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Abstract

The Bose-Hubbard Model, a tight binding model within solid state
theory can be solved exactly using a number theoretical approach.
From this approach, in the two sited Bose-Hubbard model, the hop-
ping term in the model takes the form of a Pauli x matrix. The
hopping term can be interpreted as a two energy level system or a
dimer with k+1 particles. The statistical properties of this dimer is
investigated assuming Boltzmann distribution. The partition function
and particle density on each site in the dimer is calculated for spin
1/2 system. The entropy and average energy is also calculated. The
particle density is calculated and plotted as a function of temperature
for the spin 1/2,1,3/2 and 2 system. At low temperature the parti-
cles are more likely to be found in the lower energy site and at high
temperatures the particles is equally distributed at the both sites.

Sammanfattning

Bose-Hubbard modellen är en tight binding modell inom fasta tillst̊and-
ets fysik som kan lösas exakt genom att använda en talteoretisk lösning-
smetod. Genom att göra detta med bara tv̊a interagerande platser i
modellen tar hoppingtermen i modellen formen av en Pauli x-matris.
Hopping modellen kan tolkas som ett system med tv̊a energiniv̊aer
eller en s̊a kallad dimer med k+1 partiklar. Dimerens statistiska egen-
skaper undersöks utifr̊an Boltzmannfördelningen. Partitionsfunktio-
nen och partikeldensiteten p̊a varje plats i dimeren beräkn- as för ett
spin 1/2 system, tillsammans med entropin och medelenergin. Vidare
är partikeldensiteten beräknad och plottad som funktion av tempera-
turen för spinn 1/2, 1, 3/2 och 2 system. Vid l̊ag temperatur befinner
sig partiklarna i dimeren i den lägre energiniv̊an och vid hög temper-
atur är partiklarna jämt fördelade i de tv̊a energiniv̊aerna.
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1 Introduction

The world consists of many different materials that are consistently being
used in new technology. Research to create new materials with properties
that are relevant for this are constantly being done. The theoretical research
provide an understanding of the properties of materials through models. Ma-
terials are made of atoms in different structures corresponding to interactions
between the atoms. Modelling the materials these interactions can be taken
into consideration in many ways leading to numerous models.

This study aims to investigate the relation between spin-systems and a
two-particle boson system. The Bose-Hubbard model, a tight binding model
within solid state theory can be solved exactly using prime factorization.
The two sited hopping term then takes the form of a Pauli x-matrix. This
can be seen as a representation of spin as a two energy level system, that
will be called a dimer. This interpretation of spin as a dimer is investigated
through the statistical properties of the dimer using the concepts of quantum
mechanics and statistical mechanics. For this a proper introduction to these
topics will be continued in the following section, followed by the model and
method that has be used. Thereafter the calculations are presented and
finally this will be discussed.

2 Theoretical background

2.1 Quantum mechanics and Dirac formalism

This project is based on the fundamental concepts of quantum mechanics. In
quantum mechanics, a physical system is described in a complex vector space.
For continuous variables such as position and momentum of a particle this
space is called Hilbert space. Each physical state is represented by a state
vector which in Dirac formalism is called a ket, and the state α is written
|α⟩. Each state have a dual correspondence, called a bra that is written ⟨α|.
The bra vectors lives in a space that is dual to the ket space. Observables Ô
are represented as linear operators in quantum mechanics, and are typically
written, when acting on a state |α⟩,

Ô |α⟩ . (2.1)

A measurement in quantum mechanics corresponds to an operator Ô acting
on a state |α⟩ [1].
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2.1.1 The Hamiltonian

Energy is an important quantity in physics in general. The operator repre-
senting the total energy of a system in quantum mechanics is the Hamiltonian
which is generally written as,

Ĥ = T̂ + V̂ . (2.2)

Here T̂ is the kinetic energy and V̂ is the potential energy of the system.

2.1.2 The quantum harmonic oscillator

One of the most important systems in physics is the simple harmonic oscil-
lator. In quantum mechanics the system is described with the Hamiltonian,

Ĥ =
p̂2

2m
+

mw2x̂2

2
. (2.3)

The solutions to this Hamiltonian are discrete and infinitely many, the eigen-
values and eigenstates of the systems can be found introducing ladder oper-
ators, also known as creation and annihilation operators. By applying the
operator one simply go up or down on the ladder or in other words increase
and decrease the energy. These operators are not Hermitian and are written,

â =

√
mω

2ℏ

(
x̂+

ip̂

mω

)
, (2.4)

â† =

√
mω

2ℏ

(
x̂− ip̂

mω

)
, (2.5)

the annihilation and creation operator respectively. The commutator is

[â, â†] = 1. (2.6)

The number operator can be defined from this as,

N̂ = â†â. (2.7)

From this the Hamiltonian can be rewritten in terms of the number operator,

Ĥ = ℏω(N̂ +
1

2
). (2.8)
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Equation (2.8) is a useful since Ĥ and N̂ commute and therefore can be
diagonalized simultaneously. The eigenvalues of the number operator N̂ are
defined as:

N̂ |n⟩ = n |n⟩ , (2.9)

where |n⟩ is the eigenvectors of the number operator. The eigenvalues of the
Hamiltonian in this basis can then be written as:

Ĥ |n⟩ = (n+
1

2
)ℏω |n⟩ . (2.10)

So the energy eigenvalues of the Hamiltonian are equidistant,

En = (n+
1

2
)ℏω. (2.11)

In the eigenbasis the annihilation and creation operator will add and erase
one quanta from the total energy and will affect the state according to the
following equations,

â |n⟩ =
√
n |n− 1⟩ , (2.12)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ . (2.13)

Since n ≥ 0 a lowest state can be defined. The eigenvector |0⟩ is called the
ground state or vacuum state and corresponds to the minimum energy of the
system E0 =

ℏω
2

(one quanta) [1].

2.1.3 Second quantization

Consider a many particle system. The particles in the system can have differ-
ent energies and are indistinguishable. Using quantum mechanics formalism
the system can be described with a state vector,

|n1, n2, ..., ni, ...⟩ , (2.14)

where ni is the number of particles in each subsystem, corresponding to a
specific energy. This state vector is part of the vector space called Fock space.
The ground state of all vectors in Fock space is when there are no particles
at all, the vacuum state,

|0, 0, 0, ..., 0⟩ ≡
∣∣∣⃗0〉 . (2.15)
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Similarly as for the one particle case, annihilation and creation operators are
used to change the number of particles in each state, such that,

â†i |n1, n2, ..., ni, ...⟩ = |n1, n2, ..., ni + 1, ...⟩ , (2.16)

âi |n1, n2, ..., ni, ...⟩ = |n1, n2, ..., ni − 1, ...⟩ . (2.17)

The number operator is defined as the sum of the particles at each state and
the occupation number operator is defined as n̂i = â†i âi.

N̂ =
i∑

i=0

n̂i =
i∑

i=0

â†i âi. (2.18)

The commutation relations of the annihilation and creation operators are
different depending on if the wave function is symmetric or antisymmetric.
The operators are called bosonic and fermionic operators respectively, since
bosons have symmetric wave functions and therefore can be in the same
state, but the antisymmetric fermions obey the Pauli exclusion principle,
only two fermions with different spins can be in the same state. In table 1
the conditions for the bosonic and fermionic operators are presented [1].

Bosons Fermions

[â†i , â
†
j] = 0 {â†i , â

†
j} = 0

[âi, âj] = 0 {âi, âj} = 0

[â†i , âj] = δi,j {â†i , âj} = δi,j

Table 1: Commutation relations for bosons and fermions in second quanti-
zation. The notation for the commutator is [A,B] = AB −BA and the anti
commutator {A,B} = AB +BA.

2.1.4 Representation of spin in quantum mechanics

Spin is an intrinsic property that is used to characterize particles. Particles
can have integer and half integer spin. The half integer spin particles are
called fermions and the integer spin particles are called bosons. For a spin 1/2
system the spin components can be obtained using the 2× 2 Pauli matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.19)
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Spin 1/2 is then defined as Si =
ℏ
2
σi. For spin 1, 3/2, 2.. the corresponding

matrices are square matrices of higher dimensions, 3× 3,4× 4 and so on [1].

2.2 Statistical mechanics

Statistical physics describes the physical properties of macroscopic systems.
Macroscopic systems consists of a large number of particles, that can be
atoms or molecules. In statistical mechanics an important distinction can be
made between microscopic states and macroscopic states. The microscopic
state defines the state on a atomic scale while the macroscopic state can be
described by a few observable quantities on the macroscopic level. For each
macroscopic state there are several microscopic states and the total system
can therefore be described such that each macroscopic state with a number of
microscopic states. From this relation one can form the quantity statistical
weight which describes all possible outcomes and can be written as,

Ω(E, V,N, α). (2.20)

The energy E varies within a small interval E + δE, the volume V and the
particle number N are specifying the macroscopic state and α contains addi-
tional variables. The statistical weight, also called thermodynamic probabil-
ity is a measure of the number of microscopic states for a given macroscopic
state. A system with N particles that can be in two possible state can have
2N possible microscopic states for a given macroscopic state and thus the
statistical weight for the macroscopic state is

Ω(n) =

(
N

n

)
=

N !

n!(N − n)!
. (2.21)

For an isolated system in equilibrium, two postulates can be defined,

• For an isolated system all microscopic states have the same probability
to occur (for given E, V and N).

• The system is in equilibrium for the α that maximizes the statistical
weight Ω(E, V,N, α).

For an isolated system, the entropy can be introduced as a measure of disorder
of the system

S(E, V,N, α) = k lnΩ(E, V,N, α), (2.22)
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k is the Boltzmann constant. Entropy is an important quantity since it
relates the macroscopic observed quantity to the microscopic properties of
the system [2].

2.2.1 Boltzmann distribution: The partition function

For a system in equilibrium in a heat bath with temperature T the Boltzmann
distribution can be used. The probability for a system to be in a particular
state is given by the Boltzmann distribution,

pr =
1

Z
e−βEr , (2.23)

with the normalization factor Z that is also called the partition function,

Z =
∑
r

e−βEr . (2.24)

Er is the energy of the system, β = 1
kT

where T is the temperature and k is
the Boltzmann constant. The partition function is the sum of all microscopic
states of the system. From the partition function, the average energy can be
calculated as

⟨E⟩ = −∂Z

∂β
. (2.25)

The entropy of the system is defined as,

S =
∂

∂T
(kT lnZ) = −k lnZ +

1

T
⟨E⟩. (2.26)

This is a more useful way to define entropy, then the earlier notation that
was introduced in equation (2.22) [2].

2.3 Solid state theory

Solid state theory describes the interactions of atoms in lattices that form
solids. In a solid the atoms don’t move freely and are typically bound at
certain distances from each other which is useful when doing models.
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2.3.1 Statistical mechanics in Solid state theory

A solid consists of many particles so the system can not be prepared in a well
defined quantum state but since a solid can be described by its macroscopic
state the thermal expectation value can be specified from the temperature
T , volume V and particle number N . The thermal expectation value in a
solid Â can thus be written as,

< Â >=
1

I

I∑
i=0

⟨i|A |i⟩ . (2.27)

The thermal expectation value is defined by the microscopic states |i⟩, i =
1, 2, ..., I of the solid for fixed T, V,N . By inserting the completeness relation∑

i |i⟩ ⟨i| = 1̂, and the trace notation Tr(A) =
∑

n ⟨n|A |n⟩, one can rewrite
the expression,

< Â >=
∑
n

⟨n|
(
1

I

I∑
i=0

|i⟩ ⟨i|
)
Â |n⟩ , (2.28)

which is equivalent to

< Â >= Tr
(
ρ̂Â

)
, (2.29)

where ρ̂ is the statistical operator or density operator

ρ̂ =
1

I

I∑
i=0

|i⟩ ⟨i| . (2.30)

The statistical operator describes all the possible outcomes of the system,
gives the distribution of the system. Connecting back to section 2.2 where
statistical mechanics was explained, the statistical operator is a distribution
function that depends on the system. For a solid that can be described
with thermodynamic variables, the Boltzmann distribution can be used. The
canonical ensemble can be extended to the grand canonical ensemble for a
fixed temperature T and and particle number N is,

ρ̂G =
1

ZG

e−β(Ĥ−µN̂), (2.31)
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where µ is the chemical potential, N̂ is the number operator, Ĥ is the Hamil-
tonian of the system. The constant β = 1

kT
where k is the Boltzmann con-

stant. The grand partition function ZG is,

ZG = Tr
(
e−β(Ĥ−µN̂)

)
. (2.32)

The grand canonical ensemble is useful for a system that has both a heat
bath T and a particle reservoir N [3].

2.3.2 The Bose-Hubbard model

The Bose-Hubbard model can be used to describe interactions in a solid
and includes nearest neighbour interactions. It can be described with the
Hamiltonian,

Ĥ =
∞∑
n

U

2
N̂n(N̂n − 1)− µN̂n − t(â†nân+1 + â†n+1ân). (2.33)

U is the Coloumb potential, µ is the chemical potential and t is the hopping
parameter. The last term of equation (2.33) is the so called hopping term
and describes the interaction between two neighbouring atoms. The state
vectors can be rearranged in terms of prime numbers p1....pk,

|n⟩ = |p1⟩ ⊙ |p2⟩ ⊙ .. |pk⟩ . (2.34)

The symmetric tensor product ⊙ is invariant under permutations so for ex-
ample,

|2⟩ ⊙ |3⟩ ≡ |3⟩ ⊙ |2⟩ . (2.35)

Figure 1: New indexing of the bosons, using prime numbers.

This is a number theoretical approach, since any integer is fully factorized in
terms of prime numbers. The numbers can be written as
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n =
∏
p∈P

pap(n). (2.36)

Factorizing the states into prime numbers and collecting the multiplicity
of the prime numbers in the exponent ap(n) the annihilation and creation
operators can then be defined, acting on the basis δn,

âpδn =
√

ap(n)δn
p
, (2.37)

â†pδn =
√

ap(n) + 1δnp. (2.38)

The basis vectors δn → |n⟩ are only nonzero for the quotient n
p
that is an

integer, that are the prime numbers pk that factorizes n. To illustrate this,
take the number 10 that can be decomposed into the prime numbers 2 and
5. Acting on the basis δ10 with the annihilation operator â2 the basis reduces
to

â2δ10 = δ 10
2
= δ5, (2.39)

and similarly acting on δ10 with â5 gives δ2. However acting with for example
â3,

â3δ10 = δ 10
3
= 0, (2.40)

since 10 cannot be factorized by the prime number 3. Another example is the
number 9 that can be factorized by the prime number 3. The multiplicity is
a3(9) = 2 and acting with the annihilation operator results in

√
2δ3. Using

this number theoretical approach the Hamiltonian can be reformulated as,

Ĥ =
∞∑
n=1

U

2
N̂pn(N̂pn − 1)− µN̂pn − t(â†pn âpn+1 + â†pn+1

âpn). (2.41)

The Hamiltonian matrix can then be calculated exactly [4].
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3 Method

The two-site Bose-Hubbard model only include the nearest neighbour inter-
action and the hopping term of the hamiltonian is then written,

Ĥ = â†2â3 + â†3â2. (3.1)

Here, p1 = 2 and p2 = 3 are prime numbers. Using the number theoretic
model the Hamiltonian can be exactly calculated in a k-particle subspace
represented by a (k + 1)× (k + 1) tridiagonal matrix,

Ĥ|H⊙k =



0
√
k√

k 0
√

2(k − 1)√
2(k − 1) 0

√
3(k − 2)√

3(k − 2) 0
. . . √

k√
k 0


, (3.2)

for k = 0,1,2,3,... . The Hamiltonian is spanned by the vectors, H⊙k =
span{δ2α3k−α : α = 0, 1, 2, ..., k}. The Hamiltonian is invariant in each k-
particle subspace, meaning that [Ĥ, N̂ ] = 0. The matrix elements are equiv-
alently written as,

Ĥ|H⊙k =
k∑

α=0

√
(k − α)(α + 1)δ2α+13k−α−1 +

√
α(k − α + 1)δ2α−13k−α+1 . (3.3)

To examplify this, for k=1 the matrix becomes,

Ĥ|H⊙1 =

(
0 1
1 0

)
, (3.4)

k=2:

Ĥ|H⊙2 =

 0
√
2 0√

2 0
√
2

0
√
2 0

 , (3.5)
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and k= 3:

Ĥ|H⊙3 =


0
√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0.

 . (3.6)

While Equation (3.4) can be recognised as the Pauli x-matrix σx describing
spin 1/2, Equation (3.5) and (3.6) similarly corresponds to spin 1 and spin
3/2. More generally the solutions to the Hamiltonian in a k-particle subspace
corresponds to k/2 spin in x-direction. The Pauli matrices σi are an essential
part of the formulation of spin, where that spin directions are represented as
Si =

ℏ
2
σi, for i = x, y, z [5].

3.1 Representation as particles in the dimer

The k-particle subsystem connects increasing integer and half integer spin
via it’s matrix form to k+1 particles in the hopping term, interpreting this
as a system of two energy levels with k+1 particles to form a so called dimer
consisting of two energy levels, 2 and 3,

3
2

(
·
·

)
. (3.7)

For example, k=1 represents a two particle system such that that the dimer
can take three different forms,

3
2

(
••
)
,

(
•
•

)
,

(
••

)
.

For k=2 there are 3 particles in the system and the dimer can have four
different forms,

3
2

(
• • •

)
,

(
••
•

)
,

(
•
••

)
,

(
• • •

)
,

and so on. Note that the particles to be bosons, meaning they can be in the
same state. The dimer as a representation of spin will now be investigated
from its statistical behavior. Since the hopping term is an atomic interac-
tion within solid state theory the distribution function of the dimer will be
assumed to follow the Boltzmann distribution.
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4 Calculations

Using the method described in [5] the spin y-matrix takes the form,

Ĥy = iâ†2â3 − iâ†3â2. (4.1)

And for the z-matrix the Hamiltonian

Ĥz = −â†2â2 + â†3â3. (4.2)

The latter is on diagonal form and for simplicity in the calculations this will
be used but corresponds to the same distribution as for the original hopping
term. Using the number representation the partition function can be calcu-
lated according to equation (2.32). For bosons the chemical potential is zero,
since the number of particles at a given state is not restricted. The hopping
parameter has until now been ignored but are now used in the calculation of
the partition function.

4.1 Spin 1/2 system

For spin 1/2 the dimer contains two particles. Using the definition of the
number operator according to equation (2.18) the grand partition function
can be written as,

ZG = Tr{e−βĤ} = Tr{e−β(−â†2â2+â†3â3)} = Tr{eβ(n̂2−n̂3)}. (4.3)

The number of microscopic states (microstates) that the system can be in is
restricted by the number of particles in the system. The occupation number
operators can take the values n̂i = 1, 2, 3 for i = 2, 3 but are restricted since
the total particle number is n̂2 + n̂3 = 2 such that,

n̂2 =


2←→ 0
1←→ 2
0←→ 3

 = n̂3 (4.4)

The corresponding microstates are thus given by the difference n̂2− n̂3 shown
in Table 2.
The grand partition function for the spin 1/2 case is

ZG =
∑
i

eϵi = e2tβ+e0·t·β+e−2·tβ = e2tβ+1+e−2·tβ = 2 cosh (2tβ)+1. (4.5)
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Table 2: Microstates ϵi for i = 1, 2, 3 for spin 1/2 system.

ϵ1 ϵ2 ϵ3
2 0 -2

Using equation (2.31) the particle density at each site in the dimer can now
be calculated as,

⟨ni⟩ =
1

ZG

Tr
{
n̂ie

−tβĤ
}
. (4.6)

For n̂i = 1, 2, 3 corresponds to the microstates such that,

⟨n2⟩ =
1

ZG

(0 · e−2tβ + 1 · 1 + 2 · e2tβ) = 1 + 2e2tβ

2 cosh (2tβ)
. (4.7)

And similarly ,

⟨n3⟩ =
1

ZG

(2 · e−2tβ + 1 · 1 + 0 · e2tβ) = 1 + 2e−2tβ

2 cosh (2tβ)
. (4.8)

In Figure 2 the density distribution is plotted as a function of T for respective
site.

Figure 2: Particle density in site 2 and 3 of the dimer is plotted as a function
of the temperature T for a spin 1/2 system.
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Furthermore, the average energy and the entropy of the system is calculated
according to equation (2.25) and (2.26).

⟨E⟩ = −∂ ln

∂β
(e2tβ + 1 + e−2tβ) = − 4t sinh (2tβ)

2 cosh (2tβ) + 1
, (4.9)

and the entropy,

S = k lnZG +
1

T
⟨E⟩ = k ln(cosh (2tβ) + 1)− 1

T

4t sinh(2tβ)

2 cosh (2tβ) + 1
. (4.10)

The average energy and the entropy is plotted in Figure 3 and 4 respectively.

Figure 3: The average energy E as a func-
tion of the temperature T .

Figure 4: Entropy E for the system as a
function of the temperature T .
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4.2 Spin 1 system

For the spin 1 system, there are 4 microstates with the corresponding energies
shown in table 3.

Table 3: Microstates ϵi i = 1, 2, 3, 4 for spin 1 system.

ϵ1 ϵ2 ϵ3 ϵ4
3 1 -1 -3

The partition function for the spin 1-system is

ZG = e−3tβ + e−tβ + etβ + e3tβ = 2 cosh (βt) + 2 cosh (3βt). (4.11)

The particle densities in the dimer are plotted in Figure 5.

Figure 5: Particle density in site 2 and 3 of the dimer is plotted as a function
of the temperature T for a spin 1 system.
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4.3 Higher order spin

For higher spin the number of microstates increases with the number of
particles in the system. In Figure 6 the particle densities for spin 1/2, spin
1, spin 3/2 and spin 2 are normalized and plotted together.

Figure 6: The normalized particle densities with both site for the spin 1/2,
spin 1, spin 3/2 and spin 2 systems.

5 Discussion

In this thesis the representation of spin as a dimer has been investigated,
using statistical mechanics as it is a solid state theoretical model. Using
the Boltzmann distribution the particle distributions for the spin 1/2, spin 1
systems are plotted in Figure 2 and 5. According to the plots, the particles
are more likely to be in the lower energy state at low temperature T and goes
towards an equal distribution between the two sites at high temperature T ,
going towards a more disordered state which from a physical point of view
seems reasonable. In Figure 6 of the normalized distributions for different
spin the graphs becomes flatter for higher spin. Since the number of particles
in the system increase, and so the number of microstates, this can be thought

18



of as it being more difficulty to move several particles between the sites, then
one, thus it requires more energy. The average energy and entropy for the
spin 1/2 system is plotted in Figure 3 and 4. The energy are negative at low
temperature and goes towards zero has the temperature increases. This can
be explained by the form of the Hamiltonian Ĥz in Equation 4.2 seeing at is
is written as the difference in particles at site 3 and 2. The energy on site 2
is defined as negative, thus the maximum energy when both particles are on
this site corresponds to negative energy. The entropy is increasing with the
temperature, and the systems goes towards being more disordered so this is
reasonable from a physical point of view.

It is important to discuss the assumptions that has been made on this
theoretical model. The formulation of the dimer is based on the number
theoretical approach that the Bose-Hubbard was originally solved for. The
particles in this subsystem are assumed bosons (they can be on the same
site). Using the Boltzmann distribution can seem arbitrary and might not
be the correct way to look at the system. Modelling spin with bosonic op-
erators are not a new thing. For example Schwinger’s Oscillator model of
angular momentum [1] is similar however the visualization is different. The
interpretation in this model is a two spin 1/2 particles corresponding to spin
up and down. This is distinctly different from a two-level system in which
we can have infinite many particles corresponding to different spin.

From a societal and ethical point of view, one can argue if it is worth to
spend money in theoretical research instead of applications of this or in other
part of the society. All research can be used in a harmful and unethical way
if it’s in the wrong person’s hand.

5.1 Conclusion

An important part of theoretical work is the visualization by models. De-
scribing the concepts of physics and finding connection between the different
parts is a way to understand the concepts better. Describing spin as a 2 en-
ergy level system is interesting and could be investigated further. It would be
interesting to use the dimer model and apply it on spin chains for example.
A comparison with other distribution functions would also be interesting.
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