studio when a code is compiled as an input.
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• Matlab: A software from MathWorks. It is both a program and a programming
language. Matlab is based on mathematics and is often used for data collection,
computation, visualization and simulation. Matlab has been used in order to
create input signals for the system, which is combined sinus waves with different
frequencies.

• Putty: In order to send data from the microcontroller back to the PC, the RS-232
communication protocol is used. The software Putty is used on the PC to receive
the information sent by the microcontroller. Its interface is similar to the Windows
command prompt where communication only is done through characters, not
through a graphical interface. Putty has only been used as a means of one way
communication.

3.2.1 Application Software

The filters and buffer logic are written in C-code using Microchip Studio. The code is
modular and divided into several different methods. There are methods that handle the
DMA, convert data types and initiate the board. The mathematical operations sinc and
convolution were written as methods in the code. The convolution is processed through
an operation called the Cauchy product. This is to avoid transforming the data to
other domains, which would be computationally heavier. There is also a pre-processing
method for the data which can be used to prepare the input data for the filters. There
is one method for the design of FIR filters and one for applying them. There is also
one method for the design of IIR filters as well as one for applying them. The design
method is solely called once when the program initiates while the applying method is
run according to the buffer settings.

The application’s main method calls the required sub-methods to perform each DSP
step. It also contains variables that can be set to change parameters to the filters. They
can change between FIR and IIR filters, change cut-off frequencies, number of poles
and decide between low pass, high pass, band pass or band stop filter.

3.2.2 Finite impulse response application

A FIR filter’s coefficients need to be found first when it is applied. Through (11), (12),
(13) and (14), its ideal impulse response is found in the data type double. Chapter 2.4.3
then explains how the window coefficients are found. The application software uses the
native methods dsp16_win_rect, dsp16_win_hamm, and dsp16_win_hann in the
design of each window of data type uint16_t. The windows are converted to the data
type double and adjusted to reduce the maximum gain to 1. The ideal impulse response
coefficients are then multiplied with the window, forming the windowed impulse response,
h[n], used when applying the filter. The length of h[n] is decided from the system’s
number of poles. The digital input data is received from the ADC in the data type
uint16_t. The data is converted to double and the DC offset is removed before (8)
is applied, which is a method for computing the convolution between two discrete

26



data sets [6]. The method is called a Cauchy product and is used to calculate discrete
convolution without the use of Fourier transformations. This calculation is done entirely
in data type double. When the filter application is complete, the DC offset is reintroduced
and the result is converted back to data type dsp16_t. The data is then sent to the
DAC for analog reconstruction. This method is visualized in Figure 18.

Figure 18: FIR application data flow.

The process of applying the FIR filter can be visualized through a block diagram
of the system, seen in Figure 19. The x[n] array is the input, and the top blocks
labeled z−1 represent a unit delay. The middlemost triangles labeled as bn, where
n = 1, 2, 3..., represent the filter’s coefficients. Together they form the output y[n] after
the summation that can be seen at the bottom of the figure.

Figure 19: A FIR filter’s block diagram.

3.2.3 Infinite impulse response application

A two-layered loop is used When applying the filter and finding the output through
19. The inner loop iterates from zero to the number of coefficients while the outer loop
iterates from one number less than the number of coefficients, to the number of data
input values. The outer loop is corresponding to the first summation in 19, where the
outer loop corresponds to the second. The results from the calculations are used as the
system output.

To apply the IIR filter according to (19),

y[n] = ai · x[n] (48)

is calculated for the first coefficient, and

y[n] = y[n] + ai · x[n− i] + bi · y[n− i] (49)
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is calculated for the remaining [4]. The arrays ai and bi contain the numerators
respectively denominators from the filter’s difference equation (6). The method is
performed through a two-layered loop, with iterating variables i and n. The inner
loop iterates the variable i from zero to the number of coefficients while the outer loop
iterates the variable n from one number less than the number of coefficients to the
number of data input values. The results from the calculations are stored in the array
y.

When an IIR filter is applied, its coefficients first need to be found. The operations
described in Sections 2.5.2 and 2.5.3 are applied to find the filter’s coefficients in data
type double. The length of h[n] is decided from the system’s number of poles, although
a band pass or band stop filter will have twice the number of coefficients compared to
low pass and high pass filters. The digital input data that is received from the ADC is of
the data type uint16_t, but is converted to double before the DC offset is removed. The
filter is applied to the input data according to the IIR’s differential equation that can
be seen in (19). The filter output is of data type double, but is converted to uint16_t
after the DC offset has been reintroduced. The data is then sent to the DAC for analog
reconstruction. This method can be visualized in Figure 21.

Figure 20: IIR application data flow.

A general nth order IIR filter’s structure can be illustrated using a block diagram
seen in Figure 21. The x[n] array represent the data digital input data and the blocks
labeled z−1 represent a unit delay. The triangles labeled as an and bn, where n =
1, 2, 3..., represent the coefficients from the filter design. Together they form the output
after the summation that can be seen at the top and middle of the figure.
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Figure 21: An IIR filter’s block diagram.

However, when using multiple second order sections to construct a more stable filter
according to Section 2.5.4, the block diagram would instead look like Figure 22. One
dashed encasement represents one second order filter. The number of encasements that
are put in series is selected in accordance with how many second order sections are to
be used, discussed in Section 2.5.4.

Figure 22: An IIR filter’s block diagram when it is designed with second order sections.
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4 Results

4.1 Evaluation setup

The setup used for evaluating the system includes of a PC running

• Batchisp: Used to flash the AVR with new application software, containing the
filter parameters that are to be executed.

• Matlab: Running on a PC, outputting an audio signal that is used as an input
for the filter.

• Custom breadboard: The signal is run through an antialiasing filter before the
AVR.

• AVR microcontroller: Running the application software, using the signal from the
custom breadboard as input and outputs a filtered signal.

• PicoScope: Using software running on a PC, the device is the oscilloscope used
to measure the analog filter output.

The results are shown through graphs plotting each filter’s frequency response. The
data was collected by simultaneously measuring the filter’s analog input and output.
Sine signals of different frequencies were sent through the filter using Matlab, where
the input and output amplitudes were measured using the Picoscope and a PC. The
filter input and output signals were measured simultaneously for different frequencies
and their amplitudes were recorded. The frequency response plots were then plotted in
dB in Sections 4.2 and 4.3, calculated through [5]

dB = 20 log10
Voutput

Vinput

. (50)

The frequencies used for the input signal range from 500Hz to 20kHz. Signals are then
used with frequencies increasing with 1kHz, starting at 1kHz, and ending at 17kHz.
Used input frequencies are also denser within the transition band of the filters, with a
minimum difference of 250Hz between each.

The plots show how the filter passes the signal through at different frequencies. A
dB value of 0 lets the signal pass through without dampening, while the attenuation
increases with a lower value. All results are found using the sampling frequency of
46875Hz and the Nyquist frequency is determined by (1), and found to be

46875Hz

2
= 23437.5Hz. (51)

The buffer was in burst mode, and the buffer size was 1024 samples. The order and
cut-off frequencies used for evaluating the FIR filters are as presented in Table 1. The
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poles, cut-off frequencies, and the ripple used to design the IIR filters are presented
in Table 2. Only one order of each filter is presented as the focus of the result is to
compare the different methods’ performance rather than finding the optimal settings
for each filter.

Table 1: The pole and cut-off frequencies for FIR filters.

Order fcLP [Hz] fcHP [Hz]
LP 10 7000
HP 10 7000
BP 10 6000 10000
BS 10 6000 10000

Table 2: The pole and cut-off frequencies for IIR filters.

Poles fcLP [Hz] fcHP [Hz] Ripple [percent]
Butterworth LP 10 7000 0

HP 10 7000 0
BP 8 6000 10000 0
BS 8 6000 10000 0

Chebychev LP 10 7000 15
HP 10 7000 15
BP 8 6000 10000 15
BS 8 6000 10000 15

The parameters of the filters are intentionally kept similar in order to ease comparisons
between the different filter methods, as well as somewhat close to the middle of the
frequency band usable by the system. For FIR filters, the number of poles is kept
identical among the filters, as well as cut-off frequencies between the windowing methods.
The number of poles is selected such that the filter’s performance does not increase
significantly with an increased number of poles. This is to keep a balance between
performance and a light computing load to run the filter.

For IIR filters, most variables are kept identical between the Butterworth and
Chebychev filters, except for the ripple. It is selected to 15% for the Chebychev filter
in order to add a substantial amount. Ten poles are selected for the low pass and high
pass filters, similar to the FIR filters. The band pass and band stop filters are designed
with eight poles to give each of the two underlying low pass and high pass filters in the
design process an even number of poles.

4.2 Finite impulse response filters

The frequency responses of the FIR filters are shown below. The low pass, high pass,
band pass, and band stop filters of each window type are shown in the same graph using
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different colours. The settings stated in Table 1 are used. The measured values from
the filter with the different windows are compared to simulated filters with Hamming
windows, using the same parameters as the measured ones.

Figure 23: Frequency response of low pass FIR filters.

The frequency responses of the low pass FIR filters are shown in Figure 23. The
measured filters do have somewhat similar characteristics. The rectangular window
does give a steeper transition band than the Hamming and Hann windows, although
it also contains more ripple in the stop band. The simulated filter does have more
attenuation in the stop band.
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Figure 24: Frequency response of high pass FIR filters.

The frequency responses of the high pass FIR filters are shown in Figure 24. The
measured filters do follow the trend of the simulated filter, with the hamming window
being closest to the theoretical one. A substantial amount of ripple can however be
observed in each measured filer, although the rectangular filter has the most.
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Figure 25: Frequency response of band pass FIR filters.

The frequency responses of the band pass FIR filters are shown in Figure 25. The
measured filters follow the characteristic of the theoretical filter. The pass band is
slightly shifted towards a higher frequency than the theoretical filter, which also has a
higher attenuation.
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Figure 26: Frequency response of band stop FIR filters.

The frequency responses of the band stop FIR filters are shown in Figure 26. The
measured filters follow the theoretical filter well. The Hamming and Hann windowed
filters have a flatter transition band than the rectangular windowed and theoretical
filters. The rectangular windowed filter does however introduce more ripple than the
others.

4.3 Infinite impulse response filters

The frequency responses of the IIR filters are shown below. The low pass, high pass,
band pass and band stop filters of each window type are shown in the same graph using
different colours. The settings stated in Table 2 are used. The measured values from
the filters are compared to simulated Butterworth filters using the same parameters as
the measured ones.
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Figure 27: Frequency response of low pass IIR filters.

The frequency responses of low pass IIR filters are shown in Figure 27. The
Butterworth filter shows a less steep transition band that also starts to attenuate signals
at a lower frequency than the Chebychev filter and the simulated one. The Chebychev
filter does however follow the theoretical filter well until its maximum attenuation is
reached.
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Figure 28: Frequency response of high pass IIR filters.

The frequency responses of high pass IIR filters are shown in Figure 28. The
Butterworth filter does have a slightly flatter transition band and introduces more
ripple than the Chebychev and the theoretical filter. Both measured filters follow the
theoretical filter well before they reach their maximum attenuation.
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Figure 29: Frequency response of band pass IIR filters.

The frequency responses of band pass IIR filters are shown in Figure 29. The
Butterworth filter and Chebychev filter have a wider transition band than the theoretical
filter. The Chebychev filter also introduces ripple to its pass band and reaches a lower
attenuation than the Butterworth filter. The theoretical filter reaches a substantially
higher dampening on its stop bands.
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Figure 30: Frequency response of band stop IIR filters.

The frequency responses of band stop IIR filters are shown in Figure 30. The
transition band is steeper in the theoretical filter than the Butterworth or the Chebychev
filter, which have similar properties. The Chebychev has a steeper transition band, and
reaches a higher attenuation.
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5 Discussion and conclusions

The project’s goal was to design an easy to use digital signal processing system. The
system was implemented on a microcontroller with digital filters, buffering logic, and
conversions between analog and digital data. The system’s analog outputs and inputs
were measured using an oscilloscope. The results shown in Section 4 are given as
frequency response plots. All subsystems are required simultaneously for the system
to output a filtered signal, including the ADC, buffering logic, filters, and DAC. The
filters are applied individually using samples with different frequencies, covering the
characteristics of the filters from 500Hz to 20kHz.

The results for the FIR filters are of varying quality. The low pass filters perform well
in removing the higher frequencies, although the rectangular window introduces ripple.
The high pass filters do, however, generally perform worse. All windows introduce a
substantial amount of noise, and the pass band is shifted too high in frequency. At
the cut-off frequency of 7kHz, the attenuation of each measured filter is too high for a
satisfactory design. The filters do not let signals through before they reach a frequency
of 10kHz. Although the Hamming window performs the best, there is too much noise
for its origin to be filter ripple. This is seemingly caused by a poor filter definition in
(12) as all window types are affected similarly, and this particular issue only is present
in the FIR high pass filter. The band pass filters are also shifted up in frequency for
all window types, but not as much as the high pass filters. There is ripple introduced
in the measurements regardless of filter type. The band stop filters perform well for all
window methods where the middle frequency has been removed, preserving the lower
and higher frequencies. The rectangular window does however introduce more noise
and ripple than the Hamming and Hann windows. The FIR filters are generally easy to
design, both with respect to the complexity of the filters’ logic and the computational
demand of the processor. They are however demanding in their application in the same
aspects.

The results for the IIR filters are also of varying quality. The low pass and high pass
filters have similar characteristics, where the Butterworth filters’ attenuation initially is
close to the simulated filter’s. Butterworth has a wider transition band but introduces
less ripple. The measured band pass filters have a wider pass band than what is seen
in the simulated filter, and their transition band is much wider. The Chebychev filter
introduces much ripple, while it never reaches the attenuation of the Butterworth filter.
The measured band stop filters have well-located transition bands, but they are sharper
in the Chebychev filter. All of the filters successfully pass the part of the signal that is
inside of the filter’s pass band through. The outputs of the Butterworth and Chebyshev
filters do look similar in many cases, showing only minor differences. A Chebychev filter
often demonstrates a sharper cut-off and more introduced ripple. The measured filters
have a maximum attenuation of around −10dB, while the simulated filter’s maximum
attenuation is around 140dB. The high attenuation of the simulated filter is mainly
caused by the absence of noise in the model. This causes the system output signal to
have an amplitude so small that it is not realistic to recreate outside of the simulation.
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Secondly, the low attenuation of around −10dB of the measured filters is caused by
noise introduced in the system. The IIR filters are generally complex to design, both
with respect to the complexity of the filters’ logic and the computational demand of
the processor. They are light in their application in the same aspects.

Most of the filters are behaving favorably with respect to frequencies, but their
attenuation is generally low compared to the theoretical filters. The low noise of the
measured systems is caused by noise introduced. When an input signal that is far
within a system’s stop band is used as an input, it is not possible to distinguish the
output from one where the filter has no signal as input at all, shown in Figure 31. The
output in both cases appears to be unrelated to the input signal. This causes the output
signal to never reach a voltage level close enough to 0 for the attenuation to increase
further in the measurements, even though the higher voltage level is caused by other
factors than the filtered input data. The signal gets less noisy when outputting the
signal digitally using USART, suggesting that most noise is introduced by the DAC. As
the theoretical filters do not introduce any artificial noise, its theoretical attenuation
continues to increase for the span in which it is plotted. Its signal-to-noise ratio does
not increase within the stop band in the way that it does for the filters running on
the AVR. The gain in the pass band is not always zero. A variable gain could be
implemented as a scaling factor that is multiplied by the output before it is sent to the
DAC. The mathematical operation would be simple, but one more variable that might
not be intuitive would also have to be introduced for the user to interact with. This
would decrease the ease of use of the system since it does not have a graphical user
interface.
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Figure 31: The upper two subplots show the input and output of a high pass
Butterworth filter with specifications stated in Table 2 when a signal of 1kHz is applied.
The lower two subplots show the input and output of the same system when no signal
is applied.

Although the filter settings are easy to change in the system’s code, the code itself
may not be considered easy to change. The variables are collected at the beginning
of the system’s main method and are well documented, and thus not hard to find or
alter. A graphical user interface should, however, be implemented in order to create a
truly easy-to-use system for someone that is not involved in the project. When a filter
is altered, the relevant variable needs to be found in the C-code and changed, and a
valid value must be entered. The project code then needs to be recompiled before it
is flashed onto the microcontroller. The filter with altered characteristics may then be
applied to a signal. There are two major drawbacks to the current solution, apart from
the inconvenience of the many steps. Firstly, the source code needs to be distributed
for the system to be usable. This would be a big barrier of entry for the system
as installation of multiple PC softwares would be required to compile the application
software and flash it onto the AVR. The process of installing these PC softwares require
guides and depends on them to remain available and compatible with new computers
in the future. Secondly, the user may unintentionally change values in the code which
causes the system to malfunction. Such changes are easy to make by mistake and may
be hard to troubleshoot, as well as to revert. It would be possible to show user guides
within the program if a proper graphical user interface would be implemented. For
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example, the user may be informed of the Nyquist frequency when selecting a sampling
frequency, or information may be given on how to select the number of poles for a filter.

Some of the limitations of the system are related to the hardware used. The
hardware mainly has limited precision in the modules for ADC and DAC, which alters
the quality of the result. The limitations cause the noise gradually to increase and the
signal to get weaker. It can be seen in the results that the output signals consistently
have lower attenuation than the theoretical filters. This difference is caused by noise
in the output signal that is being introduced throughout the system. The system’s
sampling frequency and resolution play a role in distorting the input signal in the
ADC and noise will inherently be introduced. This phenomenon can be illustrated
by digitally printing the input data array from the system and comparing it to an
analog measurement of the input. The DAC faces similar dilemmas as the ADC,
introducing artifacts due to sampling frequency, resolution and noise. This distortion
can be visualized in the same way as for the ADC. The quality of the ADC and DAC
may be improved using different hardware. External hardware modules for ADC and
DAC may be used with the current hardware platform for higher quality measurements.
A different microcontroller with higher quality ADC and DAC could also be used to
improve the system’s accuracy. Though the noise introduced can be lowered, it cannot
be eliminated completely.

Further work that could be made to increase the quality of the system would be to
revise the design method of the filters further. Mainly the FIR high pass filter and IIR
band pass filter would need to be revised and optimized. The noise introduced by the
system should also be further investigated, potentially by using hardware containing
higher quality ADC and DAC, a general user interface should be implemented, and the
system may be expanded with more filter design methods.

43



6 References

[1] Atmel. Datasheet 32-bit AVR Microcontroller. url: https://ww1.microchip.
com/downloads/en/DeviceDoc/doc32072.pdf. (Accessed: 2023.04.09).

[2] Robert Oshana. “DSP Software Development Techniques for Embedded and Real-Time
Systems”. In: (2006). url: https://www.sciencedirect.com/science/article/
pii/B9780750677592500247. (Accessed: 2023.04.09).

[3] Microchip. Getting started - USART Asynchronous. url: http://ww1.microchip.
com/downloads/en/devicedoc/usart.pdf. (Accessed: 2023.04.09).

[4] Steven W. Smith. “The Scientist and Engineer’s Guide to Digital Signal Processing”.
In: (Mars 1, 1998). url: http://www.dspguide.com/. (Accessed: 2023.04.09).

[5] Torkel Glad and Lennart Ljung. Reglerteknik. 2016.

[6] Douglas F. Elliott. “Handbook of Digital Signal Processing”. In: (1987). url:
https://www.sciencedirect.com/science/article/pii/B9780080507804500023.
(Accessed: 2023.04.09).

[7] Mathworks. Rectangular window. url: https://se.mathworks.com/help/
signal/ref/rectwin.html#mw_9a267489-7763-4e7f-bee4-4392392f48b4.
(Accessed: 2023.04.09).

[8] Mathworks. Hamming window. url: https : / / se . mathworks . com / help /
signal/ref/hamming.html. (Accessed: 2023.04.09).

[9] Mathworks. Hann (Hanning) window. url: https://se.mathworks.com/help/
signal/ref/hann.html. (Accessed: 2023.04.09).

[10] Pico Thechnology. Data Sheet PicoScope 2000 Series. url: https://www.picotech.
com/download/datasheets/picoscope-2000-series-data-sheet-en.pdf.
(Accessed: 2023.04.09).

44

https://ww1.microchip.com/downloads/en/DeviceDoc/doc32072.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/doc32072.pdf
https://www.sciencedirect.com/science/article/pii/B9780750677592500247
https://www.sciencedirect.com/science/article/pii/B9780750677592500247
http://ww1.microchip.com/downloads/en/devicedoc/usart.pdf
http://ww1.microchip.com/downloads/en/devicedoc/usart.pdf
http://www.dspguide.com/
https://www.sciencedirect.com/science/article/pii/B9780080507804500023
https://se.mathworks.com/help/signal/ref/rectwin.html#mw_9a267489-7763-4e7f-bee4-4392392f48b4
https://se.mathworks.com/help/signal/ref/rectwin.html#mw_9a267489-7763-4e7f-bee4-4392392f48b4
https://se.mathworks.com/help/signal/ref/hamming.html
https://se.mathworks.com/help/signal/ref/hamming.html
https://se.mathworks.com/help/signal/ref/hann.html
https://se.mathworks.com/help/signal/ref/hann.html
https://www.picotech.com/download/datasheets/picoscope-2000-series-data-sheet-en.pdf
https://www.picotech.com/download/datasheets/picoscope-2000-series-data-sheet-en.pdf

	146188c0-8bef-4a0a-a1f9-15729cbe2541.pdf
	Introduction
	Background
	Project goals and delimitations
	Project description

	Theory
	Hardware
	Buffering
	Interrupt Service Routine
	USART

	Conversion between analog and digital signals
	Sampling
	Analog to Digital Conversion
	Digital to Analog Conversion

	Filters
	Background
	Poles
	Overview of filter design

	Finite Impulse Response filters design
	Background
	Filter types
	Windowing

	Infinite impulse response filters design
	Background
	Coefficients of low pass and high pass filters
	Coefficients of Band Pass and Band Stop filters
	Second order sections


	Implementation
	Hardware
	Microcontroller
	Custom breadboard
	Oscilloscope

	Software
	Application Software
	Finite impulse response application
	Infinite impulse response application


	Results
	Evaluation setup
	Finite impulse response filters
	Infinite impulse response filters

	Discussion and conclusions
	References


