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1 Introduction

Since the first observations of gravitational waves from compact binary coalescence [1–3],
massive effort from the scattering-amplitudes community has been dedicated to under-
standing the link between quantum scattering amplitudes and classical gravitational phe-
nomena. Several of these works have improved the (post-Minkowskian, PM) precision to
which we understand compact binaries [4–13], including in the presence of additional ef-
fects such as spin [14–29], radiation [30–37], tidal effects [38–44], and various combinations
thereof. Equally as foundational has been the derivation of connections between scattering
amplitudes and classical observables [4, 16, 45–55].

Many developments emerging from this mobilization have centered on or been mo-
tivated by the need for the efficient extraction of the classically-relevant portion of a
scattering amplitude. Along these lines, there have been works involving convenient ~-
counting schemes [16, 45], Lagrangian-level as well as spinor-helicity heavy/classical lim-
its [18, 19, 56–58], effective field theories (EFTs) with classical spin degrees of freedom
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(DoFs) [20, 27], and a worldline EFT obtained by integrating out quantum DoFs [24, 59].
The efficient computation of classically-relevant amplitudes is a central inspiration for
the present work. Specifically, we attempt to qualify the compatibility of BCFW recur-
sion [60, 61] with the classical limit, seeking instances of potential simplifications to the
recursive construction of higher-multiplicity amplitudes in this limit. Our conduit for this
study is the classical Compton amplitude.

While much focus has recently been dedicated to the appropriate Compton amplitude
for describing Kerr black holes [14, 15, 27, 28, 51, 55, 62–67], in this paper we focus on de-
riving this amplitude for a general spinning compact object. Though conceptually simpler
— one must “only” enumerate all possible Wilson coefficients and leave their values unspec-
ified — this task is computationally more subtle. Certain serendipitous cancellations occur
in the recursive construction of the black-hole Compton amplitude,1 allowing one to build
this amplitude using only leading-in-~ information throughout the computation. As we will
see below, this fortune does not extend to the case of general objects, where subleading-in-~
information is needed in intermediate steps to match to known classical results [68].

Apart from phenomenological applications, there are two reasons why an on-shell study
of the Compton amplitude for general compact objects is itself timely. The first is the dis-
crepancy between the number of free parameters in the spinning effective field theory of
refs. [20, 27] and worldline theories of spinning objects [24, 69, 70] at linear order in the
curvature (but contributing first to the Compton amplitude). An on-shell perspective pro-
vides a different take on the total possible number of free parameters, in a setting where
relations between different structures may be easier to identify than in the off-shell con-
text. Recently, ref. [71] argued that the actions of refs. [20, 27] possess too many degrees
of freedom due to incompletely removing unphysical massive modes. Our on-shell analysis
corroborates the conclusion of ref. [71], in that we find no freedom to introduce coeffi-
cients to the three-point amplitude other than those mapping directly to the parameters
of ref. [69], including at next-to-leading order in ~.

The second reason is the burgeoning interest in and necessity for an amplitudes de-
scription of Kerr black holes. Extrapolating the properties of Kerr-black-hole scattering at
low spin orders, it was proposed in refs. [26–28] that higher spin orders in Kerr-black-hole
scattering would exhibit a favorable high-energy limit and a so-called spin-shift symme-
try. However, these conjectures are in tension with recent comparisons to solutions of the
Teukolsky equation [55], indicating a need for a better understanding of the amplitudes per-
tinent to Kerr black holes.2 Computation of the most-general Compton amplitude works
towards this end by allowing for comparisons to be made to the computation relevant for
the Kerr Compton amplitude.

1In the rest of the paper, we use “black-hole Compton amplitude” and “black-hole limit” to refer to
the amplitude with the black-hole values for the linear-in-curvature, spin-induced multipole coefficients,
CSj = 1. We are not concerned with the values of R2 Wilson coefficients that describe black holes.

2Refs. [64, 65] have proposed that Kerr-black-hole amplitudes exhibit a massive higher-spin gauge sym-
metry. This gauge symmetry uniquely selects the Kerr three-point amplitude, but the dependence of their
Compton amplitudes on the spin quantum number of the massive particle necessitates a more careful
infinite-spin limit before comparisons to known Kerr Compton amplitudes can be made. We thank Lucile
Cangemi, Henrik Johansson, and Paolo Pichini for clarifications about this.
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The Compton amplitude for general spin-induced multipoles has been computed re-
cursively in ref. [25]. We do not fully agree with their results, and address this in more
detail below. Put succinctly, the cause of the disagreement — as well as a conclusion of
our analysis — is that the classical limit and BCFW recursion generally do not commute.
Our analysis here postpones the full classical limit until the end of the computation, and
produces the opposite-helicity Compton amplitude for general spin-induced multipoles to
all spin orders and without any unphysical poles. The result matches the classical com-
putation of ref. [68] where there is overlap, which is up to third order in spin. In the
same-helicity case we must cure a new type of non-locality appearing already at quadratic
order in spin, which we do up to fifth order in spin. Our amplitude up to third order in
spin again reproduces the results of ref. [68]. Beyond fifth order in spin, a non-local form of
the same-helicity amplitude is presented for all spin orders. Consideration of the massless
limit in the same-helicity case will hint at a potential extension of the notion of minimal
coupling of ref. [62] past three points.

Apart from the linear-in-curvature spin-induced multipole coefficients, the identity of
the compact object in the Compton amplitude is also dictated by the values for coefficients
of contact terms, corresponding to R2 operators in an action. Due to the presence of
more non-vanishing invariants than at three points, there are an infinite number of such
coefficients at each spin order. Once we have constructed the factorizable portion of the
Compton amplitude, we content ourselves with the enumeration of a certain finite subset
of all possible contact deformations of the Compton amplitude — specifically, the set of
terms which can potentially contribute to Kerr-black-hole scattering at 2PM order.

The remainder of this paper is organized as follows. In section 2 we expand the most-
general three-point amplitude up to subleading order in ~ while expressing it in terms of
classically relevant quantities: the spin vector, the spin tensor, and the linear-in-curvature
spin-induced multipole coefficients. The three-point amplitude thus expanded is sufficient
for the computation of the factorizable part of the Compton amplitude, which we carry out
for all helicity configurations in section 3. Contact deformations of the Compton amplitudes
of the variety mentioned above are counted and written explicitly in section 4. The analysis
in this section includes both conservative and dissipative contact terms. A discussion of
our results and their implications concludes the paper in section 5.

2 The most general three-point amplitude

As our analysis hinges on the application of BCFW recursion to construct the Compton
amplitude, our starting point is the expression of the three-point amplitude in terms of
classically-relevant quantities. The most-general spin-s three-point amplitude in terms of
the massive on-shell spinors of ref. [62] is [62, 72, 73]

(
Ms,+

3

)IJ
= i

x2

m2s

2s∑
k=0

gk〈2I1J〉�(2s−k) �
(
〈2I |q|1J ]

2m

)�k
, (2.1)

(
Ms,−

3

)IJ
= i(−1)2s x

−2

m2s

2s∑
k=0

g̃k[2I1J ]�(2s−k) �
(

[2I |q|1J〉
2m

)�k
, (2.2)

– 3 –



J
H
E
P
0
5
(
2
0
2
3
)
1
7
7

for an emitted graviton of positive and negative helicity respectively. The helicity weights
of the gravitons are encoded in the factors

x ≡ [q|p1|ξ〉
m〈qξ〉

, x−1 ≡ 〈q|p1|ξ]
m[qξ] , (2.3)

for an arbitrary reference vector ξµ. Amplitudes describing the scattering of massive par-
ticles with spins si are symmetric functions in the 2si little group indices of each massive
spinning particle [74–76]. The I = {I1, . . . , I2s} and J = {J1, . . . , J2s} represent these sets
of 2s indices for the outgoing and incoming massive legs, respectively. We have used the �
notation first introduced in ref. [14] to represent the symmetrization of the tensor product
over the little group indices.3 Parameters of classical relevance will shortly be introduced
with which we will identify the coefficients gk and g̃k.

To express these in terms of the classical spin vector up to subleading order in ~,
we will convert the on-shell spinors to heavy on-shell spinors [19, 26]. For a momentum
pµ = mvµ + kµ,

|pI〉 = m
√
mk

(
|vI〉+

/k

2m |v
I ]
)
, |pI ] = m

√
mk

(
|vI ] +

/k

2m |v
I〉
)
, (2.4)

〈pI | = m
√
mk

(
〈vI | − [vI |

/k

2m

)
, [pI | = m

√
mk

(
[vI | − 〈vI |

/k

2m

)
, (2.5)

where mk ≡
(
1− k2

4m2

)
m. Note that the residual momentum kµ ∼ O(~) [18]. Writing

pµ1 = mvµ + kµ1 and pµ2 = mvµ + kµ2 = mvµ + kµ1 − qµ, the spinor brackets are

〈2I1J〉 = m

(
〈vIvJ〉+ 〈vI |q · a1/2|vJ〉 −

i

2m2k1µqν〈vI |Sµν1/2|v
J〉
)

+O(~2),

[2I1J ] = m

(
[vIvJ ]− [vI |q · a1/2|vJ ]− i

2m2k1µqν [vI |Sµν1/2|v
J ]
)

+O(~2), (2.6)

〈2I |q|1J ]
2m = m〈vI |q · a1/2|vI〉+O(~2), [2I |q|1J〉

2m = −m[vI |q · a1/2|vI ] +O(~2),

where Sµν1/2 ≡
i
4 [γµ, γν ] is the Lorentz generator in the spin-1/2 representation, and we have

indicated that the ring radius aµ is accordingly in the spin-1/2 representation. The ring
radius is related to the spin vector through Sµ = aµ/m; see appendix A for our conventions
pertaining to the ring radius, as well as some of its germane properties.

With eq. (2.6) in hand, we can express the three-point amplitudes in terms of the
classical spin. Focusing on the positive-helicity amplitude and expanding up to next-to-
leading-order in ~,

(
Ms,+

3

)IJ
= ix2

2s∑
j=0
〈vIvJ〉�(2s−j) � 〈vI |q · a|vJ〉�(j−1) �

(
〈vI |q · a|vJ〉

j∑
k=0

gk(2s− k)!
(2s)!(j − k)!

− i

2m2k1µqν〈vI |Sµν |vJ〉
j∑

k=0

gk(2s− k)!
(2s)!(j − k − 1)!

)
+O(~2), (2.7)

3For example, xIJ � yIJ = x{I1
{J2y

I2}
J2}, where curly brackets denote normalized symmetrization.
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where we interpret 1/(−1)! = 0. Note that we have converted the products of the ring
radius and the spin tensor to the spin-s representation, which we denote with no subscript
on these quantities.

Now, the coefficients gi are not classically relevant,4 but they can be related to linear
combinations of the spin-induced multipole coefficients CES2k and CBS2k+1 of ref. [69]. We
adopt the notation of ref. [15] with respect to these coefficients, writing CS2k ≡ CES2k and
CS2k+1 ≡ CBS2k+1 . Matching to the three-point amplitude that can be derived from the
worldline action there, it’s straightforward to show that5

j∑
k=0

gk
(2s− k)!

(2s)!(j − k)! = CSj

j! ⇒ gk = (2s)!
(2s− k)!

k∑
n=0

(−1)n+k CSn

n!(k − n)! . (2.8)

Consequently,

(
Ms,+

3

)IJ
= ix2

 2s∑
j=0

CSj

j! 〈v
IvJ〉�2s−j � 〈vI |q · a|vJ〉�j (2.9)

− i

2m2k1µqν〈vI |Sµν |vJ〉 �
2s∑
j=1

CSj−1

(j − 1)!〈v
IvJ〉�2s−j � 〈vI |q · a|vJ〉�(j−1)


+O(~2).

The two coefficients CS0 and CS1 are equal to 1 for any object, while the coefficients CSj≥2

are all equal to 1 for black holes only [69].
This form of the amplitude with open little group indices is important to correctly

account for polarization sums over massive internal states when computing the Compton
amplitude recursively. Nevertheless, the amplitude can be compactified by using the bold
notation as formulated in ref. [64] and employed in ref. [26]:

|v〉 ≡ |vI〉zp,I , |v] ≡ |vI ]zp,I ,

〈v̄| ≡ z̄p,I〈vI |, [v̄| ≡ z̄p,I [vI |,

where zp,I is a complex auxiliary variable and z̄p,I its complex conjugate. Contracting the
amplitude with 2s factors of this auxiliary variable for each massive leg,

Ms,+
3 = ix2〈v̄v〉2s

 2s∑
j=0

CSj

j! (q · a)j − i

2m2k1µqνs
µν

2s−1∑
j=0

CSj

j! (q · a)j
+O(~2). (2.10)

4As such, we do not concern ourselves with the fact that they must depend on the total spin quantum
number to preserve spin universality.

5See ref. [15] for details of the extraction of an on-shell three-point amplitude from the worldline action
of ref. [69]. Ref. [25] finds similar expressions relating the amplitude and spinning-worldline coefficients.
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We have identified (products of) the classical ring radius and spin tensor — aµ and sµν

respectively — through [20, 77]6

aµ1 . . . aµn ≡ 〈v̄|
2s{aµ1 , . . . , aµn}|v〉2s

〈v̄v〉2s
= [v̄|2s{aµ1 , . . . , aµn}|v]2s

[v̄v]2s , (2.11)

sαβaµ1 . . . aµn ≡ 〈v̄|
2s{Sαβ , aµ1 , . . . , aµn}|v〉2s

〈v̄v〉2s
= [v̄|2s{Sαβ , aµ1 , . . . , aµn}|v]2s

[v̄v]2s . (2.12)

Finally, once in possession of the positive-helicity amplitude, its negative-helicity counter-
part is easily obtained by swapping angle and square brackets and changing the sign on
q · a, as can be seen by inspection of eq. (2.6):

Ms,−
3 = ix−2〈v̄v〉2s

 2s∑
j=0

CSj

j! (−q · a)j − i

2m2k1µqνs
µν

2s−1∑
j=0

CSj

j! (−q · a)j
+O(~2).

(2.13)

Note that we switched back from square to angle brackets to absorb the overall (−1)2s

in eq. (2.2). In the infinite-spin limit, one should drop the overall factors of 〈v̄v〉2s and
take s→∞ in the upper bounds of the sums in eqs. (2.10) and (2.13). However, we must
postpone this procedure until after the Compton amplitudes have been constructed for
arbitrary, but finite, s: the presence of spinors is necessary to correctly perform massive
polarization sums in intermediate steps.

The second terms in the brackets of both eqs. (2.10) and (2.13) are subleading in
~. While they are needed to correctly construct the classical Compton amplitude, they
are irrelevant to classical physics at three points.7 Indeed, dropping these terms and
taking the black-hole limit CSj = 1, we recover the spin exponential characteristic of Kerr
black holes at three points [14, 78]. We thus see the potential to introduce new Wilson
coefficients that would not affect the classical three-point amplitude but would enter in
the classical Compton amplitude. Specifically, a bottom-up construction of a three-point
amplitude in powers of ~ would require that we give the second terms in the brackets of
eqs. (2.10) and (2.13) coefficients different from CSj . However, knowledge of the underlying
— quantum — theory indicates that there are in fact no additional parameters to the CSj if
we are to match to the classical three-point amplitude, as we have derived above. One would
reach the same conclusion from the bottom up if, in addition to enumerating all possible
on-shell structures, one also imposes invariance of the amplitude under reparametrization
of the heavy momentum [79, 80].

We have derived the three-point amplitudes for the emission of an arbitrary-helicity
graviton from a spin-smassive particle up to subleading order in ~ and in terms of classically
relevant quantities (the ring radius, spin tensor, and spin-induced multipole coefficients).
This is all the input we need to construct the classical Compton amplitude using recursive
methods.

6The symmetrization of the spin in the expectation value was not important in ref. [26] because the
product of spin vectors there was contracted with a totally-symmetric tensor when identified in the ampli-
tude.

7One could also set kµ1 = 0 by reparametrizing the heavy momentum. This not only eliminates the
second terms in the brackets of eqs. (2.10) and (2.13), but sets all subleading-in-~ terms to zero.
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Figure 1. The two factorization channels composing the spin-s opposite-helicity Compton ampli-
tude under the [3, 4〉 shift. We label the factorization channel on the left Fs,−+

1 and that on the
right Fs,−+

2 .

3 BCFW construction of Compton scattering

We turn now to the sewing of the three-point amplitudes derived in the previous section into
Compton amplitudes. Inspection of the factorization channels will validate our assertion
that BCFW recursion and the classical limit do not commute, as we will see interference
between quantum and superclassical terms that generally does not vanish. We begin with
the opposite-helicity case before proceeding to same-helicity scattering,8 and take both
gravitons to be outgoing and the initial matter momentum to be incoming.

3.1 Opposite-helicity Compton scattering

We label the negative-helicity graviton’s momentum with qµ3 , while the positive-helicity
graviton has momentum qµ4 . We use the [3, 4〉 shift to construct the amplitude:

|3̂] = |3] + z|4], |4̂〉 = |4〉 − z|3〉. (3.1)

Two factorization channels comprise the amplitude under this shift, which are shown in
figure 1. On either cut, the factors of x in eqs. (2.10) and (2.13) can be written as

x̂4 = y

m〈43〉 , x̂−1
3 = y

m[34] , (3.2)

where y ≡ 2p1 ·w and wµ ≡ [4|σ̄µ|3〉/2. The inverse powers of the mass will cancel with the
overall coupling, so we omit them in the following. The shifted momenta on the cuts are

q̂µ3,1 = q̂µ3 −
s34
2y w

µ, q̂µ3,2 = q̂µ3 + s34
2y w

µ, (3.3)

q̂µ4,1 = q̂µ4 + s34
2y w

µ, q̂µ4,2 = q̂µ4 −
s34
2y w

µ, (3.4)

where

q̂µ3 ≡ q
µ
3 −

t14 − t13
2y wµ, q̂µ4 ≡ q

µ
4 + t14 − t13

2y wµ. (3.5)

8Note that the opposite- and same-helicity amplitudes are often referred to as helicity-preserving and
helicity-reversing amplitudes respectively in the general relativity literature, e.g. refs. [68, 81]. This nomen-
clature reflects momentum conventions where one graviton is incoming and one is outgoing.

– 7 –



J
H
E
P
0
5
(
2
0
2
3
)
1
7
7

Summing the two factorization channels yields the spin-s amplitude:

Ms,−+
4 = Fs,−+

1 + Fs,−+
2 , (3.6)

Fs,−+
1 ≡

MR(P̂ s13,I ,−q̂
+
4,1,−ps2)ML(ps1,−q̂−3,1,−P̂

s,I
13 )

t13
,

Fs,−+
2 ≡

MR(P̂ s14,I ,−q̂
−
3,2,−ps2)ML(ps1,−q̂+

4,2,−P̂
s,I
14 )

t14
.

The labels R and L indicate whether the amplitude is on the right- or left-hand side of
the cut, which affects the sign of the polarization sum. We have defined P̂13 = pµ1 − q̂

µ
3,1,

P̂14 = pµ1 − q̂
µ
4,2, t1i = −2p1 · qi, and pµ2 is determined by momentum conservation. Negative

momentum labels in the amplitudes represent outgoing momenta.
Since the three-point amplitudes are O(~0) we see that both factorization channels are

O(~−1). From previous analyses [14, 15, 19, 26, 62, 82] it is known that the Compton am-
plitude scales as O(~0) in the classical limit, so O(~) terms from the three-point amplitudes
are needed to capture all O(~0) contributions to the Compton amplitude, as advertised.
On the left-hand sides of the cuts we can take kµ1 = 0 in eqs. (2.10) and (2.13), but on the
right-hand sides we must take kµ1 = −q̂µ3,1 or −q̂µ4,2, depending on the cut.

We see in eq. (3.3) the second source of O(~ × 1/~) effects. Namely, the parts of the
shifted momenta proportional to wµ are O(~2) whereas the rest of the shifted momenta
are O(~). There is one more source of interference between quantum and super-classical
effects that must be accounted for: the reduction of spin structures after polarization sums
have been taken over internal massive states. For example, in the spin-1/2 representation
only one factor of the spin vector can appear between a pair of spinors. This leads to the
relations

q̂4,1µq̂3,1ν〈v̄|aµ1/2|vI〉[v
I |aν1/2|v] = i

2m2 q̂3,1µq̂4,1ν〈v̄|Sµν1/2|v〉+O(~2), (3.7a)

q̂3,2µq̂4,2ν [v̄|aµ1/2|vI ]〈v
I |aν1/2|v〉 = i

2m2 q̂4,2µq̂3,2ν [v̄|Sµν1/2|v] +O(~2), (3.7b)

for spin-1/2 external states. By expressing the three-point amplitudes of the previous
section using spin vectors and tensors in the spin-1/2 representation, such reductions are
easy to perform for particles of any spin. See appendix A for more details.

To identify a difference between the black-hole computation and that for a general
object, let us examine the individual factorization channels. Accounting for all O(~× 1/~)
effects, the factorization channels in the infinite-spin limit take the compact forms9

F∞,−+
1 =− y4

t13s2
34

∞∑
j=0

∞∑
k=0

(q̂4 · a)j(−q̂3 · a)k

j!k!

[
CSkCSj−(CSj−CSj+1) (CSk−CSk+1) s34

2y w · a
]
,

(3.8a)

F∞,−+
2 =− y4

t14s2
34

∞∑
j=0

∞∑
k=0

(q̂4 · a)j(−q̂3 · a)k

j!k!

[
CSkCSj+(CSj−CSj+1) (CSk−CSk+1) s34

2y w · a
]
.

(3.8b)
9We can take the infinite-spin limit and drop the overall spinor contraction 〈v̄v〉2s now because we have

evaluated the polarization sums.
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We see in these equations the proof of our statement that BCFW recursion and the classical
limit do not commute. The second terms in the square brackets above are subleading in ~
relative to the first terms, and are the O(~× 1/~) terms we have kept track of. Since they
have different signs in the two factorization channels, they do not drop by one power of ~
when both channels are added, unlike the first terms. Hence these subleading terms in Fi
are not subleading in the amplitude. Furthermore, in the black-hole limit CSj = 1, these
contributions vanish and the Fi are uniform in ~, demonstrating the cancellations in the
black-hole case alluded to in the introduction.

While the black-hole limit implies that the factorization channels are uniform in ~,
the converse is also true. Specifically, requiring that the factorization channels are uniform
in ~ imposes either CSj = 0 or CSj = CS0 for all j. However, as CS0 = CS1 = 1 for
any gravitating object [69], the former condition cannot be satisfied. Thus, the uniformity
in ~ of the factorization channels is equivalent to scattering an object with the linear-in-
curvature induced multipoles of a Kerr black hole.

As mentioned above, this non-uniformity in ~ does not persist once the factorization
channels are combined into the amplitude. We will see hints of the exceptionality of the
Kerr-black-hole spin-induced multipoles at the level of the amplitude in the same-helicity
case, in a way which will be more reminiscent of the notion of minimal coupling of ref. [62].

Summing the two factorization channels gives the amplitude:

M∞,−+
4 = y4

t13t14s34

∞∑
j=0

∞∑
k=0

(q̂4 · a)j (−q̂3 · a)k

j!k!

×
[
CSkCSj + (CSj − CSj+1) (CSk − CSk+1) t14 − t13

2y w · a
]
, (3.9)

valid up to fourth order in spin. Expanding up to third order in spin, we reproduce the
helicity-preserving amplitude of ref. [68]. Up to fourth order in spin, we agree with the
result derived from the action of ref. [27] for certain choices of their additional parameters.10

In the black-hole limit the second term in square brackets is vanishing, thus recovering the
spin-exponential of the Compton amplitude in the form presented in ref. [19].

As in the black-hole case, unphysical poles in y develop above fourth order in spin. We
can remove them without affecting factorization properties exactly as was done in ref. [26].
We must first isolate the problematic parts of the amplitude, which can be done by plugging
in eq. (3.5) and using the binomial theorem. Doing so and collecting like terms gives

M∞,−+
4 =

∞∑
j=0

∞∑
k=0

j∑
n1=0

k∑
n2=0

(
j

n1

)(
k

n2

)
(q4 · a)j−n1 (−q3 · a)k−n2

2n1+n2j!k!

×
[
CSkCSjKn1+n2 + 1

2 (CSj − CSj+1) (CSk − CSk+1)Kn1+n2+1

]
, (3.10)

where

Kn ≡
y4

t13t14s34

(
t14 − t13

y
w · a

)n
. (3.11)

10We thank Andres Luna and Fei Teng for sharing unpublished Compton amplitudes.
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Unphysical poles arise in terms containing Kn≥5, and can be removed without affecting
factorization properties by replacing

Kn → K̄n ≡

Kn, n ≤ 4,
K4Ln−4 −K3s2Ln−5, n > 4,

(3.12)

with

Lm ≡
bm/2c∑
j=0

(
m+ 1
2j + 1

)
sm−2j

1 (s2
1 − s2)j , (3.13)

s1 ≡ (q3 − q4) · a, s2 ≡ −4(q3 · a)(q4 · a) + s34a
2.

We thus arrive at the final, local result — modulo contact terms — for the opposite-helicity
Compton amplitude for general objects and all spins:

M∞,−+
4 =

∞∑
j=0

∞∑
k=0

j∑
n1=0

k∑
n2=0

(
j

n1

)(
k

n2

)
(q4 · a)j−n1 (−q3 · a)k−n2

2n1+n2j!k!

×
[
CSkCSjK̄n1+n2 + 1

2 (CSj − CSj+1) (CSk − CSk+1) K̄n1+n2+1

]
. (3.14)

Contact terms will be considered in the next section.
Let us end by briefly commenting on previous attempts to construct the Compton

amplitude using BCFW recursion on a classical three-point amplitude, namely refs. [25, 83].
It was stated in ref. [25] that the spin dependence of both cuts is the same in the black-
hole limit. While this statement is true, it is the result of cancellations between three
quantum × super-classical effects which we have seen above: 1) O(~) parts of the three-
point amplitudes; 2) O(~2) parts of the shifted momenta; 3) the reduction of products
of spin vectors after the polarization sum over massive internal states. The authors of
refs. [25, 83] missed the former effect, and their accounting of the latter two did not produce
O(~ × 1/~) terms.11 Though inconsequential in the black-hole limit, the lack of such
effects renders the results of those previous analyses for general spin-induced multipoles
discrepant with refs. [27, 68, 84], as well as with our results above. A concrete example
of this disagreement is eq. (B.27) of ref. [25], which is missing C2

S2 contributions at cubic
order in spin.

3.2 Same-helicity Compton scattering

The same-helicity Compton amplitude is much simpler than its opposite-helicity cousin in
the case of black-hole scattering, possessing no unphysical poles at any spin order while also
expressible as a spin exponential [19, 82]. Ironically, then, in the case of general objects,
the computation of the amplitude for this helicity configuration is more involved than for
opposite helicities. An attempt to compute this amplitude using recursive techniques can
also be found in ref. [25]. Apart from missing O(~ × 1/~) contributions, the result there
possesses unphysical poles at quadratic order in spin and above, which are not present in the

11We thank Jung-Wook Kim for discussions about this.
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classical computation of ref. [68].12 In this section we account for the missing contributions
to their amplitude and remove the unphysical poles arising from the BCFW computation.

To evaluate the two-positive configuration we begin with the same shift as in the
opposite-helicity case. Accounting for all O(~×1/~) effects, we find the (non-local) infinite-
spin, same-helicity amplitude to be

M∞,++
4 =

y4
++

t13t14s34

∞∑
j=0

∞∑
k=0

(q̂4 · a)j (q̂3 · a)k

j!k!

×
[
CSjCSk + (CSj − CSj+1)(CSk + CSk+1) t14 − t13

2y w · a
]

+ B. (3.15)

We have defined wµ++ ≡ [4|p1σ
µ|3]/2m, so that y++ ≡ 2p1 · w++ = m[43]. All O(~× 1/~)

contributions appear in the second term in square brackets. Similarly to the opposite-
helicity case, we can see that these contributions vanish in the black-hole limit, such that
we recover the spin-exponential form of the amplitude in ref. [19].

The recursive approach taken has missed BCFW boundary terms B 6= 0, which is
signaled by the development of unphysical singularities in y above linear order in spin and
since the amplitude does not have the expected q3 ↔ q4 crossing symmetry. Interestingly,
in the black-hole case the BCFW computation produces a local and crossing-symmetric
amplitude, so boundary terms are not needed in this case [82]. In the general case, however,
our task has become to determine the appropriate boundary terms to restore both locality
and crossing symmetry. We start with the latter.

The missing crossing symmetry can be seen by noting that wµ → w̄µ under q3 ↔ q4.
The origin of this asymmetry is that the [3, 4〉 BCFW shift we have used does not treat
the two gravitons identically. A remedy to this is to simply average the results of the
[3, 4〉 and [4, 3〉 shifts. Since both shifts produce expressions with the correct factorization
properties, the average will also have the appropriate residues on physical poles, with the
added benefit of posessing the requisite crossing symmetry. The result of the averaging is

M∞,++
4 =

y4
++

2t13t14s34

∞∑
j=0

∞∑
k=0

1
j!k!

{
CSjCSk

[
(q̂4 · a)j (q̂3 · a)k +

(
¯̂q4 · a

)j (¯̂q3 · a
)k]

(3.16)

+ (CSj − CSj+1)(CSk + CSk+1) t14 − t13
2

×
[
w · a
y

(q̂4 · a)j (q̂3 · a)k − w̄ · a
ȳ

(
¯̂q3 · a

)j (¯̂q4 · a
)k]}

+ B′,

where B′ are the boundary terms needed to restore locality. The bar over a symbol repre-
sents complex conjugation, and we can see from eq. (3.5) that q̂4 → ¯̂q3 and q̂3 → ¯̂q4 under
the swap q3 ↔ q4.

Moving on to the restoration of locality, we proceed by introducing non-local contact
terms which cancel the poles in y and ȳ. Both unphysical poles can be removed simulta-
neously by introducing contact terms with poles in yȳ = t13t14 − m2s34. The quantities

12The helicity-reversing amplitude of ref. [68] has spurious poles above linear order in spin as θ → π.
This is due to a freedom in choosing the Lorentz products encapsulating spin effects. We have written their
amplitude in a manifestly local form in eq. (B.4). We thank Justin Vines for discussions about this.
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w ·a/y and w̄ ·a/ȳ are expressible in terms of this product and w++ ·a/y++ using eq. (B.3).
The removal of unphysical poles in yȳ at quadratic order in spin is shown explicitly in
appendix C. Up to cubic order in spin, we find agreement with the helicity-reversing am-
plitude of ref. [68], which we write covariantly and in a manifestly-local form in eq. (B.4).
At quartic order in spin, the same-helicity amplitude is

M∞,++
4 |a4 = (3.17)
y4

++
t13t14s34

{ 1
4! [(q3 + q4) · a]4

+ CS2 − 1
2!

s34
8

[
24m2t13t14

(
w++ · a
y++

)4
+ 2m2s34

(
w++ · a
y++

)2
[
a2 + 4m2

(
w++ · a
y++

)2
]

+2a2(q3 · a)(q4 · a) + [(q3 + q4) · a](t14 − t13)w++ · a
y++

[
a2 + 8m2

(
w++ · a
y++

)2
]]

+ (CS2−1)2

2!2!
s34
8

[
2a2(q3 · a)(q4 · a) + [(q3 + q4) · a](t14−t13)w++ · a

y++

[
a2+8m2

(
w++ · a
y++

)2
]

−2
(
w++ · a
y++

)2
[
(2t13t14 −m2s34)a2 − 4m2(3t13t14 +m2s34)

(
w++ · a
y++

)2
]]

+ (CS2 − 1)(CS3 − 1)s34
16 [(q3 + q4) · a](t14 − t13)w++ · a

y++

[
a2 + 4m2

(
w++ · a
y++

)2
]

+ CS3 − 1
3!

s34
4

[
−24m2t13t14

(
w++ · a
y++

)4

+
[
(q3 · a)2 + (q4 · a)2 + 2[(q3 + q4) · a](t14 − t13)w++ · a

y++

] [
a2 + 4m2

(
w++ · a
y++

)2
]]

+ CS4 − 1
4!

[
[(q3 + q4) · a]4 + 6m2s34t13t14

(
w++ · a
y++

)4

− 9s2
34

2 m2
(
w++ · a
y++

)2
[
a2 + 4m2

(
w++ · a
y++

)2
]

− s34[(q3 · a)2 + (q4 · a)2]
[
a2+4m2

(
w++ · a
y++

)2
]
− 3s34

2 (q3 · a)(q4 · a)
[
a2−8m2

(
w++ · a
y++

)2
]

−s34
4 [(q3 + q4) · a](t14 − t13)w++ · a

y++

[
5a2 + 56m2

(
w++ · a
y++

)2
] ]}

.

Thanks to the overall y4
++, this expression is also manifestly local. The symmetry of the

amplitude under q3 ↔ q4 appears to be broken by the factors of t14 − t13, but this is not
the case: under this exchange, y++ is antisymmetric while w++ · a is symmetric thanks to
the spin-supplementary condition p · a = 0, so the combination (t14 − t13)w++ · a/y++ is
itself crossing-symmetric. Eq. (3.17) agrees with the amplitude derived from the action of
ref. [27], up to contact terms.13

13Again, we thank Andres Luna and Fei Teng for sharing unpublished results.
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Since y++ ∼ m, we can see from eq. (3.17) (as well as from eq. (B.4)) that the black-
hole amplitude scales as m4 in the limit m → 0. Above linear order in spin, the scaling
wµ++ ∼ m−1 dulls this behavior to m2,0,−2, at O(a2,3,4) respectively. The best behavior
in the high-energy/massless limit thus emerges in the black-hole case, and at high enough
spin orders the black-hole limit is required for the existence of a non-divergent massless
limit. This is reminiscent of the notion of minimal coupling of ref. [62].

Above fourth order in spin, further non-localities develop in inverse powers of y++,
analogously to the opposite-helicity case. The vanishing Gram determinant for the five
four-vectors aµ, pµ1 , q

µ
3 , q

µ
4 , w

µ
++, which reads

4m4s34

(
w++ · a
y++

)2
= −2m2(t14 − t13)[(q3 + q4) · a]w++ · a

y++
−m2s2 + a2t13t14, (3.18)

allows us to trade terms with more inverse powers of y++ for terms with fewer such powers.
Adding this Gram determinant to our arsenal, we have removed all poles in y++ from the
same-helicity Compton amplitude at fifth order in spin. We find again that the black-hole
amplitude exhibits a finite massless limit at this spin order, with the generic case scaling
as m−2 when m → 0. For brevity, we have relegated the amplitude at the fifth order in
spin to the ancillary Mathematica notebook SameHelicitySpinFourFive.nb . Eq. (3.17)
is also included in this notebook for convenience.

Through the evaluation of the classical Compton amplitude for general spinning ob-
jects, we have seen in this section that the construction of classical amplitudes using BCFW
recursion generally requires that one keep track of subleading parts of intermediate expres-
sions, including quantum pieces of lower-point amplitudes. Doing so, we have produced for
the first time an opposite-helicity Compton amplitude which describes all spin multipoles
of a general compact object, which also matches classical computations at low spins. In the
same-helicity case, we presented a non-local, but crossing-symmetric, form of the amplitude
to all spins, and cured non-localities up to fifth order in spin. These amplitudes are not
unique, however, as they can be deformed by contact terms. For the sake of completeness,
let us discuss this now.

4 Contact terms

We can write the amplitudes most generally as

M∞,h1h2
4 +m2

(
Ch1h2

even + Ch1h2
odd +Dh1h2

even +Dh1h2
odd

)
, (4.1)

where Ch1h2
even and Ch1h2

odd are (sums of) conservative contact terms at even and odd spin
orders respectively, and Dh1h2

even and Dh1h2
odd account for dissipative effects. We will explain

the distinction between the two below.
At the risk of pedantry, let us clarify that a contact term is the product of a coefficient

potentially dependent on the scales in the scattering, and a spin structure which is a pole-
free function of the momenta and is a monomial in the spin vector. Most generally, each spin
structure is accompanied by its own coefficient. In the case of Compton scattering, these
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coefficients are related — non-trivially — to the coefficients of curvature-squared operators
in a worldline action, operators which describe tidal and spin-induced multipolar effects
at quadratic order in curvature. See ref. [85] for a definition of tidal versus spin-induced
multipolar operators in a worldline theory.

An infinite number of contact terms can deform the Compton amplitudes at each
spin order, all of which were classified at zeroeth and linear order in spin in refs. [39, 43].
However, only a finite number of them contribute to a fixed spin order up to a given
order in Newton’s constant. Here we count and write down all contact term deformations
contributing to classical gravitational scattering at the same orders as the CSk — that is to
say, at O(G2ak/bk+1), where b is the impact parameter.14 This is equivalent to requiring
that the coefficients of the contact terms do not have any ~ dependence. We will illustrate
this in more detail now.

4.1 Relevant scales

We are working in a context where we have restored factors of ~ but left c = 1. For a general
object we therefore have four relevant scales: Planck’s constant ~, Newton’s constant G,
the mass of the object m, and the scale of the object’s spatial extent R. For a black hole
there is one less scale, since the spatial extent is identified with the Schwarzschild radius,
which is related to the other scales through Rs = 2Gm. With ~ restored, these scales have
the dimensions

[R] = [L], [m] = [M ], [~] = [L][M ], [G] = [L]
[M ] ,

where [L] represents dimensions of length and [M ] dimensions of mass/momentum/energy.
The coupling-stripped amplitude has dimensions [M ]2, and is O(~0) in the classical

limit. These dictate the possible scalings of coefficients for classically-relevant contact
terms. We now argue that these properties of the amplitude, combined with the available
scales, imply that the contact terms contributing at O(G2ak/bk+1) are those with Wilson
coefficients that do not scale with ~.

Terms in the 2PM scattering angle which scale as O(G2ak/bk+1) in impact-parameter
space come from terms of the schematic form G2qkak/

√
−q2 in momentum space, where q

is the transfer momentum. This can be seen to all spin orders in the results of ref. [28]. The
square-root comes from triangle integrals, while the qkak ∼ O(~0) come from O(~0) parts
of the Compton amplitude. If we consider contact terms in the Compton amplitude with
spin structures that scale with some positive power of ~, the corresponding coefficient must
carry a compensating number of inverse factors of ~ in order for the contact term to scale
classically, as was seen in refs. [39, 43]. Then, to maintain the correct mass dimensions, the
coefficients must also scale with additional powers of R or Gm. This translates to terms of
the form G2+nRlqk+jak/

√
−q2 in the one-loop amplitude, where n + l = j is the number

of inverse factors of ~ needed in the contact term coefficient. Moving to impact-parameter
space, these produce terms scaling as O(G2+nRlak/bj+k+1).

14When finite-size effects are allowed, 2PM contributions scale more generally as O(G2Rjak/bj+k+1).
This simplifies to O(G2+jak/bj+k+1) for black holes, so the set of contact terms we consider here can also
be thought of as all contact terms potentially relevant to black-hole scattering at 2PM.
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Thus O(G2ak/bk+1) effects are produced by contact terms in the Compton amplitude
which have Wilson coefficients that don’t depend on ~ — or equivalently, spin structures
which are O(~0). These are the contact terms we will construct in the following.

For spinning objects there is actually an additional scale: the magnitude of the ring
radius itself, |a| ≡

√
a2. Allowing the coefficients of their contact terms to depend on

the magnitude of the ring radius, the authors of ref. [55] were able to exactly match the
opposite-helicity Compton amplitude to solutions of the Teukolsky equation up to sixth
order in spin. This scale only appeared in their coefficients in the dimensionless combination
~|a|/Gm,15 which does not affect our enumeration of contact terms below since there are
no inverse factors of ~ in this combination that allow us to consider more general spin
structures. The same is true of the other dimensionless combination ~|a|/R, which can
appear in the neutron-star case. More generally, allowing |a| to appear independently as a
scale in the coefficients is already accounted for by the dissipative contact terms below.

4.2 Opposite-helicity contact terms

We would like to explicitly construct all independent contact terms with Wilson coefficients
that do not scale with ~. Redundancies between contact terms may arise due to the fact
that the Gram determinant vanishes for the five four-vectors aµ, pµ1 , q

µ
3 , q

µ
4 , w

µ in four
spacetime dimensions. Employing the vanishing of the Gram determinant,

(t14 − t13)2(w · a)2 = −4m2s34(w · a)2 + 2y(t14 − t13)s1(w · a)− y2s2, (4.2)

these redundancies can be avoided by excluding any contact term containing the left-hand
side of eq. (4.2) as a subfactor.

Now, in order to carry the correct helicity weight, all contact terms must contain
exactly four factors of the helicity vector wµ.16 Since wµ is orthogonal to both qµ3 and qµ4 ,
it can only be contracted with pµ1 and aµ. All contact terms must therefore contain a factor
of the form

yn(w · a)4−n, 0 ≤ n ≤ 4. (4.3)

At each n a core factor can be identified that is O(~0), out of which all contact terms of
interest to us can be constructed by multiplying by the following O(~0) factors:17

q3 · a, q4 · a, s34a
2, (t14 − t13)2a2. (4.4)

For n ≤ 2, the last term in this list need not be considered because of eq. (4.2).
15The scaling of this combination with ~ is superficial, since in the ~ → 0 limit the combination ~|a| is

held constant [16].
16The fact that wµ ∼ ~ means that no contact terms can be written at O(an≤3) with coeffients that do

not depend on ~, as for these spin orders there are not enough spin vectors to make the contact term O(~0).
17One could expand this list by including dressing factors with apparent singularities in s34 but whose

residues at s34 = 0 actually vanish, as was done in ref. [55]. However, such terms are redundant in our case
as we’ve instead allowed for factors of a2 to appear in contact terms. This amounts to a different choice of
basis on account of eq. (4.2), so we must agree on the total number of free coefficients.
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At each n one can construct two core factors: one involving a single factor of |a| ≡
√
a2,

and one without. Contact terms containing such a factor were argued in ref. [55] to encode
dissipative effects, because their coefficients depend on the boundary conditions at the
black hole horizon chosen for solving the Teukolsky equation. We begin by focusing on
conservative contact terms, and subsequently consider dissipative ones.

4.2.1 Conservative contact terms

Counting all possible on-shell contact terms is made easier by considering each value of n
individually in eq. (4.3). Let us illustrate this counting for n = 4 and n = 3.

n = 4. The core factor scaling as O(~0) and carrying the correct helicity weights is y4a4.
There are no redundancies because of eq. (4.2) in this case, so we can dress this with any
of the factors in eq. (4.4).

To reach O(a2k≥4) we must dress the core structure with 2k − 4 powers of spin, with
i dressing factors being quadratic in spin. Of these i we take l factors to be (t14 − t13)2a2,
and the remaining i− l to be s34a

2. We are then left with 2k−4−2i linear-in-spin dressing
factors, of which j are, say, q3 · a. The total number of even-in-spin contact terms with
n = 4 is then given by the triple sum

k−2∑
i=0

i∑
l=0

2k−4−2i∑
j=0

1 = 1
6k(k − 1)(2k − 1). (4.5)

The same logic for O(a2k+1≥5) gives
k−2∑
i=0

i∑
l=0

2k−3−2i∑
j=0

1 = 1
3k(k2 − 1) (4.6)

total contact terms.

n = 3. The core factor scaling as O(~0) and carrying the correct helicity weights is (t14−
t13)y3a4(w·a). Again, we cannot have redundancies due to the vanishing Gram determinant
in this case.

Since the core factor already has five spin powers, contact terms for n = 3 only arise
at even-in-spin orders from O(a2k≥6). This changes the upper bounds on the sums over i
and j in eq. (4.5), since now quadratic-in-spin dressings can only begin to appear for k ≥ 4
and since five instead of four powers of spin are accounted for in the core factor. Making
these modifications, the total number of even-in-spin contact terms for n = 3 is

k−3∑
i=0

i∑
l=0

2k−5−2i∑
j=0

1 = 1
3k(k − 1)(k − 2). (4.7)

For O(a2k+1≥5) we have
k−2∑
i=0

i∑
l=0

2k−4−2i∑
j=0

1 = 1
6k(k − 1)(2k − 1) (4.8)

total contact terms.
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The core factors for the remaining values of n are

n = 2 : y2a2(w · a)2,

n = 1 : y(t14 − t13)a2(w · a)3,

n = 0 : (w · a)4.

In each of these cases we must not dress the core factors with (t14−t13)2a2, as such dressings
are reducible using eq. (4.2). Consequently, the counting of contact terms for n = 2, 0 is
the same as for the n = 4 case but with l fixed to zero. Similarly, the counting for n = 1 is
given by the counting for n = 3 with the sum over l dropped. The result of the counting
of independent coefficients is given in tables 1 and 2.

The most-general, conservative, contact-term deformation of the opposite-helicity am-
plitude relevant at O(G2a2k/b2k+1) is

C−+
even =

∞∑
k=0


k−2∑
i=0

2k−4−2i∑
j=0

(s34a
2)i(q3 · a)j(q4 · a)2k−4−2i−j

×
[
y4a4

i∑
l=0

a−+,k
i,l,j (s34a

2)−l[(t14 − t13)2a2]l + (w · a)2
[
y2a2c−+,k

i,j + (w · a)2e−+,k
i,j

]]

+ (t14 − t13)ya2(w · a)
k−3∑
i=0

2k−5−2i∑
j=0

(s34a
2)i(q3 · a)j(q4 · a)2k−5−2i−j

×
[
y2a2

i∑
l=0

b−+,k
i,l,j (s34a

2)−l[(t14 − t13)2a2]l + d−+,k
i,j (w · a)2

]}
, (4.9)

where the coefficients a, b, c, d, e represent contact terms with n = 4, 3, 2, 1, 0 respectively
in eq. (4.3). At O(G2a2k+1/b2k+2) the most general set of conservative contact terms is

C−+
odd =

∞∑
k=0


k−2∑
i=0

2k−3−2i∑
j=0

(s34a
2)i(q3 · a)j(q4 · a)2k−3−2i−j

×
[
y4a4

i∑
l=0

ã−+,k
i,l,j (s34a

2)−l[(t14 − t13)2a2]l + (w · a)2
[
y2a2c̃−+,k

i,j + (w · a)2ẽ−+,k
i,j

]]

+ (t14 − t13)ya2(w · a)
k−2∑
i=0

2k−4−2i∑
j=0

(s34a
2)i(q3 · a)j(q4 · a)2k−4−2i−j

×
[
y2a2

i∑
l=0

b̃−+,k
i,l,j (s34a

2)−l[(t14 − t13)2a2]l + d̃−+,k
i,j (w · a)2

]}
, (4.10)

All spin structures in the above are O(~0), so the coefficients for classical contributions
must be ~-free. However, spin structures containing subfactors of (t14 − t13)2a2 have mass
dimensions which must be compensated by their coefficients. Specifically,

[a−+,k
i,l,j ] = [ã−+,k

i,l,j ] = [b−+,k
i,l,j ] = [b̃−+,k

i,l,j ] = [M ]−4−2l,

[c−+,k
i,j ] = [c̃−+,k

i,j ] = [d−+,k
i,j ] = [d̃−+,k

i,j ] = [M ]−2.
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To achieve this without altering the ~ scaling of the contact terms, we set18

{a−+,k
i,l,j , ã−+,k

i,l,j , b−+,k
i,l,j , b̃−+,k

i,l,j } ∝ m
−4−2l,

{c−+,k
i,j , c̃−+,k

i,j , d−+,k
i,j , d̃−+,k

i,j } ∝ m−2.

All other coefficients must be either scaleless or depend on (products of) the factors ~|a|/Gm
and ~|a|/R.

4.2.2 Dissipative contact terms

To count dissipative contact terms we modify slightly the core factors to carry the correct
helicity weights, scale as O(~0), and also possess one factor of |a| [55]:

n = 4 : y4a4(t14 − t13)|a|,
n = 3 : y3a2(w · a)|a|,
n = 2 : y2a2(w · a)2(t14 − t13)|a|,
n = 1 : y(w · a)3|a|
n = 0 : (w · a)4(t14 − t13)|a|.

All contact terms can again be generated by dressing these core factors with the dressing
factors in eq. (4.4). At O(a4,5) ref. [55] only included dissipative contact terms with factors
of (t14− t13)|a| in their ansatz, while here we also include terms of the form y|a|. In ref. [55]
the latter were found to not be needed to match to solutions of the Teukolsky equation.
So, to compare our counting of dissipative contact terms to that in ref. [55] at these spin
orders, we must ignore those emerging from the n = 1, 3 core factors. At O(a6) ref. [55]
included some terms with these core factors.19

Counting in an identical fashion to the conservative case, we find the number of dissi-
pative contact terms in tables 3 and 4 for even and odd spin powers respectively.

The most-general set of dissipative contact terms relevant at O(G2a2k/b2k+1) is

D−+
even = |a|

∞∑
k=0

(t14 − t13)
k−3∑
i=0

2k−2i−5∑
j=0

(s34a
2)i(q3 · a)j(q4 · a)2k−2i−5−j

×
[
y4a4

i∑
l=0

f−+,k
i,l,j (s34a

2)−l[(t14 − t13)2a2]l + (w · a)2
[
p−+,k
i,j y2a2 + r−+,k

i,j (w · a)2
]]

+ y(w · a)
k−2∑
i=0

2k−2i−4∑
j=0

(s34a
2)i(q3 · a)j(q4 · a)2k−2i−4−j

×
[
y2a2

i∑
l=0

g−+,k
i,l,j (s34a

2)−l[(t14 − t13)2a2]l + q−+,k
i,j (w · a)2

]}
. (4.11)

18Other possible combinations of the relevant scales that can produce the requisite mass dimensions are
powers of R/~, Gm/~, or G/R. The first two are not classically relevant, while the last one is only relevant
for neutron stars past 2PM.

19Specifically, the contact terms there with the c(i)
10 coefficients can be rewritten using eq. (4.2) to involve

terms with the n = 1, 3 core factors. We thank Yilber Fabian Bautista for discussions about this.
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The coefficients labelled f, g, p, q, r correspond to the n = 4, 3, 2, 1, 0 core factors, respec-
tively. The dissipative contact terms needed at O(G2a2k+1/b2k+2) are

D−+
odd = |a|

∞∑
k=0

(t14 − t13)
k−2∑
i=0

2k−2i−4∑
j=0

(s34a
2)i(q3 · a)j(q4 · a)2k−2i−4−j

×
[
y4a4

i∑
l=0

f̃−+,k
i,l,j (s34a

2)−l[(t14 − t13)2a2]l + (w · a)2
[
p̃−+,k
i,j y2a2 + r̃−+,k

i,j (w · a)2
]]

+ y(w · a)
k−2∑
i=0

2k−2i−3∑
j=0

(s34a
2)i(q3 · a)j(q4 · a)2k−2i−3−j

×
[
y2a2

i∑
l=0

g̃−+,k
i,l,j (s34a

2)−l[(t14 − t13)2a2]l + q̃−+,k
i,j (w · a)2

]}
. (4.12)

As in the conservative case, the condition that the amplitude has mass dimension 2 and
scales as O(~0) in the classical limit imposes certain scalings on the parameters. In this
case, we must have

{f−+,k
i,l,j , f̃−+,k

i,l,j } ∝ m
−5−2l,

{g−+,k
i,l,j , g̃−+,k

i,l,j } ∝ m
−3−2l,

{p−+,k
i,j , p̃−+,k

i,j } ∝ m−3,

{q−+,k
i,j , q̃−+,k

i,j , r−+,k
i,j , r̃−+,k

i,j } ∝ m−1.

Imposing crossing symmetry on the scattering renders nearly half of the parameters
redundant. Both opposite-helicity configurations are related under crossing through

M+−
4 =M−+

4 |q3↔q4 = M̄−+
4 |a→−a. (4.13)

Thus the coefficients of contact terms with the subfactor (q3 · a)i(q4 · a)j are related to
those of the analogous contact terms with i and j flipped. For example, two such related
coefficients at O(a5) are

ẽ−+,2
0,0 (w · a)4q4 · a, ẽ−+,2

0,1 (w · a)4q3 · a,

and eq. (4.13) imposes ẽ−+,2
0,0 = −ẽ−+,2

0,1 . The numbers of independent coefficients consistent
with crossing symmetry are also shown in tables 1 to 4. The number of crossing-symmetric
contact terms agrees with ref. [55] for the conservative sector, while we have additional
terms in the dissipative sector which they found to be unnecessary for matching to solutions
of the Teukolsky equation.

4.3 Same-helicity contact terms

Moving on to same-helicity scattering, the analysis is nearly identical to the opposite-
helicity scenario, with the primary difference being that we now work with the helicity
vector wµ++ defined above instead of wµ. As in the opposite-helicity case, we construct
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the contact terms with coefficients that don’t scale with ~. Redundancies must again be
accounted for because of the vanishing of the Gram determinant eq. (3.18). It is thus
sufficient to construct contact terms that do not include the left-hand side of eq. (3.18) as
a subfactor.

Analogously to the opposite-helicity case, each contact term must contain four powers
of the helicity vector wµ++ in order to transform appropriately under the little groups of
the external massless particles. In this case, the helicity vector is orthogonal to qµ3 but not
to qµ4 . Nevertheless, it is easy to show that q4 · w++ = − t14

2m2 y++, so this contraction may
be ignored so long as we account for y++. Therefore, each contact term must contain a
factor of

yn++(w++ · a)4−n, 0 ≤ n ≤ 4. (4.14)

Another option exists for the helicity vector: w̃µ++ = [4|γµp1|3]/2m. We can work with wµ++

exclusively since the two are related by w̃µ++ = pµ1
m2 y++ − wµ++, and hence any contraction

with w̃µ++ is already accounted for in terms of contractions with wµ++.
At a fixed n the core factors for both conservative and dissipative contact terms are

identical to the opposite-helicity core factors, but with {y, wµ} → {y++, w
µ
++}. Contact

terms are then made by dressing the core factors with the factors in eq. (4.4). Now, however,
eq. (3.18) tells us that we must not use the third of these dressing factors for xn ≤ 2.

All-in-all, carrying out the counting as above shows that there is the same number of
conservative and dissipative contact terms at each fixed n in both the general and crossing-
symmetric sectors as for opposite-helicity scattering; see tables 1 to 4. The forms of the
contact terms are slightly different, however, because of the differing Gram determinants
between both helicity configuations.

4.3.1 Conservative contact terms

The most-general, conservative, contact-term deformation of the same-helicity amplitude
relevant at O(G2a2k/b2k+1) is

C++
even =

∞∑
k=0


k−2∑
i=0

2k−4−2i∑
j=0

[(t14 − t13)2a2]i(q3 · a)j(q4 · a)2k−4−2i−j

×
[
y4

++a
4

i∑
l=0

a++,k
i,l,j (s34a

2)l[(t14 − t13)2a2]−l

+ (w++ · a)2
[
y2

++a
2c++,k
i,j + (w++ · a)2e++,k

i,j

] ]

+ (t14 − t13)y++a
2(w++ · a)

k−3∑
i=0

2k−5−2i∑
j=0

[(t14 − t13)2a2]i(q3 · a)j(q4 · a)2k−5−2i−j

×
[
y2

++a
2

i∑
l=0

b++,k
i,l,j (s34a

2)l[(t14 − t13)2a2]−l + d++,k
i,j (w++ · a)2

]}
. (4.15)
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At O(G2a2k+1/b2k+2) the set is

C++
odd =

∞∑
k=0


k−2∑
i=0

2k−3−2i∑
j=0

[(t14 − t13)2a2]i(q3 · a)j(q4 · a)2k−3−2i−j

×
[
y4

++a
4

i∑
l=0

ã++,k
i,l,j (s34a

2)l[(t14 − t13)2a2]−l

+ (w++ · a)2
[
y2

++a
2c̃++,k
i,j + (w++ · a)2ẽ++,k

i,j

] ]

+ (t14 − t13)y++a
2(w++ · a)

k−2∑
i=0

2k−4−2i∑
j=0

[(t14 − t13)2a2]i(q3 · a)j(q4 · a)2k−4−2i−j

×
[
y2

++a
2

i∑
l=0

b̃++,k
i,l,j (s34a

2)l[(t14 − t13)2a2]−l + d̃++,k
i,j (w++ · a)2

]}
. (4.16)

As above, contributions with a classical ~ scaling require

{a++,k
i,l,j , ã++,k

i,l,j , b++,k
i,l,j , b̃++,k

i,l,j } ∝ m
−4−2(i−l),

{c++,k
i,j , c̃++,k

i,j , d++,k
i,j , d̃++,k

i,j } ∝ m−2−2i,

{e++,k
i,j , ẽ++,k

i,j } ∝ m−2i.

Unlike in the conservative sector of the opposite-helicity amplitude, here all parameters
must scale with some power of the mass unless i = 0.

4.3.2 Dissipative contact terms

The most-general set of dissipative contact terms relevant at O(G2a2k/b2k+1) is

D++
even = |a|

∞∑
k=0

(t14 − t13)
k−3∑
i=0

2k−2i−5∑
j=0

[(t14 − t13)2a2]i(q3 · a)j(q4 · a)2k−2i−5−j

×
[
y4

++a
4

i∑
l=0

f++,k
i,l,j (s34a

2)l[(t14 − t13)2a2]−l

+ (w++ · a)2
[
p++,k
i,l,j y2

++a
2 + r++,k

i,l,j (w++ · a)2
] ]

+ y++(w++ · a)
k−2∑
i=0

2k−2i−4∑
j=0

[(t14 − t13)2a2]i(q3 · a)j(q4 · a)2k−2i−4−j

×
[
y2

++a
2

i∑
l=0

g++,k
i,l,j (s34a

2)l[(t14 − t13)2a2]−l + q++,k
i,l,j (w++ · a)2

]}
, (4.17)
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general crossing-symmetric
n = 4 1

6k(k − 1)(2k − 1) 1
6k(k2 − 1)

n = 3 1
3k(k − 1)(k − 2) 1

6k(k − 1)(k − 2)
n = 2 (k − 1)2 1

2k(k − 1)
n = 1 (k − 1)(k − 2) 1

2(k − 1)(k − 2)
n = 0 (k − 1)2 1

2k(k − 1)
Total 1

6(k − 1)(4k2 + 13k − 24) 1
3(k − 1)(k2 + 4k − 3)

Table 1. The total number of independent O(a2k≥4) conservative contact term coefficients, and
the number left over after requiring crossing symmetry. Valid for all helicity configurations. The
number of crossing-symmetric contact terms at O(a4,6) agrees with the counting of ref. [55] for the
opposite-helicity amplitude.

while at O(G2a2k+1/b2k+2) we find

D++
odd = |a|

∞∑
k=0

(t14 − t13)
k−2∑
i=0

2k−2i−4∑
j=0

[(t14 − t13)2a2]i(q3 · a)j(q4 · a)2k−2i−4−j

×
[
y4

++a
4

i∑
l=0

f̃++,k
i,l,j (s34a

2)l[(t14 − t13)2a2]−l

+ (w++ · a)2
[
p̃++,k
i,l,j y2

++a
2 + r̃++,k

i,l,j (w++ · a)2
] ]

+ y++(w++ · a)
k−2∑
i=0

2k−2i−3∑
j=0

[(t14 − t13)2a2]i(q3 · a)j(q4 · a)2k−2i−3−j

×
[
y2

++a
2

i∑
l=0

g̃++,k
i,l,j (s34a

2)l[(t14 − t13)2a2]−l + q̃++,k
i,l,j (w++ · a)2

]}
. (4.18)

In this final set of contact terms, the coefficients contributing at O(~0) have the scalings

{f++,k
i,l,j , f̃++,k

i,l,j } ∝ m
−5−2(i−l),

{g−+,k
i,l,j , g̃−+,k

i,l,j } ∝ m
−3−2(i−l),

{p−+,k
i,j , p̃−+,k

i,j } ∝ m−3−2i,

{q−+,k
i,j , q̃−+,k

i,j , r−+,k
i,j , r̃−+,k

i,j } ∝ m−1−2i.

Crossing symmetry is satisfied if

M−−4 = M̄++
4 |a→−a, M++

4 =M++
4 |q3↔q4 . (4.19)

The first of these determines the amplitude with two negative-helicity gravitons, while the
second constrains many of the free coefficients. Tables 1 to 4 show the number of remaining
free coefficients after requiring crossing symmetry.
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general crossing-symmetric
n = 4 1

3k(k2 − 1) 1
6k(k2 − 1)

n = 3 1
6k(k − 1)(2k − 1) 1

6k(k2 − 1)
n = 2 k(k − 1) 1

2k(k − 1)
n = 1 (k − 1)2 1

2k(k − 1)
n = 0 k(k − 1) 1

2k(k − 1)
Total 1

6(k − 1)(4k2 + 19k − 6) 1
6k(k − 1)(2k + 11)

Table 2. The total number of independent O(a2k+1≥5) conservative contact term coefficients, and
the number left over after requiring crossing symmetry. Valid for all helicity configurations. The
number of crossing-symmetric contact terms at O(a5) agrees with the counting of ref. [55] for the
opposite-helicity amplitude.

general crossing-symmetric
n = 4 1

3k(k − 1)(k − 2) 1
6k(k − 1)(k − 2)

n = 3 1
6k(k − 1)(2k − 1) 1

6k(k2 − 1)
n = 2 (k − 1)(k − 2) 1

2(k − 1)(k − 2)
n = 1 (k − 1)2 1

2k(k − 1)
n = 0 (k − 1)(k − 2) 1

2(k − 1)(k − 2)
Total 1

6(k − 1)(4k2 + 13k − 30) 1
3(k − 1)(k2 + 4k − 6)

Table 3. The total number of independent O(a2k≥4) dissipative contact term coefficients, and the
number left over after requiring crossing symmetry. Valid for all helicity configurations. Excluding
the terms emerging from the n = 1, 3 core factors — as explained in the text — we find agreement
with the number of crossing-symmetric contact terms at O(a4) for the opposite-helicity amplitude
in ref. [55]. At O(a6), ref. [55] has some terms with the n = 1, 3 core factor. Our set contains all
their contact terms.

general crossing-symmetric
n = 4 1

6k(k − 1)(2k − 1) 1
6k(k2 − 1)

n = 3 1
3k(k2 − 1) 1

6k(k2 − 1)
n = 2 (k − 1)2 1

2k(k − 1)
n = 1 k(k − 1) 1

2k(k − 1)
n = 0 (k − 1)2 1

2k(k − 1)
Total 1

6(k − 1)(4k2 + 19k − 12) 1
6k(k − 1)(2k + 11)

Table 4. The total number of independent O(a2k+1≥5) dissipative contact term coefficients, and the
number left over after requiring crossing symmetry. Valid for all helicity configurations. Excluding
the terms emerging from the n = 1, 3 core factors — as explained in the text — we find agreement
with the number of crossing-symmetric contact terms at O(a5) for the opposite-helicity amplitude
in ref. [55].
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5 Summary & outlook

We have shed light on subtleties that must be accounted for when recursively computing
classical amplitudes with virtual massive spinning particles. Specifically, BCFW recur-
sion can produce intermediate expressions which are superclassical at leading order in ~,
thus demanding that one keeps track of subleading-in-~ effects in order to completely con-
struct classical amplitudes. Recursively constructing the classical gravitational Compton
amplitude for all helicity configurations has illustrated this necessity.

In the opposite-helicity case, we combined BCFW recursion with the technique pre-
sented in ref. [26] for removing unphysical poles to write a local classical amplitude for a
general spinning compact object to all orders in its classical spin vector. When gravitons
of the same helicity were scattered, we were able to write an amplitude with no unphysical
poles up to fifth order in spin. Up to third order in spin, both helicity configurations agree
with the results of the classical computation of ref. [68]. At fourth order, our results are in
agreement with the amplitude derived from the action of ref. [27].

To complete the Compton amplitude, we also counted and explicitly wrote down all
independent contact terms that could potentially contribute to black-hole scattering at
2PM, including both conservative and dissipative effects. We counted the contact terms
both with and without the crossing symmetry imposed in ref. [55], and found agreement
with their counting in the conservative sector. In the dissipative sector, our space of contact
terms contains, and is larger than, the space of contact terms needed in ref. [55] to match
to solutions of the Teukolsky equation.

Our analysis has uncovered two differences between the Compton amplitude pertaining
to Kerr black holes compared with general compact objects. First, the former can be
constructed recursively using only leading-in-~ information at all steps in the computation,
since all O(~ × 1/~) effects cancel within each factorization channel. Second, and more
similar to the minimal coupling condition of ref. [62], the same-helicity amplitude exhibited
the best massless-limit behavior above linear order in spin in the black-hole case. Above
cubic order in spin, the general-object amplitude was divergent as m → 0 at the spins
considered, and the black-hole limit was required to quell this divergence. This makes
clear the influence of minimal coupling at three points on higher-point amplitudes, and
indicates a potential extension of the notion of minimal coupling to higher multiplicities.
In particular, the form of the three-point amplitude in eqs. (2.10) and (2.13) hides the
significance of the coefficient values CSj = 1, which is elucidated again by considering
the higher-point amplitude. It is conceivable, then, that considering the three-graviton-
emission amplitude will suggest values for the contact-term coefficients in section 4 that
improve the massless limit of the higher-point amplitude.

Such a method for assigning values to contact-term coefficients is not without its diffi-
culties, however, primarily of which is the likely occurrence of non-localities in higher-point
amplitudes at high spin, which must be removed. Second of all, the non-commutativity of
the classical limit with BCFW recursion means the construction of higher-point amplitudes
in terms of classical quantities becomes cumbersome, necessitating tracking ever-more sub-
leading parts of lower-point amplitudes. Finally, any effective (i.e. amplitudes) determina-
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tion of contact-term coefficients can only be interpreted as describing Kerr black holes inso-
far as it matches general-relativistic computations, such as those in refs. [55, 68–70, 78, 81].

Nevertheless, it is crucial to identify as many differences as possible between black-hole
and general-object amplitudes in the pursuit of an amplitudes-based understanding of Kerr
black holes.
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A Spin vector conventions and properties

The ring radius aµ acting on a general spin representation is related to the spin tensor Sµν

in that representation by identifying it with the Pauli-Lubanski pseudovector:

aµ = − 1
2mεµναβvνSαβ . (A.1)

This relation can be inverted to express the spin tensor in terms of the ring radius, since
vµS

µν = 0:

Sµν = −mεµναβvαaβ . (A.2)

Products of spin vectors in the spin-s representation are related to products in the spin-1/2
representation through

(aµ1
s . . . aµns )α1...α2s

β1...β2s = (2s)!
(2s− n)! (a

µ1
1/2)α1

β1 . . . (aµn1/2)αn
βnδαn+1...α2s

βn+1...β2s + . . . ,

(A.3)

where the + . . . represents terms which are subleading in ~. Every term at next-to-leading-
order in this conversion is antisymmetric in exactly two Lorentz indices. So, if the tensor
contracted into this relation is totally symmetric, the subleading terms are suppressed by
one more power of ~.
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It can be much simpler to work in the spin-1/2 representation since only one ring
radius vector in this representation can appear between a set of spinors. In the spin-1/2
representation, the ring radius acts on irreps of SL(2,C)× SL(2,C) as

(aµ1/2)αβ = 1
4m

[
(σµ)αα̇ v

α̇β − vαα̇ (σ̄µ)α̇β
]
, (A.4)

(aµ1/2)α̇
β̇

= − 1
4m

[
(σ̄µ)α̇α vαβ̇ − v

α̇α (σµ)αβ̇
]
, (A.5)

which we have used to derive eq. (3.7) and its analog for same-helicity scattering. These
relations can be extended to higher spin representations and powers by first converting
the spin vectors in each little group space (i.e. on each side of the cut) to the spin-1/2
representation, then projecting the product of spin-1/2 spin vectors onto a symmetric
product of spin vectors in the appropriate spin representation. For a general polarization
sum we find, for example,

〈v̄vI〉�(2s−n)〈v̄|aµ1
s . . . aµns |vI〉�n[vIv]�(2s−k)[vI |aν1

s . . . aνks |v]�k (A.6)

= 〈v̄|2s{aµ1
s , . . . , a

µn
s , aν1

s , . . . , a
νk
s }|v〉2s −

ink

2m2 〈v̄|
2s{Sµ1ν1

s , aµ2
s , . . . a

µn
s , aν2

s , . . . , a
νk
s }|v〉2s,

up to sub-subleading corrections in ~. We have assumed that the µi are all contracted with
one four-vector and the νi with another. For fixed n, k, the first term always appears for
sufficiently large total spin s. The numerator of the second term is determined combinato-
rially, simply by writing out the little group symmetrizations explicitly. For s = 1/2 and
n = k = 1, we recover eq. (3.7).

B Covariantization of classical results

The authors of ref. [68] computed the amplitude for the scattering of a gravitational plane
wave off of a general compact object up to cubic order in the object’s spin vector. They
expressed their amplitudes for polar scattering using the four-vectors

kµ, lµ,

wµS = 1
2ω cos2(θ/2)

[
ω(kµ + lµ)− iεµναβkν lαvβ

]
, (B.1)

wµO = − 1
2ω sin2(θ/2)

[
ω(kµ − lµ) + iεµναβkν lαvβ

]
,

where the scattering angle of the plane wave is denoted by θ. To match toM++ andM+−
in ref. [68] we must take kµ = −qµ3 and lµ = qµ4 , which leads to

t14 − t13
2

wµ

y
= −w̄µS −

(t14 − t13)s34
4(t13t14 −m2s34)mv

µ +O(~2), (B.2a)

t14 − t13
2

wµ++
y++

= wµO + t14 − t13
4

vµ

m
+O(~2). (B.2b)
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The spin-supplementary condition v · a = 0 makes it so that w̄µS and wµO encode the non-
vanishing parts of the contractions of wµ and wµ++ with aµ. The contractions of the spin
with our helicity vectors wµ, w̄µ, and wµ++ are related by

t14 − t13
2

w · a
y

= 1
m2s34 − t13t14

[
t13t14(q4 · a)−m2s34

t14 − t13
2

w++ · a
y++

]
, (B.3a)

t14 − t13
2

w̄ · a
ȳ

= 1
m2s34 − t13t14

[
−t13t14(q3 · a) +m2s34

t14 − t13
2

w++ · a
y++

]
, (B.3b)

which were useful in the restoration of locality to the same-helicity amplitude.
For the purposes of comparison with the results in section 3, it is useful to covariantize

the amplitudes of ref. [68]. Accounting for the helicity weights of the amplitude, it is
possible to do so uniquely in this case. Their helicity-preserving amplitude is covariantized
by the expansion of eq. (3.9) up to third order in spin. In the helicity-reversing case, their
amplitude is covariantized as20

M+− =
y4

++
t13t14s34

{
exp [(q3 + q4) · a] (B.4)

+ CS2 − 1
2!

[
[(q3 + q4) · a]2 − s34

2

[
a2 + 4m2

(
w++ · a
y++

)2
]]

+ CS2 − 1
2!

s34
4

[
(q3 + q4) · a + 3(t14 − t13)w++ · a

y++

] [
a2 + 4m2

(
w++ · a
y++

)2
]

+ (CS2 − 1)2 s34
4
t14 − t13

2
w++ · a
y++

[
a2 + 4m2

(
w++ · a
y++

)2
]

+ CS3 − 1
3!

[
[(q3 + q4) · a]3 − 3s34

4

[
(q3 + q4) · a + (t14 − t13)w++ · a

y++

]

×
[
a2 + 4m2

(
w++ · a
y++

)2
] ]}

,

where we’ve used eq. (3.18) to write the amplitude in a manifestly local form.

C Example of removal of unphysical poles in same-helicity amplitude

We illustrate the removal of poles in yȳ = t13t14 − m2s34 from the crossing-symmetric,
same-helicity Compton amplitude in eq. (3.16) at quadratic order in spin. The procedure
is very similar at higher spins, only with more steps in the iteration.

First, the problematic part of the same-helicity amplitude at quadratic order in spin is

y4
++(CS2 − 1)

(m2s34 − t13t14)2

{
m4s34

t13t14

[
−
(
t14 − t13

2
w++ · a
y++

)2
+ [(q3 + q4) · a]

(
t14 − t13

2
w++ · a
y++

)]

+m4s2
34[(q3 ·a)2+(q4 ·a)2]+t213t

2
14[(q3+q4)·a]2−m2s34t13t14[3(q3 ·a)2+3(q4 ·a)2+2(q3 ·a)(q4 ·a)]

2s34t13t14

}
,

(C.1)
20We have had to switch the sign on the exponential in eq. (5.9) of ref. [68] in order to obtain full

agreement with our results above.
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where we have already applied eq. (B.3). The first step is to add non-local contact terms
which convert the double pole in m2s34 − t13t14 into a simple pole. A semi-systematic
way of identifying an appropriate contact term is to swap the factors m2s34 ↔ t13t14 in
the numerator of each term individually such that the result has no poles on physical
factorization channels. Doing so above leads to the boundary term

B′|a2 =−
m2y4

++(CS2 − 1)
(m2s34 − t13t14)2

[
−
(
t14 − t13

2
w++ · a
y++

)2

+[(q3 + q4) · a]
(
t14 − t13

2
w++ · a
y++

)
− (q3 · a)2 + (q4 · a)2

2

]
, (C.2)

which can be seen to have no poles on physical factorization channels, and can thus be
freely added to the amplitude without affecting its residues on physical poles. The result
of adding the two is

y4
++(CS2 − 1)
m2s34 − t13t14

{
m2

t13t14

[
−
(
t14 − t13

2
w++ · a
y++

)2
+ [(q3 + q4) · a]

(
t14 − t13

2
w++ · a
y++

)]

+m2s34[(q3 · a)2 + (q4 · a)2]− t13t14[(q3 + q4) · a]2

2s34t13t14

}
. (C.3)

The double pole has thus been alleviated to a simple pole.
A common feature of the analysis at the spins considered is that, once the non-locality

has been reduced to a simple pole, there are no longer enough Mandelstam variables in
the numerator to identify a suitable boundary contribution in the way described above.
We got around this by employing the Gram determinant in eq. (3.18) to eliminate all
powers of (q3 · a)i(q4 · a)j in the amplitude, which has generally allowed us to construct
a final boundary contribution. In this simple case, however, we do not need this step.
Employing the Gram determinant to remove instead the term linear in w++ ·a reveals that
the remaining unphysical pole is spurious, and lands us on the result in eq. (B.4).
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