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Abstract
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The challenges posed by antibiotic-resistant bacteria in treating infections, particularly those 
associated with biofilms, require a deeper understanding of this lifestyle and its connection to 
resistance selection. Additionally, gaining insights into drug interactions is crucial for enhancing 
combination treatment efficacy and mitigating resistance development. This thesis is divided 
into these two main themes, each consisting of individual papers with specific objectives and 
aims that tackle these two themes.

The first introduces a proof-of-concept microfluidic chip named Brimor, which demonstrates 
the selection of ciprofloxacin-resistant mutants in Escherichia coli biofilms at concentrations 
below the minimum inhibitory concentration (sub-MIC). Brimor exhibits potential applications 
beyond antibiotics and bacteria.

The second explores the emergence of resistance in both planktonic and biofilm lifestyles. 
Using the FlexiPeg model and uropathogenic E. coli, the fitness cost and minimal selective 
concentrations were assessed for five antibiotics and six resistance-conferring mutations during 
biofilm and planktonic growth. This analysis revealed resistance development in both lifestyles 
at sub-MIC.

Furthermore, an assay called CombiANT® was developed and validated with three 
major pathogens, enabling simple quantification and subsequent categorization of antibiotic 
interactions. This assay demonstrated comparable performance to the gold-standard 
checkerboard and time-kill assays. CombiANT® also shows potential for applications beyond 
antibiotics and bacteria.

Isolate-specific interaction profiling was emphasized as crucial among five important Gram-
negative pathogens for achieving precise and effective combination therapy. Interactions of 
clinically used antibiotic combinations varied significantly between and within susceptible 
species, with additive and antagonistic interactions being the most common. Only a small 
percentage exhibited clinically relevant synergy.

The mutations associated with synergy and loss of synergy for the tetracycline and 
spectinomycin combination in E. coli was elucidated. Genetic changes associated with efflux 
regulation and metabolic pathways were identified as factors contributing to the loss of synergy 
in mutants. The bioavailability model was the prevailing mechanism of action accounting for 
synergy and loss of synergy for the combination.

In summary, the papers presented in this thesis provide valuable insights on antibiotic 
resistance selection in biofilms, antibiotic interactions, and the development of innovative tools 
for studying biofilms and combination therapies. Further understanding of these factors is 
necessary for applying these findings in clinical settings and to optimize combination strategies 
for effective personalized therapy and antibiotic stewardship.
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Preface 

“Just like the COVID-19 pandemic, antimicrobial resistance (AMR) is no 
longer a future threat. It is happening here and now and is affecting us all. If 

AMR is left unchecked, the next pandemic we face could be bacterial and 
much deadlier if the drugs needed to treat it do not work.” 

 
Maria Helena Semedo, 

Deputy Director-General of the  
Food and Agriculture Organization of the United Nations 

 
These words illustrate the risk of AMR and emphasize its significance. The 
discovery of penicillin by Alexander Fleming1 and its subsequent use in ther-
apy have resulted in remarkable medical advancements, improving the quality 
and length of life. Life-threatening infectious diseases such as sepsis or pneu-
monia have become curable with these drugs, often with minimal side effects. 
We now rely on these medications to manage the risk of infections associated 
with various medical procedures, including chemotherapy, invasive and re-
placement surgeries, organ transplants, immunosuppressive therapy, and neo-
natal care. Recognizing the importance of combating antimicrobial resistance, 
global efforts were initiated in the early 1940s to prevent its occurrence, par-
ticularly by developing new antibiotic compounds for therapeutic purposes. 
While this undoubtedly remains a central endeavor, the absence of novel drugs 
for therapeutic use in the last 30 years has necessitated alternative actions. 
Consequently, numerous public reports2–4 commissioned to guide world lead-
ers and policy-makers have sought to assess the future implications for global 
health and the socio-economic consequences of AMR. Despite the complexity 
of the issue, ongoing initiatives, including international agreements regulating 
antimicrobial use and stewardship, innovative economic strategies, reimburse-
ment plans for drug development and production, as well as global efforts to 
enhance sanitation, hygiene, and healthcare infrastructure, are already under-
way5,6. Prior to the COVID-19 pandemic, addressing AMR required urgent 
and immediate attention. However, with resources redirected toward the pan-
demic response, evidence suggests substantial pre-emptive antibiotic use, 
worsening economic conditions, and increased poverty, all of which could im-
pact the levels of AMR7,8. AMR remains a significant threat in the challenging 
and ever-evolving global landscape of the 21st century, with an estimated 4.95 
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million deaths attributed to bacterial AMR in 2019 alone9. To address this 
pressing issue, a multidisciplinary cross-sectoral approach is essential to de-
velop innovative solutions10–12.  
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Background 

Antibiotics 
Antibiotics are a group of antimicrobial chemical substances that inhibit the 
progression of bacterial growth and replication. The term encompasses a di-
verse range of molecules that exhibit significant variations in their chemical 
structure, size, and properties. These substances can be classified based on 
various criteria, such as their activity spectrum, cellular target, mode of action, 
origin, or chemical structure. The latter is commonly employed in standard 
classifications. In general, chemical substances sharing the same structure ex-
hibit similarities in their characteristics. 

Classes 
The b-lactam class of antibiotics, including but not limited to, penicillins, car-
bapenems, cephalosporins and monobactams, all share a b-lactam ring. This 
class is commonly used to treat various bacterial infections caused by both 
Gram-negative (cephalosporins, carbapenems, monobactams) and Gram-pos-
itive (penicillins) bacteria. It has a broad-spectrum activity against bacteria 
and is widely utilized in clinical settings due to its minimal side effects13. The 
aminoglycoside class of antibiotics all share a structure comprising an amino 
sugar linked to an inositol derivative. This class includes but is not limited to 
gentamicin, tobramycin, streptomycin, amikacin, and kanamycin. It targets 
mainly Gram-negative and some Gram-positive aerobic bacteria but can lead 
to severe side effects such as nephrotoxicity and ototoxicity. Consequently, 
the clinical use of this class is limited but significant14. The quinolone class of 
antibiotics all have a central bicyclic structure, with many containing an addi-
tional fluorine atom (fluoroquinolones). This class exhibits broad-spectrum 
activity against both Gram-negative and Gram-positive bacteria. Ciprofloxa-
cin, the most prominent representative of this class, is commonly used to treat 
a wide range of infections, including urinary and respiratory tract infections15. 
The polymyxins class of antibiotics all share a cyclic heptapeptide structure 
with a fatty acid tail acylated at the N-terminus. This class is unique and has a 
similar chemical structure to cationic antimicrobial peptides, which are the 
first line of defence against bacterial colonization in eukaryotic cells16. Poly-
myxins have toxic side effects and are primarily reserved as last resort antibi-
otics for the treatment of multidrug-resistant (MDR) infections, particularly 
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against Gram-negative bacteria17. Other important antibiotic classes and ex-
amples include, but are not limited to, glycopeptides (such as vancomycin), 
pyrimidines (such as trimethoprim), tetracyclines (such as tigecycline), ri-
famycins (such as rifampin), and nitrofuran derivatives (such as nitrofu-
rantoin). These classes have recently been extensively described and I refer 
the reader to the reviews discussing them18,19. 

Modes of action 
Generally, bactericidal antibiotics lead to cell death, while bacteriostatic anti-
biotics prevent the progression of cell division. β-lactam antibiotics, quin-
olones, and nitrofurantoin are typical examples of bactericidal antibiotics. 
Chloramphenicol, tetracyclines, and macrolides, on the other hand, are typical 
examples of bacteriostatic antibiotics. It is rare for an antibiotic to be exclu-
sively bacteriostatic or bactericidal. Disturbance in cellular processes is essen-
tial to exert inhibitory effects on bacteria. Factors such as growth conditions, 
bacterial density, and antibiotic concentration can influence the effectiveness 
of the treatment outcome20. The targets of cellular processes vary within bac-
teria (Fig. 1). Antibiotics that target the same pathway or molecule in a cell 
can still have different modes of action and belong to different classes. The 
peptidoglycan in the bacterial cell wall is unique to this domain of life and 
absent in eukaryotic cells, making it an attractive target for antibiotics. For the 
majority of antibiotics, the primary target is the bacterial cell wall, as is the 
case with all β-lactams. The cell wall comprises an inner membrane, a 
periplasmic space, a thin peptidoglycan layer, and an outer membrane in 
Gram-negative bacteria, or an inner membrane, a periplasmic space, and a 
thick peptidoglycan layer in Gram-positive bacteria. The peptidoglycan layer 
is composed of N-acetylglucosamine and N-acetylmuramic acid disaccharides 
crosslinked via pentapeptides21. The cell membrane is another target, as seen 
with colistin (also known as polymyxin E). Alternatively, antibiotics can tar-
get proteins involved in transcription, translation, and replication. Fluoroquin-
olones inhibit DNA synthesis by targeting two essential enzymes, topoisomer-
ase IV and DNA gyrase, which are crucial for bacterial growth22. Trime-
thoprim and sulfonamides interfere with the synthesis of tetrahydrofolic acid 
by inhibition of dihydrofolate reductase or dihydropteroate synthetase, respec-
tively. Tetrahydrofolic acid is a precursor for  the essential amino acid thymi-
dine23. Rifampicin binds to bacterial RNA polymerase and inhibits elongation 
of newly synthesized transcripts24. Macrolides target the large ribosome sub-
unit and block the exit tunnel, while aminoglycosides target the small ribo-
some subunit and disrupt the elongation of newly synthesized amino acid 
chains, leading to the accumulation of mis-translated proteins. Both classes 
ultimately disrupt protein synthesis and inhibit growth14,25. Fusidic acid targets 
an essential step during protein synthesis by preventing the translocation of 
elongation factor G. Quinolone antibiotics directly target DNA replication by 
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inhibiting DNA gyrases and topoisomerase IV enzymes, resulting in errone-
ous unwinding of DNA, introduction of double-strand breaks, and cell death26. 

  

 
Fig. 1: Major mode of action of antibiotics is revolve around cell growth (replication, 
transcription, translation) and integrity (membranes of Gram-negative and -positive 
shown). The targets and corresponding antibiotics are depicted. LPS: Lipopolysac-
charide, OM: outer membrane, PG: peptidoglycan, IM: inner membrane, PBP: peni-
cillin binding protein. 

Antibiotic Resistance  
Antibiotic resistance (ABR) emerged as a serious global issue in the 1940s 
and triggered a response from the pharmaceutical industry in the 1950s. Dur-
ing this period, new classes of antibiotics were discovered (known as the 
golden age of antibiotic discovery) and introduced into the market for thera-
peutic use (Fig. 2). This gave hope that the observed antibiotic resistance could 
be overcome through continuous discovery and the use of novel drug classes, 
especially when resistance to penicillin was already observed27. However, re-
sistance began to emerge for all drug classes, sometimes even before their 



 

 16 

introduction into clinical practice (Fig. 2). This seemingly paradoxical situa-
tion can be explained by the fact that natural microbes had long encountered 
antibiotics before their medical use28. Many of the resistance mechanisms we 
observe today are ancient and have evolved in bacteria as a means of commu-
nication, protection, or destruction29,30. With the end of the golden age, phar-
maceutical industries gradually withdrew from drug discovery due to a “dis-
covery void”31. 

 

 
Fig. 2: Major classes of antibiotic discovery and the corresponding reported clinical 
resistance (years in brackets) from the 1920s to 2020. The period from the mid-1940s 
to the 1960s is considered the “golden age” of discovery, while the period from the 
mid-1980s to the 1990s is known as the “discovery void”. 
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Mechanisms of resistance 
Decreasing intracellular antibiotic concentration, evading antibiotic activity or 
functional inactivation, and target site alteration, protection or bypass are the 
molecular mechanisms of resistance employed by bacteria (Fig. 3)19,32. The 
diversity of resistance mechanisms is not surprising given the varied modes of 
action of antibiotics.  

Reduced permeability into the cell and increased antibiotic efflux both con-
tribute to preventing antibiotic access to its target. The lower permeability of 
the outer membrane in Gram-negative bacteria, compared to Gram-positive 
bacteria, forms an intrinsic physical barrier. Hydrophilic antibiotics cross the 
barrier by diffusing through outer membrane porin proteins, such as OmpF 
and OmpC in Escherichia coli33. Replacement of porins with selective chan-
nels or downregulation of porins has been observed in both Gram-negative 
and Gram-positive bacteria to reduce the influx of antibiotics, thereby provid-
ing phenotypic resistance34. When efflux pumps are overexpressed, high lev-
els of resistance to previously useful antibiotics have been observed35. Well-
studied examples of multidrug efflux pumps include AcrAB in E. coli, 
MexAB in Pseudomonas aeruginosa, KexD in Klebsiella pneumoniae, and 
LmrS in Staphylococcus aureus36–40. 

Evading antibiotic activity by functionally inactivating an antibiotic 
through hydrolysis or transfer of a chemical group is an effective pathway to 
antibiotic resistance. The most prominent example of this mechanism is β-
lactamases. For example, penicillinase enzymes capable of modifying peni-
cillin were already observed in 194027. Diverse enzymes that degrade and 
modify antibiotics of different classes, including aminoglycosides, β-lactams, 
and macrolides, have been identified since then. The emergence of enzymes 
with altered hydrolytic activity spectra has paralleled the development of an-
tibiotic classes. One example is extended-spectrum β-lactamases, which have 
activity against all three generations of cephalosporins41. Notably, antibiotic 
resistance is not limited to the bacterium producing the enzyme needed to in-
activate the antibiotic. Instead, indirect resistance can arise where the bacte-
rium producing the enzyme protects other bacteria42. 

Most antibiotics specifically bind to their targets with high affinity to exert 
their antibacterial effects. Bacteria can make changes to antibiotic targets by 
accumulating mutations that decrease the affinity to the antibiotic without dis-
rupting its original cellular function. This resistance mechanism typically 
arises from chromosomal mutations and is not horizontally transferred. Exam-
ples of this include mutations in genes gyrA, rpoB, and rpsL, which can in-
crease resistance towards ciprofloxacin, rifampicin, and streptomycin, respec-
tively. In addition to direct alteration of the antibiotic target, horizontal trans-
fer of homologous genes with low affinity for the antibiotic, which can func-
tionally replace the inhibited cellular target, can result in resistance. An 
example of this is methicillin-resistant S. aureus, where acquisition of the 
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mecA gene within the chromosomal mec element enables cell wall biosynthe-
sis to occur despite the inhibition of native penicillin-binding protein (PBP) in 
the presence of the antibiotic43. The MecA protein encodes a functional β-
lactam-incentive PBP 2a. For some antibiotics, several modes of resistance 
mechanisms exist. For example, resistance to tetracycline can be mediated by 
genes coding for ribosomal protection by tet(M), reduced intracellular antibi-
otic concentration by tet(A) or acrAB, or drug inactivation by tet(X)44. 
   

 
 
Fig. 3: Overview of antibiotic resistance mechanisms. Bacteria have evolved diverse 
ways to mitigate the effects of antibiotics, including changes in antibiotic concentra-
tion, evading the activity of antibiotics, and modifying or protecting the antibiotic 
target. 

Evolution and selection 
Evolution is a broad and complex subject that cannot be comprehensively ad-
dressed here. Instead, important aspects relevant ABR and to this thesis is dis-
cussed. Understanding the emergence of genetic diversity is key to under-
standing the evolution of ABR. Broadly speaking, genetic information is 
maintained and transmitted in two mechanisms: vertical and horizontal45. Ver-
tical evolution involves mutations that are selected and passed on to the prog-
eny, whilst horizontal evolutions refer to the acquisition of resistance genes 
from other bacteria through conjugation, transduction, or transformation, fol-
lowed by transmitting to the progeny. The development of ABR can occur 
through one or both of these mechanisms. In vertical evolution, errors during 
DNA replication in genes encoding the antibiotic target give rise to de novo 
mutation. These mutations can, for example, reduce the affinity towards the 
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drug. Alternatively, erroneous DNA replication can also lead to loss-of-func-
tion mutations in negative regulators, which results in de-regulation of gene(s) 
due to increased export or decreased import of antibiotics. The levels of re-
sistance caused by this type of mutation can vary significantly for different 
antibiotics. In general, the contribution of vertical or horizontal evolutionary 
paths to the development of clinical ABR is not yet fully elucidated, but com-
prehensive genomic characterization of human pathogens over the past dec-
ades has shown horizontal evolution is the primary contributor to the selection 
of ABR human pathogens45. 

It is easy to comprehend the advantages provided by resistance genes or 
mutations in relation to lethal concentrations of antibiotics, as bacteria lacking 
resistance mechanisms are unable to survive and grow, and ultimately die. 
However, bacteria often inhabit dynamic environments and are exposed to 
various concentrations of antimicrobial agents that vary in time and space. 
Consequently, assessing the strength of selection in the resistance conferring 
mechanism becomes challenging. Instead, the outcome of evolution changes 
depending on the antibiotic concentrations, whether the concentrations inhibit 
the growth of the pathogen (above the minimum inhibitory concentration, > 
MIC) or allow for the growth of both susceptible and resistant bacteria (< 
MIC). The MIC of an antibiotic refers to the lowest concentration that inhibits 
the growth of bacteria. The MIC of a resistant strain (MICres) would thus be 
higher than the MIC of a susceptible strain (MICsusc). Many resistance genes 
or mutations carry a fitness cost (described in the following section) in the 
absence of antibiotics and may be selected against in absence of antibiotic 
pressure46,47. Conversely, this fitness cost can be reduced or reversed by com-
pensatory mutations either in the mutated gene or in a different gene entirely46. 
Therefore, selection of ABR is dependent on not only the concertation of the 
antibiotic but also fitness cost. 

The mutant selective window hypothesis is a prominent theory that ex-
plains the selection of resistant mutants. According to this hypothesis, the se-
lection process occurs within a concentration range that extends from the MIC 
of the susceptible strain to the MIC of the resistant mutant48,49 (Fig. 4). There-
fore, majority of literature has focused on how high levels of antibiotics are 
needed to avoid the enrichment of resistance, known as the mutant preventa-
tive concentration. However, experimental evidence suggests that sub-mini-
mal inhibitory concentrations (sub-MIC) also play a crucial role in selection 
of resistance mutants, known as the sub-MIC selection window. Furthermore, 
when exposed to mixtures of drugs, resistance can be selected at even lower 
concentrations, known as the co-selective concentration window50–54. 
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Fig. 4: Theoretical graph depicting growth rates as a function of antibiotic concentra-
tion. The resistance strain (red line) exhibits a lower initial growth rate and will be 
outcompeted by the susceptible strain in the presence (light blue line) and absence 
(dark blue line) of a combination of antibiotics. Green field indicates the lowest con-
centration interval where the susceptible strain will outcompete the resistant strain. 
Orange and red fields indicate the lowest concentration in which resistant strain will 
outcompete the susceptible strain. Yellow field indicates an even lower concentration 
interval where the resistant strain will outcompete susceptible strain in the presence 
of combinations of antibiotics. MPC/MICres = mutant preventative concentration/min-
imal inhibitory concentration of the resistant strain, MICsus = minimal inhibitory con-
centration of the susceptible strain, MSC = minimal selective concentration, and MCC 
= minimal co-selective concentration.  

Bacterial fitness 
Fitness is a context-dependent term that describes the ability of a bacterium to 
survive, proliferate, and transmit between hosts or the environment. Bacteria 
have naturally evolved to increase their fitness and competitiveness in order 
to ensure survival, growth, and transmission. This definition suggests that fit-
ness is not constant or dichotomous, depending solely on whether lethal anti-
biotic selection is present or not. The fitness effects of specific traits on bac-
teria vary depending on the environmental conditions46. Most antibiotic re-
sistance mechanisms are associated with a fitness cost, which influences the 
development of resistance55,56. The magnitude of the fitness cost is a key driver 
that determines the stability of resistance mechanisms at the bacterial commu-
nity level, the rate of resistance development, and the rate at which resistance 
might decrease if antibiotics were absent from the environment.  

Various methods have been developed to assess bacterial fitness, but due 
to the variability in fitness determinants, no single method can comprehen-
sively determine absolute fitness across different hosts and environments. In-
stead, multiple isolated fitness components can be measured with high 



 

 21 

accuracy. The fastest, cheapest, and easiest method is comparing the maxi-
mum exponential growth rate between bacteria, where a lower growth rate 
indicates lower fitness. Other methods include direct competitions, the ability 
to withstand different stresses (such as bile salts, temperature, osmolarity), and 
animal or colonization infection models. Five notable effects have been ob-
served in studies on fitness cost: epistatic effects that can influence fitness 
cost, the impact of specific environmental conditions on fitness costs, the ab-
sence of fitness costs for certain mutations, the potential reduction of fitness 
costs through regulation of resistance mechanisms, and the connection be-
tween fitness cost and compensation for resistance46. 

Resistance mechanisms are tightly regulated and expressed only when bac-
teria are exposed to antibiotics. Naturally, resistant bacteria have a clear fit-
ness advantage over susceptible bacteria. For instance, the VanRS two-com-
ponent system in vancomycin-resistant Enterococcus triggers the transcription 
of vanHAXY genes only in the presence of the glycopeptide. In the absence of 
the drug, the vanHAXY genes are switched off57. Generally, the acquisition of 
resistance mechanisms in the absence of antibiotics often comes with a fitness 
cost. The strong selective pressure for rapid growth favors further mutations 
in bacteria to compensate for the fitness cost imposed by the resistance mech-
anism46. This process has been observed both in vitro and in vivo46. In some 
cases, these mutations restore fitness to its original level. Compensatory mech-
anisms can occur within the same gene that causes the resistance phenotype 
(intragenic compensation) or in other genes (extragenic compensation). In My-
cobacterium, the fitness cost of rpoB mutations that confer rifampicin re-
sistance is alleviated by secondary mutations in rpoA, rpoB, or rpoC58–60. 
Compensation for growth defects caused by antibiotics can result not only 
from specific intragenic gene mutations but also from gene duplications, am-
plification of resistant genes, and regulation of gene dosage61. 

Antibiotic combinations 
During the golden era of novel antibiotic discoveries, there was a popular 
trend of attempting to combine new drugs. Many ad-hoc combinations, typi-
cally involving two or even higher-order combinations, were used without a 
deep understanding of the molecular mechanisms or drug efficacy. These at-
tempts were opportunistic and aimed to create patentable medicines62. Exam-
ples of such combinations include streptomycin combined with penicillin in 
1950 and trimethoprim combined with sulfonamides in 1968. The latter com-
bination is still used today63,64. The main criteria for these combinations were 
improved efficacy and a broader antibacterial spectrum for clinical treatment. 
Although controversial, the application of certain combinations with existing 
antibiotics has now become widespread in order to maintain clinical efficacy, 
combat the evolution of resistance, and reduce mortality rates65–69. Combining 
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several antibiotics can be done as simultaneous mixtures or in a sequential 
order, and both approaches can yield distinct or similar outcomes. 

Classifications 
Combinations of antibiotics can be classified into different types based on 
their targets: congruous, syncretic, or coalistic (Fig. 5). Congruous combina-
tions are characterized by the individual inhibition of cell growth through es-
sential targets. Existing antibiotic combination therapies, such as trime-
thoprim-sulfonamide, are based on this concept. Syncretic combinations in-
volve at least one component that does not have an essential target for cell 
growth. An example is the combination of β-lactam antibiotics with β-lac-
tamase inhibitors. Coalism combinations consist of compounds that, on their 
own, do not inhibit cell growth, but when combined, they result in cell lethality 
by synthesizing lethal gene products69. This concept has not been extensively 
explored in bacteria and is mostly limited to the S. cerevisiae model system, 
which utilizes a combination of proteomic, chemical-genetic, and machine 
learning approaches69. A modern ongoing approach involves combining anti-
biotics with non-antibiotic compounds that enhance their activity. This cou-
pling is used as a strategy to prolong the effectiveness of current therapeutic 
antibiotics and achieve clinically significant levels of synergy69.  
 

 
Fig. 5: Classification of antibiotic combinations and combinations with other thera-
peutic compounds into congruous, syncretic, and coalistic types. Congruous combi-
nations involve the essential target of the compound, while syncretic and coalistic 
combinations involve non-essential targets of the compound.   

Combinations can also be defined based on the response of bacteria, where 
the effect can be stronger or weaker than expected, known as synergistic, ad-
ditive, or antagonistic interactions70. It is important to consider that these in-
teractions must be defined depending on the context. In vitro synergy refers 
to the administration of two or more bioactive compounds resulting in en-
hanced activity compared to the expected sum of the individual compounds. 
On the other hand, diminished activity compared to the expected sum is de-
fined as in vitro antagonism. The expected sum of the individual compounds 
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is defined in vitro as additive. In vitro screening campaigns typically identify 
systematic categorical combinations of antibiotics by assessing growth inhi-
bition in the presence of susceptible bacteria. Generally, sublethal concentra-
tions of antibiotic ‘A’ are combined with a candidate antibiotic ‘B’ and as-
sayed. Sublethal concentrations can be, for example, one-quarter of the MIC 
of a susceptible bacterium.  

Several approaches are used for the analysis of antibiotic combinations71 
and can be categorized into effect-based (Fig. 6) or dose-effect-based compar-
isons (Fig. 7). For effect-based comparisons, the decision process for deter-
mining a positive (antagonistic and suppressive), negative (synergy), or null 
(additive) effect varies among four main strategies, which include combina-
tion sub-thresholding, highest single agent, effect additivity or linear interac-
tion effect, and the Bliss-independence model. Suppressive combinations can 
be directional or reciprocal. Directional combinations indicate that the com-
bined effect is lower than that of one compound, while reciprocal combina-
tions indicate that the combined effect is less than the inhibitory effect of ei-
ther individual compound72. Overall, the effect-based approach compares the 
antibiotic combination against the measured effect of the individual antibiot-
ics. In dose-effect-based comparisons, the expected additive effect depends on 
the individual dose-effect curves. This approach provides a more defined def-
inition of synergism, additivity, and antagonism compared to the effect-based 
approach. Dose-effect-based approaches largely rely on the Loewe additivity 
mathematical model. 
 

 
Fig. 6: General effect-based analysis of antibiotic combinations can be categorized as 
additive, synergistic, antagonistic, or suppressive. The axes represent the increase in 
response (in this example, growth rate) for different drug combinations (A+B drug), 
individual drugs (A or B drug), or in the absence of the drug (0). Dotted lines indicate 
the additive criteria used to determine these categorizations.   
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Fig. 7: General dose-effect-based isobolograms of antibiotic combinations for two 
(left graph) or three (right graph) drug combinations. The axes represent the doses of 
individual agents. The lines and the area within them represent the combination of 
concentrations of the two or three drugs required to achieve a particular effect. Purple 
dots indicate the minimal inhibitory concentration of a drug for a specific bacterial 
species.  

 
The fractional inhibitory concentration index (FICI) is a microbiological cal-
culation used to determine the synergistic, additive, antagonistic, or suppres-
sive effects of compounds. It utilizes the traditional MIC determination 
against a specific bacterial isolate for a particular antibiotic. The MIC is meas-
ured in liquid culture using a series of antibiotic dilutions. Systematic catego-
rization of combinations is achieved by quantifying the FICI, either through a 
checkerboard array when two antibiotics are combined or by using a finer gra-
dient isobologram approach with data fitted to the Bliss-independence or 
Loewe models73. While the FICI approach is crude, it offers simplicity and 
speed, making it attractive for clinical microbiology applications that require 
high-volume testing. However, FICI does not capture the refined dose-de-
pendence effect achieved through smaller drug interval analyses due to the 
inherent limitations of the dilution technique. In a typical dilution series, the 
intervals are always two-fold (e.g., 1, 2, 4, 8, 16, 32, 64, 128 μg/mL). Expand-
ing the dilution intervals allows for data fitting to the Bliss or Loewe models 
and subsequent graphical analysis using isobolograms. The Bliss independ-
ence model assumes a null hypothesis where two compounds do not interact, 
while the Loewe additivity model assumes a null hypothesis where the active 
compound cannot positively or negatively interact with itself74,75.  

With the advancement of modern high-throughput technology, accurate 
classification and screening of antibiotic combinations can be achieved 
through a systems network approach76–78. Observations include, but are not 
limited to, synergistic combinations that can accelerate the evolution of re-
sistance compared to individual antibiotics, antagonistic drug pairs that can 
suppress resistance evolution, alternating antibiotic treatment that can slow 
the evolution of resistance by constraining the mutational path, and the 
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challenges of modeling higher-order combinations (involving more than two 
compounds) with unexpected interactions79–85.  

Bacterial biofilms 
Biofilm formation, although recently recognized, is a prevalent lifestyle in 
clinical bacterial infections. Examples of such infections include chronic lung, 
wound, and bone infections, among others86,87. Biofilm refers to a cluster of 
microbes that attach to a surface and are surrounded by an extracellular ma-
trix88,89. The surface can be composed of various materials, including tissues, 
abiotic materials, other cell types, and daughter cells. This definition encom-
passes a wide range of emerging properties that contribute to the evolutionary 
success of this lifestyle. These properties include social cooperation, resource 
capture, and enhanced survival against antimicrobials. It is important to note 
that our understanding of this lifestyle cannot be fully comprehended by stud-
ying free-living bacterial cells alone90. The presence of Pseudomonas aeru-
ginosa aggregates in the lungs of cystic fibrosis patients was first described 
by Niels Høiby91, and the term “biofilm” was introduced clinically by John 
William Costerton92. While acute infections have been associated with plank-
tonic bacteria, the dispersion of planktonic cells from biofilms in chronic in-
fections serves as a connecting point and can lead to systemic infections such 
as bacteremia93,94.  

Lifecycle 
A variety of environmental and genetic factors influence biofilm formation, 
growth, composition, and structure90,95. The life cycle of a biofilm encom-
passes several distinct stages, including aggregation and attachment (1), fol-
lowed by growth and accumulation (2), and finally disaggregation and detach-
ment (3) (Fig. 8). Each stage can be further divided into multiple steps. At-
tachment begins with reversible adhesion, which can have two outcomes: ei-
ther weakly attached cells that can return to a planktonic lifestyle, or initial 
interactions between the cell and the surface leading to irreversible attach-
ment96. Under specific conditions, growth occurs, resulting in the formation 
of multicellular microcolonies that eventually develop into a mature biofilm. 
Factors such as limited nutrient availability or reduced oxygen levels can trig-
ger detachment or dispersion during the maturation stage. Dispersion refers to 
the release of cells from the biofilm into the surrounding liquid environment. 
These dispersed planktonic cells can then initiate a new life cycle95,97. 
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Fig. 8: Bacterial biofilm lifecycle. The cyclic process occurs in a stage-specific and 
progressive manner and can initiate from planktonic cells, whether single or multiple 
cells. The cells undergo sequential stages, including attachment (with reversible and 
irreversible sub-stages to surfaces or other cells and can return to planktonic form as 
aggregates), growth (cellular proliferation and production of extracellular compo-
nents), accumulation (where cell clusters mature, resulting in a biomass several cells 
thick and embedded in an extracellular polymeric substance matrix), and detachment 
(where cells evacuate from the interior portions of cell clusters, forming void spaces 
as aggregates, multiple cells, or planktonic cells and then further disaggregate into 
planktonic cells). 

Model systems 
Due to the multistage lifecycle of biofilms, there is no standard method for 
studying them. To investigate specific research questions, several methodolo-
gies have been adapted or developed98, which can be broadly categorized as 
in vitro or in vivo models. In vitro models involve simple artificial systems 
using material surfaces. They can be grouped based on nutrient availability: 
closed or static, and open or dynamic. These can be further classified as air-
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liquid interface, colony, drip-fed, and flow-cell systems. Commonly used sys-
tems include the standard 96-well microtiter plate, introduced to laboratories 
in the 1980s, accompanied by crystal violet staining for biomass quantifica-
tion99. The MBECTM assay (formerly known as the Calgary device) extends 
the format by cultivating biofilms on plastic pegs attached to a lid submerged 
into wells in the 96-well plate100. These models allow for biofilm quantifica-
tion not only through staining but also by enumerating viable bacteria in the 
biofilm using colony forming units. Moreover, different treatments can be eas-
ily applied to biofilms by transferring the lid with biofilms on pegs into a new 
plate. With the advancement of live imaging and image analysis, flow-based 
systems have become widely used101. In these systems, biofilms are cultured 
over a long period in a channel with a constant supply of fresh growth medium 
and removal of waste. Microfluidic-based approaches have gained attention 
for better experimental control and high-throughput capabilities, although 
they are not widely adopted due to the technical skillset required102–104. The 
major limitation of in vitro models is the absence of infection in host materials 
and the human immune response105.  

Tolerance  
Biofilms have been demonstrated to exhibit greater tolerance to antibiotic 
therapy compared to planktonic bacteria106. In the case of planktonic bacteria, 
tolerance refers to the ability of bacteria to survive antibiotic exposure without 
developing resistance due to dormancy, persistence, or slow growth107,108. Re-
cent research has revealed that the molecular mechanisms of tolerance evolve 
rapidly under intermittent antibiotic exposure109–111 , suggesting that tolerance 
typically precedes resistance and can involve the acquisition of mutations 
from the wild-type bacterium112. In a biofilm, tolerance is associated with the 
growth mode of the biofilm and encompasses various factors such as the ina-
bility of antibiotics to penetrate different regions of the biofilm, reduced 
growth within distinct microenvironments, heterogeneous metabolism, the 
presence of persister cells, oxygen gradients, and the diverse actions of the 
extracellular biofilm matrix113,114. For instance, in P. aeruginosa, heterogene-
ous subpopulations within a biofilm were found to produce β-lactamases when 
exposed to imipenem and ceftazidime115. Generally, studies on tolerance and 
resistance mechanisms are limited and predominantly focused on P. aeru-
ginosa. It is not possible to generalize the unique tolerance of one species to 
another due to differences in their lifecycles and the matrix they produce.  
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Current Investigations & Future Perspectives 

The reduced susceptibility of bacterial biofilms to antibiotics poses a signifi-
cant challenge in effectively treating various infections, particularly those as-
sociated with biofilm-colonized medical devices. While our understanding of 
the unique growth mode of biofilms has improved through advancements in 
investigative technologies, the properties of biofilms cannot be simply extrap-
olated from our knowledge of planktonic bacteria90. Extensive research has 
been conducted on the evolution of antibiotic resistance at concentrations 
above the MIC, but experimental evidence suggests that sub-MIC (sub-mini-
mal inhibitory concentration) selection may play a crucial role, at least for 
planktonic cells50–54. However, much less is known about sub-MIC exposure 
in biofilms and how the distinct physiology of biofilms influences the rate and 
trajectory of selection. Addressing this knowledge gap was the primary focus 
of our research in Papers I and II. 

Paper I 
A microfluidic chip for studies of the dynamics of antibiotic 
resistance selection in bacterial biofilms 
In this paper, we present a novel microfluidic model designed to address the 
aforementioned question. The study of biofilms in vitro requires diverse 
model systems due to the wide variety of biofilm structures. However, there 
is always a trade-off between high-throughput, ease-of-use, and physiological 
relevance of the model. By combining microfluidic approaches with advanced 
live imaging, we have developed a platform that allows for in situ investiga-
tion of biofilms under different hydrodynamic conditions and at high resolu-
tions. This platform enables us to examine the competitive abilities of suscep-
tible and resistant bacteria in a mixed biofilm, both in the absence and pres-
ence of antibiotics. We named the chip Brimor, where the letter B represents 
biofilms and “rimor” is derived from the Latin word meaning to probe, search, 
or explore. The microfluidic chips were designed as single-use disposable de-
vices, which were easily and cost-effectively fabricated using 3D-printed 
molds for fluidic channels, polydimethylsiloxane (PDMS) casting, and bond-
ing the PDMS replica piece to a glass slide. Along with the essential 
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components of a microfluidic system, this model allows for controlled culti-
vation of bacterial biofilms.  

We utilized Escherichia coli for biofilm formation and confirmed the pres-
ence of extracellular cellulose in the biofilms through in situ staining. By em-
ploying live imaging techniques and manipulating flow rates, we demon-
strated that planktonic cells seeded in the microfluidic chip transitioned into a 
biofilm state within 16 hours of cultivation. Additionally, we showcased the 
novel capability of the system to selectively harvest specific layers of the bio-
films. This new biofilm model enabled us to measure the growth and death 
rates of E. coli during biofilm formation and determine the minimal selection 
concentration in biofilms when exposed to ciprofloxacin. Importantly, we 
found that ciprofloxacin-resistant mutants can be selected in biofilms at con-
centrations well below the MIC of susceptible planktonic bacteria. 

In principle, Brimor is not limited to studying antibiotic compounds but can 
also be used to investigate the effects of other bioactive compounds. Moreo-
ver, while there are limitations associated with the use of microfluidic ap-
proaches for biofilm studies116, it’s worth noting that bacteria are not the only 
organisms that transition into a biofilm lifestyle, and the microchannels can 
accommodate various cell types. We anticipate that this approach will find 
applications in numerous areas where biofilms are prevalent117,118. 

Paper II 
Antibiotic minimal selective concentrations and fitness costs 
during biofilm and planktonic growth 
In this paper, our aim was to investigate two crucial parameters that influence 
the selection of resistant bacteria: the fitness cost and the minimal selective 
concentration (MSC) of resistance54. The fitness cost of resistance refers to 
the decrease in relative fitness caused by a resistance mechanism and directly 
impacts the MSC. Specifically, a higher fitness cost associated with a re-
sistance mutation or gene is expected to result in an increased MSC for bacte-
ria in the planktonic growth mode. 

To assess these parameters, we utilized the high-throughput model Flex-
iPeg119, which is a modified version of the widely used MBECTM assay. We 
examined five antibiotics (fosfomycin, nitrofurantoin, rifampicin, streptomy-
cin, and trimethoprim) and six resistance-conferring mutations (uhpT STOP 
5aa, ΔnfsAB, rpoB S531L, rpsL K42N and K42R, dfr) in uropathogenic bio-
film-forming E. coli strain CFT073. Our results revealed an important finding 
for the five antibiotics: the selection of resistance occurred at concentrations 
well below the MICsuc bacteria. This emphasizes the emergence and enrich-
ment of resistant bacteria in both planktonic and biofilm lifestyles. This find-
ing contradicts observations from other biofilm models, as we specifically 
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examined the early phases of biofilm formation, whereas most previous stud-
ies focused on later phases. Therefore, it is crucial to consider the different 
stages of the biofilm life cycle and their impact on the fitness cost of selec-
tion89, as well as the possibility that resistance selection in biofilms can be 
dynamic. 

While our study primarily focused on determining fitness costs and MSCs 
in defined biofilms for comparison to planktonic growth, it is important to 
acknowledge that complex biofilms consisting of multiple bacterial species 
are predominant in clinical and environmental settings. It has been suggested 
that MSCs may be higher in complex biofilm communities due to reduced free 
drug concentrations and higher costs of resistance120. However, there is lim-
ited research supporting this notion, and further studies are needed to explore 
this aspect. 

Combining multiple antibiotics, either in mixtures or in a sequential order, is 
proposed to enhance treatment efficacy and counteract resistance69,77,121. 
While the immediate effect of antibiotic action is often considered a linear 
chain of events, various nonlinear phenomena associated with antibiotic com-
binations have been observed122–124. Our understanding of the physiological 
responses and genetic mechanisms underlying these antibiotic interactions is 
generally limited70. Only recently, with advancements in technology, have 
high-throughput approaches been utilized to systematically investigate gene-
gene, drug-gene, and drug-drug effects, and their potential mechanisms in 
both Gram-negative and Gram-positive bacteria125–127. Understanding drug-
drug and drug-genetic interactions is crucial for antibiotic stewardship, yet an 
important unanswered question is whether combination strategies have clini-
cal applications. Answering the former was the central focus of Papers III and 
IV, while exploring the clinical implications of combination strategies was the 
central focus of Paper V. 

Paper III 
CombiANT®: antibiotic interaction testing made easy 
In this paper, we developed a simplified drug interaction assay using the 
Loewe additivity model isoboles and provided proof-of-concept studies for 10 
important pairwise combinations against three selected clinical pathogens. 
Combination therapy is commonly prescribed with the assumption that com-
bination effects are consistent across strains within the same species. How-
ever, recent results have revealed extensive and unpredictable variation both 
between and within bacterial species126,128,129. To refine combination therapy, 
it is necessary to examine antibiotic interactions on a case-by-case basis for 
each isolate. However, the gold-standard methods for determining antibiotic 
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combination effects, such as checkerboard assays and time-kill experiments, 
are complex and labor-intensive130,131 , limiting their widespread use outside 
academic settings. Our assay, called CombiANT® (for combination of antibi-
otic testing), is based on the diffusion of three different antibiotics on agar 
plates, allowing the formation of concentration landscapes on which bacterial 
samples can be applied and the growth or inhibition can be quantified to es-
tablish the effects of drug combinations. The concentration landscapes of the 
three antibiotics are generated using a custom-designed insert that houses 
three reservoirs, into which antibiotics are added at high concentrations and 
placed on a single agar plate. 

We validated the method using three major pathogens (E. coli, P. aeru-
ginosa, and S. aureus) and demonstrated its comparable performance to the 
gold-standard checkerboard assay, with the added benefits of reduced assay 
complexity and costs, as well as the possibility of integration into established 
clinical diagnostic pipelines. Importantly, the simplicity and similarity of the 
assay to antibiotic susceptibility testing with disk diffusion make it suitable 
for rapid adoption in low-resource settings and warrants further investigation. 

In principle, CombiANT® is not limited to antibiotic compounds alone; it 
can also be used to investigate the effects of other bioactive compounds. De-
spite the limitations associated with bacterial growth on agar132,133, it is worth 
noting that bacteria are not the only organisms that can be cultivated. With 
slight modifications, any cell type, such as HeLa cells, can be incorporated 
into the assay. We anticipate the application of this assay in various fields 
where the determination of drug interactions is required. 

Paper IV 
Low conservation of antibiotic interactions between and within 
Gram-negative bacterial species 
In this paper, we employed the method from paper III to systematically deter-
mine the effectiveness of 12 pairwise combinations of clinically used antibi-
otics against five Gram-negative pathogens. These pathogens belong to the 
ESKAPE group, which consists of priority pathogens134. We examined a total 
of 696 interactions from antibiotic combinations across five classes (amino-
glycosides, β-lactams, polymyxins, quinolones, and tetracyclines) using 232 
antibiotic-susceptible isolates from a collection of 500 non-duplicate patient-
derived isolates.  

Within each species, the interactions were often specific to the isolate and 
the antibiotic combination, ranging from antagonistic to synergistic. Particu-
larly in the case of E. cloacae, all types of interactions were observed. The 
interactions also varied significantly among the five Gram-negative species 
(A. baumannii, E. cloacae, E. coli, P. aeruginosa, and K. pneumoniae). 
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Additive and antagonistic interactions were the most common across the dif-
ferent species and the tested antibiotic combinations. Specifically, 99.7% of 
all isolate and antibiotic combinations fell into one of these two categories, 
while only 0.3% exhibited clinically relevant levels of synergy. Our findings 
emphasize the importance of routinely performing isolate-specific interaction 
profiling to achieve the highest precision and efficacy in combination therapy. 

It remains unclear whether the interactions observed under these in vitro 
conditions can directly correlate with patient outcomes and if the determined 
interactions can be clinically exploited. Understanding whether these effects 
lead to improved or reduced treatment outcomes compared to monotherapy is 
a crucial next question to address in order to ensure effective personalized 
combination therapy and antibiotic stewardship.   

Paper V 
Mutations that alter the synergistic interaction of tetracycline and 
spectinomycin in Escherichia coli. 
In this paper, we investigated the mutations and proposed mechanisms under-
lying the changes that result in the synergy and loss of synergy from the com-
bination of tetracycline and spectinomycin in the model E. coli strain 
MG1655. We selected 89 spontaneous mutants under different selective con-
ditions, which involved varying the ratio of either antibiotic in the combina-
tion. 

A total of 89 spontaneous mutants were isolated on plates containing both 
tetracycline and spectinomycin at low concentrations (near MIC) that pre-
vented growth. For a random sub-set of 41 mutants, we examined the antibi-
otic interactions and 12 % (5/41) mutants had become more synergistic, 27 % 
(11/41) mutants retained the same level of synergy as the parental strain, and 
61 % (25/41) mutants had lost their synergy and became more additive or an-
tagonistic. The latter type of mutants showed a class of mutations in which no 
change in individual MICs of either tetracycline or spectinomycin could be 
observed. Genetic changes in this class of mutants were associated mainly 
with the efflux regulatory network (acrR, lon, nupC, ompF), and to a lesser 
extent the pentose phosphate pathway (gnd, ptsI), glycolysis and gluconeo-
genesis switching (yggF), nucleoside transport systems (nupC), heat shock 
protein (clpP) or an uncharacterised gene (yhaC). Measurements of intracel-
lular tetracycline levels in a sub-set of four mutants revealed that tetracycline 
levels were reduced, and likely contributed to abolishing the synergistic effect 
and converting it towards additivity. These findings suggest a diversity of ge-
netic alterations that contribute to the loss of synergy. Notably, a common 
response among several mutants was a reduction in intracellular levels of tet-
racycline. 
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Our results align with the bioavailability model135, which posits that two 
drugs will be synergistic if one antibiotic increases another antibiotic’s intra-
cellular concentration, either by increasing the entry or decreasing the degra-
dation or efflux of the second drug. It is important to identify whether the 
observed genetic changes are also present in clinical isolates where combina-
tion treatment fails to achieve the therapeutic objective and whether these al-
terations are relevant in vivo. 
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Concluding Remarks 

As a modern society, we face numerous challenges: increasing geopolitical 
instability, ethnic conflicts, climate change, food insecurity, and infectious 
diseases, including antibiotic resistance, to name just a few. These challenges 
necessitate a comprehensive approach from all members of society to swiftly 
mitigate their negative impacts. ABR serves as an excellent example, where 
research is not only required to deepen our understanding and knowledge for 
the development of new drugs but also alternative treatment strategies, new 
economic models and improved non-discriminatory distribution is needed. 

Although the majority of new antibiotic candidates in the drug discovery 
pipeline do not belong to novel antibiotic classes, there are currently 76 anti-
bacterial candidates under development. Among these, 45 are traditional and 
31 are non-traditional, with 28 in phase one, 32 in phase two, 12 in phase three, 
and 4 under regulatory evaluation136,137. Alternative therapies have been sug-
gested, including but is not limited to phage therapy, antivirulence therapies, 
microbiome-modifying therapies, and agents targeting bacterial conjuga-
tion138,139. 

Furthermore, the current economic model of relying on market sales for 
antibiotic businesses is unsustainable. Two examples of this are the bankrupt-
cies of Achaogen140 and Melinta Therapeutics141 in 2019. These were the bio-
pharmaceutical companies behind the plazomicin and the delafloxacin antibi-
otics, both of which was approved in 2018 and 2019, respectively. Recently, 
the WHO has proposed alternative “push and pull” incentives142 as new eco-
nomic models for antimicrobials. “Push” incentives aim to reduce the early 
development costs for companies through funding (e.g., grant support, con-
tract funding, tax incentives, and private-public partnerships), while “pull” in-
centives aim to optimize the late stage of drug development and create a viable 
market demand for sponsors (e.g., market entry rewards, extended exclusivity 
period, tradable market voucher, and higher reimbursement). An example of 
the latter is Sweden and United Kingdom’s pilot subscription model for ac-
cessing antibiotics instead of purchasing them based on units sales143. 

Antimicrobial stewardship, including antibiotic stewardship, is another key 
aspect in controlling AMR. Simply put, it refers to strategies that promote re-
sponsible use of antimicrobials144,145. Approximately 50 % of current antimi-
crobial use is estimated to be unnecessary or inappropriate and can be re-
duced146. Therefore, effective antibiotic stewardship aims to balance the 
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individual’s need with the need of society, namely rapid and efficient treat-
ment versus preserve functioning antibiotics for the future147. 

All these aspects highlight the multifaceted nature of the universal chal-
lenge posed by ABR and AMR. Despite antibiotics being a valuable societal 
resource that has been irresponsibly managed for many decades, we should 
resist our natural instinct to ignore, deny, or withdraw from the challenge. The 
solution simply begins with gaining a better understanding of the problem to 
facilitate the development of solutions, a path that has driven many global 
progresses in past centuries. 

With this guiding principle in mind, I present five investigations conducted 
by co-authors and myself during my doctoral studies from 2018 to 2023. It is 
my hope that the tools and knowledge generated from these innovations and 
investigations will support and further guide global efforts in preventing AMR 
as “the next pandemic”. 
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