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A B S T R A C T

The dynamics of magnetic moments consists of a precession around the magnetic field direction and a
relaxation towards the field to minimize the energy. While the magnetic moment and the angular momentum
are conventionally assumed to be parallel to each other, at ultrafast time scales their directions become
separated due to inertial effects. The inertial dynamics gives rise to additional high-frequency modes in the
excitation spectrum of magnetic materials. Here, we review the recent theoretical and experimental advances
in this emerging topic and discuss the open challenges and opportunities in the detection and the potential
applications of inertial spin dynamics.
1. Introduction

The increasing challenge of processing and storing a rapidly grow-
ing amount of digital information requires novel technological solutions
operating at smaller length scales and at increased speed, yet in a more
energy-efficient manner. While current magnetic devices enable data
storage on short length scales with a low energy consumption, reading
and rewriting the bits using magnetic field pulses [1] is not possible
below the nanosecond time scale.

To manipulate the spins on shorter time scales, electrical currents
and ultrafast optical laser pulses have been employed. These methods
enable ultrafast demagnetization within femtoseconds [2] and magne-
tization switching within picoseconds in a broad variety of magnetic
materials [3–8]. Many aspects of ultrafast demagnetization and switch-
ing can be successfully described either phenomenologically [9,10],
or microscopically based on the Landau–Lifshitz–Gilbert (LLG) equa-
tion [11,12] in its stochastic form [13–15]. While the latter approach
is widely applied to modelling magnetization dynamics in the presence
of thermal fluctuations, it relies on the crucial assumption that the
spin degrees of freedom are coupled to a heat bath responsible for
the dissipation as well as the thermal noise, while details of the con-
siderably faster electronic and lattice degrees of freedom constituting
the heat bath are neglected [13,16]. Recent derivations of the LLG
equation based on a relativistic theory [17,18] have proven that this
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approximation is no longer justified if the spin directions significantly
vary over the course of femtoseconds.

At ultrashort time scales, the LLG equation has to be corrected
by accounting for the fact that the magnetization direction can no
longer instantaneously follow the angular momentum. This delay can
be described by appending an inertial term including the second time
derivative of the magnetization to the LLG equation [19–24]. This phe-
nomenological consideration is supported by various derivations of the
inertial term based on microscopic relativistic quantum theories [17,
18,25,26]. There are numerous theoretical predictions on how the
signatures of inertial dynamics can be detected, but experimental obser-
vations are limited so far. Most likely this can be attributed to the fact
that conventional magnetic measurements focus on the low-frequency
regime, typically on the GHz range in ferromagnets, where the inertia
plays little role and its effects may alternatively be explained based on
the conventional LLG equation. However, the magnetic moments not
only experience precession around the effective field in the presence
of the inertial term, but they also perform a high-frequency nutation
around the angular momentum, see Fig. 1. Hence, the nutation gives
rise to an additional peak in the ferromagnetic resonance spectrum in
the high-frequency regime [27]. This resonance is typically found in the
THz range in contrast to the conventional precession resonance at GHz
frequencies. The most convincing experimental signatures of inertial
vailable online 15 May 2023
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dynamics to date are based on the observation of this high-frequency
response in NiFe, CoFeB [28] and Co [29] films. Propagating nutational
spin waves have also been predicted to possess frequencies in the THz
regime [30], but have not been observed experimentally so far.

In this review, we first describe the inertial LLG equation by mo-
tivating the precession, damping and inertial terms. We discuss the
consequences of inertial dynamics on resonance spectra, on the spin-
wave dispersion and on switching processes not only in ferromagnets,
but also in antiferromagnets and ferrimagnets. We also outline the
challenges and opportunities concerning the experimental observation
of inertial spin dynamics, paving the way towards a microscopic un-
derstanding and possible technological applications of the evolution of
magnetic moments on ultrafast time scales.

2. Magnetization dynamics

Here, we summarize the main points of LLG dynamics, and point
out in which aspects it has to be modified at ultrashort time scales,
culminating in the formulation of the inertial LLG equation.

2.1. Precession and damping dynamics

When a magnetic moment 𝑴0 is placed in an external magnetic
field 𝑩, the corresponding energy is  = −𝑴0 ⋅ 𝑩. The energy is
minimized when the direction of the magnetic moment is parallel to
the direction of the magnetic field. In classical electrodynamics, the
magnetic moment is represented by a charged particle moving along
a closed curve, establishing a relation between its angular momentum
𝑳0 and magnetic moment 𝑴0 via the relation 𝑴0 = 𝛾𝑳0, where 𝛾 is
the gyromagnetic ratio. The rate of change of angular momentum is
equal to the torque, leading to the precessional motion of the magnetic
moment [31]

�̇�0 = −𝛾𝑴0 × 𝑩 , (1)

for electrons with a negative charge −𝑒 and mass 𝑚. Note that the
magnitude of the magnetic moment 𝑀0 remains constant. An identical
quation of motion may be derived by treating the moment quantum-
echanically. The only difference is in the value of the gyromagnetic

atio 𝛾 = 𝑔𝑒∕ (2𝑚), where the gyromagnetic factor is 𝑔 = 1 for classical
articles and is close to 𝑔 ≈ 2 for electrons in a solid where the
uantum-mechanical spin angular momentum is the dominant contri-
ution to the magnetic moment. The value 𝛾 = 1.76 ⋅ 1011 T−1s−1 for
= 2 sets the characteristic frequencies of magnetic moment dynamics

n the gigahertz range for typically achievable magnetic field values of
few Tesla.

It is known that the magnetic moment of ferromagnets does not
nly precess around the field, but also minimizes its energy by becom-
ng parallel to it within microscopic time scales. To incorporate this
xperimental fact, adding a phenomenological damping term to the
quation of motion was suggested by Landau and Lifshitz [11]. An alter-
ative formulation of the damped equation of motion was proposed by
ilbert [12], setting an upper bound on the damping coefficient in the
andau–Lifshitz formalism to better accommodate experimental obser-
ations. For an ensemble of interacting magnetic moments, the mag-
etization dynamics can be described by the Landau–Lifshitz–Gilbert
LLG) equation of motion [11,12],

̇ 𝑖(𝑡) = −𝛾𝑖𝑴 𝑖 × 𝑩eff
𝑖 +

𝛼𝑖
𝑀0,𝑖

𝑴 𝑖 × �̇� 𝑖 , (2)

here 𝑖 stands for the indices of the magnetic moments and 𝑀0,𝑖 are
he magnitudes of the moments, which are still conserved during the
ime evolution. 𝛼𝑖 are the Gilbert damping parameters that phenomeno-
ogically describe the energy dissipation in terms of the coupling of the
agnetic moments to the considerably faster degrees of freedom. The

ypical frequency scale of the dissipation is given by 𝛼𝑖𝛾𝑖∕
(

1 + 𝛼2𝑖
)

𝐵,
hich is usually much slower than the precession dynamics for com-
on values of 𝛼 ∼ 10−5 − 10−2. Eq. (2) can be readily rewritten for
2

𝑖

continuous magnetization field 𝑴(𝒓) with saturation value 𝑀S, as
riginally proposed by Landau and Lifshitz [11]. The effective field
eff
𝑖 can be calculated from the Hamiltonian  of a magnetic system

ollowing the definition 𝑩eff
𝑖 = −𝜕∕𝜕𝑴 𝑖 in the discrete case, replaced

y the free energy  and 𝑩eff
𝑖 = −𝛿∕𝛿𝑴 in the continuum limit. The

amiltonian contains interactions of the magnetic moments with the
xternal field through the Zeeman term, with the atomic lattice through
agnetocrystalline anisotropy terms, and with each other in the form

f dipolar and exchange interactions.
Though the original LLG equation is based on a phenomenolog-

cal description [11,12], several theories on the microscopic origins
f the Gilbert damping have been put forward. In particular, the
ilbert damping has been proposed to originate from the breathing
ermi surface model [32], the torque–torque correlation model [33–
5], scattering theory formalism [36], linear-response theory [37],
nd relativistic Dirac theory [38,39]. The damping coefficient has
lso been generalized to a tensor [35,36,38–40], which is responsible
or anisotropic damping observed in experiments [41,42]. Since the
agnetic moment primarily stems from the spin angular momentum
hile the damping describes coupling to the lattice degrees of freedom,
common point of these microscopic theories is that the damping

riginates from the spin–orbit coupling.
The LLG equation (2), which describes the dynamics of the mean

alue of the magnetization, can be augmented to incorporate the effects
f thermal fluctuations. Brown proposed [43,44] that a thermal noise
erm should be added to the effective field such that 𝑩eff

𝑖 = − 𝜕
𝜕𝑀𝑖

+𝜻 𝑖(𝑡),
turning it into a stochastic differential equation. This approach was
generalized to interacting spin systems later [45,46]. Assuming that the
system follows the Boltzmann distribution in thermal equilibrium, this
noise term has the following properties:

⟨𝜁𝑖𝜂(𝑡)⟩ = 0 (3)

⟨𝜁𝑖𝜂(𝑡)𝜁𝑗𝜃(𝑡′)⟩ = 𝛿𝑖𝑗𝛿𝜂𝜃𝛿(𝑡 − 𝑡′)
2𝛼𝑖𝑘B𝑇
𝛾𝑖𝑀0,𝑖

(4)

where 𝜂 and 𝜃 denote Cartesian components, 𝑘B is the Boltzmann
constant and 𝑇 denotes the temperature of the system. This corresponds
to white noise with zero expectation value, which is uncorrelated in
space, time and Cartesian components. Similarly to the damping term,
the noise describes coupling to the faster electronic degrees of freedom,
which can be considered to be uncorrelated at the time scale of the spin
dynamics. Regarding the phononic degrees of freedom, the separation
of time scales is less straightforward, and the microscopic description
of the coupling between spins and phonons is a subject of current
research [47]. The connection between dissipation and fluctuations is
also expressed by the Einstein relation (4). An alternative form of the
stochastic LLG equation was proposed by Kubo and Hashitsume [48],
primarily differing in the scaling of the parameters from Brown’s for-
mulation, similarly to the Landau–Lifshitz and Gilbert forms of the LLG
equation. If it is assumed that the heat bath consisting of phonons and
electrons evolves at faster time scales than the spin system, including
a white noise in the equation is justified. However, such a separation
and averaging out becomes invalid for femtosecond magnetization
dynamics because the electron relaxation time in metals is on the order
of 10 fs [49]. Using a stochastic field with a coloured noise may be more
accurate in such cases [50].

2.2. Inertial dynamics

As emphasized above, both the dissipation and the thermal noise
term in the stochastic LLG equation were introduced under the as-
sumption that the relatively slow motion of the magnetic moments
is only influenced by an average of the other degrees of freedom.
At shorter time scales, additional effects have to be included in the
equation of motion. First, describing the evolution of the magnetic
moments on time intervals comparable to the time between electron
and phonon scattering events requires going beyond the instantaneous
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Fig. 1. Schematic diagram of ILLG spin dynamics displaying the torques responsible
for spin precession (purple), damping (green) and nutation (blue); from Ref. [51].

values of the magnetic moments in the LLG equations by including
memory effects [19,25]. Second, it has been already pointed out by
Gilbert [12] that although precession also exists in classical mechanics,
the correspondence between the dynamics of a magnetic moment and a
spinning top is incomplete since the former does not possess a physical
inertial tensor when described by the LLG equation. Third, at these
time scales the excitation energies of the magnetic moments become
comparable to those of electronic excitations, requiring a common
quantum treatment of the degrees of freedom.

2.2.1. Classical theory
While quantum electrodynamics provides an accurate description of

the motion at high energy scales, here we discuss time scales ranging
from 1 fs to 1 ps where a quasiclassical description remains valid.
Both memory effects and the problem of the inertial tensor of magnetic
moments may be treated by adding a second time derivative to Eq. (2),
resulting in the inertial LLG (ILLG) equation

�̇� 𝑖(𝑡) = −𝛾𝑖𝑴 𝑖 × 𝑩eff
𝑖 +

𝛼𝑖
𝑀0,𝑖

𝑴 𝑖 × �̇� 𝑖 +
𝜂𝑖

𝑀0,𝑖
𝑴 𝑖 × �̈� 𝑖 , (5)

Here, 𝜂𝑖 is the inertial relaxation time [28], and the 𝑴 𝑖 × �̈� 𝑖 form of
the last term ensures the conservation of the length of the magnetic
moments.

Memory effects can be fully treated by transforming the LLG equa-
tion into an integro-differential equation, as was derived in Ref. [19]
for spin-lattice and in Refs. [25,52] for spin-electron coupling. These
types of equations are difficult to treat even numerically and require
an expansion of the time integral, which leads to the damping and
inertial terms containing first and second time derivatives, respectively.
Third-order time derivatives were also included in Ref. [19], although
it was emphasized that this form of the equation is not applicable
at high frequencies. Indeed, higher-order derivatives are expected to
lead to causality breaking, as is also known from the example of the
Abraham–Lorentz force in electrodynamics.

An alternative approach to derive Eq. (5) is based on the mechanical
analogy with rigid-body motion, as is explained in detail in Refs. [21,
22]. The magnetic moment is pictured as a symmetric top, where
𝑴 𝑖∕𝑀0,𝑖 describes the direction of the axis of the top, which is now
allowed to deviate from the direction of the angular momentum 𝑳𝑖.
In the rotating frame where the axis of the top is fixed along the �̂�
direction, the inertial tensor reads

𝐼𝑖 =
⎛

⎜

⎜

⎝

𝐼𝑖,1 0 0
0 𝐼𝑖,1 0
0 0 𝐼𝑖,3

⎞

⎟

⎟

⎠

, (6)

and the connection between the angular momentum 𝑳𝑖 = (𝐿𝑖,1, 𝐿𝑖,2, 𝐿𝑖,3)

and the angular velocity Ω = (𝛺 ,𝛺 ,𝛺 ) is given by 𝑳 = −𝐼 Ω ,
3

𝑖 𝑖,1 𝑖,2 𝑖,3 𝑖 𝑖 𝒊
where the negative sign is introduced to follow the sign convention for
𝛾𝑖 used here. The direction of 𝑴 𝑖 follows the time evolution

�̇� 𝑖 = Ω𝑖 ×𝑴 𝑖 , (7)

by rotating with angular velocity Ω𝑖. Taking a cross product on both
sides with 𝑴 𝑖 = 𝑀0,𝑖�̂�, utilizing the double cross product 𝑴 𝑖 ×
(

Ω𝑖 ×𝑴 𝑖
)

= Ω𝑖𝑀2
0,𝑖 − 𝑴 𝑖

(

Ω𝑖 ⋅𝑴 𝑖
)

= Ω𝑖𝑀2
0,𝑖 − 𝑀2

0,𝑖𝛺𝑖,3�̂� and multi-

plying by −𝐼𝑖, one obtains

𝑳𝑖 =
1
𝛾𝑖
𝑴 𝑖 −

𝜂𝑖
𝛾𝑖𝑀0,𝑖

𝑴 𝑖 × �̇� 𝑖 , (8)

where the notations 𝑀0,𝑖∕𝛾𝑖 = −𝐼𝑖,3𝛺𝑖,3 and 𝜂𝑖∕𝛾𝑖 = 𝐼𝑖,1∕𝑀0,𝑖 were
introduced. The time evolution of the angular momentum is governed
by the precession and damping torques known from the LLG equation,

�̇�𝑖(𝑡) = −𝑴 𝑖 × 𝑩eff
𝑖 +

𝛼𝑖
𝛾𝑖𝑀0,𝑖

𝑴 𝑖 × �̇� 𝑖 . (9)

Substituting Eq. (8) into Eq. (9) yields the ILLG Eq. (5).
In Gilbert’s derivation of the LLG equation, 𝐼𝑖,1 was set to zero

while 𝐼𝑖,3 was finite, which cannot occur for any mechanical rigid
body [12]. For a finite 𝐼𝑖,1 or 𝜂𝑖, the angular momentum and the axis of
the spinning top identified with the magnetic moment direction are no
longer parallel to each other, and 𝑴 𝑖 performs a fast nutation around
𝑳𝑖. It is interesting to note that these fast and slow degrees of freedom
are well separated [53]. A schematic diagram of the ILLG equation is
shown in Fig. 1, displaying spin precession, relaxation and nutation.

The ratio 𝜂𝑖∕𝛾𝑖 stemming from the moment of inertia 𝐼𝑖,1 must
necessarily be positive, which supports the interpretation of 𝜂𝑖 as an
inertial relaxation time. This coefficient enables the introduction of the
kinetic energy term

 =
∑

𝑖

𝜂𝑖
2𝛾𝑖𝑀0,𝑖

�̇�2
𝑖 , (10)

the lack of which was also pointed out by Gilbert for 𝐼𝑖,1 = 0. Taking
the cross product of Eq. (5) with 𝑴 𝑖, then the scalar product with �̇� 𝑖
results in

̇ + ̇ +
∑

𝑖

𝛼𝑖
𝛾𝑖𝑀0,𝑖

�̇�2
𝑖 = 0 , (11)

describing the conservation of the total energy  + in the absence of
damping [54]. The difference  − corresponds to the Lagrangian [22].

Inertial magnetization dynamics of ferromagnetic nanoparticles in-
cluding thermal excitations was investigated in Ref. [55]. It was found
that adding the thermal noise term 𝜁𝑖 with the moments given by
Eqs. (3) and (4) to the effective field can correctly account for the
thermal fluctuations within the ILLG equation as well. The equilibrium
Boltzmann distribution is defined by the sum of the kinetic and poten-
tial energies  +  in this case, instead of only the potential energy
for the stochastic LLG equation. The shorter time scales of inertial
dynamics support the arguments in favour of replacing the white noise
with a coloured noise [50], which has not been considered in the ILLG
formalism so far.

2.2.2. Microscopic theory
On a microscopic level, the ILLG equation has been derived from

an extension of the breathing Fermi surface model [25,52], from the
torque–torque correlation model [56], as well as in atomistic [26] and
in Dirac relativistic quantum [17,18] frameworks. The latter approach
is based on the derivation of a Pauli–Schrödinger Hamilton operator
from the Dirac equation,

FW =
(𝒑 − 𝑒𝑨)2

2𝑚
+ 𝑉 − 𝑒ℏ

2𝑚
𝝈 ⋅ 𝑩 + 

(

1
𝑚2𝑐2

)

+ 
(

1
𝑚3𝑐4

)

+⋯ (12)

by applying the Foldy–Wouthuysen transformation [57]. The Zee-
man term 𝑒ℏ∕ 2𝑚 𝝈 ⋅ 𝑩 is responsible for the precession, where 𝝈
( )
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p

a

𝜔

Table 1
Comparison between the values of the inertial relaxation time 𝜂𝑖
obtained from various experimental and theoretical methods.

Sample 𝜂𝑖 (fs) Ref.

Experiment

CoFeB, NiFe 284–318 [28]
Py, Co 0.83–3.1 [60]
Co 75–120 [29]

Theory

estimates ≈1–100 [21,22,26]
bulk Fe, Co, Ni 5.9 − 6.5 × 10−3 [56]
3𝑑 and 4𝑑 impurities ≈10–100 [61]

denotes the vector of Pauli matrices. The spin-dependent part of the
first-order relativistic correction term 

(

1
𝑚2𝑐2

)

results in the Gilbert
damping, which contributes to the imaginary part of the magnetic sus-
ceptibility or the finite lifetime of excitations. The spin-dependent part
of the second-order relativistic correction 

(

1
𝑚3𝑐4

)

includes higher-
order spin–orbit coupling terms, and leads to intrinsic inertial dynam-
ics [17,18] modifying the real part of the susceptibility. The intrinsic
Gilbert damping parameter 𝛼𝑖 and inertial relaxation time 𝜂𝑖 are gener-
ally considered to be constant in Eq. (5). However, we emphasize that
𝛼𝑖 and 𝜂𝑖 have to be time-dependent for pulsed, non-harmonic applied
fields [17,38], since the ILLG equation with the constant parameters
may not capture the expected dynamics in the ultrafast regime [58,59].

One of the pivotal questions of inertial spin dynamics is the time
scales on which it is applicable, defined by the inertial relaxation time
𝜂𝑖. The experimentally determined and theoretically predicted values of
𝜂𝑖 are summarized in Table 1. Although the phenomenological theory is
not capable of calculating 𝜂𝑖, values of around 1–100 fs were proposed
in Refs. [21,22]. A value close to a single femtosecond was proposed
in Ref. [26], and deduced from ferromagnetic resonance measurements
of the precession frequency in Ref. [60]. First-principles calculations in
Ref. [56] obtained smaller absolute values of 𝜂𝑖 ≈ 10−3 fs, while in
Ref. [61] inertial relaxation times typically in the range of 10 − 100 fs
have been determined from ab initio simulations of the dynamical mag-
netic susceptibility. The detection of the resonant excitation of nutation
by time-resolved magneto-optical measurements reported in Ref. [28]
arrived at a value for 𝜂𝑖 on the order of 100 fs in our convention. A
recent measurement on Co films gave a value 𝜂𝑖∕𝛼𝑖 ≈ 750 fs [29] which
also suggests that 𝜂𝑖 ≈ 100 fs. The large deviation between the values
is remarkable since although the methods were different, almost all
of the ab initio calculations and the experiments were performed for
the 3𝑑 transition metal ferromagnets Fe, Co and Ni or their alloys.
Even less reassuring is the fact that the 𝜂𝑖∕𝛾𝑖 values were found to be
negative in certain cases [19,52,56,60,61]. While a negative 𝜂𝑖∕𝛾𝑖 may
be substituted in the linear-response regime as was done in Ref. [60],
the complete non-linear ILLG equation (5) is not meaningful for 𝜂𝑖∕𝛾𝑖 <
0, since the magnetic moments could accelerate infinitely to decrease
their kinetic energy in Eq. (10). A similar restriction is obtained for
the damping 𝛼𝑖∕𝛾𝑖 > 0, otherwise the dissipation term would increase
the energy over time in Eq. (11). Note that although Refs. [21,30] use
an opposite sign convention for the precessional term, the 𝛼𝑖∕𝛾𝑖 and
𝜂𝑖∕𝛾𝑖 ratios are positive as required by energetic considerations. The
estimated values of 𝜂𝑖 ≈ 1−100 fs are comparable to electron relaxation
times in metals. Since the quasiclassical Boltzmann equation has proven
successful in describing the non-equilibrium distribution of electrons
and phonons on similar time scales, the ILLG equation can similarly be
expected to correctly account for magnetic moment dynamics in this
regime.

We note that non-harmonic time-dependent fields can also produce
field-derivative torques, along with the ILLG spin dynamics. These spin
torques are relativistic in nature and have been derived from Dirac
4

theory [17,62].
Fig. 2. Ferromagnetic resonance for a single macrospin. The dissipated power com-
pared between the inertia-free (𝜂 = 0 ps) and inertial (𝜂 = 1 ps) cases. The negative
frequency of nutation indicates the opposite handedness of this motion compared to
precession. The Hamiltonian is given by  = −𝑀𝑧𝐵ext − 𝐾𝑀2

𝑧 ∕𝑀
2
0 . The calculation

parameters are 𝛾 = 1.76×1011 T−1s−1, on-site anisotropy energy 𝐾 = 10−23 J, 𝑀0 = 2𝜇B,
𝛼 = 0.05, and 𝐵ext = 1 T. The data are taken from Ref. [54].

3. Inertial effects in ferromagnetic resonance

3.1. Ferromagnets

For testing the accuracy of the model, it is necessary to connect
the theoretical predictions based on the ILLG equation (5) to ex-
perimentally observable quantities. One of the possible methods is
ferromagnetic resonance (FMR) where the linear response to a spa-
tially homogeneous time-dependent external field is measured [63]. A
ferromagnet placed in a static external field 𝐵ext may be treated as a
macrospin in FMR, which was investigated using numerical simulations
of the ILLG equation in Ref. [27]. The magnetic susceptibility of the
macrospin to a circularly polarized excitation of frequency 𝜔 is given
by [54,64]

𝜒(𝜔) =
𝛾𝑀0

𝛾𝐵ext − 𝜔 − 𝜂𝜔2 + 𝑖𝛼𝜔
. (13)

With the help of this susceptibility, one can calculate the dissipated
ower 𝑃 = 𝜔𝙸𝚖[𝜒(𝜔)], shown in Fig. 2. The dissipated power shows

peaks in the vicinity of the poles of the susceptibility,

𝜔p =
−1 +

√

1 + 4𝜂𝛾𝐵ext
2𝜂

≈ 𝛾𝐵ext
(

1 − 𝜂𝛾𝐵ext
)

(14)

nd

n =
−1 −

√

1 + 4𝜂𝛾𝐵ext
2𝜂

≈ −1
𝜂
− 𝛾𝐵ext

(

1 − 𝜂𝛾𝐵ext
)

, (15)

where 𝜔p and 𝜔n denote the precession and nutation frequencies,
respectively. Approximate expressions for the frequencies were already
derived in Ref. [65], which reproduce the first term in the expansion.

The inertia causes a redshift of the precession frequency 𝜔p in
Eq. (14), as is visible in Fig. 2. Unfortunately, this effect is not directly
observable experimentally, since the inertia cannot be turned off in
magnetic materials. Moreover, the resonance frequency may also be
shifted by anisotropy effects discussed below, and the strength of the
anisotropy terms would have to be also determined from the position
of the FMR peak. As shown in Fig. 4, the inertia also influences the
dependence of the precession frequency on the external field. The
effective gyromagnetic ratio 𝛾eff = 𝜕𝜔p∕𝜕𝐵ext is decreased, and the
frequency is no longer linear in the external field but also contains
a term quadratic in 𝐵ext with a negative sign, which could represent
an experimentally detectable signature. This direction was pursued
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Fig. 3. Experimental signatures of the inertial dynamics. Comparison between Fourier
transforms of the probe signal in pump-probe measurements (solid line, open circles)
and numerical simulations based on Eq. (5) for a single macrospin for (a) face-centred
cubic (blue), (b) body-centred cubic (orange), and (c) hexagonal close-packed (green)
cobalt thin films. The nutational resonance and its higher harmonics are visible in
the experimental spectra. (d) Simulated response of the magnetization in the time
domain. The semitransparent line shows the time integral of the pump pulse. Figure
from Ref. [29].

in Ref. [60], where it was observed that the frequency is actually
blueshifted at high fields, i.e., the coefficient of the 𝐵2

ext term is positive.
Based on the energetical considerations fixing the sign of 𝜂∕𝛾 > 0
discussed above, this seems to indicate that the redshift caused by the
inertia is obscured by further effects not taken into account in Eq. (14).

More promising for the observation is the emergence of a second
nutational resonance peak 𝜔n in Fig. 2. The negative frequency denotes
the opposite handedness of this excitation compared to the counter-
clockwise precession [30,54]. Since the LLG equation is not capable of
explaining the emergence of magnetic excitations in ferromagnets at
such high frequencies, a resonant excitation at the nutation frequency
provides a distinct signature of inertial dynamics. Such high-frequency
resonances were recently detected via time-resolved magneto-optical
pump-probe techniques in Refs. [28,29]. Typical experimental spectra
from Ref. [29] are shown in Fig. 3. The presence of higher harmonics in
the experimental signal not predicted by linear-response theory might
represent an indication of non-linear processes.

A further possibility for the experimental investigation of the nu-
tation resonances is based on spin pumping. In this case, a spin cur-
rent is injected from an externally excited ferromagnet into an ad-
jacent non-magnetic metal. This spin current is predicted to change
sign as the frequency is changed from the precession to the nutation
resonance [66].

The inertial dynamics of a general anisotropic macrospin in the
linear-response formalism was investigated in Refs. [51,67]. After ex-
pressing the free-energy density 𝐹 in polar coordinates 𝜗 and 𝜑, the
excitation frequencies are found from the solution of the fourth-order
secular equation
[

𝜔2

𝛾2
−

(

1 + 𝛼2
)

𝑀2
S sin

2𝜗

(

𝜕𝜗𝜗𝐹𝜕𝜙𝜙𝐹 −
(

𝜕𝜗𝜙𝐹
)2
)

]

− 𝜂2𝜔2
[

𝜔2

𝛾2
− 1

𝜂𝛾𝑀S

(

𝜕𝜗𝜗𝐹 +
𝜕𝜑𝜑𝐹

sin2𝜗

)]

− 𝑖𝜔 𝛼
(

𝜕𝜗𝜗𝐹 +
𝜕𝜑𝜑𝐹

)

= 0,

(16)
5

𝛾𝑀S sin2𝜗
Fig. 4. Frequency-field relation of precessional and nutational resonances. The explicit
solution of Eq. (16) for the precessional resonance (orange line) shows a redshift
compared to the non-inertial Smit–Beljers case (dashed blue line), and the nutational
resonance (red) demonstrates a blueshift compared to the zeroth-order approximation
1∕𝜂. The calculation parameters for a thin film with cubic magnetocrystalline anisotropy
are 𝜇0𝑀S = 0.9T, 𝛼 = 0.0058, 𝜂 = 284 fs, 𝐾cub1 = 4.9×104 J m−3. The data are taken from
Ref. [51].

The first line corresponds to the Smit–Beljers equation. The second
line includes the inertia. The third line induces the frequency-domain
linewidth of the FMR. Note that the solutions of Eq. (16) can be grouped
into pairs of 𝜔 and −𝜔∗ due to a particle–hole constraint, and the two
frequency pairs describe precessional and nutational excitations.

For instance, if the magnetic field 𝐵ext is applied out-of-plane with
respect to the surface of a film demonstrating cubic magnetocrystalline
anisotropy 𝐾cub1, the free-energy density is given by

𝐹 = −𝐵ext𝑀𝑧 +
1
2
𝜇0𝑀

2
𝑧 +

𝐾cub1

𝑀4
S

(

𝑀2
𝑥𝑀

2
𝑦 +𝑀2

𝑦𝑀
2
𝑧 +𝑀2

𝑥𝑀
2
𝑧

)

, (17)

allowing to find the approximate solution of Eq. (16):

𝜔p
2 ≈ 𝛾2

(

1 + 𝛼2
)

(

−𝜇0𝑀S + 𝐵ext +
2𝐾cub1
𝑀S

)2

×
[

1 − 𝜂𝛾
(

−2𝜇0𝑀S + 2𝐵ext +
4𝐾cub1
𝑀S

)]

,
(18)

𝜔n ≈
1
𝜂
+ 𝛾

(

−𝜇0𝑀S + 𝐵ext +
2𝐾cub1
𝑀S

)

. (19)

The numerical solutions of Eq. (16) are plotted in Fig. 4. In agree-
ment with Eqs. (14) and (15), this approximation shows a redshift for
the precessional resonance compared to the non-inertial Smit–Beljers
case, and a blueshift of the nutational resonance compared to the
zeroth-order approximation 1∕𝜂.

In the undamped limit of the non-linear ILLG equation, analytic
solutions for the magnetization of a macrospin with uniaxial magne-
tocrystalline anisotropy parallel to the external field direction were
obtained in terms of the Jacobi elliptic functions and elliptic integrals in
Ref. [68]. In this work, the nutation frequency was determined in terms
of the inverse period of the Jacobi elliptic function. In addition, the
equilibrium correlation functions of the magnetization at short times
were investigated in Ref. [69].

For the sake of completeness, it should be mentioned that high
resonance frequencies have also been predicted based on the conven-
tional LLG equation due to surface anisotropy effects in ferromag-
netic nanoparticles [70]. These must be distinguished from the reso-
nances caused by the inertial motion of a homogeneous magnetization
discussed here.
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Fig. 5. The precessional and nutational resonance frequencies for antiferromagnets.
The dissipated power is compared between the inertia-free (𝜂 = 0 ps) and inertial
𝜂 = 1 ps) cases. The calculation parameters are 𝛾𝐴 = 𝛾𝐵 = 𝛾 = 1.76 × 1011 T−1s−1,
𝐽 = 10−21 J, 𝐾𝐴 = 𝐾𝐵 = 𝐾 = 10−23 J, 𝑀0,𝐴 = 𝑀0,𝐵 = 2𝜇B, 𝛼𝐴 = 𝛼𝐵 = 𝛼 = 0.05, and
𝐵ext = 1 T. The data are taken from Ref. [54].

3.2. Antiferromagnets and ferrimagnets

Unlike ferromagnets, antiferromagnets and ferrimagnets consist of
multiple magnetic sublattices pointing along different directions. In
two-sublattice systems, the magnetic susceptibility shows two reso-
nances with opposite handedness, similarly to the precessional and
nutational resonances in ferromagnets. Furthermore, the antiferro-
magnetic exchange coupling typically shifts both resonances in anti-
ferromagnets and one of the resonances in ferrimagnets to the THz
regime [71–73]. The other ferrimagnetic resonance usually resides in
the GHz range, because ferrimagnets have a net magnetic moment
similarly to ferromagnets.

It was investigated in Ref. [54] how these resonances are influenced
by the inertia. Two-sublattice systems may be treated as two interacting
macrospins 𝑴𝐴 and 𝑴𝐵 described by the Hamiltonian

 = −
(

𝑀𝐴,𝑧 +𝑀𝐵,𝑧
)

𝐵ext −
𝐾𝐴

𝑀2
0,𝐴

𝑀2
𝐴,𝑧 −

𝐾𝐵

𝑀2
0,𝐵

𝑀2
𝐵,𝑧

+ 𝐽
𝑀0,𝐴𝑀0,𝐵

𝑴𝐴 ⋅𝑴𝐵 , (20)

here 𝐾𝐴∕𝐵 are the uniaxial anisotropy coefficients, 𝑀0,𝐴 and 𝑀0,𝐵 are
he sizes of the magnetic moments and 𝐽 is the exchange interaction.
he linear response is calculated around the state where 𝑴𝐴 and 𝑴𝐵
re parallel and antiparallel to the external field, respectively. The
esonance frequencies can be identified as the poles of the susceptibility
ensor. Although Eq. (20) possesses a cylindrical symmetry simplifying
he calculations, this requires solving a fourth-order algebraic equation
ue to the two sublattices.

In the antiferromagnetic limit with 𝜂𝐴 = 𝜂𝐵 = 𝜂, 𝛾𝐴 = 𝛾𝐵 = 𝛾,
𝑀0,𝐴 = 𝑀0,𝐵 = 𝑀0 and 𝐾𝐴 = 𝐾𝐵 = 𝐾, the undamped excitation
frequencies may be approximated as [54]

𝜔p± = ±
𝛾
𝑀0

√

4𝐾𝐽
√

1 + 2𝜂𝛾𝐽∕𝑀0
+

𝛾𝐵ext
1 + 2𝜂𝛾𝐽∕𝑀0

, (21)

n± = ± 1
𝜂
√

1 + 2𝜂𝛾𝐽∕𝑀0 −
𝛾𝐵ext

1 + 2𝜂𝛾𝐽∕𝑀0
, (22)

for 𝐾,𝑀0𝐵ext ≪ 𝐽 . These resonances are observable as peaks in the
issipated power in Fig. 5. Similarly to ferromagnets, the number of
eaks is doubled and the precessional resonance frequency is reduced
ith the introduction of magnetic inertia. Note that the redshift of the
recessional resonance frequency is determined by the dimensionless
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arameter 𝛾𝜂𝐽∕𝑀0 in antiferromagnets and 𝛾𝜂𝐵ext in ferromagnets,
Fig. 6. The precessional and nutational resonance frequencies for ferrimagnets as a
function of the inertial parameter 𝜂. The calculation parameters are 𝑀0,𝐴 = 2𝜇𝐵 ,𝑀0,𝐵 =
5𝑀0,𝐴 = 10𝜇𝐵 , 𝛾𝐴 = 𝛾𝐵 = 1.76 × 1011 T−1s−1, 𝐽 = 10−21 J, 𝐾𝐴 = 𝐾𝐵 = 10−23 J,
𝛼𝐴 = 𝛼𝐵 = 0.05, and 𝐵ext = 1 T. The figure is taken from Ref. [54].

therefore it is exchange enhanced in the former. As mentioned in the
ferromagnetic case, this shift itself is not detectable experimentally
since it is not possible to distinguish the influence of inertia from, e.g., a
different value of the anisotropy. Furthermore, antiferromagnetic pre-
cessional resonance peaks have a much lower intensity as can be seen
from the comparison between Figs. 2 and 5. However, the nutational
peaks have a much higher intensity and a sharp lineshape, since the
exchange enhancement of the effective damping parameter only affects
the precessional peaks [54]. Although so far there are no experimental
investigations of the magnetic inertia in antiferromagnets reported in
the literature, these properties indicate that observing the nutational
resonances would be possible in them just as in ferromagnets. Further-
more, since the precessional resonances also have higher frequencies,
the same THz methods could be used for the detection of precessional
and nutational resonances, while the GHz precessional frequencies in
ferromagnets are typically measured using a different approach.

The numerically calculated resonance frequencies in a ferrimagnet
are displayed in Fig. 6. The precessional frequency 𝜔p+ only starts to
be influenced by the nutational frequency 𝜔n− for large values of 𝜂,
similarly to the ferromagnetic case. In contrast, the strong interaction
between the 𝜔p− and 𝜔n+ frequencies resembles the antiferromag-
netic case. Therefore, the same considerations as above concerning the
possible experimental detection of the nutational resonance apply here.

4. Nutational spin waves

Due to the interaction between the magnetic moments, the lin-
earized ILLG equation also possesses propagating solutions known as
spin waves, illustrated in Fig. 7(a). Taking inertia into account, nuta-
tional spin waves also appear alongside the conventional precessional
spin waves. Since nutational spin waves have THz frequencies com-
pared to the typically GHz frequencies of the precessional spin-wave
modes in ferromagnets, they can be imagined as a small deviation on
top of a ‘‘frozen’’ precessional motion, shown in Fig. 7(b). Convention-
ally the spin-wave dispersion relation is separated into two regimes: at
long wave vectors comparable to the sample sizes magnetostatic effects
dominate, while at shorter wavelengths the short-ranged exchange
interactions play the most important role.

The magnetostatic nutational waves were studied in in-plane mag-
netized ferromagnetic thin films in Ref. [74]. It was found that for
the spin waves propagating perpendicular to the applied magnetic
field (Damon–Eshbach configuration), inertial effects on magnons are
twofold: the frequency of precessional waves is reduced and nutational
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Fig. 7. (a) Precessional spin wave without inertia. The blue arrows indicate the motion of the magnetic moments 𝑴 𝑖 in a ferromagnet. (b) Nutational spin wave with a frequency
considerably higher than in (a) plotted with small blue circles on top of the ‘‘frozen’’ precessional motion. Panels (a) and (b) from Ref. [74]. (c) The dispersion branches of
nutational surface spin waves in the THz range 𝜔n, the precessional Damon–Eshbach mode without inertia 𝜔p|𝜂=0, and the precessional Damon–Eshbach mode shifted by inertia
𝜔p. The calculation parameters for the thin film are: 𝜇0𝑀S = 0.9 T, 𝐵ext = 0.1 T, 𝛼 = 0.0058, 𝜂 = 284 fs, film thickness 𝐿 = 40 nm.
surface spin waves emerge, as shown in Fig. 7(c). Notably, nutational
spin waves propagate with a group velocity opposite to their wave
vector, which is only observed for precessional spin waves with wave
vectors parallel to the magnetic field (backward volume modes). The
interaction of spin waves described by the ILLG equation with elec-
tromagnetic waves in ferromagnets was investigated in Ref. [75]. The
interaction leads to the hybridization between magnons and photons
and the opening of avoided crossings in the spectrum. Since the typical
nutational spin-wave frequencies are in the range of 𝜂−1 ∼ 1013 −
1015 s−1, the wave vectors of electromagnetic waves hybridizing with
these modes are around 𝑘 ∼ 105−107 m−1, falling into the magnetostatic
regime.

Nutational exchange spin waves were discussed in Refs. [30,75–
78]. For a nearest-neighbour ferromagnetic exchange interaction 𝐽 ,
the dispersion relation may be approximated in the long-wavelength
regime as

𝜔p,𝒌 ≈ 𝑧𝐽𝑎2

2
𝒌2

(

1 − 𝜂 𝑧𝐽𝑎
2

2
𝒌2

)

, (23)

𝜔n,𝒌 ≈ − 1
𝜂
− 𝑧𝐽𝑎2

2
𝒌2

(

1 − 𝜂 𝑧𝐽𝑎
2

2
𝒌2

)

(24)

for precessional and nutational spin waves, respectively. Here, 𝑧 is the
number of nearest neighbours and 𝑎 is the distance between the corre-
sponding sites. The negative sign of the nutational frequency indicates
an opposite handedness compared to the precessional waves [30], as
already mentioned for the 𝒌 = 𝟎 FMR mode in Eqs. (14) and (15).
If the spin-wave dispersion becomes non-reciprocal, for example due
to the presence of the Dzyaloshinskii–Moriya interaction, the opposite
handedness gives rise to a minimum in the dispersion relation for
opposite wave vectors in the two branches [78]. The precessional and
nutational branches differ by a constant shift 𝜂−1, and the frequencies
of the precessional modes are decreased due to the inertia, as illustrated
in Fig. 8.

Although the dispersion relation of the precessional spin waves is
modified by inertia, similar frequency shifts may also be explained
within the LLG equation by choosing a different saturation magneti-
zation, magnetocrystalline anisotropy term or taking exchange inter-
actions with further neighbours into account. Unless these parameters
are known from independent measurements of static properties which
are not expected to be affected by the inertia, such as the temper-
ature dependence of the magnetization or the critical temperature,
a measurement of the precessional branch only is unlikely to result
in a convincing indication for the prevalence of inertial phenomena.
The same argument holds for the group velocity, the gyromagnetic
ratio or the effective damping parameter which are also influenced
by the inertia [76–78], as mentioned above in the case of the fer-
romagnetic resonance. Experimental results on nutational spin waves
are not available at the moment, but they could provide sufficient
evidence for the theoretical predictions based on the ILLG equation. Of
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Fig. 8. Dispersion relation of exchange spin waves without and with inertia in
ferromagnets: nutational spin waves 𝜔n, inertial precessional spin waves 𝜔p, and non-
inertial precessional spin waves 𝜔p|𝜂=0. Here 𝜔𝑀 = 𝛾𝜇0𝑀S, 𝑘𝑀 =

√

𝜀𝑟𝜔𝑀∕𝑐, where 𝑐 is
the speed of light and 𝜀𝑟 is the relative permittivity of ferromagnets. The calculation
parameters are the following: 𝜇0𝑀S = 0.2 T, 𝐵ext = 0.1 T, 𝜂 = 1 ps, and 𝜀𝑟 = 15.5.

particular interest would be the investigation of nutational spin-wave
modes with a group velocity opposite to their wave vector, as discussed
in the Damon–Eshbach configuration for ferromagnets above and for
exchange spin waves in antiferromagnets in Ref. [78].

5. Magnetization switching in the inertial regime

While linear-response and linear spin-wave theories describe the
time evolution close to the equilibrium state, the switching between
different equilibrium states is a non-linear effect that is also influenced
by the inertial dynamics. The ILLG equation was solved numerically
for a single uniaxial macrospin under the influence of a magnetic field
pulse with zero frequency perpendicular to the easy-axis direction in
Ref. [79]. The switching time was found to be lower in a wide range
of pulse durations in the inertial case than for the non-inertial LLG
equation. However, as emphasized before such a quantitative effect
may be difficult to probe experimentally where inertial and non-inertial
dynamics cannot be compared directly.

In Ref. [80], it was found by combining analytical calculations
and numerical simulations that a resonant excitation of the nutation
amplitude gives rise to a torque that is capable of switching the mag-
netic moment, which effect is unparallelled in the LLG equation. This
phenomenon is illustrated in Fig. 9. Since the switching velocity was
found to be proportional to the square of the nutation amplitude which
scales with the amplitude of the ac excitation field itself, the velocity
increases quadratically with the field amplitude instead of linearly in
the case of switching based on the Larmor precession. This enables
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Fig. 9. Illustration of magnetization switching in the inertial regime. (a) The angular
momentum 𝑳𝑖 and the magnetic moment 𝛾−1𝑴 𝑖 differ by the nutation vector 𝛥𝑳𝑖 due
to the inertial dynamics. The nutation is excited by the oscillating external magnetic
field 𝜇0𝑯osc resonantly at the nutation frequency 𝜔n. (b)–(d) The oscillating field exerts
a torque −𝛾𝛥𝑳𝑖 × 𝜇0𝑯osc on the angular momentum. Since the nutation vector follows
the excitation field with a finite phase shift, the average of the torque over a period of
the excitation is finite. (e) Over several nutation periods, the torque causes a switching
of the angular momentum and the magnetic moment. Figure from Ref. [80].

lower switching times compared to precessional switching for interme-
diate field strengths. Furthermore, it was demonstrated that both 90◦

and 180◦ switching may be achieved for a single macrospin depending
on the linear or circular polarization of the excitation field, while in
antiferromagnets switching to states with the magnetic moments either
perpendicular to or in the plane of the excitation field may be realized
depending on the excitation frequency.

Based on the solution of the Fokker–Planck equation for the inertial
Landau–Lifshitz–Gilbert–Bloch equation, it was argued in Ref. [81] that
inertial effects together with thermal excitations could explain puzzling
effects observed in all-optical magnetization switching, including its
dependence on the polarization of the laser pulse.

6. Conclusion

We reviewed how the inclusion of an inertial term in the qua-
siclassical Landau–Lifshitz–Gilbert equation influences the resonance
frequencies and the spin-wave modes in the linear-response regime,
as well as the switching times in magnetic nanoparticles at ultrafast
time scales. Apart from quantitative changes compared to the Landau–
Lifshitz–Gilbert dynamics, the inertia gives rise to qualitatively new
phenomena such as nutational spin waves and resonances, the excita-
tion of which opens up faster paths for the reversal of the magnetic
moments. Precisely these new phenomena provide the most promising
way to detect signatures of the inertia, since the quantitative changes
may also be interpreted using a different choice of parameters within
the LLG dynamics, and the values of these parameters are not known a
priori.

Experimental observations of these effects have been restricted
to nutational resonances in ferromagnets so far [28,29], which have
considerably higher frequencies compared to the typical precessional
modes. Optical methods appear to be particularly suitable for obtaining
further experimental evidence on inertial effects, because the frequency
of the electromagnetic waves used in these methods falls into the
range where nutational spin waves are expected to emerge, and the
possible control over their polarization may enable different switching
paths. Antiferromagnets may be particularly appealing for this purpose,
since precessional and nutational spin waves in them are located in
the same frequency range, possibly enabling their simultaneous obser-
vation using the same technique. The requirement for adjusting the
8

frequency represents a challenge, in particular because estimates for
the nutational resonance frequency in the literature differ by two orders
of magnitude for similar materials. Further first-principles calculations
of the inertial relaxation time may provide guidance on the choice
of materials for the experiments. Theoretical calculations based on
microscopic models of the interactions of the magnetic degrees of
freedom with electrons, phonons or photons could provide important
comparisons with the quasiclassical description discussed here. A joint
effort from the experimental and theoretical sides is expected to provide
valuable insight into the limits of applicability of inertial spin dynamics
at femtosecond time scales and beyond.
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