
Spin-Glass Behaviour in Ordered
Solids

Erik Karpelin

Supervisor: Anders Bergman
Subject reader: Oscar Gr̊anäs

Bachelors thesis, 15hp - 1FA599
Uppsala University

July 12, 2023



Abstract

The spin-glass is a peculiar magnetic phase, exhibiting non-trivial
dynamics at low temperatures, characterized by an continuously evolv-
ing state without long-range order. The behavior requires some de-
gree of disorder to occur, often in the way of impurities or random ex-
change energy between the spins. However, recent research have found
structurally ordered systems exhibiting glassy behaviour. This project
aims to further investigate these self-induced spin-glasses. The report
provides a short introduction to atomistic spin-dynamics and applies
the theory to study self-induced spin-glasses in hexagonal systems with
the help of simulations. A variation approach was applied by running
simulation using a range of spin-exchange couplings in the Heisenberg
Hamiltonian. These systems were then studied by the means of their
autocorrelation function and compared to known glassy systems from
the Edwards-Andersson model. The resulting behaviour is presented
for three different hexagonal structures and glassy behaviour is indi-
cated in stacked hexagonal systems. It is however argued that the au-
tocorrelation function is not sufficient to classify these systems, instead
further observables are needed. Nevertheless, the method of studying
self-induced spin-glasses by varying couplings in the Heisenberg Hamil-
tonian is promising. As even with the few spin interactions used in this
report we observe the slow relaxation time associated with spin-glasses.
Given some extra considerations when choosing the exchange used for
the simulation, a self-induced glassy state should be able to be recreated
using the method described in this report.

I



Sammanfattning

Spinn-glas är en speciell magnetisk fas som uppvisar icke trivial dy-
namik vid l̊aga temperaturer, en kontinuerlig utveckling samt en av-
saknad av ordning p̊a stora skalor. Detta beteende kräver en viss grad
av oordning för att uppst̊a, ofta i form av föroreningar i materialet el-
ler slumpmässiga interaktioner mellan olika spinn. Forskning har dock
visat att även strukturellt ordnade system kan uppvisa spinn-glas be-
teende. Därmed är m̊alet med detta projekt att fortsätta undersöka
dessa själv-inducerade spinn-glas. Rapporten ger en kort introduktion
till atomistisk spinn-dynamik och applicerar denna teori för att studera
själv-inducerade spin-glas i hexagonala system. I projektet simulera-
des system med varierande spin-interaktioner i Heisenberg Hamiltonia-
nen. Dynamiken undersöktes med hjälp av en korrelationsfunktion som
jämfördes mot kända spinn-glas fr̊an Edwards-Andersson modellen. Re-
sultat presenteras för tre hexagonala strukturer och spinn-glas-liknande
beteende observeras i de tre-dimensionella systemen. Det kan dock argu-
menteras att korrelationsfunktionen inte är tillräcklig för att klassificera
dessa system och att mer kvantitativa m̊att krävs. Trots detta anses me-
toden, att variera spinn-interaktioner i Heisenberg Hamiltonianen, vara
lovande. Detta eftersom den l̊anga avslappningstiden associerad med
spinn-glas p̊aträffades, trots de f̊a interaktioner som användes i den-
na rapport. Ett själv-inducerat spin-glass borde därmed kunna skapas
med de metoder som presenteras i rapporten, givet en mer systematisk
metod vid val av interaktionsparametrar för simuleringen.
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1 Introduction

1.1 The spin-glass phase

A spin-glass (SG) is a most curious magnetic phase of matter, exhibiting prop-
erties not commonly found in solid materials. It can be defined as a system
of spin, or atomistic magnetic moments, which undergoes a phase transition
to a frozen, disordered state at low temperatures [1, Ch. 1]. Apart from this
phase transition, the system also exhibits two other qualities of interest; a lack
of long range magnetic order and a property known as aging [2]. The former
provides a clue to the origin of the glass name of the state, borrowing the word
from silica glass which possess the same lack of long range order, however only
in the structural sense. The latter characteristic is more indigenous to SGs
and refers to the long relaxation time of the system together with a continuous
reorganization of the magnetic structure [3]. This property is partly due to the
large degeneracy of ground-states for the spin-glass phase [4]. To create such a
system one needs to fulfill a few criteria. Some sort of competing interaction,
known as frustration, needs to be present, and a certain degree of random
behaviour in the interactions of the spins [1, Ch. 1]. These criteria can be
fulfilled experimentally by diluting noble metals with transition metal impu-
rities [1, Ch. 1], creating both structural and magnetic disorder, or through
simple mathematical models. Spin-glasses are therefore good candidates for
numerical studies. As an example, the Edwards-Andersson (EA) model [5] uses
normally distributed random variables in the interaction between the spins,
creating the necessary conditions for a SG to occur. A illustration of such a
system, together with a ferromagnetic system, can be seen in Figure 1.

Figure 1: Schematic depiction of aligned spin in a ferromagnetic state (left) and a
spin glass state (right). Both systems are considered to be at zero temperature.
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1.2 Motivation and report structure

1.2 Motivation and report structure

Since the discovery of the SG phase in 1972 [6] and the initial development of
spin-glass theory in 1975 [7] the system has undergone a plethora of thorough
investigations. This is partly due to it being an disordered system which is
deceptively easy to model, as with the EA-model mentioned previously [3].
Furthermore, they have been of interest because of newly discovered applica-
tions, which provides a more ethically justifiable reason to study them. Some
of these applications include error correcting codes [8] and the hot topic of
artificial intelligence, where the theory of spin-glasses has been used to study
the dynamics of deep neural networks [9]. Further studies have also shown
that elemental neodymium can exhibit what is known as self-induced spin-
glass behaviour at low temperatures [2]. These systems were studied with the
help of simulations which uses atomistic spin dynamics together with exchange
calculated from density functional theory. This implies that spin-glasses can
be found in systems normally possessing long range magnetic and structural
order, contradicting one defining characteristic of the SGs. The question is
then raised, if other self induced systems can be found. This is the inquiry
this report will try to answer.

The aim is henceforth to find these self-induced glassy states by varying
exchange between atomic, magnetic moments and studying a time dependent
correlation function, which relates the spin at a site with itself after a certain
waiting time [10, Ch. 7]. This will provide further insight into how and when
self-induced spin-glass behaviour occurs. The investigation will be conducted
on three different, hexagonal lattice structures and simulated using the spin-
dynamics software UppASD [11]. The different exchange couplings will be
chosen to lie within ranges normally observed in ordered solids.

The report is structured as follows. As spin-glasses continuously evolve
they constitute a dynamical system. We therefore start by covering some in-
troductory atomistic spin dynamics together with a background in density
functional theory which is needed when studying systems of larger scales.
Thereafter, we introduce the system structure, the magnetic Hamiltonian of
our system and also an overview of crystal lattice structure to get some intu-
ition of how the spin interact. With the theory covered, we move forward with
the methodology which covers specifics of the procedure such as simulation
times, temperatures and variational procedures. Lastly, we present the main
finding of the investigation, analyze the results and discuss these. We then
finish of with a conclusion and outlook for further studies.
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2 Theory

This theoretical overview will cover the main aspects one has to consider when
studying spin dynamics and magnetic properties from an atomistic viewpoint.
We begin by covering the problem of multiple-particle systems in quantum
mechanics. This naturally leads into the backbone of atomistic studies, density
functional theory (DFT). Although the subject of DFT is well beyond the
scope of this report we will aim to present the necessary material to gain
some intuition here. From density functional theory we present how one could
derive the main equation of study for atomistic spin dynamics, the stochastic
Landau-Lifshitz-Gilbert (SLLG) equation [10, Ch. 4]. Lastly, we cover some
numerical methods for solving the SLLG, we will however start in the world
of quantum mechanics.

2.1 Many-particle systems and DFT

In fundamental quantum mechanics the main hurdle to understand a sys-
tem is to find its associated wave function |Ψ⟩. This is done by solving the
Schrödinger equation

iℏ
∂

∂t
|Ψ⟩ = H |Ψ⟩ ,

which is aN dimensional, second order, partial differential equation whereN is
the degree of freedom for the system. Suppose we could solve this equation, we
then require a Hamiltonian which for a system of many particles, interacting
only via Coulomb interaction, have the form

H =− ℏ2

2

∑
I

∇2
I

MI

+
1

2

∑
I ̸=J

1

4πϵ0

ZIZJe
2

|RI −RJ|
− ℏ2

2m

∑
i

∇i

+
1

2

∑
i ̸=j

1

4πϵ0

e2

|ri − rj|
−
∑
i,I

1

4πϵ0

ZIe
2

|ri −RI|
.

Here MI is the mass of atmoic core I, ZI the mass number, m the electron
mass and finally RI and ri the nucleus and electron coordinates. This can
be simplified using Hartree atomic units, e = m = ℏ = 4πϵ = 1, and the
Born-Oppenheimer approximation. The latter assumes that the cores of the
particles do not move much relative to the electrons, we then get a simplified
version

Ĥ = −1

2

∑
i

∇2
i +

1

2

∑
i ̸=j

1

|ri − rj|
−

∑
i,I

ZI

|ri −RI |
.

The only piece now missing is the wave function which can be provided us-
ing, for example, Hartree-Fock theory. This approach is however quite time
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2.2 The Stochastic Landau-Lifshitz-Gilbert Equation

consuming, see [10, Ch. 1]. For this reason we can instead study density func-
tional theory. In the DFT regime we shift our focus from the wave function
to a more physical quantity of our system, the electron and charge density
n(r). The theory is based on a couple of theorems [10, Ch. 1] which in the
Hohenberg-Kohn formulation take the form:

Theorem 1: The total energy of system is a unique functional of the ground
state electron density.

Theorem 2: The exact ground state density minimizes E[n(r)] in the equa-
tion:

E[n(r)] = T [n(r)] +W [n(r)] + Vext[n(r)].

In short, these two theorems state that our charge density n(r) uniquely de-
scribes our system and all information otherwise provided by the Hamiltonian
and our wave-function Ψ is contained within it. The DFT method also comes
with some computational advantages, as discussed in [12], which is of impor-
tance when investigating systems of many particles (N > 10), as is the case
in this report. The DFT method is a powerful tool with wide application in
physics and chemistry to the point that it has become the standard for ordered
solids.

2.2 The Stochastic Landau-Lifshitz-Gilbert Equation

The governing equation of spin-dynamics is the stochastic Landau-Lifshitz-
Gilbert Equation given by:

dmi

dt
= −γLmi × [Bi +Bfl

i ]− γL
α

mi

mi × {mi × [Bi +Bfl
i ]} (2.1)

Here, γL is the renormalized gyromagnetic ratio and α being the Gilbert damp-
ing constant [10, Ch. 4]. Furthermore, mi is the magnetic-spin moment at site
i and Bi is the effective magnetic field with Bfl

i being a stochastic fluctuation
field due to thermal properties of the material. The magnetic field can easily
be obtained using the expression

Bi =
∂H
∂mi

,

with H being the Hamiltonian of the system. The two terms constituting
Eq. (2.1) have an intuitive physical meaning; the first describes the precessional
motion of the spin and the second term convey the motion due to damping
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2.2 The Stochastic Landau-Lifshitz-Gilbert Equation

Figure 2: Figure depicting the motion described by the Landau-Lifshitz-Gilbert
equation. As before, m denotes the atomic magnetic moment, the dashed vector
represent the damping motion and the smaller bold arrow describes the precessional
motion and B is an effective magnetic field. Figure used with permission from Dr.
Danny Thonig.

[10, Ch. 4]. The resulting motion is well explained by Figure 2. The following
section, will cover the origin of these two terms. The discussion will initially be
restricted to the non-stochastic version of the equation, the Landau-Lifshitz-
Gilbert equation

dmi

dt
= −γLmi ×Bi − γL

α

mi

mi × {mi ×Bi}, (2.2)

using the same notation as for the SLLG. The stochastic part of Eq. (2.1),
Bfl

i , can later be added back as a perturbation to the magnetic field. It is
also important to emphasize that this is not a rigorous derivation, instead it
serves to provide some intuition to the origin of Eq. (2.1). Let us start with
discussing the precessional term.

2.2.1 Precessional motion

We study the Hamiltonian

HKS
αβ = −1

2
∇2δαβ + V eff

αβ (r, t) +

{
1

2c
σ̂ ·Beff (r, t)

}
αβ

. (2.3)

This operator is closely related to the Kohn-Sham Hamiltonian [10, Ch. 4],
the only difference being the omitted spin-orbit coupling term. The subscript
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2.2 The Stochastic Landau-Lifshitz-Gilbert Equation

α and β represent spin up and spin down, respectively, V eff is an effective po-
tential, and Beff is an effective magnetic field as described previously. Lastly,
σ̂ is a vector of the Pauli-matrices σ̂ = (σx, σy, σz) with

σx =
1

2

(
0 1
1 0

)
, σy =

1

2

(
0 −i
i 0

)
, σz =

1

2

(
1 0
0 −1

)
.

It may be shown that, the eigenstates of Eq. (2.3) is the charge and spin
densities n(r, t) and s(r, t), respectively [10, Ch. 4]. These physical quantities
must be conserved and the corresponding continuity equations will then be

∂n(r, t)

∂t
+∇Jn = 0

∂s(r, t)

∂t
+∇Js + γs×Beff = 0,

with∇J being the divergence of the corresponding current due to the changing
charge or spin, for further details see [10, p. 55] . If we omit the current term
∇Js in the last equation and integrate the spin over a small atomic volume
we can make the substitution s(r, t) −→ m(r, t) with m being the magnetic
moment [10, Ch. 4]. We then have

∂m(r, t)

∂t
= −γm×Beff , (2.4)

which gives the precessional part of Eq. (2.2). Although omitting the spin-
current might seem arbitrary, it is motivated by the separation of time-scales
of the electron motion and the spins [10, Ch. 4].

2.2.2 Damping motion

Although, the origin of the latter term is intuitively attributed to damping, the
derivation is more ambiguous. We will base our discussion on [13] which takes
a more classical approach than otherwise discussed in this report. Through
Lagrangian mechanics one can show that the Euler-Lagrange equation, in func-
tional form, for a system undergoing damped motion will be

d

dt

δL[m, ṁ]

δṁ
− δL[m, ṁ]

δm
+

δR[ṁ]

δṁ
= 0, (2.5)

with R being the dissipative force causing the damping and L = T −U being
the Lagrangian of the system. T here denotes the kinetic energy and U the
potential, as per usual. As spin is a quantum mechanical property, we would
now like to find corresponding quantum mechanical operators to these energies.
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2.2 The Stochastic Landau-Lifshitz-Gilbert Equation

There is an issue though; although we can represent the potential U through
a quantum operator, the same can not be said about the kinetic energy. As
stated in [13], it seems impossible to find a corresponding quantum operator
to the classical rotational kinetic energy of the spin. It can however be argued
that for zero damping, Eq. (2.5) should correspond to the precessional term
in Eq. (2.4). From this one can deduce that the damping term will have the
form

R = − α

m
m× ∂m

∂t
,

which is equivalent to the damping term given in Eq. (2.2). It should be
noted here that R in the above expression is not equal to the damping term
previously stated in Eq. (2.5). It is however more convenient to use the same
notation.

2.2.3 Numerical solutions

0.0 0.5 1.0 1.5 2.0
t

0.0

0.2

0.4

0.6

0.8

1.0

y(
t)

True solution y(t) = e t

Euler method

Figure 3: Euler method with a large step
size for Eq. (2.6).

We now shift our focus to solving
Eq. (2.1). The equation is a stochas-
tic differential equation (SDE) due to
the temperature dependent magnetic
field Bfl

i and in principle requires dif-
ferent treatment from that of an or-
dinary differential equation (ODE),
such as Eq. (2.2). The analytical pro-
cedure will not be covered in this re-
port, we will however present the nu-
merical solution in short.

The basis for solving a SDE nu-
merically is equal to that of the ODE,
only with a stochastic extension. To
exemplify this we will discuss the
well-known Euler method. We start by posing a simple problem. Say we
would like to solve the following first order ODE

dy

dt
= −αy(t) = f(t, y). (2.6)

This can then be done using the Euler method as described in [14]. The
iterative, numerical solution is then given by

yi+1 = yi + hf(ti, yi),

with h being the step size in t. Given some initial conditions, y(0) = y0, we
can approximate the value of the solution for the following step, as in Figure
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3. The same procedure can be extended to stochastic differential equations.
We study the SDE

∂Y

∂t
= f({Y }, t) +

n∑
j

gj({Y }, t)Γj(t).

The first term is attributed to the deterministic drift, in the same way as
f(t, y) in Eq. (2.6), and the latter term is due to diffusion and is stochastic.
The analog to the Euler method presented above, in the stochastic case [10,
Ch. 5], is given by

Yi+1 = Yi + hf({Y }, t) +
n∑
j

gj({Y }, t)dWj,

with dWj being a normally distributed increment of the Wiener process on the
interval h [15]. Numerically, this is almost identical to the ODE case and can
be easily implemented in code. Although the implementation is simple, the
error of the Euler method in particular, often exceeds its usefulness and other
numerical methods are preferred. One example of another procedure is the
geometric Depondt-Mertens method, which is briefly covered in [10, Ch. 7, p.
110] . The main improvement, compared to many other numerical methods,
is that the magnitude of the magnetic moments is conserved throughout the
calculation. Hence, a much greater stability is achieved together with a relax-
ation on the requirement on the step size h. Therefore, it is also the preferred
numerical method for this report.

3 System structure

3.1 The magnetic Hamiltonian

To accurately model magnetic properties in a given material, we need to
include interactions from several physical effects. A few examples are the
exchange interaction, antisymmetric exchange interaction and anisotropy in-
teractions. However, the former often suffices for studies of SGs [3] and is
therefore the main attraction for our studies. For further elaboration of other
contributions, see [10, Ch. 4].

Those who have studied statistical mechanics and solid state physics are
probably familiar with the Heisenberg Hamiltonian

HHE = −1

2

∑
i ̸=j

Jijmi ·mj. (3.1)
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3.1 The magnetic Hamiltonian

It is a simple, yet effective model for describing magnetic interactions in a
system [16, Ch. 8] and will be our model of choice in this report. To clarify
notation, we sum over all sites i and their neighbors j, the exchange energy is
governed by a constant Jij which determines the strength and sign of the con-
tribution. As the Hamiltonian is defined with a negative prefactor, a positive
Jij will lower the energy for parallel aligned spins and vice versa. Finally mi

and mj are magnetic moments at two different sites. Although this expression
will not be derived here, it is rather easy to justify by studying a two-electron
system. The two electron spins can choose to be in a few different configura-
tions described as; a singlet state, with anti-aligned spins and a triplet state,
with aligned spins; each with different corresponding energies. Now, imagine
our system is in its ground state, with lowest possible energy. As we cannot
lower the energy more, the flip of a spin will result in an excitation of our
system and a higher total energy. The energy difference between the ground
state and this excited state is related to Jij. This thought experiment can be
expanded onto a system of many particles giving us the full Hamiltonian in
Eq. (3.1). As the study of these exchange interactions are important to this
report we give a few examples of how Jij create different magnetic phases in
a material.

Ferromagnetic system: In Figure 1 we observed a completely aligned system
of spins which we called ferromagnetic. In this case, the exchange couplings
are all positive Jij > 0 which results in the totally aligned state having the
lowest possible energy.

Anti-Ferromagnetic system: In contrast to the ferromagnetic state, in the
antiferromagnetic state the spins want to align themselves anti-parallel. The
exchange will, in this case, be negative Jij < 0.

Paramagnetic system: Paramagnets are an example of a system with no
magnetic ordering. The explanation for the behaviour is either weak, or no,
interaction between spins, Jij ≈ 0, compared to the thermal fluctuations in
the material, resulting in a totally random spin configuration. Most chemical
compounds are found in their paramagnetic phase at room temperature.

Spin glass: Again, in Figure 1 we observed another completely disorganized
spin system. This system differs from the paramagnetic phase by having an
associated magnetic order parameter, together with dynamical properties such
as ageing and memory. In the case of Figure 1 the behaviour is due to random
exchange with the Edward-Anderson model.
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3.2 Crystal structure

It is also important to note that, even though the exchange parameters Jij
in this report will be chosen without considerations to any physical material,
they can be calculated with a foundation in DFT. The expression is given by

Jij =
Im

4π

∫ EF

−∞
Tr

{
[δi(E)Gα

ij(E)δj(E)Gβ
ij(E)]

}
dE,

where δi(E) is related to exchange splitting and Gσ
ij is a Greens function which

connects sites i, j with the spin direction σ = α, β. For further explanation
and derivations see [10, Ch. 2].

3.2 Crystal structure

For the discussion of different exchange parameters, it is important to intro-
duce some basic theory of crystal lattice structures. Let us start by introduc-
ing the concept of lattice vectors. For any three-dimensional, ordered lattice,
one can define a set of three translational vectors, here denoted as ai with
i = 1, 2, 3. These vectors are defined such that if one translates along any
of the three directions, the lattice structure will repeat itself. From these
translational vectors, one can also define a general lattice vector

R = n1a1 + n1a2 + n2a3,

with ni ∈ Z0. This vector can then reach any point in the lattice and may be
used together with the notion of a primitive unit cell, which is the smallest
repeating pattern of lattice points, to construct the whole lattice structure.
Therefore, ai is known as basis vectors for the lattice.

3.2.1 Hexagonal plane

Figure 4: Illustration of
a hexagonal lattice plane.

The simplest structure covered in this report
is the two dimensional, hexagonal lattice plane
(HEX). The basis vectors are given by

Bhex =
a

2

1 −a
2

0

0
√
3
2

0
0 0 0

 ,

with a being the lattice parameter of the ma-
terial. The primitive unit cell is a single lattice
point located at p1 = (0, 0, 0).
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3.2 Crystal structure

3.2.2 Hexagonal compact packing

Figure 5: Illustration of
hexagonal compact packing.
The middle layer in red
can intuitively be seen as a
shifted hexagonal layer.

An example of a tightly packed lattice config-
uration is hexagonal compact packing (HCP).
This structure consists of alternating hexago-
nal layers, see Figure 5, and the basis vectors
for the lattice is given by

Bhcp =
a

2

1 −a
2

0

0
√
3
2

0

0 0 2
√

2
3

 .

The primitive unit cell of the structure is given
by two particles with corresponding position
vectors p1 = (0, 0, 0), p2 = (1/3, 2/3, 1/2), in
the specified basis.

3.2.3 Double hexagonal compact packing

Figure 6: Illustration
of double hexagonal com-
pact packing.

The last system of interest is the DHCP structure.
As the composition is similar to that of HCP the
basis vectors are almost identical, only differing by
a doubling of the last basis vector to accommodate
the purple layer as seen in Figure 6. The basis
vectors are given by

Bdhcp =
a

2

1 −a
2

0

0
√
3
2

0

0 0 4
√

2
3


This is the most complicated structure that will
be covered in this report, needing four particles in
the primitive unit cell to construct the full lattice.
The position vectors of these particles are given by
p1 = (0, 0, 0), p2 = (1/3, 2/3, 1/4), p3 = (0, 0, 1/2)
and p4 = (−1/3,−2/3, 3/4).
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4 Spin-glasses and correlation functions

Although a short overview of spin-glasses has already been covered in the in-
troduction, some properties with regards to observation require further elab-
oration. As spin-glasses exhibit many interesting dynamical properties, such
as ageing, slow relaxation and memory, it is convenient to study these proper-
ties using some sort of time-dependant correlation function. The correlation
function of choice for this report is the autocorrelator given by

C(t+ tw, tw) = ⟨mi(tw + t) ·mi(t)⟩ (4.1)

where tw is the waiting time, mi is the magnetic moment at site i and the
brackets indicate a thermal average [10, Ch. 7]. In short, Eq. (4.1) provides
information about how a system of magnetic moments relaxes over time, due
to their dynamics, and also show how close to equilibrium the system is. For a
system in thermal equilibrium, the autocorrelation will be independent of the
waiting time tw [10, Ch. 7] and therefore

C(t+ tw, tw) = C(t).

Furthermore, Eq. (4.1) have some specific behaviour with regards to spin-
glasses. By letting the waiting time go to zero tw ≈ 0, the autocorrelation
takes the form of a sum of exponentials [17] and can be described as

C(t, 0) ≈ (1− A)e−t/τ1 + Ae−t/τ2 . (4.2)

Here τi describes the characteristic time scale for the evolution and the param-
eter A gives the crossing point between the two different time scales. Hence,
spin-glasses exhibit a separation of dynamics dependant on these timescales.
The different dynamics follow intuitively from the precessional and damping
motion of Eq. (2.1) and the crossover depends on the damping parameter α
[17]. Although Eq. (4.2) is not applicable for all waiting times, the property
of multiple dynamical timescales is always true for SGs.

If we now would increase tw we will eventually enter the ageing regime of
the system, characterized by an initial drop in C(t+tw, t) followed by a plateau
[17]. The location of this plateau is related to the spin-glass order parameter.
This quantity differentiates the spin-glass phase from other disordered states
such as paramagnetic phases [1, Ch. 2]. The order parameter will not be
discussed further, it is however given by

qEA = lim
t→∞

lim
tw→∞

lim
L→∞

C(t+ tw, tw),
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with L being the macroscopic size of the system. A historical note, the EA
subscript refers to the same Edwards and Andersson whom proposed the ran-
dom spin-interaction model mentioned earlier in the introduction and section
3.1 [1, Ch. 2].

Finally, the autocorrelation function found in Eq. (4.1) has been extensively
used in the study of spin-glasses [2, 17, 18]. It is therefore the most important
quantity to study for this report.

5 Methodology

5.1 Simulation configuration

The spin-dynamics software UppASD was used for all simulations, which em-
ploy a few hard coded input files to construct and solve for the dynamics of
the system, as with probing the correlation function in Eq. (4.1) [11]. Gener-
ating these files in an efficient manor then becomes the main goal to effectively
make simulations using a varying range of parameters. Hence, a script was
written in Python to create all necessary files for a simulation and sweep Jij
over a given range with a specified step size. The full code can be found in
the Appendix, see section B, and below is a pseudo-code representation.

1 Given system structre , temperature , initial moments:

2 generate: inpsd.dat , posfile , momfile

3

4 for i in (range of J_ij):

5 generate jfile

6 run simulation

7 save output

In all cases only one coupling was varied at a time. The reasoning behind
this was purely computational as the number of possible configurations for k
number of couplings and R number of parameter values goes as N = Rk. As
an example, say we want to vary three different couplings in the range [−2, 2]
with a step size of h = 0.1. Then the total number of simulations N would be

N =

(
| − 2− 2|

0.1

)3

= 403 = 64000,

which is unreasonable for the scope of this project.
The specific systems of study are the crystal structures HEX, HCP and

DHCP as introduced previously. All systems start from a ferromagnetic state,
with aligned magnetic moments in the x-direction, a temperature of 1 K and
with a damping factor α = 0.5. In all cases, unless otherwise stated, the time
step for the simulation was set to dt = 10−16(s) and 5·105 time steps were made

13



5.2 System configurations

corresponding to a total simulation time of 50 (ps). Then, the python code is
run to set up the system, give it a name, and create the necessary input files
using the specific basis vectors in Eqs. (3.2.1 ), (3.2.2) and (3.2.3). Finally,
the sweep is started by specifying an interval for the exchange, together with
a step-size. The specific cases are given below.

5.2 System configurations

5.2.1 Hexagonal plane

Two systems of size 60×60 and 120×120 unit cells are investigated. With all
the input files generated two couplings are set up in the lattice plane, one to
the nearest neighbor J1 and one to the next nearest J2. The spin interactions
can be seen in Figure 7. J1 is considered fixed to J1 = −1 (mRy) and J2
is varied through the range J2 ∈ [−1, 1] with a step-size of h = 0.1. The
correlation function C(t+ tw, tw) is sampled throughout the run.

J1

J2

Figure 7: Neighbor interactions of the HEX structure. The blue particles are
the nearest neighbors and green represents the next nearest. All couplings follow
hexagonal symmetry giving a total of 12 couplings within the cell.

5.2.2 Hexagonal compact packing

A system of 20 × 20 × 20 unit cell was simulated using the HCP lattice con-
figuration. Two new interactions are introduced from the HEX structure, as
seen in Figure 8a. The offset layer in red was chosen to be in a ferromagnetic
configuration with JFM = 1 (mRy) and the interplanar spin interaction J3
was varied in the range of J3 ∈ [−1, 1] with a step size of h = 0.1. The blue
layer in figure 8a follow the same exchange scheme as in the HEX-system with
the J2 parameter fixed to a constant value depending on the result from the
earlier hexagonal simulation. From these sweeps, four different exchange com-
binations J1, J2, J3 was chosen as candidates for SGs. These were then run for
a longer simulation time, using a total of 5 · 106 time steps with the step-size
dt = 10−15 (s) corresponding to a total simulation time of 5 (ns).
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5.2 System configurations

5.2.3 Double hexagonal compact packing

A DHCP system of 20 × 20 × 20 unit cells is investigated, following largely
the same configuration as the HCP one. The exchanges J1, J2, J3 and JFE,
as seen in figure 8b, have values defined from the longer HCP sweep and the
new interaction J4 is varied through the range J4 ∈ [−1, 1] with a step size of
h = 0.1. Two sets of parameters are selected from the sweep and run again
with the longer simulation time 5 (ns), similar to the HCP case.

J1

J2

J3

JFM

(a) HCP-structure.

J1

J2

J3

JFM

J3

J4

JFM

(b) DHCP-structure.

Figure 8: Interaction in HCP and DHCP structures following hexagonal symmetry.
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6 Results

Each parameter sweep results in 21 different parameter combinations, these
were studied by plotting the correlation function against logarithmic time for
each waiting time. An example of a resulting plot can be seen in Figure 10a.
To examine if the systems exhibit some sort of self-induced, glassy behavior
each plot was then compared using ocular inspection to the corresponding EA-
model simulation, see for example Figure 12a. The coupling-sets that showed
similarity to the random exchange model were then chosen for further analysis,
either by adding more interactions, as for the hexagonal plane, or by increasing
the simulation time. The process was then repeated after this final analysis and
these are the results presented in this section. Due to the nature of simulation
studies a huge amount of data is generated and all cannot be presented in this
report, we will however include all files necessary to run the simulation in the
Appendix for anyone interested. To show some of the comparative process,
each section also includes a Figure presenting C(t+ tw, tw) for a fixed waiting
time and instead varying exchange, as seen in Figure 9b for example. The
choice of waiting time is arbitrary and chosen to reflect the different dynamics
for varying exchange. Furthermore, all spin interactions are given in (mRy) if
not otherwise stated and all timescales are logarithmic.

6.1 HEX - systems

Two different hexagonal systems were investigated with different sizes. Here
we present the 120 × 120 case. In Figure 9a the random-exchange system
can be seen with correlation function C(t+ tw, tw) for different waiting times.
Beside it, in Figure 9b, we present the correlation function for a specific waiting
time, tw, for different J2 within the plane. Note the early stabilization of the
function for more positive values of the parameter. Lastly, in Figure 10 one
finds autocorrelation plots for two specific exchange interactions, J2 = −0.1
in 10a and J2 = −1 in Figure 10b.
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6.1 HEX - systems
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EA-model for HEX 120 × 120 system

tw = 4.00e-04 (ps)
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tw = 1.69e-02 (ps)
tw = 1.00e-01 (ps)
tw = 5.90e-01 (ps)
tw = 3.49e+00 (ps)
tw = 2.06e+01 (ps)

(a) Hexagonal plane, EA-model autocorrelation for
different waiting times.
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HEX 120 × 120-system, tw = 3.4855(ps)
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J2 = 0.5
J2 = 0.1
J2 = 0.5
J2 = 1

(b) Correlation function for varying in-plane interaction
and J1 = −1.

Figure 9: To the left, autocorrelation for EA-model for hexagonal structure. To the
right, autocorrelation for specific waiting time tw for a collection of J2 parameters.
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HEX 120 × 120 system, J2 = 0.1
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tw = 1.00e-01 (ps)
tw = 5.90e-01 (ps)
tw = 3.49e+00 (ps)
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(a) Same as Figure 9a but now with specific exchange
parameters, J1 = −1 and J2 = −0.1.
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HEX 120 × 120 system, J2 = 1
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tw = 1.00e-01 (ps)
tw = 5.90e-01 (ps)
tw = 3.49e+00 (ps)
tw = 2.06e+01 (ps)

(b) Same as Figure 9a but now with specific exchange
parameters, J1 = −1 and J2 = −1.

Figure 10: Autocorrelation C(t+ tw, tw) plotted against logarithmic time for spe-
cific exchange parameters.

17



6.2 HCP - systems

6.2 HCP - systems

Based on results from the larger hexagonal system, two different parameters
were chosen to continue investigations for larger structures, namely J2 = −0.1
and J2 = −1. The former case is presented in Figure 11a, for different in-
terplanar exchange, and the latter case is shown in Figure 11b. As before, a
random exchange run was made using the Edwards-Andersson model and the
resulting behavior can be seen in Figure 12a. From the results of the sweeps
in Figure 11, four pairs of exchange (J2, J3) were chosen as subjects for further
investigation, see Table 1. These were run again but now with a much longer
simulation time. The results for the most prominent case can be seen in Figure
12b.

J2 (mRy) -0.1 -0.1 -1 -1
J3 (mRy) -0.6 0.4 -0.3 0.2

Table 1: Table of the chosen coupling parameters. The pairs are presented column
wise.
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HCP-system, tw = 3.4855 (ps) and J2 = 0.1 (mRy)

J3 = 1
J3 = 0.6
J3 = 0
J3 = 0.4
J3 = 1

(a) Correlation function for the HCP-structure for different
interplanar couplings and J2 = −0.1, J3 given in units of
mRy. Notable cases are when J3 = −0.6 and J3 = 0.4 as
the decay throughout the whole simulation.
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HCP-system, tw = 3.4855 (ps) and J2 = 1 (mRy)

J3 = 1
J3 = 0.3
J3 = 0
J3 = 0.2
J3 = 1

(b) Same as for Figure 11a but J2 = −1. Pay closer atten-
tion to the interplanar couplings J3 = −0.3 and J3 = 0.2 as
they behave similarly to the random coupling case seen in
Figure 12a.

Figure 11: Same as for Figure 10 but for hexagonal compact packing.
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6.3 DHCP - systems
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EA-model for HCP system
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tw = 1.00e-01 (ps)
tw = 5.90e-01 (ps)
tw = 3.49e+00 (ps)
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(a) HCP-system subject to the Edwards-Andersson model.
The correlation function C(t + tw, tw) is presented for dif-
ferent waiting times tw. Note the exponential decrease for
tw ≈ 0, as predicted in Eq. (4.2).
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tw = 2.06e+01 (ps)
tw = 1.00e+02 (ps)

HCP-system for simulation time T = 5.00e+03 (ps)

(b) HCP-system with couplings J2 = −1 and J3 = 0.2 and
a simulation time of 5000 (ps).

Figure 12: Autocorrelator C(t+ tw, tw) as a function of logarithmic time for EA-
model (left) and a definitive set of coupling for a longer simulation time (right).

6.3 DHCP - systems

A single sweep on the double hexagonal structure was made and the result for
a fixed waiting time can be seen in Figure 13b. As previously, a simulation was
run with the EA-model and the resulting correlation behaviour can be seen
in Figure 13a. Based on comparisons of the Edwards-Andersson system with
the simulations from the sweep a couple sets of parameters was chosen for a
final, longer simulation. These were J1 = J2 = −1, J3 = 0.2 and J4 = −0.2 or
J4 = −0.9. These runs are presented in Figure 14a and 14b respectively.
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6.3 DHCP - systems
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(a) EA-model simulation for the DHCP-structure. The cor-
relation function is sampled for different waiting times tw.
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(b) Correlation function C(t + tw, tw) for different param-
eters in the double hexagonal compact packing structure.
The values J4 = −0.2, J4 = 0.2 were chosen as a candidates
for longer simulation times.

Figure 13: EA-model (left) and parameter sweep (right) for the DHCP-structure.
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(a) DHCP-system for J2 = −1, J3 = 0.2 and J4 = −0.2 for
a simulation time of 5 (ns).
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(b) Same as Figure 14a but with J4 = −0.9

Figure 14: Longer simulation runs for two cases of J4 in the DHCP-structure.
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7 Discussion

7.1 Investigated systems

We start from the bottom up by addressing the hexagonal plane. It should be
stated that we do not expect glass-like behavior from these classes of systems,
constituting of only nearest and next-nearest neighbour exchange in the plane.
The reasoning behind this statement can be explained by the two cases when
J2 > 0 and J2 < 0. The former will result in some sort of anti-ferromagnetic
ordering, and the latter will cause frustration but not result in a SG. However,
we still observe the long relaxation times associated with SGs as seen in Figure
9a. An explanation for this behaviour could be other frustrated systems such
as spin-liquids [19]. This special class of magnetic systems share the degenerate
properties of the ground states in SGs, resulting in similar behaviour of the
correlation function due to the continuous reconfiguration of the spins.

To further emphasize this statement, the results presented in this report
match the findings of [19] by showing a heavily frustrated system in the range
0.08 ≲ J2/J1 ≲ 0.16. As discussed in section 6.2, one of the studied systems
have J2/J1 = 0.1 and the measured correlation function can be seen in Figure
10a. This results is particularly interesting due to the striking resemblance
between the EA-model and the finite exchange in this case, which raises the
question if there is some correlation between spin-liquids and the EA-model. It
is however important to state that the two findings are not directly comparable
as they do not share the same lattice structure. This report only considers
hexagonal structures, whereas the article [19] studies other triangular lattices.
Furthermore, we also need to state that the spin-liquid and spin-glass are
fundamentally different magnetic phases, as discussed in [20].

Moving on to the higher dimensional systems of hexagonal compact pack-
ing and double hexagonal compact packing. In the case of the EA-model, both
structures experience the long relaxation time associated with SGs, as seen by
the steady decrease of C(t + tw, tw) for all tw in Figures 12a and 13a. They
furthermore show a resemblance of a plateau, which is associated with SGs,
making them well-suited to exhibit self-induced SG behavior. The DHCP-
system, in particular, has strong resemblance with investigated SG-systems
from other sources, see Figure4 in [17] and Figure2 in [18]. In the finite ex-
change simulations seen in figures 12b, 14a and 14a both configurations show
behaviour somewhat resembling the EA-model. They exhibit slow relaxation
times but are missing a clearly marked plateau, instead showing some sort of
oscillatory behaviour for t > 102 (ps). This could be due to a lack of time res-
olution, as the plot is logarithmic, or due to some other interesting dynamics.
For example, the system may oscillate between some quasi-equilibrium states,
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7.2 Improvements to analysis

similar to that of a spin-liquid, and therefore exhibiting the jagged behaviour
of the autocorrelator. It is also important to note that these systems have
a much greater simulation time, making a direct comparison more difficult,
they should however keep their glassy behaviour for longer simulation times.
Lastly, we want to stress that it is hard to definitively state if these system
are spin-glasses or not, indicating the difficulty of classifying these kinds of
systems, and we will discuss improvements to the analysis in the coming para-
graph.

7.2 Improvements to analysis

Even though the correlation function C(t + tw, tw) is an interesting quantity
when studying SGs, it is prominent from this report that it is not sufficient to
classify these magnetic systems completely. The comparison to the Edwards-
Andersson system is only enough to get a rough idea of the spin behaviour
but it is lacking quantitative properties. It is thus suggested to complement
this method with further analyses. These could be chosen from already exist-
ing experimental methods, such as performing a temperature sweep to study
the phase transition. However, such methods require extensive computation
considering the number of simulations needed to study the behaviour. We
should therefore consider other, numerical approaches. An example is the av-
erage exchange within the system ⟨Jij⟩ as mentioned in [3]. For a system to
choose a dominant spin direction, the average has to reflect this with a value
largely different from zero. In contrast, a value close to zero will result in a
system exhibiting some sort of frustration. Using this quantity together with
the correlation function could result in a more thorough analysis of the SG
candidates, additional investigations are however needed.

Furthermore, the average ⟨Jij⟩ could also be used in the parameter varia-
tion process to exclude parameters which would not exhibit this frustration.
Using this method, it enables the investigation to cover a wider variety of in-
teraction sets by considering all possible configurations and only then running
the few that lie within a given range. Hence, resulting in a more systematic
approach to choosing the parameter values. We however also need to mention
a caveat of the average Jij method, anti-ferromagnetic systems. These config-
urations will naturally satisfy the conditions on ⟨Jij⟩ and therefore be included
in the sweep. These cases would require some extra care when generating the
exchange parameters.

Another method to quantify the spin-glass behaviour would be that of a
simple fit to a given function, such as Eq. (4.2), and then use the different
fitted parameters for comparison. It is however evident from the drastically
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7.2 Improvements to analysis

different behaviour of the autocorrelator for different systems that a reliable
fit would difficult to achieve. We therefore suggest to study other approaches
for classifying the behaviour.

Frustrated

behaviour

𝐽3/𝐽2

Anti-ferromagnetic

behaviour

Anti-ferromagnetic

behaviour

Phase diagram for HCP-structure

0-0.3 10.4-1

Figure 15: Phase diagram for one case of the HCP-system in terms of the ratio
J3/J2 with varying J3 and J2 = −1.

Finally, to summarize the behaviour of the spin-dynamics one can construct
a phase diagram. This is done by classifying the magnetic ordering from the
correlation function for different values of the parameters. In the case of the
J2 = −1 HCP system, the behaviour is seen in Figure15. Similar diagrams can
be constructed for the other cases; this is however quite troublesome, due to
the difficulty in classifying magnetic ordering as mentioned previously. Hence,
the reason why the method was not employed in this project. The use of
phase diagrams could however be useful in the choice of simulation parame-
ters for composite systems. They enable a deeper, visual, understanding how
the different magnetic phases are related and provide some much needed in-
tuition. Phase diagram should therefore be considered as an improvement to
the analysis for further studies.
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8 Conclusion

This report has presented the investigation of self-induced spin-glasses in
Heisenberg systems using a variational approach. The results show the asso-
ciated slow relaxation time of SGs in stacked hexagonal lattices. It is however
difficult to draw any conclusions regarding other defining properties such as a
plateau in the autocorrelation function. As a result, it can not be stated that
a self-induced spin-glass was found using the methods presented in this report.
It is therefore suggested that the analysis should be complemented with other,
more quantitative studies to more effectively classify these magnetic systems.
A possible contribution to the analysis would be the study of an exchange
average, which could be used to more systematically choose parameter sets for
the simulations. Nevertheless, it is clear that the method of varying exchange
parameters in the Heisenberg Hamiltonian is promising and is able to produce
spin-systems exhibiting spin-frustration using only nearest and next-nearest
neighbor interactions.

24



REFERENCES

References

1. Fischer, K. H. Spin glasses isbn: 0521342961 (Cambridge Univ. Press,
Cambridge, 1991).

2. Kamber, U. et al. Self-induced spin glass state in elemental and crystalline
neodymium. Science 368, 966+ (May 2020).

3. Nordblad, P. Disordered magnetic systems (2015).

4. Kirkpatrick, S. Frustration and ground-state degeneracy in spin glasses.
Physical Review. B, Solid state 16, 4630–4641 (1977).

5. Baity Jesi, M. Spin Glasses: Criticality and Energy Landscapes isbn:
9783319412306 (Springer International Publishing, Cham).

6. Binder, K. & Young, A. Spin-Glasses - Experimental Facts, Theoretical
Concepts, and Open Questions. Reviews of Modern Physics 58, 801–976
(Oct. 1986).

7. Edwards, S. F. & Anderson, P. W. Theory of spin glasses. Journal of
Physics F: Metal Physics 5, 965 (1975).

8. Nishimori, H. Spin glasses and information. Physica A 384, 94–99 (2007).

9. Baity-Jesi, M. et al. Comparing dynamics: deep neural networks versus
glassy systems*. Journal of Statistical Mechanics: Theory and Experiment
2019, 124013 (Dec. 2019).

10. Eriksson, O., Bergman, A., Bergqvist, L. & Hellsvik, J. Atomistic spin
dynamics : foundations and applications isbn: 9780198788669 (Oxford
University Press, Oxford, 2017).

11. Division of Materials Theory at Uppsala University. Uppsala Atomistic
Spin Dynamics 2023. https://github.com/UppASD.

12. Kohn, W. Nobel Lecture: Electronic structure of matter—wave func-
tions and density functionals. Reviews of Modern Physics 71, 1253–1266
(1999).

13. Gilbert, T. A phenomenological theory of damping in ferromagnetic ma-
terials. IEEE Transactions on Magnetics 40, 3443–3449 (2004).

14. Boyce, W. E. Elementary Differential Equations and Boundary Value
Problems, 11th Edition isbn: 9781119382874 (John Wiley & Sons, 2017).

15. Kloeden, P. E. Numerical solution of stochastic differential equations
isbn: 3540540628 (Springer-Vlg, Berlin ; 1992).
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A UppASD

Appendix

A UppASD

All the behind the scenes machinery of the UppASD software have already
been presented in the theoretical background and this will be a purely practical
introduction to how to handle the program. As mentioned earlier, UppASD
uses a few input files to set up the simulation. These come in variety of forms
and the main ones of interest for this project are the inpsd.dat, posfile, momfile
and the jfile. All except the latter file serve to set up the system of interest,
they contain information about the lattice structure, the temperature of the
system and initial configurations and will most often be constant throughout
a parameter sweep. What is actually then varied are the jfile which change
for each simulation. This file contains the coupling of the spins, the Jij as seen
in Eq. (3.1). Furthermore, to choose which quantities one would like to study
a few keywords has to be added to the inpsd.dat-file. For the purposes of this
report these were, do_autocorr T and acfile .\twfile were the twfile contains
the different waiting times for the correlation function C(t + tw, tw) in time
steps. For a more detailed documentation of all the different inputs see [ref].

B Code

Below is the major script for running simulations automatically in UppASD
with varying exchange.

1 import numpy as np

2 from string import Template

3 import os

4 import itertools

5
6 # ------------------------------------------------------------------------------------------------

7 # This script is a tool used to run multiple simulations of UppASD with varying Heisenberg exchange , J.

8 # The script generates a inputfile , posfile and momfile given a set of initial conditions. It then

9 # then takes a range of exchange , how many parameters you want to vary and then runs the simulation

10 # for those.

11 # ------------------------------------------------------------------------------------------------

12
13 def gen_input(simid = '', system = '10 10 10', temp = 1, struct = '', initmag = 1, posfiletype = 'C

'):
14
15 # --------------------------------------------------------------------------------------------

16 # Genereatas inputfile for UppASD based on size , structure and temperrature. Supported

17 # structures are bcc , fcc , hex , hcp and dhcp.

18 # For further documentation on initmag and posfiiletype see UppASD documentation.

19 # --------------------------------------------------------------------------------------------

20
21 if struct == 'bcc':
22 sym = 1

23 cell = f'1.000 0.000 0.000 \n'\
24 f'0.000 1.000 0.000 \n'\
25 f'0.000 0.000 1.000 '
26
27 elif struct == 'fcc':
28 sym = 1

29 cell = f'0.500 0.500 0.000 \n'\
30 f'0.500 0.000 0.500 \n'\
31 f'0.000 0.500 0.500 '
32
33 elif struct == 'hcp':
34 sym = 3
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35 posfiletype = 'D'
36
37 cell = f'1.000 0.000 0.000 \n'\
38 f' -0.500 {np.sqrt (3)/2} 0.000 \n'\
39 f'0.000 0.000 {2*np.sqrt (2/3)}'
40
41 elif struct == 'dhcp':
42 sym = 3

43 posfiletype = 'D'
44 cell = f'1.000 0.000 0.000 \n'\
45 f' -0.500 {np.sqrt (3)/2} 0.000 \n'\
46 f' 0.000 0.000 {4*np.sqrt (2/3)}'
47
48 elif struct == 'hex':
49 sym = 3

50 cell = f'1.000 0.000 0.000 \n'\
51 f' -0.500 {np.sqrt (3)/2} 0.000 \n'\
52 f' 0.000 0.000 {2*np.sqrt (2/3)}'
53
54 else:

55 raise 'Structure not defined!'
56
57 template = Template(''.join(open('input_temp.txt').readlines ()))
58 inputfile = template.substitute ({'simid ': simid , 'system ': system ,

59 'cell': cell , 'sym': sym , 'temp': temp , 'initmag ': initmag ,

60 'posfiletype ' : posfiletype })

61
62 gen_file(inputfile , 'inpsd.dat')
63
64 def gen_posfile(struct):

65
66 # --------------------------------------------------------------------------------------------

67 # Generate posfile for given structure. Here all particles within the unit cell

68 # are considered different.

69 # --------------------------------------------------------------------------------------------

70
71 if struct == 'bcc':
72 pos = f'1 1 0.000 0.000 0.000 \n2 1 0.500 0.500 0.500'
73 elif struct == 'fcc':
74 pos = f'1 1 0.000 0.000 0.000 '
75 elif struct == 'hcp':
76 pos = f'1 1 0.000 0.000 0.000 \n2 2 {1/3} {2/3} 0.500'
77 elif struct == 'dhcp':
78 pos = f'1 1 0.000 0.000 0.000 \n'\
79 f'2 2 {1/3} {2/3} 0.250 \n'\
80 f'3 3 0.000 0.000 0.500 \n'\
81 f'4 4 {-1/3} {-2/3} 0.750'
82 elif struct == 'hex':
83 pos = f'1 1 0.000 0.000 0.000 '
84
85 gen_file(pos , 'posfile ')
86
87 def gen_jfile(struct , J):

88
89 # --------------------------------------------------------------------------------------------

90 # Generate jfile for ONE parameter , if more parameters are to be varied they have to be

91 # specified within the code. J is read as a list , more couplings can therefor be added by just

92 # substituting an exchange for {J[i]} with i being the index of the exchange in the list.

93 # --------------------------------------------------------------------------------------------

94
95 if struct == 'bcc':
96 exc = f'1 1 0.5 0.5 0.5 {J[0]} \n'\
97 f'1 1 1.0 0.0 0.0 {J[1]} \n'\
98 f'1 1 1.0 1.0 0.0 {J[2]}'
99 elif struct == 'fcc':

100 exc = f'1 1 0.5 0.5 0.0 {J[0]} \n'\
101 f'1 1 0.5 0.0 0.5 {J[1]} \n'\
102 f'1 1 0.0 0.5 0.5 {J[2]}'
103 elif struct == 'hcp':
104 exc = f'1 1 1.0000 0.0000 0.0000 1 \n'\
105 f'2 2 1.0000 0.0000 0.0000 -1 \n'\
106 f'2 2 2.0000 1.0000 0.0000 1 \n'\
107 f'1 2 0.0000 0.0000 0.0000 {J[0]}\n'\
108 f'2 1 0.0000 0.0000 0.0000 {J[0]}\n'
109
110 elif struct == 'dhcp':
111 exc = f'1 1 1 0 0 1.0 \n'\
112 f'2 2 1 0 0 -1.0 \n'\
113 f'2 2 2 1 0 -1.0 \n'\
114 f'3 3 1 0 0 1.0 \n'\
115 f'4 4 1 0 0 -1.0 \n'\
116 f'4 4 2 1 0 -1.0 \n'\
117 f'1 2 0 0 0 0.2 \n'\
118 f'2 1 0 0 0 0.2 \n'\
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119 f'2 3 0 0 0 0.2 \n'\
120 f'3 2 0 0 0 0.2 \n'\
121 f'3 4 0 0 0 {J[0]} \n'\
122 f'4 3 0 0 0 {J[0]} \n'\
123 f'4 1 0 0 1 {J[0]} \n'\
124 f'1 4 0 0 -1 {J[0]} \n'
125
126 elif struct == 'hex':
127 exc = f'1 1 1.000 0.000 0.000 -1.00 \n'\
128 f'1 1 2.000 1.000 0.000 {J[0]} \n'
129
130
131 gen_file(exc , 'jfile ')
132
133
134 def gen_momfile(struct , mom):

135
136 # --------------------------------------------------------------------------------------------

137 # Generate momfile given structure and an initial moment "mom". If "mom" is an empty string

138 # all initial moment strengths are considered random. They all however start in an aligned

139 # configuration.

140 # --------------------------------------------------------------------------------------------

141
142 if mom == '':
143 mom = np.random.rand (4)

144
145 if struct == 'bcc':
146 momline = f'1 1 {mom [0]} 1.000 0.000 0.000 \n2 1 {mom [1]} 1.0 0.0 0.0'
147 elif struct == 'fcc':
148 momline = f'1 1 {mom [0]} 1.000 0.000 0.000'
149 elif struct == 'hcp':
150 momline = f'1 1 {mom [0]} 1.000 0.000 0.000 \n2 1 {mom [0]} 1.0 0.00 0.00'
151 elif struct == 'dhcp':
152 momline = f'1 1 {mom [0]} 1.0 0.0 0.0 \n'\
153 f'2 1 {mom [0]} 1.0 0.0 0.0 \n'\
154 f'3 1 {mom [0]} 1.0 0.0 0.0 \n'\
155 f'4 1 {mom [0]} 1.0 0.0 0.0'
156 elif struct == 'hex':
157 momline = f'1 1 {mom [0]} 0.000 0.000 0.000'
158
159 gen_file(momline , 'momfile ')
160
161 def MeshLoop(Jlen , jrange , simid , struct , h):

162
163 # --------------------------------------------------------------------------------------------

164 # Major loop for running the simulation. The code generates a list of tuples containing

165 # all possible variation of the parameter given the desired range. If only one parameter

166 # is varied this is equivalent to a np.arange () array. The code saves all exchanges for

167 # the single simulations in a txt -file and saves all outputs from UppASD (*out) in

168 # individual folders.

169 # --------------------------------------------------------------------------------------------

170
171 i = 1

172
173 # Create iteration mesh

174 iter = [list(np.arange(jrange [0], jrange [1] +h, h)) for i in range(Jlen)]

175 J = [t for t in itertools.product (*iter)]

176
177 for j in J: # Loop over all possible combinations

178
179 gen_jfile(struct , j)

180
181 os.system('~/ UppASD/bin/sd.gfortran ') # Run simulation

182
183 # Save Js

184 jlines = open('jfile ', 'r')
185 lines = jlines.readlines ()

186 jlines.close()

187
188 J_res = open(f'j_res_{simid}.txt', 'a')
189 J_res.write(f'Run {i}:\n'+str(''.join(lines).replace(',',''))+'\n')
190 J_res.close ()

191
192 # Save output files

193 os.system(f'mkdir {simid+str(i)}')
194 os.system(f'mv *out {simid+str(i)}')
195
196 i += 1 # New step

197
198 def MonteCarloLoop(N, jrange , simid , struct , Jlen):

199
200 # --------------------------------------------------------------------------------------------

201 # Same as the above but with randomly generated couplings withing the specified range. Takes

202 # an integer as the max number of simulations. Not thoroughly tested.
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203 # --------------------------------------------------------------------------------------------

204
205 for i in range(N):

206
207 J = abs(jrange [0] - jrange [-1])*np.random.rand(Jlen) - abs(jrange [-1])

208
209 gen_jfile(struct , J)

210
211 os.system('~/ UppASD/bin/sd.gfortran ') # Run simulation

212
213 # Save Js

214 jlines = open('jfile ', 'r')
215 lines = jlines.readlines ()

216 jlines.close()

217
218 J_res = open(f'j_res_{simid}.txt', 'a')
219 J_res.write(f'Run {i}:\n'+str('\n'.join(lines).replace(',',''))+'\n')
220 J_res.close ()

221
222 # Save results in folder

223 os.system(f'rm moments .{ simid}.out')
224
225 os.system(f'mkdir {simid+str(i)}')
226 os.system(f'mv *out {simid+str(i)}')
227
228 def single_sim(struct , j2): # Code for just running one simulation and saving the output.

229
230 gen_jfile(struct , j2)

231
232 os.system('~/ UppASD/bin/sd.gfortran ') # Run simulation

233
234 # Save output files

235 os.system(f'mkdir {simid}')
236 os.system(f'mv *out {simid}')
237
238 def gen_file(string , filename):

239 file = open(filename , 'w')
240 file.write(string)

241 file.close()

242 print(f'{filename} generated!')
243
244 # ------------------------------------------------------------------------------------------------

245 # Below is a quick way of running a simulation sweep by just running this script. The code asks

246 # for all nessessary inputs and runs the simulation using the functions above. It is however

247 # recomended that another python script is used to set up the simulation.

248 # ------------------------------------------------------------------------------------------------

249
250 if __name__ == "__main__":

251 # Check for inputs

252 simid = input('Specify simid: ').replace(' ','')
253 system = input('Specify system size: ').replace(',', ' ')
254 temp = input('Specify temp: ')
255 struct = input('Specify lattice strcuture: ')
256 mom = [float(x) for x in input('Specify intital moment , leave empty for random: ').split(',')]
257 jrange = [float(x) for x in input('Specify range of couplings: ').split(',')]
258
259 if mom != '': # Check for random inital moments

260 initmag = 3

261 else:

262 initmag = 1

263
264 # Generate sim -files

265 gen_input(simid , system , temp , struct , initmag)

266 gen_posfile(struct)

267 gen_momfile(mom)

268
269 Looptype = input('Do you want meshloop (M) or montecarlo (R) [M/R]? ').lower().replace(' ','')
270
271 if Looptype == 'm': # MeshLoop

272 h = float(input('Specify stepsize: '))
273 Jlen = int(input('Specify number of Js: '))
274
275 check = input('Run simulation [Y/N] ? ').lower()
276 if check == 'y':
277 MeshLoop(Jlen , jrange , simid , struct , h) # Run loop

278 else:

279 exit()

280
281 if Looptype == 'r': # MonteCarlo loop

282 N = int(input('Specify number of iterations: '))
283 Jlen = int(input('Specify number of Js: '))
284
285 check = input('Run simulation [Y/N] ? ').lower()
286 if check == 'y':
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287 MonteCarloLoop(N, jrange , simid , struct , Jlen) # Run loop

288 else:

289 exit()

290
291 # Clean folder

292 clean = input('Simulation done! Clean folder [Y/N]? ').lower()
293 if clean == 'y':
294 os.system(f'rm posfile momfile jfile inpsd.dat inp.{ simid}.json uppasd .{simid }.yaml')
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C Input files

Although most of the input files are automatically generated using the code in
B, some are simply to big to be included in the syntax. It is therefore easier to
make a template which is read by the script and edited to create the desired
inputs. The input for the inpsd.dat-file was generated using the following
template. The $ indicate a parameter read and inputed by the Python code.

simid $simid

ncell $system System size

BC P P P Boundary conditions

(0=vacuum, P=periodic)

cell $cell

Sym $sym Symmetry of lattice

(0 no, 1 cubic, 2 2d cubic,

3 hexagonal)

do_prnstruct 1

maptype 2 Specify coordinates for jfile

(1 cartesian, 2 lattice)

posfile ./posfile

posfiletype $posfiletype

momfile ./momfile

exchange ./jfile

SDEalgh 5 SDE solver

(1=midpoint, 2=heun, 3=heun3,

4=Heun_proper, 5=Depondt)

Initmag $initmag Initial config of moments

(1=random, 2=cone, 3=spec., 4=file)

ip_mode N

ip_mcanneal 1

10000 100.0 1.00e-16 0.95

100 100.0 1.00e-16 0.95

100 100.0 1.00e-16 0.95

mode S

Temp $temp K Temperature of the system

hfield 0.00000 0.00000 0.00000 Static H field

damping 0.50 Damping parameter (gamma)

nstep 500000 Number of time-steps

timestep 1.000e-16 s The time step-size for

the SDE-solver

do_avrg Y Measure averages

do_autocorr Y

acfile ./twfile
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