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We investigate the interplay between non-Hermiticity and finite temperature in the context of a mixed-state
dynamical quantum phase transition (MSDQPT). We consider a p-wave superconductor model, encompassing
complex hopping and non-Hermiticity, that can lead to gapless phases in addition to gapped phases, to examine
the MSDQPT and winding number via the intraphase quench. We find that the MSDQPT is always present
irrespective of the gap structure of the underlying phase; however, the profile of Fisher zeros changes between the
above phases. Such occurrences of MSDQPT are in contrast to the zero-temperature case in which a DQPT does
not take place for the gapped phase. Surprisingly, the half-integer jumps in winding number at zero temperature
are washed away for finite temperature in the gapless phase. We study the evolution of the minimum time required
by the system to experience MSDQPT with the inverse temperature such that gapped and gapless phases can be
differentiated. Our study indicates that the minimum time shows monotonic (nonmonotonic) behavior for the
gapped (gapless) phase.
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I. INTRODUCTION

Equilibrium phase transitions are associated with the non-
analyticities in the free-energy density that are marked by the
zeros of the partition function, namely Fisher zeros [1–3].
In the nonequilibrium case, the dynamical free-energy den-
sity becomes singular at certain critical times in the complex
time plane where the dynamical quantum phase transitions
(DQPTs) take place [4–14]. When the time-evolved state un-
der a sudden quench is orthogonal to the initial state, the
DQPTs occur corresponding to the vanishing Loschmidt am-
plitude (LA) [15–21]; this refers to the dynamical analogs
of equilibrium quantum phase transitions at quantum critical
points (QCPs). It has been shown that one can observe a
DQPT even without quenching across the QCPs in sudden
quench [12,22–31]. This list extends further to slow quenches
[32–35], Floquet driving [36–41], interacting systems
[24,42–44], bosonic systems [45–47], time crystals [48,49],
etc.

Thanks to the open quantum systems [50,51] and quasi-
particle systems with a finite lifetime [52–54], the Hermitian
description of the problem expands to the non-Hermitian
realm where exceptional points (EPs) appear instead of QCPs
[54–61]. As a result, the dynamical order parameter, namely
the winding number [13,62], characterizing the topological
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properties of the real-time dynamics can show an intrigu-
ing jump profile as far as the nonunitary evolution of the
non-Hermitian is concerned [63–67]. The DQPTs are ex-
perimentally observed in trapped-ion [68], nuclear magnetic
resonance [69], optical lattice [70] systems. On the other
hand, the non-Hermitian effects are practically realized in
metamaterials such as cold-atom [71,72], photonic [73,74],
and acoustic [75,76] systems. Hence, it is important to study
the interplay between a DQPT and non-Hermiticity from a
theoretical as well as experimental point of view.

The finite-temperature extension of a QPT has recently
been examined in the context of LA [77–80]. Following a
similar line of argument, the DQPT is investigated following
an initial thermal distribution instead of a pure quantum state
[10,28,81–85]. This brings in the concept of density matrix,
characterized by an inverse temperature, leading to the mixed-
state DQPT (MSDQPT) where the quantum coherence is lost.
For the open quantum systems, contact with the thermal bath
can potentially lead to such MSDQPT [64,86,87]. Given the
fact that the DQPT persists in finite temperature [10,64] and
it can show an anomaly in the non-Hermitian system [67],
we pose here the following intriguing questions to understand
the interplay between the non-Hermiticity and finite temper-
ature: Can MSDQPT appear (disappear) when the DQPT in
the underlying non-Hermitian system at zero temperature is
absent (present)? Can we differentiate various non-Hermitian
phases by examining the MSDQPT? How do we understand
the topology in the real-time dynamics of the non-Hermitian
MSDQPT?

In this paper, we generalize the framework of the DQPT
and the winding number for non-Hermitian finite-temperature
cases such that the Hermitian and infinite-temperature limits
can be successfully extracted. Considering a one-dimensional
(1D) p-wave superconductor with complex hopping and
non-Hermiticity (see Fig. 1), we find that sudden quench
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within the gapped phase exhibits MSDQPT, unlike the zero-
temperature case [67] (see Fig. 2). Interestingly, we only
observe integer jumps as a signature of MSDQPT for the
sudden quenches within the gapless phases contrasting the
zero-temperature profile of the DQPT as observed previously
(see Figs. 3 and 4). However, the winding number shows
nonmonotonic behavior in one of the gapless phases. The
threshold time, referred to as the minimum critical time tcm,
above which MSDQPT starts appearing, can be different from
the zero- as well as infinite-temperature limit (see Fig. 5). We
can distinguish various gapless and gapped phases by investi-
gating the behavior of tcm with temperature. The above studies
on lossy superconductivity are further extended to the lossy
chemical potential case for completeness. Our study thus
indicates that the temperature can nontrivially modify the dy-
namics of EPs, as evident from the emergence of MSDQPT.

The structure of this paper is the following. We present
the framework of MSDQPT in Sec. II for finite temperature
and non-Hermiticity. Next, we demonstrate the model under
consideration in Sec. III. We examine the MSDQPT results
for a gapped phase in Sec. IV A and for gapless phases in
Secs. IV B and IV C. We differentiate among these phases
with respect to their temperature profile in Sec. IV D. We pro-
vide a plausible explanation behind our findings in Sec. IV E.
Finally, we conclude in Sec. V.

II. MSDQPT FRAMEWORK

Let us consider a two-level system, described by the
Hamiltonian Hk = hk · σ = hkĥk · �σ , that is thermally at-
tached to a heat bath at temperature T = 1/β; here hk =
{hx

k, hy
k, hz

k} and σ = {σx, σy, σz}. Note that Hk can be consid-
ered to be non-Hermitian without loss of generality where
hi

k can be complex with i = x, y, z. The associated density
matrix takes the form ρk = exp(−βHk )/ Tr[exp(−βHk )] =
σ0 − m(ĥk · �σ )/2, where m = tanh(βhk ) (see Appendix A for
more details). We start with this finite-temperature initial
mixed state at time t = 0, i.e., ρk (0) corresponding to Hk,i, and
suddenly quench to the final Hamiltonian Hk, f such that the
LA at a later time t is given by [10] gk (t ) = Tr[ρk (0)Uk (t )] =
cos(hk, f t ) − i sin(hk, f t )Bk with Uk (t ) = e−iHk, f t and Bk =
−m(�hk,i · �hk, f /hk,ihk, f ) (see Appendix B for more details).
The dynamical analog of free energy is called the rate
function, which is given by the logarithm of LA [62],

I (t ) = − 1

2π

∫
BZ

ln(|gk (t )|2). (1)

The nonanalyticities in the rate function, given by
gk (t ) = 0, cause the Fisher zeros to appear in the complex
time plane (see Appendix C for more details)

zn,k = i

(
n + 1

2

)
π

hk, f
+ 1

hk, f
tanh−1(Bk ), (2)

where zn,k = it and n ∈ Z . Note that the zeros of the partition
function are referred to as Fisher zeros. As a result, MSDQPT
occurs at the momentum k = kc and critical time tc = −izn,kc

where Re[zn,kc ] = 0, leading to

π (n + 1/2) Im
[
hkc, f

] + Re
[
hkc, f

]
Re

[
Ckc

]
+ Im

[
hkc, f

]
Im

[
Ckc

] = 0 (3)

and

tc = π

(
n + 1

2

)
Re

[
hkc, f

]
∣∣hkc, f

∣∣2

+ Re
[
hkc, f

]
Im

[
Ckc

] − Im
[
hkc, f

]
Re

[
Ckc

]
∣∣hkc, f

∣∣2 (4)

with Ck = tanh−1(Bk ) (see Appendixes D and E for more
details). To be precise, MSDQPT occurs when zn, k crosses
the positive side of the imaginary axis such that positive tc’s
can only be the meaningful solutions of Eq. (4).

On the other hand, the dynamical phase is given by
(see Appendix F for more details)

�
dyn
k (t ) = −

∫ t

0
dt ′ Re

[
hk, f

tanh(2 Im[hk, f ] t ′) − m

1 − m tanh(2 Im[hk, f ] t ′)

]
.

(5)

The winding number, capturing the dynamical order
parameter [88], appears to be

ν(t ) =
∮

BZ
dk

∂�G
k (t )

∂k
, (6)

with �G
k (t ) = �tot

k (t ) − �
dyn
k (t ) and �tot

k (t ) = − ln( gk (t )
|gk (t )| ).

Hence the geometric phase is the net phase acquired by a
nonequilibrium quantum system other than the dynamical
phase.

The physical picture of MSDQPT refers to the quantum
dynamics of a mixed-state density matrix. The MSDQPT es-
sentially captures the interference between the time-evolved
and initial density matrices. To be precise, where there is a
complete destructive interference in real time, i.e., gk (t ) = 0,
the rate function exhibits a singular behavior. Using the con-
cept of parallel transport, it has been shown that noncyclic and
unitary quantum evolutions of a pure quantum state are related
to that of a mixed state [88]. Therefore, the geometric phases
for a mixed state can be thoroughly investigated with real time
following the analysis of MSDQPT. The non-Hermiticity can
effectively mimic the effect of an external bath attached to a
quantum system, and/or interaction in the quantum system. In
the present context, our study qualitatively tracks the evolu-
tion of the geometric phase, associated with a mixed state, in
an interacting system by considering a non-Hermitian system.

III. MODEL

We consider the non-Hermitian analog of a 1D
p-wave superconductor with complex hopping as follows:
H (γ1, γ2, φ) = �kψkHk (γ1, γ2, φ)ψ†

k with Nambu basis
ψk = (ck, c†

−k ) [67,89–92],

Hk (γ1, γ2, φ) = 2w0 sin φ sin k I +
(

2 sin k + iγ2

2

)
σy

−
(

2w0 cos φ cos k + μ + iγ1

2

)
σz

= hk · σ, (7)

where w0, φ ∈ [0, π/2], , μ are the nearest-neighbor hop-
ping amplitude, the hopping phase, the superconducting gap,
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FIG. 1. The phase diagram of the model Hamiltonian H (0, 1, 0)
[H (0, 1, π/4)], given by Eq. (7), is shown in (a) [(b)]. The white
regions I, II, and III correspond to the gapped phase, while green
regions IV and V denote the gapless phases. With increasing φ,
phase IV increases in size while non-Hermiticity solely determines
the width of phase V.

and the chemical potential, respectively. The non-Hermiticity
in hy

k for the p-wave superconductor gap function, referred
to as the lossy superconductivity, might be caused by the
spatially separated pairing processes [93]. On the other hand,
the non-Hermiticity in hz

k can be originated by the nonre-
ciprocal hopping [94] or/and loss and gain in the chemical
potential [95].

The Hamiltonian Eq. (7) becomes gapless for critical mo-
mentum k∗ when the real part of the energies satisfies the
following condition:

(2w0 cos φ cos k∗ + μ)2 − γ 2
1

4
+ 42 sin2 k∗ − γ 2

2

4

= 4w2
0 sin2 φ sin2 k∗. (8)

This allows us to chart out the phases diagram of the
model Hamiltonian as shown in Fig. 1. For γ1 = 0 and
γ2 �= 0, the gapless phase IV is bounded by horizontal
lines  = ±

√
(4w2

0 sin2 φ + γ 2
2 /4 − μ2 sin2 φ)/(4 − μ2/w2)

between the neighboring gapless phase V that are bounded
by [−2w0 cos φ − γ2/2,−2w0 cos φ + γ2/2] ([2w0 cos φ −
γ2/2, 2w0 cos φ + γ2/2]) in the left (right) side. Notice that
gapless phase IV is primarily caused by the phase of the
complex hopping, while the non-Hermiticity term γ2 is solely
responsible for the other gapless phase V. Phases I and II are
topological, while phase III is trivial. Notice that for the cal-
culation of the DQPT, we discard the identity term in Eq. (7)
as it does not alter nonequilibrium evolution.

IV. RESULT

We focus on the gapped and gapless phases in the above
model in the presence of lossy superconductivity only. The
MSDQPT is studied for the intraphase quench. For com-
pleteness, we briefly discuss the fate of MSDQPT for other
interphase quench. We also discuss the MSDQPT in the
above model with a non-Hermitian chemical potential. The
Hermitian counterpart of MSDQPT is demonstrated in
Appendix I.

A. Quench within gapped phase I

We first examine the MSDQPT following the quench
within phase I as shown in Fig. 1(b). For finite tempera-
ture (β = 1), the Fisher zeros profile, the rate function, the
geometric phase, and the winding number are depicted in

FIG. 2. We demonstrate (a) the lines of Fisher zeros zn,k with
n = 0 (blue), . . . , n = 4 (red), as computed from Eq. (2); (b) nonan-
alytic nature in the rate function I (t ) as obtained from Eq. (1); (c) the
geometric phase �G

k (t ) with time and momenta; and (d) the time
evolution of winding number ν(t ), quantified by Eq. (6) for the case
discussed in Sec. IV A. The Fisher zeros zn,k cross an imaginary axis
twice leading to the critical times tc ≈ 3.22, 3.76, 4.22, 4.59, . . . ,
where ν(t ) shows integer jumps. The white circles in (c) highlight
the abrupt changes in the geometric phase. The parameters are taken
to be (μi, μ f , i,  f ) = (0.1, 0.7, 2.2, 2.2). We consider β = 1,
w0 = 1, φ = π/4, γ1 = 0, and γ2 = 1 for Figs. 2–4.

Figs. 2(a), 2(b), 2(c), and 2(d), respectively, referring to the
fact that MSDQPT takes place. We notice that zn,k always
cross the imaginary axis except for n = nmin = 0. What we
find is that nmin increases from zero as β increases, in-
dicating the emergence of MSDQPT for any temperature.
Interestingly, the nonanalyticities are not visible macroscop-
ically; however, there exists the singular microstructures at
a critical time t = tc ≈ 3.22, 3.76, 4.22, 4.59, . . . over the
oscillating profile. We find abrupt changes in the geomet-
ric phase �G

k (t ), marked by white circles in Fig. 1(c),
around the above values of t for k being close to π .
The profile of �G

k (t ) looks quite different as compared to
the non-Hermitian zero-temperature case. The winding num-
ber shows steplike jumps at the above critical times. Since zn,k

encloses a closed loop by crossing the imaginary axis twice,
the winding number is expected to exhibit both an increase
and a decrease with time. However, we only find a decrease in
the winding number within 3 < t < 5, where zn,k crosses the
real axis once.

B. Quench within horizontal gapless phase IV

We now focus on the occurrences of MSDQPT following
the quench inside the gapless phase IV as shown in Fig. 1(b).
Figure 3(a) depicts the lines of Fisher zeros zn,k crossing an
imaginary axis twice for all values of n. This is in contrast to
the previous situation for the quench inside the gapped phase
I, presented in Fig. 2, where MSDQPT only takes place for
n > nmin. The nonanalyticities (discontinuous change) in the
rate function I (t ) (geometric phase) are captured at the critical
times tc ≈ 1.38, 3.78, 4.71, 5.68, . . . in Fig. 3(b) [3(c)]. The
nonanalyticities in the rate function are more clearly visible in
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FIG. 3. We repeat Fig. 2 for the case discussed in Sec. IV B.
The lines of Fisher zeros zn,k with n = 0 (blue), . . . , n = 4 (red)
cross an imaginary axis twice leading to the nonanalyticities in the
rate function at critical times, tc ≈ 1.38, 3.78, 4.71, 5.68, . . . , around
which the winding number exhibits integer jumps. The parameters
are taken to be (μi, μ f , i,  f ) = (0.1, 0.7, 0.2, 0.2).

the present case as compared to the previous one in Fig. 2(b).
The winding number shows a nonmonotonic jump profile with
time that is caused by the double crossing of imaginary axis by
zn,k . The important point to note here is that these jumps are al-
ways of unit magnitudes unlike the previous zero-temperature
case [67]. The unit jumps are a consequence of the continuous
crossing of Fisher zeros through the imaginary axis that we
find in the present case.

C. Quench within vertical gapless phase V

We now demonstrate the MSDQPT following the quench
within the vertical gapless phase V as presented in Fig. 1(b).
Unlike the previous cases, we find here that zn,k crosses the
imaginary axis once [see Fig. 4(a)]. The nonanalyticities in
the rate function are captured with time in Fig. 4(b). The
geometric phase, shown in Fig. 4(c), exhibits a similar profile
as compared to that of the gapped phase I. The oscillatory
profile of the geometric phase is a common characteristic
of the finite-temperature case. The winding number shows a
monotonic increase with time due to the single crossing of the
imaginary axis by zn,k . The unit jumps in MSDQPT, associ-
ated with finite temperature, are in contrast to the half-integer
jumps of DQPT corresponding to the zero-temperature case
[67]. We additionally check for the φ = 0 case, where we also
do not find the half-integer jumps in the winding number (not
shown here).

D. Distinct temperature profile of MSDQPTs
for phases I, IV, and V

As illustrated above, the MSDQPT takes place in all three
phases irrespective of their gap structure. To be precise, for
a given quench amplitude and temperature, there exist mul-
tiple critical times tc’s. We focus here on the evolution of
the minimum critical time, referred to as tcm, that captures
the minimum time taken by the system to witness the first

FIG. 4. We repeat Fig. 2 for the case discussed in Sec. IV C. The
lines of Fisher zeros zn,k with n = 0 (blue), . . . , n = 4 (red) cross
an imaginary axis once leading to the nonanalyticities in the rate
function at critical times, tc ≈ 1.29, 2.69, 3.51, . . . , around which
the winding number exhibits monotonic integer jumps. All the pa-
rameters are taken to be (μi, μ f , i,  f ) = (−1.7, −1.1, 2.2, 2.2).

occurrence of MSDQPT. We numerically study the tempera-
ture dependence of tcm such that phases I, IV, and V can be
distinguished.

Figures 5(a), 5(b) and 5(c) depict the temperature profile
of tcm following the large (small) intraphase quench ampli-
tude, denoted by red (blue) lines, within regions I, IV, and V,
respectively. The infinite-temperature β → 0 value of tcm is
found to be insensitive to the quench amplitude. This suggests
that MSDQPT is present anyway in the infinite-temperature
case as long as the quench amplitude is finite. Connecting
with Fig. 2(a), one can find that nmin increases for a smaller
quench amplitude. For phase V, MSDQPT takes place early as
compared to phases I and IV in the infinite-temperature limit.
On the other hand, tcm saturates with increasing β above a
certain value. We now find that the zero-temperature β → ∞
value of tcm depends strongly on the quench amplitude [see the
insets of Figs. 5(a), 5(b) and 5(c)]. To be precise, MSDQPT
appears quickly with time in the zero-temperature limit for a
larger quench amplitude. Interestingly, for the present case,
MSDQPT occurs more quickly with time for gapless phases
IV and V as compared to the gapped phase I in the limit
β → ∞.

For the intermediate temperature with a finite value of β,
we find nonmonotonic behavior of tcm only for the gapless
phases IV and V. In the case of the gapped phase I as shown
in Fig. 5(a), tcm increases almost monotonically from β → 0.
This is followed by a saturation for β → ∞. However, there
exists a small dip around β ≈ 0. The non-Hermiticity-induced
vertical gapless phase V shows a sharp dip for intermediate
values of β, while a broadened dip is noticed for complex
hopping-induced horizontal gapless phase IV [Figs. 5(b) and
5(c)]. Such a dip in tcm for gapless phases refers to the fact that
MSDQPT can even appear early with time as compared to the
infinite-temperature case. This is in contrast to the behavior
of the gapped phase where MSDQPT can only appear at
a later time for any finite temperature as compared to the
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FIG. 5. We plot the minimum time tcm required for
MSDQPT to take place as a function of inverse temperature
β for quench within phases I, IV, and V in (a), (b), and (c),
respectively. For (a), the red (blue) line corresponds to quench
path (μi, μ f , i,  f ) = (−0.7, 0.7, 2.2, 2.2) [(0.1, 0.7, 2.2, 2.2)].
For (b), the red (blue) line corresponds to quench path (μi,
μ f , i,  f ) = (−0.7, 0.7, 0.2, 0.2) [(0.1, 0.7, 0.2, 0.2)]. For
(c), the red (blue) line corresponds to quench path (μi, μ f ,
i,  f ) = (−1.7, −1.1, 2.2, 2.2) [(−1.8, −1.5, 2.2, 2.2)]. The
nonmonotonic behavior in (b) and (c) is in complete contrast to that
of (a). We show the saturation of tcm over a wide range of β � 1 as
the insets. The insets show the saturation profile of tcm for β � 1.
We consider w0 = 1, φ = π/4, γ1 = 0, and γ2 = 1.

infinite-temperature limit. The details of the dip structure of
tcm are expected to depend on the quench amplitudes for a
given gapless phase. The location of such dips might depend
on the details of the gapless phase, i.e., whether it is caused by
non-Hermiticity or the phase of complex hopping for the iden-
tical quench amplitude. For example, the relative locations of
such dips on the β axis are altered between phases IV and
V. However, we emphasize that the detailed future analysis of
tcm versus β behavior is yet to be required to comment on their
phase-dependent distinct characteristics.

The spectral gap profiles in phases I, IV, and V differ from
each other significantly. The above analysis on MSDQPT
by varying β is able to capture the interplay between the
temperature and the gap profile of the eigenstates associated
with these phases (see Appendix F). In the gapless regions IV
and V with finite T , the minimum time tcm at which the first
destructive interference takes place is relatively less than that

for gapped region I. This can be intimately connected to the
distinct spectral profiles of these phases.

E. Discussion

The estimation of critical momenta, obtained from Eq. (3),
is hard as far as a closed form is concerned. In the non-
Hermitian case, one can use a non-Bloch form of momentum
to explain the topological properties [96–100]. We can use
the same non-Bloch notion to qualitatively predict the criti-
cal momenta kc using the DQPT framework for a Hermitian
system. The above effective approach is unable to predict the
exact values of the critical momenta; however, one obtains a
closed-form expression of kc (see Appendix G). Importantly,
it can explain the emergence of multiple kc’s, which is consis-
tently visible for non-Hermitian cases [67]. The multivalued
nature of kc also exists for a Hermitian system. However, this
nature persists more strongly as the non-Hermiticity allows
for additional solutions for kc as evident from Eq. (3).

Having demonstrated the results for quenching inside
phases I, IV, and V extensively, we comment that MSDQPT
is also present for quench inside phases II as well as III.
Therefore, all the intraphase quench leads to MSDQPT in
finite temperature when the non-Hermiticity is associated with
the superconductivity. By contrast, the DQPT is not always
present for all of the above cases at zero temperature [67]. On
the other hand, for any interphase quench, the MSDQPT is
present, but we do not show it here explicitly. The emergence
of the DQPT is not intrinsically connected with the crossing
of QCP and EP for Hermitian and non-Hermitian systems,
respectively [63,67] at zero temperature. As shown above, the
DQPT is always present as long as the critical momenta kc

exist. For the finite-temperature case, obtaining the critical
momenta is even more probable due to the presence of the
thermal density matrix instead of the pure quantum state. The
finite-temperature broadening of the quantum energy levels
yields further scope to interact with neighboring energy levels
in addition to the non-Hermiticity. This might lead to the
rapid variation of geometric phases for different momentum
modes at a given time. As a result, one can expect to see
MSDQPT for all the cases. However, we find an exception
when we study the intraphase III quench in the presence of
a non-Hermitian chemical potential only at finite temperature
(see Appendix H). We emphasize that the half-integer jumps
in the winding number for zero temperature are rounded off
by the finite temperature, where the Fisher zeros do not show
any discontinuity over the imaginary axis.

The temperature profiles of MSDQPT in the differ-
ent phases clearly signal the distinct characteristics of the
postquench evolution of a mixed quantum state (see Fig. 5).
The unitary evolution of a pure quantum state results in
a revival with time, referring to the fact that there exist
quantum interferences between the initial and time-evolved
state [101,102]. The nonanalytic divergences in the rate
functions are connected with the complete destructive inter-
ferences. The absence of such interferences results in the
disappearance of the DQPT. The evolution of mixed-state LA
shows qualitatively similar features as far as the constructive
and destructive interferences are concerned while compared
with the pure state LA. However, temperature smoothes the
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interference patterns, and the destructive interferences is sus-
tained [82,103,104]. In our case, the fact that MSDQPT is
always present means that complete destructive interferences
are bound to happen postquench out of the mixed quantum
state. For the non-Hermitian case, due to the presence of
EPs, the destructive interferences are more probable [55].
As a result, the nonunitary evolution of the mixed state at
finite temperature deviates from the initial configuration more
often than the zero-temperature unitary counterpart. This can
be connected to the thermal behavior of interacting systems
where the driven systems traverse the entire phase space. Our
findings on the occurrence of MSDQPT essentially refer to the
fact that the non-Hermitian system might not localize in the
phase space as opposed to the integrable Hermitian system
leading to the finite-temperature thermal phase. A detailed
investigation will be required in the future to study these
aspects of DQPTs.

We now discuss the possible experimental connection as
far as the model and MSDQPT are concerned. We know the
p-wave superconductor is naturally unavailable, but it can
be engineered using the proximity effect in Rashba nanowire
with s-wave superconductivity [105]. On the other hand, the
non-Hermiticity is more easily realizable in metamaterials as
compared to the solid-state systems. The non-Hermitian dy-
namics in ultracold atoms are theoretically proposed to obtain
a new regime of quantum critical phenomena [93,106,107].
The PT-symmetric dimerized photonic lattice are experi-
mentally engineered to study the non-Hermitian topological
systems [74]. Moving onto the experimental detection of MS-
DQPT, we can comment that the geometric phase for the
mixed state can be captured by using NMR spectroscopy
[108]. The DQPT for fermionic many-body states has also
been experimentally captured following time-resolved state
tomography in a system of ultracold atoms in optical lattices
[70]. The quantum logic gates in optical lattices [109], where
the NMR technique can be blended with ultracold atoms,
might be instrumental in probing MSDQPT such that the
geometric phase is measured for a time-evolved mixed state
on a Bloch sphere. In short, we believe that a metamaterial
perspective of quantum phenomena could be realized in the
future to test the theoretical findings. However, predicting an
exact experimental setup is beyond the scope of the present
manuscript.

V. CONCLUSIONS

Considering a p-wave superconductor with complex hop-
ping and non-Hermiticity (see Fig. 1), we examine the
occurrences of MSDQPT in various gapped and gapless
phases. We find that MSDQPT always exists irrespective of
the gap profile of the underlying phases as long as the tem-
perature is nonzero (see Figs. 2–4). The phase boundaries are
modified by the particular choice of γ1,2 in the non-Hermitian
case; however, the qualitative findings on whether the
MSDQPT appears remain unaltered. This is in contrast to
the absence of DQPT in the gapped phases at zero temper-
ature. The half-integer jumps of the winding number in zero
temperature for the gapless phase are washed away at finite
temperature. However, in the gapped phase with finite tem-
perature, there exists a notion of a minimum integer number

above which the Fisher zeros cross the imaginary axis. We do
not find any such finite integer number for Fisher zeros under
finite temperature in the case of gapless phases. We analyze
the minimum time tcm required by the system to experience
MSDQPT as a function of the inverse temperature β such
that we can distinguish the above phases (see Fig. 5). The
nonmonotonic (monotonic) nature of tcm with β is noticed for
gapless (gapped) phases. There exist finer details in the behav-
ior of tcm with regard to the quench amplitudes through which
non-Hermiticity-induced and complex-hopping-induced gap-
less phases can be differentiated. Our study can successfully
bridge between the zero- and infinite-temperature limits. We
provide an effective theoretical framework to qualitatively
understand the occurrences of MSDQPT. However, we stress
that the exact closed-form expression of the critical time for
any finite-temperature MSDQPT is yet to be examined as a fu-
ture study. For the effect of long-range hopping, various types
of disorder can be studied in this context of MSDQPT. With
the experimental advancement on lossy systems [71–76], we
believe that the present study is experimentally viable.
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APPENDIX A: INITIAL DENSITY MATRIX

The initial Hamiltonian is given by

Hk,i = hk,i · σ = hk,iĥk,i · �σ . (A1)

For temperature T = β−1, using Eq. (A1) the initial (t = 0)
density matrix is given by

ρk (0) = e−βHk,i

Tr[e−βHk,i ]

= e−βhk,i ĥk,i ·�σ

Tr[e−βhk,i ĥk,i ·�σ ]

= cosh(βhk,i )σ0 − (ĥk,i · �σ ) sinh(βhk,i )

Tr[cosh(βhk,i )σ0 − (ĥk,i · �σ ) sinh(βhk,i )]

= cosh(βhk,i )σ0 − (ĥk,i · �σ ) sinh(βhk,i )

2 cosh(βhk,i )

= 1
2 (σ0 − tanh(βhk,i )(ĥk,i · �σ ))

= 1
2 (σ0 − m(ĥk,i · �σ )), (A2)

where σ0 is a 2×2 identity matrix, m = tanh(βhk,i ),
and hk,i =

√
(hx

k,i )
2 + (hy

k,i )
2 + (hz

k,i )
2. For a Hermitian

Hamiltonian, hk,i is the positive eigenvalue of Hk,i that
is always real. On the other hand, for a non-Hermitian
Hamiltonian, the eigenvalue can be imaginary as well
and hk,i corresponds to a positive real part of the energy
eigenvalue.

Infinite temperature with the T → ∞ limit, i.e., β → 0,
leads to m = 0. This results in

ρk (0)|T →∞ = 1
2σ0. (A3)
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The above expression exactly matches previous studies on the
DQPT with an infinite-temperature mixed density matrix at
initial time [64].

APPENDIX B: LOSCHMIDT AMPLITUDE

The final Hamiltonian is given by

Hk, f = hk, f · σ = hk, f ĥk, f · �σ , (B1)

where hk, f represents the positive real part of the energy
eigenvalue for a final Hamiltonian without loss of generality.
The initial thermal density matrix is evolved with the final
Hamiltonian Hk, f in time following the sudden quench from
Hk,i. The time evolution operator is given by

Uk (t ) = e−iHk, f t . (B2)

The LA at zero temperature is given by gk (t ) =
〈�k,i|e−iHk, f t |�k,i〉 = Tr [|�k,i〉〈�k,i|e−iHk, f t ], where the initial
pure quantum state |�k,i〉, associated with Hk,i, is evolved
with Hk, f . In the case of finite temperature, the LA thus can
be written with the initial thermal density matrix [Eq. (A2)]
and time evolution operator [Eq. (B2)] as follows [10]:

gk (t ) = Tr[ρk (0)Uk (t )]

= Tr
[

1
2 (σ0 − m(ĥk,i · �σ ))e−iHk, f t

]
= Tr

[
1
2 (σ0 − m(ĥk,i · �σ ))(cos(hk, f t )

− i(ĥk, f · �σ ) sin(hk, f t ))
]

= cos(hk, f t ) + i m(ĥk,i · ĥk, f ) sin(hk, f t )

= cos(hk, f t ) − i sin(hk, f t )Bk, (B3)

where Bk = −m
�hk,i .�hk, f

hk,ihk, f
.

Note that in DQPT, LA plays the same role as the partition
function for an equilibrium phase transition. For the infinite-
temperature case with T → ∞, β vanishes yielding m = 0.
This leads to the following:

gk (t )|T →∞ = cos(hk, f t ). (B4)

The above expression exactly matches with previous studies
on MSDQPT [64].

APPENDIX C: LINES OF FISHER ZEROS

Similar to the vanishing of the partition function in the
equilibrium phase transition, here also the lines of Fisher zeros
are given by the suppression of LA, i.e., gk (t ) = 0. This rep-
resents a complete destructive interference between the initial
and time-evolved states. From Eq. (B3), one can obtain the

Fisher zeros as follows:

cos(hk, f t ) − i sin(hk, f t )Bk = 0

⇒ −i cot(hk, f t ) = Bk

⇒ coth(ihk, f t ) = Bk

⇒ coth(hk, f z) = Bk

⇒ z = 1

hk, f
coth−1(Bk )

⇒ z = 1

hk, f
×1

2
ln

(
Bk + 1

Bk − 1

)

⇒ z = 1

2hk, f
ln(−1) + 1

2hk, f
ln

(
1 + Bk

1 − Bk

)
. (C1)

Hence the general expression for Fisher zeros zn,k is given by

zn,k = i

(
n + 1

2

)
π

hk, f
+ 1

2hk, f
ln

(
1 + Bk

1 − Bk

)
,

⇒ zn,k = i

(
n + 1

2

)
π

hk, f
+ 1

hk, f
tanh−1(Bk ), (C2)

where zn,k = it , and n ∈ Z . Note that zn,k in Eq. (C2) is a
complex function, and MSDQPT happens when the lines of
Fisher zeros cut the imaginary axis, i.e., Re[zn,k] = 0. This
refers to the fact that tanh−1(Bk )/hk, f = 0 with Bk = 0.

We again compare with the infinite-temperature case, i.e.,
the T → ∞ limit. Here, β becomes zero giving rise to m = 0,
Bk = 0. As a result, we find

zn,k|T →∞ = i

(
n + 1

2

)
π

hk, f
. (C3)

Note that the above expression exactly matches with the pre-
vious findings [64].

APPENDIX D: CRITICAL MOMENTA

Let us define a new quantity as Ck = tanh−1(Bk ). Hence
Eq. (C2) becomes

zn,k = i

(
n + 1

2

)
π

hk, f
+ 1

hk, f
Ck

= i

(
n + 1

2

)
π

Re[hk, f ] − i Im[hk, f ]

|hk, f |2

+ Re[hk, f ] − i Im[hk, f ]

|hk, f |2 (Re[Ck] + i Im[Ck]).

The critical momenta kc is then obtained by solving the equa-
tion below for kc,

Re[zn,kc ] = 0

⇒ π (n + 1/2) Im[hkc, f ] + Re[hkc, f ] Re[Ckc ]

+ Im[hkc, f ] Im[Ckc ] = 0. (D1)

We now reduce the above expression in the case of infi-
nite temperature. For the T → ∞ limit, i.e., β → 0, one can
obtain Bk = 0 and Ck = 0. As a result, Eq. (D1) takes the
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following form:

Im[hkc, f ] = 0. (D2)

This is consistent with the previous findings [64]. We would
like to point out an important observation here for γ2, �= 0
and γ1 = 0. The above Eq. (D2) can only yield kc = nπ

with n = 0, 1, 2, . . . as the valid solution. This further in-
dicates that the critical momenta kc are independent of all
the model parameters. To derive the above solution, we use
z1/2 = |z|1/4 exp(iφ/2) with z = x + iy, φ = arctan(y/x). A
complete calculation suggests that y = 0 is the only solution
possible provided |z| �= 0.

APPENDIX E: CRITICAL TIME

We derive here the critical time tc = −izn,kc corresponding
to kc as given below,

tc = π

(
n + 1

2

)
Re[hkc, f ]

|hkc, f |2

+Re[hkc, f ] Im[Ckc ] − Im[hkc, f ] Re[Ckc ]

|hkc, f |2 . (E1)

The above general expression in the case of infinite temper-
ature can be reduced further. Considering T → ∞, β → 0,
i.e., Bk = 0, i.e., Ck = 0, we find

tc|T →∞ =
(

n + 1

2

)
π

Re[hkc, f ]
. (E2)

This is consistent with the previous findings [64]. Using the
above lines of argument, discussed after Eq. (D2), one can
find that for a fixed μ f and γ2, �= 0, tcm|T →∞ is independent
of quench amplitude. Interestingly, tcm|T →∞ can only depend

on μ f , while the  dependence is completely absent for the
critical momentum kc = nπ .

APPENDIX F: DYNAMICAL PHASE

The dynamical phase is merely the phase acquired by a
quantum state due to the time evolution of the underlying
Hamiltonian. We illustrate here the dynamical phase for the
non-Hermitian system such that H† �= H [64]. Let us denote
the right and left eigenvectors as |ψr

s (k)〉 and |ψl
s(k)〉, respec-

tively. Here s = ± denotes two energy bands for the two-level
systems. These eigenvectors satisfy the following equations:

H (k) |ψr
s (k)〉 = Es(k) |ψr

s (k)〉 , (F1)

H†(k) |ψl
s(k)〉 = E∗

s (k) |ψl
s(k)〉 . (F2)

In this representation, the Hamiltonian Hk can be expressed
as

Hk =
∑
s=±

Es(k) |ψr
s (k)〉 〈ψl

s(k)| . (F3)

In the space of these left and right eigenvectors, right and left
time evolution operators can be expressed as

U r
k (t ) =

∑
s=±

e−iEs (k)t |ψr
s (k)〉 〈ψl

s(k)| , (F4)

U l
k (t ) =

∑
s=±

e−iEs (k)t |ψl
s(k)〉 〈ψr

s (k)| , (F5)

respectively. The biorthogonality conditions
∑

s |ψr
s (k)〉

〈ψl
s(k)| = σ0 and 〈ψl

s(k)|ψr
s′ (k)〉 = δss′ are required to further

simplify the expressions. The time-evolved density matrix is
written as ρk (t ) = U l†

k (t )ρk (0)U r
k (t ). The dynamical phase is

expressed as follows [10]:

�
dyn
k (t ) = −

∫ t

0
dt ′ Re

[
Tr[ρk (t )Hk, f ]

Tr [ρk (t )]

]

= −
∫ t

0
dt ′ Re

[
Tr

[
U l†

k (t ′)ρk (0)U r
k (t ′)Hk, f

]
Tr

[
U l†

k (t ′)ρk (0)U r
k (t ′)

]
]
. (F6)

Now, using Eq. (A2), we obtain

�
dyn
k (t ) = −

∫ t

0
dt ′ Re

[
Tr

[
U l†

k (t ′)× 1
2 (σ0 − m(ĥk,i · �σ ))×U r

k (t ′)Hk, f
]

Tr
[
U l†

k (t ′)× 1
2 (σ0 − m(ĥk,i · �σ ))×U r

k (t ′)
]

]

= −
∫ t

0
dt ′ Re

⎡
⎢⎣Tr

[
U l†

k (t ′)× 1
2

(
σ0 − mHk,i

hk,i

)
×U r

k (t ′)Hk, f

]
Tr

[
U l†

k (t ′)× 1
2

(
σ0 − mHk,i

hk,i

)
×U r

k (t ′)
]

⎤
⎥⎦. (F7)

Now using Eqs. (F3), (F4), and (F5),

Tr
[
U l†

k (t ′)σ0U
r
k (t ′)Hk, f

]
= Tr

[
U l†

k (t ′)U r
k (t ′)Hk, f

]

= Tr

⎡
⎣ ∑

s,s′,s′′=±
eiE∗

s, f (k)t ′
e−iEs′ , f (k)t ′

Es′′, f (k)× ∣∣ψr
s, f (k)

〉 〈
ψl

s, f (k)
∣∣× ∣∣ψr

s′, f (k)
〉 〈
ψl

s′, f (k)
∣∣ × ∣∣ψr

s′′, f (k)
〉 〈
ψl

s′′, f (k)
∣∣
⎤
⎦
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= Tr

⎡
⎣ ∑

s,s′,s′′=±
eiE∗

s, f (k)t ′
e−iEs′ , f (k)t ′

Es′′, f (k)× ∣∣ψr
s, f (k)

〉 〈
ψl

s′′, f (k)
∣∣ δss′ δs′s′′

⎤
⎦

= Tr

[∑
s=±

eiE∗
s, f (k)t ′

e−iEs, f (k)t ′
Es, f (k)× ∣∣ψr

s, f (k)
〉 〈
ψl

s, f (k)
∣∣]

= Tr

[∑
s=±

e2 Im[Es, f (k)] t ′
Es, f (k)× ∣∣ψr

s, f (k)
〉 〈
ψl

s, f (k)
∣∣]

= e2 Im[hk, f ] t ′
hk, f − e−2 Im[hk, f ] t ′

hk, f

= 2 hk, f sinh(2 Im[hk, f ] t ′). (F8)

Similarly,

Tr
[
U l†

k (t ′)Hk,iU
r
k (t ′)Hk, f

] = 2 hk,i hk, f cosh(2 Im[hk, f ] t ′), (F9)

Tr
[
U l†

k (t ′)σ0U
r
k (t ′)

] = 2 cosh(2 Im[hk, f ] t ′), (F10)

Tr
[
U l†

k (t ′)Hk,iU
r
k (t ′)

] = 2 hk,i sinh(2 Im[hk, f ] t ′). (F11)

Now combining all the above expressions, the dynamical phase for the non-Hermitian system is found to be

�
dyn
k (t ) = −

∫ t

0
dt ′ Re

[
hk, f

sinh(2 Im[hk, f ] t ′) − m cosh(2 Im[hk, f ] t ′)
cosh(2 Im[hk, f ] t ′) − m sinh(2 Im[hk, f ] t ′)

]

= −
∫ t

0
dt ′ Re

[
hk, f

tanh(2 Im[hk, f ] t ′) − m

1 − m tanh(2 Im[hk, f ] t ′)

]
. (F12)

In the infinite-temperature T → ∞ limit, the dynamical phase reads

�
dyn
k (t )|T →∞ = −

∫ t

0
dt ′ Re[hk, f tanh(2 Im[hk, f ] t ′)]. (F13)

The above expression is consistent with earlier findings [64].

APPENDIX G: EFFECTIVE THEORY FOR NON-HERMITIAN DQPT

We discuss here the effective theory for the MSDQPT. We rewrite the non-Hermitian Hamiltonian under consideration,

Hk (0, γ2, φ) =
(

2 sin k + iγ2

2

)
σy − (2w0 cos φ cos k + μ)σz. (G1)

Replacing k by k + iκ , and saying ek+iκ ≡ x, we can write the above Hamiltonian as

Hk (0, γ2, φ) =
(

−i(x − x−1) + iγ2

2

)
σy − (w0 cos φ (x + x−1) + μ)σz = hk · σ. (G2)

The eigenvalues are given by

E± = ±
√(

−i(x − x−1) + iγ2

2

)2

+ (w0 cos φ (x + x−1) + μ)2
. (G3)

Now, in the E± → 0 limit, we get

−
(

− (x2 − 1) + γ2

2
x

)2

+ (w0 cos φ (x2 + 1) + μx)2 = 0. (G4)

Solutions of the above equation are

x1 =
γ2

2 − μ −
√(

μ − γ2

2

)2 − 4(w0 cos φ − )( + w0 cos φ)

2( + w0 cos φ)
,

x2 =
γ2

2 − μ +
√(

μ − γ2

2

)2 − 4(w0 cos φ − )( + w0 cos φ)

2( + w0 cos φ)
,
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FIG. 6. The lines of Fisher zeros are plotted with n = 0 (blue), . . . , n = 4 (red) for the cases of non-Hermitian chemical potential with
(γ1 = 1, γ2 = 0). The Fisher zeros for the quench within gapped phase I, III are shown in (a) for (μi, μ f , i,  f ) = (0.1, 0.7, 2.2, 2.2) and
in (b) for (μi, μ f , i,  f ) = (−4.7, −2.1, 2.2, 2.2), respectively. The same is shown for gapless phases IV and V in (c) for (μi, μ f , i,
 f ) = (0.1, 0.7, 0.2, 0.2) and in (d) for (μi, μ f , i,  f ) = (−1.7, −1.1, 2.2, 2.2), respectively. We find that there exists nmin = 1 in (a) above
which the Fisher zeros cross the imaginary axis referring to the occurrence of MSDQPT. The lines of Fisher zeros do not cross the imaginary
axis for any value of n, indicating the absence of MSDQPT in (b). There exists an nmax = 1 above which the Fisher zeros do not cross the
imaginary axis referring to the fact that MSDQPT can only be observed for short times in (c). The lines of Fisher zeros always cross the
imaginary axis, confirming the occurrences of MSDQPT in (d). We consider (w0, φ, γ1, γ2, β ) = (1, π

4 , 1, 0, 1).

x3 =
γ2

2 + μ −
√

γ 2
2
4 + γ2 μ + 42 + μ2 − 2w2

0 cos 2φ − 2w2
0

2( − w0 cos φ)
,

x4 =
γ2

2 + μ +
√

γ 2
2
4 + γ2 μ + 42 + μ2 − 2w2

0 cos 2φ − 2w2
0

2( − w0 cos φ)
. (G5)

Now, x1x2x3x4 = 1, x1x2 = −+w0 cos φ

+w0 cos φ
, and x3x4 = +w0 cos φ

−+w0 cos φ
. Therefore, x can be written as x = (x1x2x3x4)1/4, or x = √

x1x2,
or x = √

x3x4, however none of the above is a good choice as their final expressions are independent of γ2. We hence use
x = √

x1x4 as it depends on γ2. This allows us to write Eq. (G2) as follows:

hy
k = −i(eikx − e−ikx−1) + iγ2

2
, (G6)

hz
k = −[w0 cos φ (eikx + e−ikx−1) + μ]. (G7)

To get the critical momentum, kc, we use the known DQPT framework for the Hermitian system using �hkc,i · �hkc, f [10] for our
case such that

hy
kc,i

hy
kc, f + hz

kc,i
hz

kc, f = 0. (G8)

Solving the above equation for a fixed quench amplitude, one can get multiple critical momenta kc unlike single critical
momentum for the Hermitian case [10]. This can qualitatively explain the emergence of multiple kc’s for the non-Hermitian
case.

APPENDIX H: MISSING MSDQPT FOR NON-HERMITIAN
CHEMICAL POTENTIAL

We consider here the non-Hermiticity only in the chemical
potential, i.e., γ1 = 1 and γ2 = 0. Note that the phase diagram
changes for the lossy chemical potential, however the phases
I, II, III, IV, and V are present similar to the lossy supercon-
ductivity (see Fig. 1). We study the behavior of the Fisher
zeros for quench within the phases I, III, IV, and V, as shown
in Figs. 6(a), 6(b), 6(c), and 6(d), respectively. We find that
MSDQPT can exist for phases I, IV, and V except for phase
III as the Fisher zeros cross the imaginary axis in the prior
phases but not in the later phase. This is in contrast to the
non-Hermitian superconductor case in which the MSDQPT
always persists irrespective of the phases as long as the tem-
perature is nonzero. On the other hand, for phases I and IV,
one can find nmin and nmax, respectively, for the lines of Fisher

zeros, indicating that MSDQPT is absent below (above) a
certain timescale. This timescale is directly related to nmin

and nmax for phases I and IV, respectively. For the case of a
non-Hermitian superconductor, we do not find any such nmax

in phase IV, however we do find nmin for phase I. Therefore,
the gapped and gapless phases for the non-Hermitian super-
conductor and the non-Hermitian chemical potential do not
show identical properties as far as the MSDQPT is concerned.
Interestingly, for quench within region III, we find the ab-
sence of MSDQPT for the finite-temperature non-Hermitian
chemical potential similar to the zero-temperature case [67].
However, likewise the zero-temperature case, we do not find
any discontinuity in the Fisher zeros in any of the above cases.

APPENDIX I: MSDQPT IN THE HERMITIAN LIMIT

In this Appendix, we concentrate on the Hermitian limit of
our system, i.e., γ1 = γ2 = 0. The phase diagram is different

184311-10



FINITE-TEMPERATURE DYNAMICAL QUANTUM PHASE … PHYSICAL REVIEW B 107, 184311 (2023)

FIG. 7. The lines of Fisher zeros are depicted with n = 0 (blue), . . . , n = 4 (red) for the Hermitian case (γ1 = 0, γ2 = 0). The Fisher
zeros for the quench within gapped phases III, and I are shown in (a) for (μi, μ f , i,  f ) = (−5,−3, 2.2, 2.2) and in (b) for (μi, μ f , i,
 f ) = (−0.7, 0.7, 2.2, 2.2), respectively. Clearly, there is no crossing over the imaginary axis, which confirms the absence of MSDQPT. We
do the same for two different quench metrics within the gapless phase IV in (c) for (μi, μ f , i,  f ) = (−0.7, 0.7, 0.2, 0.2) and in (d) for
(μi, μ f , i,  f ) = (−0.3, 0.7, 0.2, 0.2), respectively. Here, the lines of Fisher zeros cross (do not cross) the imaginary axis twice in (c) [(d)],
suggesting the occurrence of MSDQPT (absence of MSDQPT) with two types of kc. We choose (w0, φ, β ) = (1, π

4 , 1).

for the Hermitian case as compared to the non-Hermitian
counterpart. The vertical gapless region V vanishes com-
pletely, while the horizontal gapless region IV vanishes
(becomes narrower) for φ = 0 (φ = π/4). We are interested
in φ = π/4 here as it supports an extended gapless region
where we can observe its effects on MSDQPT following an
intraphase quench. One can rewrite the expressions for the
physical quantities such as the rate function, Fisher zeros, and
dynamical phases in the Hermitian limit. Note that for the
Hermitian case, energy eigenvalues are real, i.e., Im[hk,i] =
Im[hk, f ] = 0, suggesting Bk in Eqs. (B3) and (C2) are real.
This does not result in any change in the expression for LA,
gk (t ), lines of Fisher zeros, zn,k , and total phase, �tot

k (t ), while
the critical momenta is obtained from

�hkc,i · �hkc, f = 0. (I1)

The critical time is found to be

tc =
(

n + 1

2

)
π

hkc, f
. (I2)

However, the dynamical phase has a simple form as

�
dyn
k (t ) = −

∫ t

0
dt ′mhk, f = −mhk, f t . (I3)

Here, we are interested only in the lines of Fisher zeros that
are enough to confirm the occurrences of MSDQPT. We in-
vestigate the Fisher zero profiles for quenches within regions
III and I, which are shown in Figs. 7(a) and 7(b), respec-
tively. The noncrossing nature conveys the absence of the
MSDQPT for an intraphase quench inside region I. Therefore,
for intraphase quench within region I, Fig. 7(b), suggests that
MSDQPT does not happen. By contrast, (γ1, γ2) = ( �= 0, 0)
and (0, �= 0) as shown in Figs. 6(a) and 4, respectively, and
we find that MSDQPT exists, which is a marked difference
as compared to the finite-temperature Hermitian case. The
MSDQPT is absent for the intraphase quench in region III
irrespective of the Hermiticity of the problem [see Figs. 7(a)
and 6(b)]. The Fisher zeros are depicted in Fig. 7(c) [7(d)] for
a large (short) quench metric within region IV. Interestingly,
the lines of Fisher zeros cross an imaginary axis twice indicat-
ing MSDQPT for two types of critical momenta in Fig. 7(c).
On the other hand, the lines of Fisher zeros do not cross
the imaginary axis referring to the absence of MSDQPT as
demonstrated in Fig. 7(d). Based on the above analysis on the
Hermitian case at finite temperature (β = 1), we can comment
that the results are similar as obtained for the zero-temperature
case [67].
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