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Abstract

The interplay of experiments and theory is essential to deepen our under-
standing of magnetization dynamics. This thesis aims to serve as a bridge
between these two aspects by establishing a mathematical framework that
enables the computation of optical observable quantities based on theo-
retical models. The equations are cast in a matrix representation that is
well-suited for performing numerical simulations. Additionally, the gener-
ality of these methods enables their application to layered media with any
geometry, regardless of whether they possess magnetic properties or not.
Furthermore, it explores the various perspectives and physical mechanisms
involved in magneto-optic measurements to provide the reader with a self
consistent introduction to the subject matter. Numerical calculations are
presented for bulk Fe, alternating layers of Fe/Au and Ni with a MgO
coating and a SiO substrate for different energies, angle of incident and
magnetization direction. The results demonstrate the effectiveness of the
method in predicting measurable outcomes from theoretical considerations
and enables the analysis of optimal experimental configurations.

Sammanfattning

Samverkan mellan experiment och teori är avgörande för fördjupa v̊ar
först̊aelse av magnetiska system och deras dynamik. Målet med denna
uppsats är att etablera en koppling mellan dessa tv̊a aspekter genom att
formulera ett matematiskt ramverk som möjliggör beräkningar av optiska
observerbara storheter baserat p̊a teoretiska modeller. Ekvationerna for-
muleras med matriser vilket är väl lämpat för att utföra numeriska simu-
leringar. Dessutom möjliggör metodens generella natur tillämpning p̊a
skiktade material av godtycklig geometri, oavsett om de har magnetiska
egenskaper eller inte. Vidare utforskar uppsatsen olika perspektiv och
fysikaliska mekanismer som är involverade i magneto-optiska mätningar
för att ge läsaren en självständig introduktion till ämnet. Numeriska
beräkningar presenteras för bulkjärn, växlande lager av Fe/Au och Ni med
en MgO-beläggning och ett SiO-substrat för olika energier, infallsvinkel
och magnetiseringsriktning. Resultaten visar p̊a metodens förmåga att
förutsäga mätbara resultat baserat p̊a teoretiska överväganden och till̊ater
analys av optimala experimentella uppställningar.

2



Contents

1 Introduction 5

2 Review/Background 6
2.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Light as waves or plane waves solution to Maxwell’s equations . . 8
2.3 µ = 1 assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Classical optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Classification of optical media . . . . . . . . . . . . . . . . 12
2.5 Magneto-optic effects . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Lorentz model of an oscillating electron . . . . . . . . . . 15
2.6 Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.1 Exchange interaction . . . . . . . . . . . . . . . . . . . . . 17
2.6.2 Spin-Orbit interaction . . . . . . . . . . . . . . . . . . . . 19
2.6.3 Zeeman interaction . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Microscopic perspective . . . . . . . . . . . . . . . . . . . . . . . 21
2.8 Optical response . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8.1 Relating transition probability to macroscopic quantities . 22
2.8.2 Transition probability with time-dependent perturbation

theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Density functional theory (DFT) . . . . . . . . . . . . . . . . . . 27

3 Transfer matrix methods 29
3.1 The general transfer matrix . . . . . . . . . . . . . . . . . . . . . 31
3.2 The Partial Transfer Matrix . . . . . . . . . . . . . . . . . . . . . 33
3.3 Differential Approach . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Simplifying assumptions for ∆ . . . . . . . . . . . . . . . 37
3.4 Incident and exit matrix . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Magneto-optical Measurements . . . . . . . . . . . . . . . . . . . 40
3.6 Magneto-optic Approach . . . . . . . . . . . . . . . . . . . . . . . 41

4 Experiment 45
4.1 Photo-elastic modulator (PEM) . . . . . . . . . . . . . . . . . . . 46
4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Asymmetry measurement . . . . . . . . . . . . . . . . . . . . . . 49

5 Result 51

6 Discussion 55

7 Outlook 56

8 Conclusions 57

3



9 Appendix 62
9.1 Matrix elements for ∆ . . . . . . . . . . . . . . . . . . . . . . . . 62
9.2 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4



1 Introduction

Today we as a species face large problems that threaten our very existence. One
of the most eminent is the approaching threat of climate change that already
shows its presence in various places around the world. We as humans have to
collaborate and come up with solutions in order to avoid the possibly catas-
trophic not so distant future. The best solution as I see it is for us to change
our lifestyles and live sustainably, far from our capitalistic past of consumerism.
Since this option seems impossible in our current political climate and conflict
driven world, we might have to rely more on the second option which is tech-
nology. The technological progress is constantly accelerating with an increasing
research focus on alternative green energy sources, new sustainable materials
and more energy efficient devices.

With the increasing number of people having access to modern technologies
that is also becoming progressively more advanced, the need for efficient solu-
tions is crucial in order to fulfill the climate goals set in the Paris agreements.
As an example, the internet is estimated to use 20% of our energy consumption
in 2030 [1]. How we store, process and transfer data is encompassed in the
broad term information technology, which is one of the important issues we are
facing today. As the parts of our devices gets smaller to handle an increasing
number of computations, we are approaching a dead end in conventional elec-
tronics. Heat generation disturbs the signal and put a lower bound on the size
of conventional transistors, which is the base of all electronics.

One of the most promising solution to this problem is what is called spin-
tronics. As the name suggests spintronics uses not only charge as carried of
information as conventional electronics, but also incorporate the electrons spin
degrees of freedom which increases the information density. The possibility
of pure spin currents without any charge transfer and thus without any heat
generation would be the ideal scenario for circuits. Because of the potential
possibilities, spintronics has inspired significant research efforts in the last years
and field is rapidly developing[2][3][4].

Beside spin currents to revolutionize circuits and transistor technologies,
spintronics also encompasses data storing, which goes back to the internet as one
of the major energy consuming sectors. Much of the data stored in data centers
and large scale IT facilities is on mechanical hard drives[5]. The information
in the light signal transmitted through optical fibers needs to be converted
and physically imprinted on the hard drives and in this process energy is lost
and the efficiency is low. An ideal situation would be to imprint information
directly by optically inducing magnetization onto the hard drives. Because high
spacial resolution of today’s lasers, information could in principle be store in
microscopically sized domains in the material which then also could be read
with lasers.

The road to commercial spin based technologies although promising, is paved
with obstacles that we need to overcome. These are problems concerning injec-
tion, manipulation, transport and detection of spin. One of the major ones is
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the required low temperatures in order to ensure stability and room temperature
spintronics would be the ultimate goal. To succeed in these challenges, better
techniques needs to be developed, new materials designed and the underlying
mechanisms better understood.

Because of the many elements available, there is an almost infinite number
of combinations possible when designing a compound, making simple trial and
error approach cumbersome and inefficient. Here first principles calculations
serve as a powerful tool in predicting material properties. Furthermore, they
are invaluable for understanding the underlying mechanisms and the dominant
processes. To then compare with experiments, the calculated microscopic ob-
servables needs to be related to macroscopic quantities.

This thesis focus is on the bridge between theory and experiment. More
specifically it investigate the effects on light as it propagates through a mag-
netic medium (magneto-optical effects) both micro- and macroscopically. It
investigates the different contributions from a quantum mechanical perspective
and how these can be related to elements in the dielectric tensor which en-
ters Maxwell’s equations. The main part is devoted to the development of (a
mathematical framework in the form of) a matrix calculus based on Maxwell’s
equations in order to solve optical problems of arbitrary geometry. Optical quan-
tities is derived for a general experimental setup in which the dielectric tensor
plays the role of a bridge between the microscopic and macroscopic description.

The calculus is then used to investigate experimental setups and to present
optimal chose of parameters such as angle of incidence, magnetization direction
and frequency of light, to maximize the signal. Calculations are carried our
for the ferromagnetic elements Cobolt, Nickel and Iron, with their dielectric
functions given from (time dependent) density function theory (TD)DFT.

2 Review/Background

The way light interacts with magnetic matter is an extensive and multifaceted
subject, thereby allowing for a plethora of approaches and perspectives to be
considered. While it is not possible to encompass all aspects of the problem at
hand, this thesis endeavors to address the most essential components required to
ensure self-consistency. The primary focus is on classical optics, with Sections
(maxwells equations, waves, optics and matrix method) serving as the critical
sections for comprehending the results. Other sections may be skipped or read
to gain a background understanding of the underlying principles governing the
phenomena and the methods used for first principle calculations.

The review is structured as follows. First, Maxwell’s equations which de-
scribe the behavior of the electric and magnetic field will be explained and
how light waves are a solution to these equations. Then an explanation of the
theory of classical optics will be provided, including a discussion of the assump-
tions and approximations required for its macroscopic treatment of light. The
subsequent sections will then cover the quantum mechanical treatment of mag-
netism and its effects on the propagation of light. Two microscopical models
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will be presented, along with their relation to the theory of optics through the
dielectric function. Additionally, density functional theory, which plays a vital
role in proper treatment of materials and enables first-principle calculations of
many interacting particles, will be briefly explained. With a sound theoretical
basis established, a matrix calculus will be derived for solving complex optical
problems involving multiple reflections and refractions in magnetic materials.
This matrix formulation will be the primary tool used in deriving the results
presented in the results section.

2.1 Maxwell’s equations

Maxwell’s equations (1-2) form the foundation of classical electrodynamics.
These equations describes the dynamical interplay between the electric field
E and the magnetic field B aswell as how these fields are created by and inter-
acts with charges ρ and currents J. The macroscopic treatment of light, which
is the focus of this thesis, is built upon these four differential equations and it
will later be shown how quantum mechanical considerations can be included.
The equations in Gaussian units are written as

∇ ·D = 4πρ, ∇×E = −1

c

∂B

∂t
, (1)

∇ ·B = 0, ∇×H =
4π

c
J+

1

c

∂D

∂t
, (2)

with

D = E+ 4πP, (3)

B = H+ 4πM. (4)

The polarization field P and the magnetization field M describe the response
from a material and are the results of the rearrangement of a charges due to
an external fields D or H. The actual physical field is always given by E
and B. In vacuum where there are no charges nor currents, P and M are
zero. Maxwell’s equations can be solved as a boundary value problem with the
boundary conditions

n̂ · (D2 −D1) = 4πσsurface, n̂× (E2 −E1) = 0, (5)

n̂ · (B2 −B1) = 0, n̂× (H2 −H1) = 4πJsurface, (6)

which follows from the Equations (1-2). If there is no free charge nor free current
at the surface then

n̂ · (D2 −D1) = 0, n̂× (E2 −E1) = 0, (7)

n̂ · (B2 −B1) = 0, n̂× (H2 −H1) = 0. (8)

This shows that the parallel component of the E-field and the H-field is continu-
ous across the surface[6]. These boundary conditions will be used when looking
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at reflection and refraction of light. If one assumes a linear response then

D = ϵE, (9)

B = µH, (10)

J = σE, (11)

and in vacuum, ϵ = µ = 1 and σ = 0. For the simple case of isotropic media ϵ,
µ and σ are scalars, but they are generally represented by 3× 3-matrices.

The permeability µ is often very close to 1 and µ = 1 will sometimes be
assumed in this thesis because of the photon energies of interest and an argument
for this is explained in Section 2.3. When the dielectric function ϵ is assumed
to be complex, it becomes a function of the conductivity σ and one can be
calculated from the other. Hence it is often enough to do the calculations and
derivations from ϵ, which is the one mentioned most often in this text.

If one assumes no free charges, ∇ ·D = 0 and Maxwell’s equations becomes

∇ ·D = 0 ∇×E = −1

c

∂B

∂t
(12)

∇ ·B = 0 ∇×H =
4π

c
σE+ ϵ

1

c

∂E

∂t
(13)

The last equation can be written as

∇×H =
1

c

∂D

∂t
(14)

if one keeps in mind that ϵ is allowed to be complex.
It is through the dielectric function ϵ and the magnetic permeability µ that

a microscopic theory can be compared with optical experiments. These micro-
scopic models vary in sophistication and in Section 2.5.1 a simple semi-classical
model will be used to derive ϵ and in Section 2.8.1 a quantum mechanical ap-
proach is explained. For the results presented in Section 5, the dielectric function
was calculated from linear response density functional theory.

Maxwell’s equations in gaussian units (assume µ = 1):

∇ ·D = 0 ∇×E = −1

c

∂B

∂t
(15)

∇ ·H = 0 ∇×H =
1

c

∂D

∂t
(16)

2.2 Light as waves or plane waves solution to Maxwell’s
equations

The pinnacle of the work done by James Clerk Maxwell, Micheal Faraday and
many others in the 19th century was the interpretation of light in terms of elec-
tromagnetic waves with the property of a finite propagation velocity. The wave
equation follows easily from Maxwell’s equations by using the vector relation

∇× (∇×A) = ∇(∇ ·A)−∇2A. (17)
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In vacuum (∇ ·E = 0, J = 0) one get the equation

∇2E =
1

c2
∂2

∂t2
E. (18)

In one dimension ∇2 → ∂2

∂x2 , and it’s simple to show that functions of the form
f = f(x± ct) solves this equation

∂2

∂x2
f(x± ct) = f ′′ =

1

c2
∂2

∂t2
f(x± ct) =

1

c2
(±c)2f ′′ = f ′′. (19)

What this tells us is that the function at a position x1 and time t1 is related
to what the function looked at another position x0 at time t0. With t0 = 0 the
relation becomes f(x1 − ct1) = f(x0) or x1 − x0 = ∆x = ct1. c is then easily
interpreted as the speed of propagation. This is the defining characteristic of a
wave and why this equation is called the wave equation.

When working with waves it’s convenient to represent them using the com-
plex exponential function eik(x−ct) = cos(k(x− ct))+i sin(k(x− ct)) since d(ef ) =
f ′ef .

In matter, with the linear approximation (Equations (12-13) the wave equa-
tions has an extra term due to the induced current[7]

∇2E =
ϵµ

c2
∂2E

∂t2
+

4πσµ

c2
∂E

∂t
, (20)

∇2H =
ϵµ

c2
∂2H

∂t2
+

4πσµ

c2
∂H

∂t
. (21)

By substituting the plane wave solution

E = E0e
i(K·r−ωt), (22)

H = H0e
i(K·r−ωt), (23)

into the wave equation yields, one gets

K2 =
ω2

c2
µ(ϵ+ i4π

σ

ω
), (24)

ϵcomplex = ϵ+ i4π
σ

ω
= ϵ1 + iϵ2. (25)

With the induced current, the wave number K naturally becomes complex and
the relation k = ω

c n for the refractive index can then be generalized to K = ω
cN .

Then we have the following useful relations

K =
ω

c
N = k + iκ, (26)

N2 = µϵcomplex. (27)

The complex index of refraction is often written as

N = n+ ik, (28)
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where n is the index of refraction and k the attenuation coefficient. Here there
is an unfortunate instance of using the same notation to represent the real part
of K and imaginary part of N , but often only N is used and K is rewritten
with Equation (26).

By substituting the expression for N in the plane wave ansatz (22), in 1D
one gets

E0e
iω
c (Nx−ct) = E0e

iω
c (nx−ct)e−

ω
c kx. (29)

The attenuation coefficient causes the wave to exponentially decay as a function
of x because the wave looses its energy to the charges in the material.

2.3 µ = 1 assumption

When studying light in the optical regime, µ = 1 is often assumed. Here an
argument for this assumption will be presented based on the one done by L.D
Landau and E. M. Lifshitz [8]. The relation between the H and B field is

B = H+ 4πM, (30)

which for weak fields can be written as

B = (1 + 4πχ)H = µH. (31)

The interpretation of the magnetization vector M comes from the Maxwell
equation in the static case ( ∂

∂t = 0)

∇×B =
4π

c
j. (32)

The current density j is zero in vacuum but doesn’t have to be in a media. But
if one assume that for an arbitrary cross-section of the medium, there is no
net-current: ∫

j · da = 0. (33)

Then the current density can be written as

j = c∇×M (34)

and thus

∇×B = 4π∇×M, (35)

∇×H = 0, (36)

H = B− 4πM. (37)

The magnetic moment has the general form

τ =
1

2c

∫
r× j dV =

1

2

∫
r× (∇×M) dV. (38)
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Here volume V is arbitrary, as long as it contains the object, since j = 0 and
M = 0 outside the object. With the help of product rules, the integral can be
written as∫

r× (∇×M) dV = −
∮

r× (M× da)−
∫

(M×∇)× r dV. (39)

The first surface integral is zero since M = 0 outside the object. The second
integrand is

(M×∇)× r = −M∇ · r+M = −2M, (40)

and the final result becomes

τ =

∫
M dV. (41)

The interpretation of M is then the magnetization per volume. This physical
meaning given to M followed from the assumption that j = c∇ × M. In the
non-static case

∇×H =
1

c

∂D

∂t
, (42)

∇×B =
4π

c
j+

1

c

∂E

∂t
, (43)

and the current density is instead

j = c∇×M+
∂P

∂t
. (44)

So for M and therefore the magnetic susceptibility χ to have any physical mean-
ing, ∂P

∂t needs to be much smaller than c∇ × M. Then the polarization term
can be neglected and the result in Equation (41) is still valid.

To see why this is not the case for optical frequencies, one can do some
estimates. c∇ × M ∼ cM

l with l being a length dimension of the object.

This term is thus largest for small bodies. ∂P
∂t is small for weak E-fields, but

since E ∼ H for electromagnetic waves, this estimate will not help. Instead
imagine placing the object in a changing magnetic field, and that E comes
from induction. Then ∇ × E = − 1

c
∂B
∂t , hence

E
l ∼ ω

cH, or E ∼ lω
c H. The

polarization P = 1
4π (ϵ−1)E ∼ E, with the assumption that 1

4π (ϵ−1) ∼ 1. Then
∂P
∂t ∼ ωE ∼ lω2

c H. For the magnetization vector M = χH, c∇ × M ∼ cχ
l H.

So the estimate for the condition ∂P
∂t ≪ c∇×M is ω2l

c H ≪ cχ
l H or

l2 ≪ c2χ

ω2
. (45)

The dimensions of the object should be macroscopic, hence l ≫ a, where a is an
atomic dimension. For optical frequencies ω = c

λ ∼ v
a , where v is the velocity of

the electron. For a non-ferromagnetic body, the magnetization is a relativistic
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effect and χ ∼ v2

c2 .
v
c shows up ones in the interaction with the magnetic field

and ones in the magnetic moments of the atoms. The inequality that needs to
be fulfilled for the susceptibility to be physically meaningful is

l2 ≪ a2. (46)

Thus there is no meaning in using the magnetic susceptibility in the optical
frequency range and people set µ = 1 and distinguishing between the B- and
H-field is excessive [8].

2.4 Classical optics

The macroscopic Maxwell theory of optics used throughout this text is based
on the fact that optical experiments with monochromatic light have a spacial
resolution on the order of wavelengths. Hence volumes that are small compared
to the wavelength of light still contains many atoms. An example is in the
experiment in Ref. [9] where a 633 nm = 6.33 × 10−7 m laser is used. The
atomic spacing in a material is in order of Ångstöm, 1 Å = 10−10 m. A small
volume compared to the laser would still contain thousands of atoms. The theory
averages over small volumes and thus smooth out any microscopic fluctuations.
These approximately continuous optical media can be assigned a refractive index
and an attenuation coefficient which describes how the light bends when entering
a media and how much of the light that gets absorbed while propagating through
it [10]. Together these two form the complex index of refraction. There are
materials which can be assigned a single refraction index, but this is generally
not the case. With the refractive index and the boundary conditions from
Maxwell’s equations, reflection and transmission at medium boundaries can be
calculated.

2.4.1 Classification of optical media

All media can be divided into single refracting and double refracting. Dou-
ble refracting media can be further classified by whether they are isotropic or
anisotropic, uniaxial or biaxial and if they are optically active or not. What
is common to double refracting media is for a given direction and frequency,
there are just two polarizations for which have a definite refractive index. This
is a requirement for a definite wavelength and propagation velocity. These two
polarizations are in general elliptical, with same eccentricity and major axes at
right angles. One of them are right circular polarized (RCP) and the other is
left circular polarized (LCP). The general plane wave is then a superposition of
these two polarizations [10].

For a non-active media to be double refracting, it has to be anisotropic.
The two polarizations for any given direction of propagation are linear and at
right angles and the index of refraction varies across different directions. In the
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principle system, the index of refraction can be written as

n =

nx 0 0
0 ny 0
0 0 nz

 , (47)

here the diagonal elements are called the principal index of refraction. For
uniaxial media, two of the three principles indices are the same, e.g: nx = ny =
no, nz = ne. Then the z-axis is called the optical axis, since a waye propagating
along this direction will experience a single refraction index no. no is called the
ordinary refractive index and ne is called the extra ordinary refractive index. If
all three indices are different, the media is called biaxial.

Another term that is used in optics is dichroism. This is when the material is
absorbing, with different attenuation depending on the polarization. This can be
understood microscopically by materials having different resonance frequencies
depending on the atoms and geometry of the crystal.

Optical activity is when the polarization direction is rotated by a non-
magnetic sample. This is often associated with a certain handedness, or chirality,
of the charge distribution. An example is SiO2, which crystal structure is in a
corkscrew arrangement which causes LCP and RCP to have different refractive
indexes.

Magneto-optical rotation on the other hand is a rotation of the polarization
direction in the presence of a magnetic field or alignment of magnetic moments,
which breaks time-reversal symmetry which gives the sample a sense of hand-
iness in time [11]. This gives the medium different refractive indices for RCP
and LCP and the effect is interesting when doing measurements on magnetic
materials and will be studied further in thesis.

2.5 Magneto-optic effects

The interaction between light and matter is influenced by the magnetic state
of the medium and depends on the electronic structure of the material. This
interaction gives rise to phenomena known as magneto-optic effects, which occur
when electromagnetic radiation interacts with magnetically polarized materials.

When light is incident on a magnetic material, the state of polarization
changes and this can effectively be introduced through off-diagonal elements in
the dielectric function (Equation (9)). The polarization changes both for the
reflected and transmitted light and the effect is then called magneto-optic Kerr
effect (MOKE) or Faraday rotation respectively. A third possible measurement
is to look how the light is absorbed in the material, magnetic dichroism. De-
pending on the situation all of these effects can be measured, but when doing
measurements on metals, which naturally have high absorption, it is often more
convenient to measure the polarization of the reflected wave (MOKE).
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Figure 1: A classical model on how the polarization and thus the electrical field
gets rotated in a material when a magnetic field is present.

How magnetism affect the polarization by rotation is illustrated classically
in Figure 1. Here the external D-field causes the electron density to move in
the opposite direction, but because of the B-field and the Lorentz force F =
q(v ×B), the electron density will also start to move perpendicular to the D-
field. These vectors are written in the x-y-plane which make it clear that the
external field D gets rotated to E by the material. The dielectric function for
a magnetic material magnetized in the z-direction with cubic symmetry can be
written as

ϵ =

 ϵxx ϵxy 0
−ϵxy ϵxx 0
0 0 ϵzz

 , (48)

and for an E-field in the x-direction

D = ϵ

Ex

0
0

 =

 ϵxxEx

−ϵxyEx

0

 (49)

When the dielectric function is calculated from the same model below, it is seen
that ϵxx > 0 and ϵxy < 0 (Equations (63-65) and (68)), hence the D-field in
Equation (49) points in the same direction as in Figure 1. This example is just
to give an intuition on the fields interact and why the polarization is rotated
when magnetism enters the picture, but the actual situation is of course much
more complicated.

For experiments in the optical region, the general procedure is to shine lin-
early or circular polarized light onto a sample and then to measure what is
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Figure 2: The change of polarization due to MOKE, called complex Kerr rota-
tion.

called the complex Kerr rotation[12]

ϑk = θk + iϵk, (50)

which for p- respectively s-polarized light are

ϑpk =
rsp
rpp

, ϑsk =
rps
rss

, (51)

This describes a rotation and change in eccentricity of the ellipse of polarization
in the reflected light as illustrated in Figure 2. The incoming light is either linear
polarized, which is in a superposition of LCP and RPC, or circular polarized.
Because the magnetic field (or the effective magnetic field from the alignment
of spins), time-reversal symmetry is broken causing LCP and RCP light to have
different index of refraction (N = n + ik), which both leads to a difference in
absorption due to k and phase due to n, hence a change in eccentricity and a
rotation of the ellipse of polarization.

The rij is the reflection coefficients in the Fresnel reflection matrix(
Esr

Epr

)
=

(
rss rsp
rps rpp

)(
Esi

Epi

)
, (52)

which say how much of the incident s/p-polarized light that is reflected as s/p-
polarized. How to calculate this matrix and a similar one for transmission is
described in Section 3 and is the main part of this thesis. Other quantities than
the complex Kerr rotation can also measured, e.g for light in the XUV region
(∼ 10-124 eV) it is common to measure the asymmetry parameter (Equation
(252)) but this quantity is also a function of the reflection coefficients.

2.5.1 Lorentz model of an oscillating electron

The refractive index and attenuation coefficient together form the complex in-
dex of refraction. This can be derived from different microscopic models, often
through a linear response theory. Here a simple model called the Lorentz oscil-
lator model will be used to derive the optical response and to illustrate how a
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microscopic model can be used in deriving the complex refractive index. With
the addition of a magnetic field in the z-direction, the derivation, inspired by K.
Sato and T. Ishibashi [13], will also show how magnetism introduced off-diagonal
elements in the dielectric function.

In this crude model, the electron is thought of as a classical object, bound
to the stationary nuclei through a restoring force mω2

0r. The electron also
experience a dampening force mγ ∂r

∂t , that depends on the speed, since at higher
speeds, there are more collisions. The equation of motion can then be written
as

m
∂2r

∂t2
+mγ

∂r

∂t
+mω2

0r+ e

(
E(t) +

∂r

∂t
×B

)
= 0. (53)

Here γ = 1
τ is the dampening factor, ω0 is the resonance frequency of the system,

m is the mass of the electron and −eE(t) is the driving force from the electric
field. The last term represent the Lorentz force with a constant magnetic field.
By assuming plane waves and doing a simple ansatz for r

E = E0e
−iωt, (54)

r = r0e
−iωt, (55)

B = (0, 0, B), (56)

gives

m(ω2
0 − ω2 − iωγ)r0x + iqωBry = qE0x, (57)

m(ω2
0 − ω2 − iωγ)r0y − iqωBry = qE0y, (58)

m(ω2
0 − ω2 − iωγ)r0z = qE0z. (59)

(60)

This equation can be solved for r = α̂(ω)E. From the definition of an electric
dipole p = −er and with the atomic density N , one gets the following expression
for the macroscopic polarization

P = Np = −Neα̂E = ϵ0χE, (61)

with

χ =

 χxx χxy 0
−χxy χxx 0
0 0 χzz

 , (62)

and

χxx = −Ne
2

mϵ0

ω2 + iγω − ω2
0

(ω2 + iγω − ω2
0)

2 − ω2
cω

2
, (63)

χxy = −Ne
2

mϵ0

iωcω

(ω2 + iγω − ω2
0)

2 − ω2
cω

2
, (64)

χzz = −Ne
2

mϵ0

1

ω2 + iγω − ω2
0

. (65)
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Here ωc = eB
m denotes the cyclotron frequency. The off-diagonal elements χxy

are typical for a magnetic medium and disappears without the magnetic field.
If B is small and only terms of first order in B are included, then χxx = χzz

and χxy ∼ B.
Using Equation (61) together with the definition of the D-field, the linear

response becomes

D = ϵ0E+P = ϵ0(1 + χ)E = ϵE. (66)

In gaussian units this is

D = E+ 4πP = (1 + 4πϵ0χ)E = ϵP, (67)

with the dielectric function finally given by

ϵij = δij + 4πϵ0χij . (68)

The refraction index is related to the dielectric function through the relation
ϵ = n2. In the expressions above there is resonance at frequencies close to the
natural frequency, which gives the refractive index a frequency dependence and
is the reason for refraction.

2.6 Magnetism

Before discussing the microscopic origin of magneto-optic effect, an explanation
of the mechanisms which is the cause of magnetism is in order. The essence of
magnetism can be understood by the interplay of the following three interac-
tions[11]

• The exchange interaction, which stands as the strongest magnetic inter-
action, serves as the fundamental force behind the alignment of the spin
system.

• The spin-orbit interaction generates orbital magnetism, couples the spin
system to the lattice, and causes magnetocrystalline anisotropy.

• The Zeeman interaction facilitates the macroscopic alignment of spin and
orbital magnetic moments, enabling measurements of the magnetic state
and the creation of practical magnetic devices.

These effects will now be discussed.

2.6.1 Exchange interaction

The exchange interaction is responsible for the parallel or anti-parallel alignment
of spin, i.e ferromagnetic or antiferromagnetic materials, and was first observed
in the atomic spectrum of He.

This can be understood by the phenomena of identical particles, which means
that one cannot distinguish between a particle a and particle b, there is no way
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to put a label on them. A wave function describing two particles Ψ(a, b) should
then be equivalent to Ψ(b, a), which leads to a wave function on the form

Ψ(a, b) =
1√
2
(ψ1(a)ψ2(b)± ψ2(a)ψ1(b)), (69)

with

Ψ(b, a) = ±Ψ(a, b), (70)

which are either symmetric (+) or anti-symmetric (-) under the exchange of
particles. This is formulated in the Symmetrization Postulate [11]

• “If the system is totally symmetrical under the exchange of any parti-
cle pair, the particles are called bosons and obey Bose–Einstein statistics.
Bosons have integer spins”

• “If the system is totally antisymmetrical under the exchange of any particle
pair, the particles are called fermions and obey Fermi–Dirac statistics.
Fermions have half-integer spins.”

All particle systems are distinguished by this fundamental symmetry, with pos-
sible exceptions in materials of reduced dimensionality. Here exotic particles
know as anyons that acquire an arbitrary phase when exchanged, has been ex-
perimentally observed[14]. Electrons are fermions and thus have an odd total
wave function, which means that two electrons cannot then have identical wave
functions since putting a = b in Equation (69) gives Ψ(a, a) = 0.

The total wave function is a product of a spacial and a spin part, one of
them odd, and can be written as

Ψas(a,b) = Ψas(r1, r2)χsym(s1, s2) or: Ψsym(r1, r2)χas(s1, s2), (71)

with Ψsym/as having the form in Equation (69). The symmetric spin part has
the form

χsym =


αα
1√
2
(αβ + βα)

ββ

, (72)

which is called the triplet state, with α and β being the eigenstate for spin up
and down. The anti-symmetric spin state, called the singlet state, is

χas =
1√
2
(αβ − βα), (73)

where the two spins are anti-parallel.
A strait forward calculation of the expectation value of the distance squared

between two particles
〈
(r1 − r2)

2
〉
show that particles with an even(odd) spacial

wave function lies closer(further) apart[15], which is a geometrical consequence
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Figure 3: A schematic picture of the magnetic domains in a ferromagnet, which
can be aligned by an external magnetic field due to the Zeeman effect. Courtesy
of Allen D. Elster, MRIquestions.com

of the symmetrization requirement. This is what is called the exchange inter-
action.

Electrons with a odd spacial wave function (hence the symmetric triplet spin
state χsym) feel the repulsion and thus have a larger average distance between
each other than electron with an even wave function, which results in a lower
potential energy from the Coulomb repulsion. To minimize energy, the spins
then have a tendency to align and the effect is often described by a potential
energy term

U = −2JSi · Sj , (74)

in the Hamiltonian called the Heisenberg model. The discussion above have
only been for a two particle system but the principles are generally valid and
can be introduced by a Slater determinant.

The reason why not all the spins in the material are aligned is a natural con-
sequence of the various contributions to the energy. In ferromagnetic materials
which have been studied in this thesis, the material creates domains to reduce
the energy of the magnetic field which is illustrated in Figure 3. By applying
an external magnetic field and because of the Zeeman effect, the domains can
either twist to lie in a more favourable position or the spins themselves inside
the domain wall can rotate to minimize the energy. Both of which gives rise to a
net magnetization in the material that can be detected through magneto-optical
effects[16].

2.6.2 Spin-Orbit interaction

The spin-orbit interaction couples the spin s to the angular momentum l of the
system, and this effect although being 10-100 times smaller than the exchange in-
teraction [11], is of fundamental importance for magnetism and magneto-optical
effect. It is this interaction that allows the spins and charges to communicate
with each other. It couples the spin to the lattice which allows the material to
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maintain a macroscopic magnetization and also, since the exchange interaction
is isotropic, the SO-interaction is the main source of magnetic anisotropy.

In the Pauli equation, which one gets from the Dirac equation in the non-
relativistic limit

(He +Hs)ψ = Eψ, (75)

the first term is regular Schrödinger equation for the electron and the second
term

Hs =
eℏ
me

S ·B∗, (76)

describes the spin energy. The magnetic field B∗ that the electron sees as it
moves is

B∗ = −v×E

2c2
, (77)

which is a relativistic effect and in terms of momentum and the potential field

B∗ = −p×∇ϕ

2mec2
. (78)

By inserting this in Equation (76), one gets the spin-orbit Hamiltonian

HSO =
eℏ

2m2
ec

2
S · (p×∇ϕ) = − eℏ2

2m2
ec

2

1

r

dϕ(r)

dr
S · L = ξnl(r)S · L. (79)

ξnl is positive because dϕ
dr is negative and is called the coupling constant[11].

This term in the Hamiltonian leads to a energy splitting, spins that are
parallel or anti-parallel to the angular momentum now has different energies.
As will be described below, the SO-interaction gives rise to the magneto-optic
effects because the excitation from RCP and LCP light has opposite angular
momenta and thus different energies.

In Section 2.5 and 2.5.1, it was shown how an external magnetic field rotates
the polarization of light, but in ferromagnetic materials the effect from SO-
interaction is much larger and the external field to align the spins can be ignored
in calculations. It has been demonstrated experimentally that the rotation is
about 1000 times larger in a ferromagnetic sample than a non-ferromagnetic one
and that these effects disappears for temperatures above the Curie temperature,
where the ferromagnetic properties disappears [17] [18] [19].

2.6.3 Zeeman interaction

The last interaction that will be discussed are called the Zeeman interaction.
This was first observed by Pieter Zeeman in 1896, when he observed a splitting
of the Na D-lines in the emission spectrum when an external magnetic field
was present. The reason for this is that the electron has a magnetic moment,
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which interacts with the magnetic field. This interaction can be described by
the interaction Hamiltonian[11]

HZee = −m ·H, (80)

where H is the magnetic field and m is the total magnetic moment which is the
sum of the spin and orbital parts. Substituting for m, one gets

HZee =
µB

ℏ
H · (L+ 2S), (81)

or in terms if the total angular momentum J = L+ S,

µB

ℏ
H · (J+ S). (82)

This form is practical if one wants to treat the term as a perturbation of the
spin-orbit Hamiltonian where the orbital angular momentum is coupled to the
spin [20]. The interaction gives the angular momentum a preferred direction
and causes the alignment of spin in a material to the external magnetic field
(see Figure 3), which is a prerequisite to observe magneto-optic (MO) effects.
It turns out that the interaction is much weaker than the spin-orbit and ex-
change interaction and can be treated as a perturbation when calculating the
MO effects[17][19].

2.7 Microscopic perspective

The model demonstrated in Section 2.5.1 can give a good first intuition on why
the MOKE and Faraday rotation take place. But one should not take this clas-
sical analogue to seriously and the whole story is of course best understood
through quantum mechanics. In the above section, the three most important
interactions regarding magnetism was discussed and here together with the fol-
lowing section, they will be related to the observed magneto-optic (MO) effects.

A first fundamental difference from the classical viewpoint is the quantized
energy states and that MO effects are driven by transitions probabilities between
these states. These are calculated from matrix elements of the transition matrix
for the interaction and in Figure 4 (A), a perturbed charge distribution resulting
in an induced electric dipole moment is illustrated. These kinds of transitions
determine how easily the material is polarized and in turn results in a contri-
bution to the diagonal elements of the dielectric function. Figure 4 (B) shows
how transitions induced by RCP or LCP lead to rotation of the charge distribu-
tion, which results in off-diagonal elements and thus the MO effects if there is
a difference in energy between RCP and LCP induced transitions. Under such
transitions a RCP and LCP photon carries a spin of ±ℏ, which get transferred
to the electron in accordance to the conservation of angular momentum.

These energy splittings are illustrated in Figure 5 and occur because of the
exchange and spin-orbit interaction. Figure 5(A) shows the degenerate energy
levels without magnetization and Figure 5(B) illustrates how these are split into
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Figure 4: (A) Illustration of the altered charge distribution of an atom from a
perturbation by an external electric field, inducing an electric dipole moment.
This gives a contribution to the diagonal elemtents in the dielectric fucntion. (B)
A schematic picture of the induced rotation by cirbular polarized light, which
can be described by a superposition of p-orbitals of the form p± = px ± ipy. By
breaking of time-reversal symmetry, e.g from SO-interaction, the energy levels
are shifted resulting in magneto-optical effects. ”Fundamentals of Magneto-
Optical Scectroscopy”, K. Sato and T. Ishibashi CC BY [13]

two levels by the exchange interaction, one for spin up and one for spin down.
Which level that has the lowest energy depend on the history of the material,
but the splitting will happen. Finally, as the spin-orbit interaction is considered
and J = L+ S becomes a good quantum number, the energy levels will split
further as in Figure 5(C). Left and right circular polarized light will correspond
to different transitions since they carry an angular momentum of ±ℏ, which
gets transferred to the electron, as illustrated in the Figure. If these transitions
differ in energy, the MO effects appear[13].

2.8 Optical response

2.8.1 Relating transition probability to macroscopic quantities

In the previous sections the different mechanisms that drives MO effects has been
presented and also a semi-classical model was used to derive an expression for
the dielectric function. Here an outline is presented on how to relate transitions
probabilities calculated from quantum mechanics to the macroscopic observable
effects. A possibility demonstrated by H. S. Bennett and E. A. Stern [19] is to
calculate the conductivity tensor and then relate it to the current density. With
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Figure 5: Schematic picture of the energy shifts due to exchange splitting and
SO-interaction, resulting in MO effects. ”Fundamentals of Magneto-Optical
Scectroscopy”, K. Sato and T. Ishibashi CC BY [13]

cubic symmetry, the conductivity tensor has the form

σ =

 σxx σxy 0
−σxy σxx 0
0 0 σzz

 . (83)

For a homogeneous, time-dependent medium, the current can be written in the
form

Ji =
∑
j

σijEj . (84)

If the electric field is RCP/LCP, mathematically written asEr/l = (x̂±iŷ)Ee−iωt,
then the current is given by

Jr/l = σEr/l = (σxx ± iσxy)Er/l = σr/lEr/l, (85)

where r/l stands for right/left circularly polarized. The current, and hence the
conductivity tensor, can be related to the absorbed energy through the equation
for power

P =
1

2

∫
Re{J∗ ·E}dV, (86)

and if one neglects space variation of E, which is reasonable for wavelength large
compared to the inter-atomic distance, we can rewrite this as

P =
1

2
V Re

∑
i,j

σ∗
ijE

∗
jEi

, (87)
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with

σij = σ1ij + iσ2ij , (88)

denoting the real and imaginary part of each matrix element. For linear polar-
ized electric field, the power becomes

Px =
1

2
V E2σ1xx (89)

and for right (r) or left (l) circular polarized light

Pr/l =
1

2
E2(σ1xx ∓ σ2xy). (90)

These equations can then be combined to get an expression for the real part of
σxx and imaginary part of σxy as follows

σ1xx =
2

V E2
Px =

1

V E2
(Pr + Pl), (91)

σ2xy =
1

V E2
(Pl − Pr). (92)

Now there is a useful relation from complex analysis called the Kramers-Kronig
relations which relates the real and imaginary part of a complex function, given
that the function is analytic in the closed upper half plane and that the function
vanishes faster than 1/|z| as z → ∞. If f(z) = f1(z) + if2(z) is the real and
imaginary part of the complex valued function f and z is a complex variable,
the relations are

f1(z) =
1

π
P
∫ ∞

−∞

f2(z
′)

z′ − z
dz′, (93)

f2(z) = − 1

π
P
∫ ∞

−∞

f1(z
′)

z′ − z
dz′. (94)

By conservation of energy and causality, H. S. Bennett and E. A. Stern [19]
argue that σij satisfies the conditions necessary to use these relations in order
to calculate the other part of the conductivity tensor. What is left is to calculate
Px/r/l which can be done with the relation

Pdω = ℏω
∑
i

Wi, (95)

where Wi is the probability per unit time that a process that absorbs energy
in the interval (ℏω, ℏω + ℏdω) happen. This transition probability can then
be calculated with quantum mechanics in order to determine the conductivity
tensor.
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2.8.2 Transition probability with time-dependent perturbation the-
ory

The transition probabilities Wi in Equation (95) can be calculated with time-
dependent perturbation theory. In order to do this, the eigenstates to the un-
perturbed Hamiltonian needs to be found and then the matrix elements for the
transitions can be calculated with Fermi’s golden rule.

First, the Hamiltonian for an electron in a solid with a optical field present
can be written as [7]

H =
(p− eA)2

2m
+ V (r) =

p2

2m
− ep ·A

m
+
e2A2

2m
+ V (r), (96)

= H0 −
ep ·A
m

+
e2A2

2m
(97)

with V (r) being the potential from the material and V (r) the magnetic vector
potential from the radiation. Here the Coulomb gauge was chosen (∇·A = 0) in

order for p and A to commute. H0 = p2

2m+V (r) is the unperturbed Hamiltonian
and the other terms is treated as a perturbation H ′ from the optical field.
Although this Hamiltonian can be used to calculate transition probabilities, in
order to capture the magneto-optical effects, spin and it’s interaction with the
electric field needs to be considered.

What additionally needs to be considered is the applied uniform magnetic
field that align the spins and the SO-interaction. This can be done by the
substitution p → π, where π is

π = P+
ℏ

4mc2
σ×∇V, (98)

P = p+
e

c
AM , (99)

here AM is the vector potential for the uniform magnetic field and V is the
potential and σ is the Pauli spin operator. The full Hamiltonian, when summing
over all electrons, can then be written as

H = H0 +
∑
i

e

mc
πi ·AL(ri) +

e2

2m2c2
A2

L(ri), (100)

which is similar to Equation (97). Here AL is the vector potential from the
optical field. By assuming that each electron interacts with an effective mean
field, H0 =

∑
iH0i with

H0i =
P 2
i

2m
+ V (ri) +

ℏ
4m2c2

Pi · [σ×∇V (ri)] + Veff (ri). (101)

The third term comes from the SO-interaction which is a relativistic effect and
describes the interaction between the spin of the electron and the effective mag-
netic field it sees when it moves in the potential. If the spherically symmetric
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term of the potential is dominant, this interaction term can be modified to the
form familiar in the hydrogen atom

HSO = ξlL · S, (102)

where ξl is the strength of the interaction. Now the total Hamiltonian can be
written as

H =
∑
i

Hi =
∑
i

H0i +H ′
i, (103)

where the last term is the perturbation in Equation (100). By only considering
the terms linear in AL, since the perturbation is assumed to be weak, one gets

H ′
i =

e

mc
πi ·AL(ri). (104)

Using first order time-dependent perturbation theory, the transition probability
per unit time from an initial state |i⟩ to a final state |f⟩ (for a plane wave in
x-direction), is given by Fermi’s golden rule

Wfi =
2π

ℏ
E2e2

4m2ω2
|⟨f |πx |i⟩|2(δ(εf − εi ± ℏω). (105)

Here πx is the x-component of the kinetic momentum operator and εi/f is
the energy of the initial and final state. The δ is the dirac delta function.
By combining this equation with the relations in Equation (91) and (95) and
summing over all initial and final states, the real part of σxx can be written as

σ1xx =
πe2

ωm2V

∑
i,occ

∑
f,unocc

|⟨f |πx |i⟩|2δ(εf − εi ± ℏω). (106)

The summation here is over all occupied initial states and all unoccupied final
states. The real part can then be calculated with the Kramers-Kronig relation.
The expression for RCP and LCP light is similar, with πx replaced by π± =
πx ± iπy and some of the coefficients changed. This was just an overview to get
an intuition for how one goes about calculating the conductivity tensor. For
a detailed derivation see reference [19] and for a more modern approach see
reference [21], where Kubo’s formula is used together with another integration
technique that does not have to resort to the Kramers-Kronig relations. What
is important is that because of the symmetry breaking due to the net spin in the
material, the induced current from RCP and LCP light is different. This then
result in the off-diagonal elements σxy which in turn rotates the polarization of
the incident light.

When Fermi’s golden rule was used above, it was assumed that the unper-
turbed eigenstates where known. To find these is a non-trivial problem since
the Hamiltonian is a complicated many-body problem. In order to solve this,
people resort to elaborate methods such as density funcitonal theory.
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2.9 Density functional theory (DFT)

The Lorentz model used above is of course a very crude approximation. In
reality, the situation is much more complicated. Firstly, the electrons in the
atom forms complicated orbitals and they can get excited to a higher unoccupied
energy state given the right amount of energy. The outer most electrons also
form bonds with neighbouring atoms and the electrons carry spin. There are
also many types of interactions to consider such as spin-orbit interaction and
interaction with collective excitations such as phonons and magnons.

A more realistic way of finding the optical response of the system would be
to first solve the Schrödinger equation for the system and then perturb it using
perturbation theory. But even when only considering the Coulomb interaction,
the problem is still very hard. The time independent Schrödinger equation (in
atomic units) that needs to be solved is−

∑
i

1

2
∇2

i −
∑
I

1

2MI
∇2

I +
1

2

∑
i̸=j

1

|ri − rj |
(107)

+
∑
I ̸=J

ZIZJ

|RI −RJ |
−
∑
i,I

ZI

|ri −RI |

Ψ(r,R) = EtotΨ(r,R). (108)

Here the small and big indices represent sum over electrons respectively nuclei.
The first two terms are the kinetic energies for the electrons and nuclei. The
third and forth term is the Coulomb repulsion for for electron-electron and
nucei-nuclei with the factor 1

2 because it sums over each pair twice. The last
term is attractive Coulomb force between the electrons and nuclei and ZI is the
charge of nuclei I. The number of degrees of freedom grows exponentially as the
number of atoms in the system increases and the problem becomes impossible to
solve analytically, even numerically, in a realistic material. A first approximation
that is usually done is the Born-Oppenheimer approximation[22].

This approximation is based on the large difference in mass between the elec-
tron and the nucleus. The electrons thus moves much faster and in their frame
of reference, the nuclei looks to be fixed in place. This is called the clamped
nuclei approximation. To the nucleus, the electrons behaves as responding in-
stantaneously to any movement. Because of the difference in time-scales the
Schrödinger equation can be separately solved for the electrons, with the ki-
netic energy of the nuclei set to zero and their positions RI held fixed. The

27



Scrödinger equation for the electrons then becomes [23]−
∑
i

1

2
∇2

i −
∑
i,I

ZI

|ri −RI |
+

1

2

∑
i̸=j

1

|ri − rj |

Ψelec(r) = EelecΨelec(r),

(109)

Eelec =

Etot −
∑
I ̸=J

ZIZJ

|RI −RJ |

 .

(110)

Here the Coulomb repulsion for the nuclei is constant and is included in the
energy. The solution to this equation then give constant energy surfaces that
depends on the coordinates of the nuclei and can be used as a potential when
solving that part.

Even with the Born-Oppenheimer approximation the problem is hard be-
cause of the third term in the Hamiltonian that is the interaction between all
the electrons. This is called a many-body problem and a general closed-form
solution doesn’t even exist for three bodies. Despite this, people run quantum
mechanical calculations and simulations for large structures and the key is den-
sity functional theory. The details is outside the scope of this thesis, but the
qualitative approach will be explained here, since dielectric functions from such
calculations are used in the calculations for the result.

A first step is to notice that the actual wave function of the electrons cannot
be measured, what can be measured however is the number of electrons at a
certain position which is related to the density. By assuming that the electrons
are non-interacting, or interact with a mean-field, the wave function can be
simplified as

Ψ(r1, r2, ..., rN ) = ψ1(r1)ψ2(r2)...ψN (rN ). (111)

The electronic density can then be written as

n(r) = 2
∑
i

|ψi(r)|2, (112)

which only depends on three instead on 3N coordinates. The power of DFT
comes from the possibility of relating measurable observables to the density.
This is possible because of the following two important theorems known as the
Hohenberg-Kohn theorems [23]:

1. The ground-state energy E in the Schrödinger equation is a unique func-
tional of the electron density n(r).

2. The electron density that minimizes the energy of the overall functional is
the true electron density corresponding to the full solution of the Schrödinger
equation.
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The first theorem tells us that there exists a one-to-one mapping between the
ground state wave function and the ground state density and the energy can be
written as E = E(n(r)). This is a functional, which is similar to a function,
but instead takes a function as an input and returns a number. In this case
given a electronic density it returns an energy. This is why it is called density
functional theory. What the theorem doesn’t say is the form of the functional.
The second theorem states the useful property of the functional that if the
functional was known, then the electronic density could be found by varying
it until a minima is reached. This fact is used with numerical methods which
iterate until a satisfactory precision is reached.

But to find the density in Equation (112) the single-electron wave functions
are needed. A way to do this is through the Kohm-Sham equations(

−1

2
∇2 + Vn(r) + VH(r) + VXC(r)

)
ψi(r) = εiψi(r), (113)

which is similar to the Equation (109) but without the sum over all interaction
between the electrons. The term Vn is the interaction of a single electron with
the nuclei, similarly to Equation (109). The term VH is called the Hartree
potential

VH(r) =

∫
n(r′)

|r− r′|
dr′, (114)

which describes the interaction between the single electron and the electronic
density. The last term VXC is called the exchange-correlation term and contains
all other effects and is written as the functional derivative of the exchange
correlation energy

VXC(r) =
δEXC [n(r)]

δn(r)
. (115)

If EXC is known, then the problem could be solved exactly. This has never been
done, but there are many approximations of the exchange-correlation which can
be used.

To solve a problem the procedure is the following. First, do an initial guess of
the density n(r). Then, solve the Kohm-Sham equations with this trial density.
The solutions ψi can then be used to calculate a new density with Equation
(112). This density is then compared with the old one and if they are the same,
this is ground state density. Otherwise, the density is adjusted somehow and
the whole procedure is started over.

3 Transfer matrix methods

Optical problems with multiple double refracting layers are complicated to solve
because of the internal reflections illustrated in Figure 6. A practical method to
solve such a problem is by transfer matrices, where a total transfer matrix T is
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Figure 6: Illustration of the multiple reflections involved when studying layered
media. Note that the light ray split into two eigenmodes when entering the
magnetic sample

calculated from the product of the partial transfer matrices for each layer. It is
convenient not only because the transfer matrix can be calculated for each layer
separately and then combined in various ways, but also because the calculations
becomes tidier and it is easier to get an overview on what is going on. Further
more, the incoming light do not have to be considered and the calculations can
be done solely with the elements in the setup.

The method was first introduced by Jones [24] and Abelès [25] with a 2x2
matrix calculus which will be illustrated below. This approach uses the fact
that the electric and magnetic field decouples to the wave equations (Equation
(20-21)) hence only two field components needs to be carried through the calcu-
lations, e.g (Ex, Ey) or (Ex, Hx), as two component vectors. The E or H field
can then be derived from Maxwell’s equations if needed.

For simplicity, let us assume normal incidence in the z-direction and that
the index of refraction is different for the field oscillating in the x- respectively
y-direction, denoted by Nx and Ny. The electric field in the x-direction can
then be written as

Ex(z) = Ex0e
i(k0Nxz−ωt), k0 =

ω

c
, (116)

Ex(z + d) = Ex0e
i(k0Nx(z+d)−ωt) = Ex(z)e

ik0Nxd. (117)

This can similarly be done for the y-component. With matrices, this can be
written as (

Ex(z + d)
Ey(z + d)

)
=

(
eik0Nxd 0

0 eik0Nyd

)(
Ex(z)
Ey(z)

)
(118)

This matrix is a transfer matrix which ”transfer” the electric field a distance d
along the z-axis. Here, the materials principle axes are in the x and y-direction.
More generally, these are at an angle θ from the ”laboratory” coordinate system.
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It is then possible to write the transform matrix as

T (d) = R

(
eik0Nxd 0

0 eik0Nyd

)
R−1, (119)

with

R =

(
cos θ − sin θ
sin θ cos θ

)
(120)

If there is no surface charge nor surface current in the media, the electric field is
continuous across a boundary (see Equations (7-8)). Then we have the equation

ε1 = T (d)ε0, (121)

where εi are the electric field components before and after an optical system.
If the total system contains a composition of different optical systems, one

can multiply the individual transfer matrices to get a total transfer matrix

εf = Tεi, T =

N∏
i=1

Ti(di). (122)

Once this matrix is found, the problem is solved and the method above can
be extended to problems concerning reflection as well. But for a more general
theoretical framework, one needs to introduce 4× 4 - matrices.

3.1 The general transfer matrix

The matrix method introduced by Jones and Abelès illustrates the convenience
in using a transfer matrix method to solve optical problems. But for situations
where the symmetry of the medium is low, or when magnetic mediums are
considered, the method becomes impractical and a generalization to 4 × 4 -
matrices is convenient. In this sections a general approach will be presented
where a total transfer matrix

T = A−1
i (

n∏
j=1

Tpj)Af (123)

is calculated from a product of the partial transfer matrices Tpj for each layer.
In the literature, there are several variations but the overall strategy is the same,
see for example [26],[27],[28] and [29].

The A matrices are called boundary matrices and projects the p- and s-
components of the light wave onto the x- and y-components to fulfill the bound-
ary condition that says that the field components parallel to a surface is con-
tinuous across that boundary (Equations (7-8)). Equation (123) is illustrated
graphically in Figure 7.
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Figure 7: Graphic representation of the matrix method (see Equation (123) and
(217)).

The total transfer matrix T relates the fields before and after the layered
medium with the relation

Pi = TPf , (124)

where the subscript i and f stands for initial and final field vector. Explicitly,
these are 

Eis

Ers

Eip

Erp

 = T


Ets

0
Etp

0

 =


T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44



Ets

0
Etp

0

 . (125)

From this equation all measurable optical constants can be deduced. For an
isotropic medium, there is four Fresnel equations, reflection and transmission
for p- and s-polarized waves. In the case of anisotropic media the polarization
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mix, resulting in the eighth combinations[29][30]

rpp =

(
Erp

Eip

)
Eis=0

=
T11T43 − T13T41
T11T33 − T13T31

, (126)

rsp =

(
Ers

Eip

)
Eis=0

=
T11T23 − T13T21
T11T33 − T13T31

, (127)

rss =

(
Ers

Eis

)
Eip=0

=
T21T33 − T23T31
T11T33 − T13T31

, (128)

rps =

(
Erp

Eis

)
Eip=0

=
T33T41 − T31T43
T11T33 − T13T31

, (129)

tpp =

(
Etp

Eip

)
Eis=0

=
T11

T11T33 − T13T31
, (130)

tsp =

(
Ets

Eip

)
Eis=0

=
−T13

T11T33 − T13T31
, (131)

tss =

(
Ets

Eis

)
Eip=0

=
T33

T11T33 − T13T31
, (132)

tps =

(
Etp

Eis

)
Eip=0

=
−T31

T11T33 − T13T31
. (133)

One can also derive the Fresnel coefficients by writing Pi = (Esi, Epi, Esr, Epr) =
(Ei,Er) and Pf = (Est, Ept, 0, 0) = (Et, 0) and the T matrix as a four 2 × 2
block matrices (

Ei

Er

)
=

(
G H
I J

)(
Et

0

)
. (134)

Then

Et = G−1Ei (135)

Er = IEt = IG−1Ei, (136)

and finally (
tss tsp
tps tpp

)
= G−1, (137)(

rss rsp
rps rpp

)
= IG−1. (138)

The magneto-optic Kerr effect or Faraday rotation can be calculated from ratios
of these coefficients.

3.2 The Partial Transfer Matrix

Two different approaches to calculate the partial transfer matrix in Equation
(123) will be presented which I will call the differential approach and the
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magneto-optic approach. Which one to use depend on three things; the form of
the dielectric function, if the assumption that the permeability µ = 1 is valid
and that the medium is non-gyroscopic. The two latter conditions are often
met, but to have

ε =

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 ?−→ ε = N2

 1 iQ 0
−iQ 1 0
0 0 1

 , (139)

cubic symmetry is often required [19] and the form to the right in Equation
(139) is required for the magneto-optic approach. In the form written here, the
magnetization is in the z-direction but it can be rotated to an arbitrary direction
with the Euler angles [31]. If these three conditions are met, the magneto-optic
approach can be used, otherwise one has to resort to the differential one.

In this section the general differential approach will be presented first, fol-
lowed by the magneto-optic approach which was implemented in Python and
used for the calculations in the result.

3.3 Differential Approach

The derivation of the differential approach will follow the one by D.W. Berreman
[32], and starts from Maxwell’s equations in matrix form

0 0 0 0 − ∂
∂z

∂
∂y

0 0 0 ∂
∂z 0 − ∂

∂x

0 0 0 − ∂
∂y

∂
∂x 0

0 ∂
∂z − ∂

∂y 0 0 0

− ∂
∂z 0 ∂

∂x 0 0 0
∂
∂y − ∂

∂x 0 0 0 0




Ex

Ey

Ez

Hx

Hy

Hz

 =
1

c

∂

∂t


Dx

Dy

Dz

Bx

By

Bz

 . (140)

Following his notation, Equation (140) will be written as

RG =
1

c

∂

∂t
C. (141)

One can first note that R is symmetric, with the off-diagonal blocks being the
curl operator. By assuming a linear response, it is possible to write the relation

C = MG, (142)

where M is a 6× 6 - matrix containing ϵ and µ, but also the off-diagonal terms
which are called optical-rotation tensors that couple D with H and B with E.
It is explicitly written as

M =

(
ϵ ρ
ρ′ µ

)
=


ϵ11 ϵ12 ϵ13 ρ11 ρ12 ρ13
ϵ21 ϵ22 ϵ23 ρ21 ρ22 ρ23
ϵ31 ϵ32 ϵ33 ρ31 ρ32 ρ33
ρ′11 ρ′12 ρ′13 µ11 µ12 µ13

ρ′21 ρ′22 ρ′23 µ21 µ22 µ23

ρ′31 ρ′32 ρ′33 µ31 µ32 µ33

 . (143)
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Equation (141) then becomes

RG =
1

c

∂

∂t
MG. (144)

This can further be simplified by assuming an optical disturbance (i.e light that
hits the material) with frequency ω. The field will thus have a factor exp(−iωt)
as time-dependence and the equation becomes

RΓ = − iω
c
MΓ, (145)

with Γ being the spacial part. By assuming that light is incident in the x-z-
plane and that M is a function of z only, Γ will have a factor exp(iξx) as the
only x-dependence and no y-dependence. This assumption simplifies the curl
operator in the R matrix

R =


0 0 0 0 − ∂

∂z 0
0 0 0 ∂

∂z 0 −iξ
0 0 0 0 iξ 0
0 ∂

∂z 0 0 0 0
− ∂

∂z 0 iξ 0 0 0
0 −iξ 0 0 0 0

 , (146)

where the third and sixth row are just linear algebraic equations. So two of the
six components can be solved for and thus be eliminated and they are chosen
to be the Ez and Hz components. After simplification, what’s left is four first
order linear differential equations

∂

∂z


Ex

Ey

Hx

Hy

 = i
ω

c


∆11 ∆12 ∆13 ∆14

∆21 ∆22 ∆23 ∆24

∆31 ∆32 ∆33 ∆34

∆41 ∆42 ∆43 ∆44



Ex

Ey

Hx

Hy

 , (147)

where ∆ij are given explicitly in terms of the Mij ’s (see Section 9.1 in Ap-
pendix). This equation will simply be written as

∂

∂z
ψ = ik0∆ψ, k0 ≡ ω

c
, (148)

and says how the electromagnetic field changes when propagating in the z-
direction. The main task is to solve this equation and if ∆ does not depend on
z, the solution is

ψ(z + d) = eik0∆dψ(z) = Tp(d)ψ(z), (149)

where Tp is the partial transfer matrix in Equation (123) and is defined as

Tp(d) = eik0∆d. (150)
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The main problem then boils down to calculate this matrix for a given M and
if the medium is not homogeneous, it’s possible to approximate it as a finite
number of homogeneous slabs, each with it’s own partial transfer matrix.

There are three main ways to calculate this matrix. Firstly, one can simply
write Equation (150) as the power series

eik0∆d = 1 + ik0∆d+
1

2!
(ik0∆d)

2 +
1

3!
(ik0∆d)

3 + ..., (151)

up to some order. For a thin slab this series may be truncated for a sufficiently
small d. In some cases where the symmetry is high, it is possible to write this
series in a closed form.

If this is not possible, one can find the four eigenvalues of ∆ by solving the
secular equation

det(∆− qk1) = 0, (152)

and then find the eigenvectors ψk by solving

∆ψk = qkψk. (153)

Now, a matrix function is defined through its series expansion. So it’s easy to
verify that

eik0∆dψk =

∞∑
n=0

1

n!
(ik0∆d)

nψk =

∞∑
n=0

1

n!
(ik0qkd)

nψk = eik0qkdψk. (154)

By constructing a matrix

Ψ =

 | | | |
ψ1 ψ2 ψ3 ψ4

| | | |

 , (155)

with the eigenvectors as columns vectors and acting with the transfer matrix

Tp(d)Ψ = eik0∆dΨ =

 | | | |
eik0∆dψ1 eik0∆dψ2 eik0∆dψ3 eik0∆dψ4

| | | |

 (156)

=

 | | | |
eik0q1dψ1 eik0q2dψ2 eik0q3dψ3 eik0q4dψ4

| | | |

 = ΨK(d). (157)

So the transfer matrix can be written as

Tp(d) = ΨK(d)Ψ−1, (158)

where K(d) is a diagonal matrix with exp(ik0qkd) as elements.
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The third possibility was introduced by Wöhler et. al and make is of Cayley-
Hamiltons theorem[33]. The theorem states that a matrix function can be rep-
resented as a finite series of order n, where n is the size of the square matrix.
They showed that the partial transfer matrix can be written as

eik0∆d = β01 + β1∆+ β2∆
2 + β3∆

3, (159)

where the constants βi are defined by the four equations

eik0qkd = β0 + β1qk + β2q
2
k + β3q

3
k, k = 1, ..., 4, (160)

with qk being the eigenvalues of ∆. This exact expression for Tp allows one to
do a single calculation for thick slabs, in contrast to the series expansion which
can only be calculated for small d’s which requires many calculations over the
whole slab.

M. Schubert [26] explicitly calculated the eigenvalues in the case for non-
magnetic (µ = 1) and non-gyrotropic (ρ = 0) media, with a symmetric dielectric
function (ϵij = ϵji). This together with Equation (159), gives an exact form of
the partial transfer matrix.

3.3.1 Simplifying assumptions for ∆

With the assumption that the media is nonmagnetic, µ = 1 and nongyrotropic,
ρ = 0, ∆ in Equation (148) becomes [26]

∆ =


−kx ϵ31

ϵ33
−kx ϵ32

ϵ33
0 1− k2

x

ϵ33
0 0 −1 0

ϵ23
ϵ31
ϵ33

− ϵ21 k2x − ϵ22 + ϵ23
ϵ32
ϵ33

0 kx
ϵ23
ϵ33

ϵ11 − ϵ13
ϵ31
ϵ33

ϵ12 − ϵ13
ϵ32
ϵ33

0 −kx ϵ13
ϵ33

 , (161)

kx ≡ na sinΦa. (162)

The matrix now only depends on the dielectric function and on kx. kx comes
from the x-component of the wave vector k, which was assumed to be constant
(since the medium only had z-dependence) when deriving ∆. What actually
shows up in the derivation of Equation (148) is a factor c

ω ξ but with the use of
Snell’s law

c

ω
ξ =

c

ω
kb sinΦb = nb sinΦb = na sinΦa ≡ kx. (163)

A further simplification can be made if the dielectric function ϵ has three prin-
ciple axes, and the nine components comes from that the principle axes are
rotated with respect to the laboratory frame. This can be expressed as

ϵ =

ϵ11 ϵ12 ϵ13
ϵ21 ϵ22 ϵ23
ϵ31 ϵ32 ϵ33

 = A

ϵ0x 0 0
0 ϵ0y 0
0 0 ϵ0z

A−1. (164)
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Here A is described by the three Euler angles (ϕE , θE , ψE),

AT = A−1 = R(ϕE , θE , ψE) (165)

=

 cosψ cosϕ− cos θ sinϕ sinψ cosψ sinϕ+ cos θ cosϕ sinψ sinψ sin θ
− sinψ cosϕ− cos θ sinϕ cosψ − sinψ sinϕ+ cos θ cosϕ cosψ cosψ sin θ

sin θ sinϕ − sin θ cosϕ cos θ


(166)

which completely specify a rotation in three dimension, see for example Gold-
stein et. al [31]. Since A is orthogonal, A−1 = AT (since A is a rotation from
one orthonormal coordinate system to another with determinant = 1). If the
dielectric function have the form in Equation (164) then

ϵT =
(
Aϵ0A

T
)T

= AϵT0 A
T = Aϵ0A

T = ϵ. (167)

Here ϵ0 is the diagonal matrix in Equation (164). As a consequence, ϵij = ϵji
and there is nine unknowns, the real and complex part of the three principle
dielectric constants and the three Euler angles. As mentioned above, this gives
an exact form of the partial transfer matrix (with µ = 1 and ρ = 0)[26]. But it is
generally not true, since for a optical active media, ϵ is hermitian (ϵij = ϵ∗ji)[10]
and for a magnetic media, off-diagonal elements appears in the principle system.

3.4 Incident and exit matrix

By solving Equation (148), one gets the partial transfer matrices which says how
(Ex, Ey, Hx, Hy) changes in the z-direction. But to see how s- and p-polarized
light gets reflected and transmitted, the incident and exit matrix A−1

i and Af

is also used. These matrices projects the s- and p-component of the incoming,
reflected and transmitted light onto (Ex, Ey, Hx, Hy). They are defined as

Ai


Eis

Ers

Eip

Erp

 =


Ex

Ey

Hx

Hy

 , Af


Ets

0
Etp

0

 =


Ex

Ey

Hx

Hy

 . (168)

Here it is assumed that there is no reflected wave in the substrate, an approx-
imation that the substrate extend infinitely away from the material. This is
reasonable since in experiment, substrate are chosen to be very thick. In the
case of a isotropic ambient/substrate (ambient is the incoming medium, sub-
strate outgoing), the procedure is rather straight forward. The H- and E - fields
are related through the Maxwell equation

∇×E = −1

c

∂

∂t
H, (169)

k×E =
ω

c
H. (170)
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Since k, E and H are all orthogonal to eachother in an isotropic media, the
following relation holds

|k||E| = n
ω

c
|E| = ω

c
|H|, (171)

nE = H. (172)

This can be applied to both the p-polarized and s-polarized components. By
simple geometry

Ai


Eis

Ers

Eip

Erp

 =


Ex

Ey

Hx

Hy

 =


Eip cos θi
Eis

−niEis cos θi
niEip

+


−Erp cos θi

Ers

niErs cos θi
niErp

 , (173)

where the two vectors are the incident and reflected wave. From this equation,
the inverse of the incident matrix becomes

A−1
i =

1

2


0 1 − 1

ni cos θi
0

0 1 1
ni cos θi

0
1

cos θi
0 0 1

ni

− 1
cos θi

0 0 1
ni

 . (174)

Similarly for an isotropic substrate

Af


Ets

0
Etp

0

 =


Ex

Ey

Hx

Hy

 =


Etp cos θt
Ets

−ntEts cos θt
ntEtp

 , (175)

resulting in

Af =


0 0 cos θt 0
1 0 0 0

−nt cos θt 0 0 0
0 0 nt 0

 . (176)

With Snell’s law, which holds even if there is a medium inbetween the am-
bient and the substrate because of the symmetry of the problem, cos θt =√
1− (ni

nt
sin θi)2. Here it is interesting to note that if there is no medium

between the ambient and the substrate, the partial transfer matrix becomes

Tp(d) = eik0∆d −−−→
d→0

1. (177)

Equation (125) then becomes
Eis

Ers

Eip

Erp

 = T


Ets

0
Etp

0

 = A−1
i Af


Ets

0
Etp

0

 =
1

2


(1 + nt cos θt

ni cos θi
)Ets

(1− nt cos θt
ni cos θi

)Ets

( cos θtcos θi
+ nt

ni
)Etp

(− cos θt
cos θi

+ nt

ni
)Etp

 . (178)
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The Fresnel’s equations for reflection of p- respectively s-polarized light follows
directly from this

rs =
Ers

Eis
=

1− nt cos θt/(ni cos θi
1 + nt cos θt/(ni cos θi)

=
ni cos θi − nt cos θt
ni cos θi + nt cos θt

, (179)

rp =
Erp

Eip
=

− cos θt/ cos θi + nt/ni
cos θt/ cos θi + nt/ni

=
nt cos θi − ni cos θt
nt cos θi + ni cos θt

. (180)

In the case of an anisotropic substrate, the complexity of the problem increases.
However, experimentalists enjoy considerable freedom in selecting the substrate,
which often leads to the utilization of a simple isotropic material for convenience.
The solution is still covered here for completeness and one then has to solve the
eigenvalue equation (Equation (153))

∆ψk = qkψk (181)

and find the eigenvectors. Two of the eigenvalues will have a positive real part,
which corresponds to transmitted waves, and two will have negative real parts,
which then can be ignored because of the assumption of no reflected waves in
the substrate. Assume the eigenvectors

ψa =


Ξ1a

Ξ2a

Ξ3a

Ξ4a

 , ψb =


Ξ1b

Ξ2b

Ξ3b

Ξ4b

 , (182)

has positive eigenvalues. From these two transmitted eigenvectors, the exit
matrix can be constructed:

Af =


Ξ1a 0 Ξ1b 0
Ξ2a 0 Ξ2b 0
Ξ3a 0 Ξ3b 0
Ξ4a 0 Ξ4b 0

 . (183)

3.5 Magneto-optical Measurements

When measuring spin-dynamics in materials, one generally look at how the
intensity and the state of polarization change if incident light is reflected or
transmitted. There are three types of measurements that can be done, either
the rotation of polarization of the reflected light which is called the magneto-
optic Kerr effect (MOKE), the rotation of polarization of transmitted light called
Faraday rotation or one can look at the absorption of different polarization’s. A
weak external magnetic field is applied to the sample to align the spins making it
possible to measure the spin-dynamics. The method developed here relies on the
assumption that diagonal elements in the dielectric function is approximately
the same and that the off diagonal elements other than ϵ12 = −ϵ21 are negligible.
This is often the case (e.g when there is cubic symmetry [19]) and the dielectric
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function can then be written a simple form. For the polar configuration with
magnetization perpendicular to the medium boundary it becomes

ϵ = N2

 1 iQ 0
−iQ 1 0
0 0 1

 . (184)

Here N is the refractive index, N2 = ϵxx and Q = −i ϵxy

ϵxx
is called the magneto-

optic constant, with the diagonal elements assumed to be equal. The quantities
N and Q depend on the occupancy and vacancies of the electron states and
can be theoretically calculated from DFT (see Section 2.8). These will have a
frequency dependence because of resonances corresponding to excitations of the
electrons. In the pump and probe measurements, which is explain in section
(ref) , the sample will get excited from its ground state by a laser pulse and then
relax back to the the ground state. During this period the dielectric function
also has a time-dependence because of the transient dynamics.

3.6 Magneto-optic Approach

If the dielectric can be assumed to have the simplified form in Equation (184),
one does not have to resort to the general differential approach to calculate
the partial tranfer matrix. A universal approach for studying MOKE and sur-
face magneto-optic Kerr effect (SMOKE) has been developed by J. Zak et al.
[27] [28]. It is similar to the method that resulted in Equation (158), where
the eigenvectors were found and the partial transfer matrix where expressed in
terms of a product of the matrix composed of eigenvectors Ψ and the diago-
nal matrix K(d). J. Zak also uses 4 × 4 - matrices to transverse the electric
and magnetic field components through the layered material, but he uses two
different matrices. The first is a boundary matrix A defined as

Ex

Ey

Hx

Hy

 = F = AP = A


Esi

Epi

Esr

Epr

 , (185)

which related the in-plane components of the E- and H- field with the s- and
p-polarized incident and reflected beams. The second is a propagation matrix
D which defines the propagation of rays from one boundary to another in a
slab and relates the field amplitudes at the boundaries. D can either be chosen
to propagate the eigenmodes or one that propagates the P vector above. The
former would lead to a diagonal matrix similar to that of Equation (158). The
dielectric function in Equation (184) is written in the polar configuration, which
is when the magnetization is perpendicular to the sample surface and is called
PMOKE.

For the longitudinal configuration (LMOKE), the magnetization is along the
boundary and in the plane of incidence and the dielectric function then has the
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form

ϵ = N2

 1 0 −iQ
0 1 0
iQ 0 1

 . (186)

This can then be generalized for arbitrary direction of magnetization, with the
use of Euler angles writes the dielectric function as [28] [34]

ϵ = N2

 1 iQmz −iQmy

−iQmz 1 iQmx

iQmy −iQmx 1

 . (187)

Here mi is the direction cosines of the magnetization vector. The direction
cosines can be written in terms of the polar and azimuth angle (φ, γ) as

mx = sinφ cos γ, (188)

my = sinφ sin γ, (189)

mz = cosφ. (190)

The hardest task is to find the boundary matrix A which relates the partial
waves inside the medium to the in-plane components at the boundary. To do
this the propagation direction has to be found for the eigenmodes given the
dielectric tensor. These are found from the Maxwell’s equation by

∇×E = ik×E = −1

c

∂

∂t
H = i

ω

c
H

(191)

∇× (∇×E) = i2k× (k×E) = i
ω

c
∇×H = i

ω

c2
∂

∂t
D =

ω2

c2
D = k20ϵE

(192)

k× (k×E) = k(k ·E)− k2E = −k20ϵE
(193)

with k = ω
c n,

n2E− n(n ·E)− ϵE = 0. (194)

This is a matrix equation with non-trivial solutions if

det
(
n2δij − ninj − ϵij

)
= 0. (195)

If the medium only has a z-dependence, then x- and y-component of the wave
vector will stay constant. The equation above is quadratic in nz which yields
four roots. These correspond to the four eigenmodes, two that travels in positive
and two in negative z-direction. [29].

Also, by finding the roots to the equation above gives the refractive index.
One can assume nx = 0 without loss of generality (it’s just to define the y-axis
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as being parallel to the plane of incidence). There is also four solutions to this
equation, two rays in positive z-direction and two in the negative. For the polar
case, to first order in Q, these are

n
(1,2)
POL = N(1± 1

2
αzQ), (196)

n
(3,4)
POL = N(1∓ 1

2
αzQ), (197)

with αz = cos θj . For the longitudinal configuration these are

n
(1,2)
LON = N(1± 1

2
αyQ), (198)

n
(3,4)
LON = N(1∓ 1

2
αyQ), (199)

with αy = sin θj . The four waves are denoted as E(1), E(2), E(3) and E(4). 1 and
2 are the two traveling in positive z-direction and 3 and 4 travels in the negative
direction, with directions and refractive indexes given by the Equations (196 -
199). In order to find the boundary matrix A, the number of variables needs to

be reduced. The components E
(j)
x , E

(j)
y and E

(j)
z for the four waves (j = 1, ..., 4)

all satisfy the Fresnel equations and are thus dependent. It is then possible to

express all components in terms of E
(j)
x . Further H

(j)
x and H

(j)
y needs to be

expressed in terms of P and this can be done through the relation H = n×E.
The derivation is rather cumbersome and is done by J. Zak in reference [27].
The final result for the boundary matrix A in the polar respectively longitudinal
case are

A(POL) =


1 0 1 0

i
2α

2
yQ αz

i
2α

2
yQ −αz

i
2αzQN −N − i

2αzQN −N
αzN

i
2QN −αzN

i
2QN

 , (200)

A(LON) =


1 0 1 0

− i
2
αy

αz
(1 + α2

z)Q αz
i
2
αy

αz
(1 + α2

z)Q −αz
i
2αyQN −N i

2αyQN −N
αzN

i
2
αy

αz
QN −αzN − i

2
αy

αz
QN

 . (201)

For a non-magnetic media, Q = 0 and the boundary matrix becomes

A =


1 0 1 0
0 αz 0 −αz

0 −N 0 −N
αzN 0 −αzN 0

 (202)

What is left is to find the propagating matrix D̄ which relates the P vector at
the two boundaries. An eigenmode is related by

E(j)
x (z = d) = E(j)

x (z = 0)ei(
ω
c n(j)α(j)

z d). (203)
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The P vector is related to the eigenmodes by
E

(1)
x

E
(2)
x

E
(3)
x

E
(4)
x

 =
1

2


1 i 0 0
1 −i 0 0
0 0 1 ±i
0 0 1 ∓i



E

(i)
s

E
(i)
p

E
(r)
s

E
(r)
p

 = SP. (204)

Thus the propagation matrix D̄ can be written as

D̄ = S−1DS =


U cosσ U sinσ 0 0
−U sinσ U cosσ 0 0

0 0 U−1 cosσ ±U−1 sinσ
0 0 ∓U−1 sinσ U−1 cosσ

 . (205)

Here the D matrix is the diagonal matrix with components given by Equation
(203). U = exp(−i(2π/λ)Nαzd) and the upper/lower signs are for the polar
respectively longitudinal configuration. Finally

σ(POL) =
π

λ
NQd, (206)

σ(LON) =
π

λ
NQd

αy

αz
. (207)

For arbitrary magnetization direction in Equation 187, the boundary matrix for
medium j can be written as

Aj =


1 0 1 0

i
2
αy

αz
Q(αygi − 2mx) αz + iαymxQ − i

2
αy

αz
Q(αygr − 2mx) −αz + iαymxQ

i
2NgiQ −N i

2NgrQ −N
Nαz

i
2αz

NgiQ −Nαz − i
2αz

NgrQ

 .

(208)

Here it’s understood that αz = cos θj and αy = sin θj is given by the angle
for medium j. It’s easy to see that this reduces to the polar or longitudinal
configuration with mz = 1, my = 0 or mz = 0, my = 1. The angles are

determined by Snell’s law sin θj =
Nj−1

Nj
sin θj−1 and cos θj = (1 − sin2 θj)

1/2

and

gi = mzαz +myαy, (209)

gr = −mzαz +myαy. (210)

The propagation matrix becomes

D̄j =


U cos δi U sin δi 0 0
−U sin δi U cos δi 0 0

0 0 U−1 cos δr U−1 sin δr

0 0 −U−1 sin δr U−1 cos δr

 , (211)
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where the components are defined as

U = exp

(
−i2π

λ
Nαzd

)
, (212)

δi =
π

λ
Nd

Q

αz
gi, (213)

δr =
π

λ
Nd

Q

αz
gr. (214)

When the boundary and propagation matrices for all medium in the system has
been calculated. The total transfer matrix can be calculated as follows (with
z = 0 at the first boundary):

A0P0(z = 0) = A1P1(0) = A1D̄1(−d1)P1(d1) = A1D̄1A
−1
1 A1P1(d1) (215)

= A1D̄1A
−1
1 A2P2(d1) = A1D̄1A

−1
1 A2D̄2A

−1
2 A3P3 = ... (216)

For N layers, and labeling A0P0 = AiPi and AN+1PN+1 = AfPf , the total
expression becomes

Pi = A−1
i

N∏
j=1

(AjD̄j(−dj)A−1
j )AfPf = TPf , (217)

with T similar to the total transfer matrix derived before.

4 Experiment

In the previous section, it was explained how the state of polarization changes
when light is reflected on or transmitted through a sample. For reflection, it
was shown how the Fresnel reflection matrix

R =

(
r̃pp r̃ps
r̃sp r̃ss

)
, (218)

could be calculated from theory. Here the coefficients have been rewritten (r →
r̃) to distinguish them from their magnitude when written in polar form. In this
section, a general experimental setup to measure this effect will be shown. The
Jones matrix formalism will be used to represent the different optical elements
and derive general expressions for the experimental setup that can be analyzed.

The first thing to understand is that the MOKE signal is very weak. This
problem is usually resolved through modulator techniques where the incoming
signal is given a certain frequency, which then can be used to distinguish the
reflected signal from the noise. The signal to noise ratio is also effected by
the relative orientations of the optical elements and there are some orientations
and configurations that maximized the MOKE signal. This would be the signal
caused by magnetization from the off-diagonal elements in the dielectric func-
tion, while minimizing the non-magnetic contribution from the diagonal ones
[35][36].
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4.1 Photo-elastic modulator (PEM)

A common optical element used for modulating the signal is a photo-elastic
modulator (PEM). This is a material that has an optical axis with a refraction
index that can be modulated by inducing a strain. An example of this is fused
Silica which becomes birefringent under strain[9]. Then the ordinary and extra
ordinary refractive index can be modulated by stretching or compressing the
material. A piezoelectric transducer is then used, which mechanically oscillates
with a certain frequency which gives rise to a frequency dependent polarization.
The retardation angle can be written as φ = φ0 sin(ωM t). The polarization after
the PEM will then oscillate between RCP and LCP light with the frequency
ωM and a maximum phase retardation φ which both can be controlled. This
frequency dependence can then be used in the lock-in amplifier to extract the
reflected signal from the noise.

4.2 Experimental setup

A typical experimental setup for MOKE and surface MOKE (SMOKE) mea-
surement is very similar. The difference is the transfer matrix needed in SMOKE
because reflection and transmission trough the underlying substrate is needed
[37]. There is a monochromatic light source (laser) that provides polarized
light. The first optical element is a polarizer that prepares the light for the
photo-elastic modulator (PEM). After the PEM, the light hits the sample and
gets reflected. (PEM is before the sample in ref time-resolved magneto-optical
measurements of ultrafast demagnitization, but after in reference [38]). The
reflected light periodically modulated by the PEM between RCP and LCP to
maximize the first and second harmonics of the Bessel functions in order to
maximize the signal to noise ratio. The modulation signal is then used as a
reference in the lock-in amplifier [38]. After the PEM the light is transmitted
through an analyzer. Finally the signal hits a photosensitive diode which creates
a signal that is proportional to the intensity which is then sent to the lock-in
amplifier.

The experimental setup is easy to analyse with Jones matrix formalism. The
linear polarized light from the light source can be written as

Ei =

(
Ei

0

)
= Ei

(
1
0

)
. (219)

The polarizer creates an equal polarization in the two polarization direction for
the PEM

P =

(
cos2 θp sin θa cos θp

sin θp cos θp sin2 θp

)
. (220)

For θp = 45◦

P =

(
1
2

1
2

1
2

1
2

)
. (221)
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The electric field components are now(
E0p

E0s

)
= PEi. (222)

(Ep0 = E0 cos θp and Es0 = E0 sin θp in ref [37]) These are now modulated
by the PEM (explained above) and are projected to the principle axis of the
modulator

M0 =

(
cos φ

2 − i sin φ
2 cos(2θm) −i sin φ

2 sin(2θm)
−i sin φ

2 sin(2θm) cos φ
2 + i sin φ

2 cos(2θm)

)
(223)

θm is the angle of the principle axis of the modulator relative to the scattering
plane (p-axis). This simplifies for special cases of θm. The three most common
cases in MOKE experiments are

M0(θm = 0) =

(
e−iφ/2 0

0 eiφ/2

)
, (224)

M0(θm =
π

2
) =

(
eiφ/2 0
0 e−iφ/2

)
, (225)

M0(θm =
π

4
) =

(
cos(φ/2) −i sin(φ/2)

−i sin(φ/2) cos(φ/2)

)
. (226)

After the PEM, the state of polarization is(
Eip
Eis

)
= M0

(
E0p

E0s

)
, (227)

which is the light that is incident on the sample. The reflected light from the
sample is given by (

Erp

Ers

)
= R

(
Eip

Eis

)
. (228)

Here R is the Fresnel reflection matrix

R =

(
r̃pp r̃ps
r̃sp r̃ss

)
, (229)

which elements calculated from the methods mention in previous sections. Fi-
nally there is an analyzer before the signal hits the photodiode at an angle θa
which can be represented by the matrix

A =

(
cos2 θa sin θa cos θa

sin θa cos θa sin2 θa

)
. (230)

The final measured signal is then given by

Er = ARM0PEi (231)
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To calculate the intensity |E|2 = |Ex|2+|Ey|2 in the Jones formalism, one simple
multiply the polarization vector by the conjugate transpose

|E|2 = E†E =
(
E∗

x E∗
y

)(Ex

Ey

)
= |Ex|2 + |Ey|2. (232)

The reflected intensity can then be calculated similarly

Ir = (Er)†Er =
∣∣Ei

∣∣2 (1 0
)
P†M†

0R
†A†AM0RP

(
1
0

)
(233)

= Ĩ

∣∣Ei
∣∣2

2
= Ĩ

Ii

2
. (234)

Following reference [9] with θm = π
2 , Ĩ can be written as a sum of three terms

Ĩ = A+B cosφ+ C sinφ, (235)

with factors given by

A = r2p cos
2 θa + r2s sin

2 θa (236)

+ r2sp + rsp sin(2θa)(rp cos(δp − δsp)− rs cos(δs − δsp)), (237)

B = sin(2θa)(rsrp cos(δp − δs)− r2sp) (238)

+ 2rsp(rs sin
2 θa cos(δs − δsp)0 cos

2 θa cos(δp − δsp)), (239)

C = rsrp sin(2θa) sin(δs − δp) (240)

+ 2rsp(rs sin
2 θa sin(δs − δsp) + rp cos

2 θa sin(δp − δsp)). (241)

To get these expressions, it was assumed that r̃sp = −r̃ps for symmetry reasons
and the complex reflection coefficients was expressed in their polar form

r̃A = rae
iδA , (242)

with A = p, s, sp, ps. Since φ = φ0 sin(ωM t), cos and sin can be expanded with
the Bessel functions Jk:

sin(φ0 sin(ωM t)) = J1(φ0) sin(ωM t) + 2J3(φ0) sin(3ωM t) + ... (243)

cos(φ0 sin(ωM t)) = J0(φ0) sin(ωM t) + 2J2(φ0) sin(2ωM t) + ... (244)

If only terms up to the second harmonic is kept Equation (235) can be written
as

Ĩ = Ĩ0 + Ĩω sin(ωM t) + Ĩ2ω cos(2ωM t). (245)

Here

Ĩ0 = A+BJ0(φ0), (246)

Ĩω = 2CJ1(ϑ0), (247)

Ĩ2ω = 2BJ2(ϑ0). (248)

(249)

48



From the first and second harmonics, it is possible to find a relation to the Kerr
ellipticity and Kerr rotation in the complex Kerr rotation. For normal incident
light, with PEM phase φ ≈ 2.41 which makes J0(φ) ≈ 0 and with r2sp ≪ r2,
M. Giovannella et al. [9] showed that first harmonic is proportional to the Kerr
ellipticity and the second harmonic is proportional to the Kerr rotation:

Ĩω

Ĩ0
= −4J1(φ0)ϵ

s
k, (250)

Ĩ2ω

Ĩ0
= 2J2(φ)

sin2(2θa)

r
− 4J2(φ) cos(2θa)θ

s
k. (251)

θsk and ϵsk are the real and imaginary part of the complex Kerr rotation defined
in Equation (50). This information is then used the lock-in amplifier to extract
the signal from the noise.

4.3 Asymmetry measurement

It is not always convenient to measure the complex Kerr rotation. Above, the
incoming light was right and left circular polarized, which is used for many
MOKE experiments in the optical region. But if one want to study transitions
from the core electrons, the energies need to be in the x-ray regime (30-100eV
for M-edge). Since there is harder to produce circular polarized light at these
energies, people often resort to linear polarized light instead. Then TMOKE
is commonly used and the magnetization can be measured by the asymmetry
parameter A defined as [39]

A =
I+p − I−p

I+p + I−p
≈ 2Re

{
sin(2θi)ϵxy

N4 cos2 θi −N2 + sin2 θi

}
, (252)

with the assumption that ϵxy is small compared to N and thus second order
terms be neglected. The reflected intensities for p-polarized light are

Ip± = I0

∣∣∣∣N cos θi − cos θt
N cos θi + cos θt

± 2 sin θi cos θi
N2(N cos θi + cos θt)2

ϵxy

∣∣∣∣2. (253)

The ± stands for the direction of magnetization. For s-polarized light the re-
flected intensity is simply

Is = I0

∣∣∣∣cos θi −N cos θt
cos θi +N cos θt

∣∣∣∣2. (254)

This expression is derived from solving Maxwell’s equations for a single bound-
ary [40]. It is then often assumed that ϵxy is linearly proportional to the mag-
netization, hence also the asymmetry parameter. There has been doubts about
a simple relationship [18], and even recently by S. Jana et al [41] has reported
concerns about such a simple relationship in pump-probe measurements. They
used what they call a magnetization-asymmetry test ratio (MAT ratio). I will
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calculate the asymmetry parameter numerically with the matrix method where
internal reflections are considered as well, to see how valid the approximation
in Equation (252) is. Then the asymmetry parameter was calculated as

A =

∣∣r+ps + r+pp
∣∣2 − ∣∣r−ps + r−pp

∣∣2∣∣r+ps + r+pp
∣∣2 + ∣∣r−ps + r−pp

∣∣2 , (255)

where rij are the reflection coefficients in Fresnels reflection matrix (Equation
(138)).
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5 Result

The boundary and propagation matrix defined in Equation (208) and (211)
was used to numerically calculate the total transfer matrix 217 from where
Fresnel reflection matrix 138 was derived. From this matrix, various measurable
quantities could be calculated. As a test for the method the result presented
by J. Zak[28] was reproduced in Figure 8 with very good agreement. The same
Python code was then used to analyze more realistic problems, where a dielectric
function ϵ = ϵ(E) was calculated by M. Elhanoty with DFT.

For the comparison, the complex Kerr rotation (Equation (50)) is plotted
against the angle of incidence for six different magnetization directions (φ) and
three different setups. These setups are from right to left; bulk Fe (single bound-
ary), 50Å Fe on Au substrate and 50 stacked bilayers of 10Å Fe/10Å Au on Au
substrate. The ambient in all three cases is air with N = 1 and the wavelength
used was that from a He-Ne laser with λ = 6328Å. Refractive indices and
magneto-optic constants for Fe and Au was taken from the paper as

Fe: N = 2.87 + i3.36,

Q = 0.0376 + i0.0066,

Au: N = 0.12 + i3.29,

Q = 0.

The plots shows how the signal changes significantly and the peaks gets shifted
as both the angle of incident θi and magnetization direction φ is changed, which
illustrates the power of the method to predict optimal experimental setups.
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Figure 8: Complex Kerr rotation ϑk = θk + iϵk plotted against angle of inci-
dence θi for s- and p-polarized light. It also shows the signal for six different
magnetization directions φ. The figures from left to right is for: Bulk Fe, 50Å
Fe on Au substrate, 50 bilayers of 10Å Fe/ 10Å Au on Au substrate. These
results agree very well with reference [28].

The asymmetry parameter A = (Ip+ − Ip−)/(I
p
+ + Ip−) in Equation (255) was

calculated for the setup (2nm MgO)-(20nm Ni)-SiO for different angles of in-
cidence. The result in the energy range 33-87 eV are shown in Figure 9 and
the energy range 55-70eV in Figure 10. The four plots in each figure shows
how the signal is differ when the different layers are taken into consideration
to test the assumption for the asymmetry parameter in Equation (252). This
calculation was done with the magneto-optic approach outlined in Section 3.6
with the dielectric function on the form in Equation (184).

The nine components of the dielectric function for Ni was calculated from
DFT which are shown in Figure 11. Here it is clear that the simplified form
is a valid assumption in the energy range 55-70eV, since ϵ12 ≈ −ϵ21, ϵ11 =
ϵ22 = ϵ33 and |ϵ11| > |ϵ12| ≫ |ϵ13|, |ϵ23|, |ϵ31|, |ϵ32|. The refractive index of MgO
taken from reference [42] and SiO from reference [43]. (All found first from
filmetrics.com) At these places they are given as a function of energy, but an
average on the relevant energy range was chosen for simplicity since the focus is
how signal changes when the layers are taken into consideration and the angular
dependence, not the exact position of the peaks. This could however easily be
implemented. The refractive indices used was

MgO: N = 1.73,

SiO: N = 1.7369 + i0.84315.
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Figure 9: Calculated energy dependence of the asymmetry parameter A for
different angles of incidence. The experimental setup was (2nm MgO)-(20nm
Ni)-SiO and different layers where taken into consideration in the four plots.
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Figure 10: Here the region of interest in Figure 9 are shown.
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Figure 11: The real and imaginary parts of the nine components in the dielectric
function for Ni are compared.
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6 Discussion

Magnetization dynamics is an active field of research with promising future
prospect where many aspects of physics comes together. In this paper the
connection between the quantum mechanical and macroscopic world has been
made through Maxwell’s equations and the dielectric function. A brief overview
on the theoretical background to understand a magneto-optic experiment has
been done. The phenomenological question ”What is going on?” has tried to be
answered in simple terms and concrete methods of calculation which are used by
the scientific community has been reviewed. Then the experimental techniques
to measure MO effects was discussed and their connection to theory were made.

The main part has been devoted to a general transfer matrix method to relate
theoretical calculations to measurable optical quantities such as the Fresnels
reflection and transmission matrix. These matrices tells you how much s- and
p-polarized light gets reflected and transmitted for a given experimental setup,
which in turn can be related to the state of magnetization in a material. The
matrix method was divided in two parts, which I called the differential and
magneto-optic approach, the later gives analytic expressions to first order in Q
for the matrices but requires three conditions to be met.

The magneto-optic approach outlined in Section 3.6 has been implemented
in Python with good success. Even though only a handful of results has been
presented, the written code can handle arbitrary layered systems and param-
eters such as photon energy, angle of incidence, magnetization direction, layer
thicknesses, refractive indices and magneto-optic constants can be varied.

The result presented by J. Zak in his paper[28] was reproduced with ex-
cellent agreement in Figure 8. The same code was then used to calculate the
asymmetry parameter in Figure 9 and 10 for a typical experimental setup in a
pump and probe experiment. This result shows the complications in predicting
a signal due to interference of multiple reflections and cast doubts on the va-
lidity in the simplified expression for the asymmetry parameter 252 used in the
literature [39][40]. The result also illustrates the power of the method in pre-
dicting geometries that maximizes the signal. Changing the angle of incidence
by just 12◦ can change the signal dramatically and the optimal angle depends
both on the layers and photon energy.

By talking with experimentalists at Uppsala University, it has come to my
attention that it is not clear what signal to expect when designing an experiment
for a new material. Often the choice of energies and geometry are somewhat
arbitrary and it is then case of trial and error, which is a time consuming
process. If one instead adapt the transfer matrix method, one can with the help
of first principle calculations get a hint on what signal to expect and the optimal
geometry to maximize the signal to noise. The later is of crucial importance
since the magneto optic effects are small.

The experimental setup used for the result in Figure 10 is from an actual
pump probe experiment, but because of time constraints the values was never
compared to experimental results. This holds true for all other calculations as
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well and is the main concern regarding the results. The result in Figure 8 was in
exceptional agreement with Ref. [28], with the curves for bulk Fe reported to be
in a full qualitative agreement with published result in Ref. [44]. But this is for
a single boundary and it would be valuable with experimental confirmation of
multiple layered media to see how good the method is for predicting results and
the validity of the approximations that goes into the magneto-optic approach.

In the event that the approximation is deemed invalid, it would be necessary
to rely on the general differential approach to calculate the partial transfer
matrix. Python implementation of this method has not been developed and
is another area of improvement. If this is done, values from the two methods
could be compared to better understand the criterion necessary for applying
the magneto-optic approach, which is preferable since it is less computational
demanding.

7 Outlook

There are numerous path available to pursue further research in this field and
build upon the work presented here. The first obvious step would be to im-
plement the more general differential matrix approach in code to compare with
the other one, since all the necessary equations has already been derived. This
was never done because of time limitations, but would both make it possible to
confirm the validity of the differential approach and the approximations going
into the magneto-optic one. The approximate form of the dielectric function in
Equation (184), with Q small compared to N , (ϵxy << ϵxx), allowed for the lat-
ter. This assumption was tested for Ni in the sense that the sizes of each matrix
element was compared, but a comparison between the two methods with actual
calculations could confirm this assumption. With an implementation of the
differential approach, materials with a dielectric function of more complicated
form could be also tested and higher order contributions could be investigated.

This leads to the second point that could be worked on which is the require-
ments for the magneto-optic approach, namely the assumptions that permeabil-
ity µ = 1, gyrotropic matrix ρ = 0 and the higher order terms of Q is small. An
investigation on what mechanisms give rise to these effects and require them to
be considered for the mechanism to be observable would be interesting.

Symmetry arguments that specifies the form of the dielectric function is
another thing that would be both interesting and fruitful to explore. It was
mentioned that cubic symmetry give rise to the form necessary for the magneto-
optic approach, but a detailed study could give valuable information on which
elements in the dielectric function is most prevalent.

Lastly, a collaboration with experimentalists would be great. Then infor-
mation about what specific measurements they do and are able to do could be
used both when choosing the observable quantities that is calculated and when
determining which parameters to vary when analysing the setup. The analysis
could also be deepened by taking the other optical elements in the experimental
setup into consideration with the Jones formalism similar to what was done in
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Section 4.2. This could give a more complete picture and greater accuracy in
predicting the measured signal and the possibility to optimize setup as a whole.
Because of the many parameters involved in an experiment, this would be best
done together with an experimental group but it could also be done for a general
experiment.

8 Conclusions

A general matrix formalism has been derived to solve optical problems for lay-
ered magnetic media of arbitrary geometry. Depending on the form of the dielec-
tric function, two approaches to calculate the partial transfer matrix for a layer
has been presented. One of them was implemented in Python and compared
to earlier results with excellent agreement. It was then used to calculate the
asymmetry parameter which is frequently used in the literature as a measure of
magnetization in a material. The results show that the signal vary significantly
when different layers in an experimental setup is taken into consideration which
illustrates the advantage in implementing this technique, not only to compare
theory with experiment but also predicting an optimal experimental setup to
maximize signal to noise.
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36. Légaré K, Chardonnet V, Bermúdez Macias I, Hennes M, Delaunay R, Las-
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9 Appendix

9.1 Matrix elements for ∆

The components in the ∆-matrix in Equation (148)

∆11 =M51 + (M53 + cξ/ω)a31 +M56a61,

∆12 =M55 + (M53 + cξ/ω)a35 +M56a65,

∆13 =M52 + (M53 + cξ/ω)a32 +M56a62,

−∆14 =M54 + (M53 + cξ/ω)a34 +M56a64,

∆21 =M11 +M13a31 +M16a61,

∆22 =M15 +M13a35 +M16a65,

∆23 =M12 +M13a32 +M16a62,

−∆24 =M14 +M13a34 +M16a64,

−∆31 =M41 +M43a31 +M46a61,

−∆32 =M45 +M43a35 +M46a65,

−∆33 =M42 +M43a32 +M46a62,

∆34 =M44 +M43a34 +M46a64,

∆41 =M21 +M23a31 + (M26 − cξ/ω)a61,

∆42 =M25 +M23a35 + (M26 − cξ/ω)a65,

∆43 =M22 +M23a32 + (M26 − cξ/ω)a62,

−∆44 =M24 +M23a34 + (M26 − cξ/ω)a64,

where Mij are the elements in the M-matrix given by Equation (143). The aij ’s
are

a31 = (M61M36 −M31M66)/d,

a32 = ((M62 − cξ/ω)M36 −M32M66)/d,

a34 = (M64M36 −M34M66)/d,

a35 = (M65M36 − (M35 + cξ/ω)M66)/d,

a61 = (M63M31 −M33M61)/d,

a62 = (M63M32 −M33(M62 − cξ/ω))/d,

a64 = (M63M34 −M33M64)/d,

a65 = (M63(M35 + cξ/ω)−M33M65)/d,

with

d =M33M66 −M36M63.
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9.2 Code

Code based on the magneto-optic approach which calculates the general transfer
matrix and Fresnel’s reflection and transmission matrix.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from numpy.linalg import inv

4 import itertools

5

6 #Creates a boundary matrix , for a medium of with magnetp -optical

constant Q

7 #magnitization direction given by M, refractive intex n

8 #alpha_y = sintheta , alpha_z = costheta , theta from snells law

9 def boundarymatrix(Q,M,alpha_y , alpha_z ,n):

10 m_x = M[0]

11 m_y = M[1]

12 m_z = M[2]

13 g_i = m_z*alpha_z + alpha_y*m_y

14 g_r = -m_z*alpha_z + alpha_y*m_y

15 return np.array ([[1, 0, 1, 0],

16 [1j*alpha_y*Q/(2* alpha_z)*( alpha_y*g_i -2* m_x),

alpha_z +1j*alpha_y*m_x*Q, -1j*alpha_y*Q/(2* alpha_z)*( alpha_y*

g_r -2*m_x), -alpha_z +1j*alpha_y*m_x*Q],

17 [1j*n*g_i*Q/2, -n, 1j*n*g_r*Q/2, -n],

18 [n*alpha_z , 1j*n*g_i*Q/(2* alpha_z), -n*alpha_z

, -1j*n*g_r*Q/(2* alpha_z)]])

19

20 #Creats a propagation matrix

21 def propagationmatrix(Q,M,alpha_y ,alpha_z ,n,lamda ,d):

22 m_x = M[0]

23 m_y = M[1]

24 m_z = M[2]

25 U = np.exp(-1j*2*np.pi*n*alpha_z*d/lamda)

26 g_i = m_z*alpha_z + alpha_y*m_y

27 g_r = -m_z*alpha_z + alpha_y*m_y

28 delta_i = np.pi*n*Q*d*g_i/(lamda*alpha_z)

29 delta_r = np.pi*n*Q*d*g_r/(lamda*alpha_z)

30 return np.array ([[U*np.cos(delta_i), U*np.sin(delta_i), 0, 0],

31 [-U*np.sin(delta_i), U*np.cos(delta_i), 0, 0],

32 [0, 0, np.cos(delta_r)/U, -np.sin(delta_r)/U],

33 [0, 0, np.sin(delta_r)/U, np.cos(delta_r)/U]])

34

35

36

37 #Calculate the T matrix

38 #Variables: incident and final boundary matrix , a list of boundary

matrices and propagation matrices for the layers

39 def Tmatrix(A_iinv , A_f , A, D):

40 matrices = []

41 matrices.append(A_iinv)

42 if isinstance(A, list):

43 for i in range(len(A)):

44 matrices.append(A[i])

45 matrices.append(D[i])

46 matrices.append(inv(A[i]))

47 else:

48 matrices.append(A)
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49 matrices.append(D)

50 matrices.append(inv(A))

51 matrices.append(A_f)

52 result = matrices [0]

53 for i in range(1, len(matrices)):

54 result = np.dot(result , matrices[i])

55 return result

56

57 #Return Kerr rotation for s- and p-polarization

58 #Input: List of refractive index , magnetization strenght and

direction , thicknessess. (total optical media)

59 #then also: wavelength of incident light , angle of incident.

60 #Returns Kerr_s , Kerr_p if Kerr=True

61 #Otherwise returns reflectance R (I_r = R*I_0) (for intensities in

TMOKE): returns R_s , R_p

62 def MOKE(N, Q, M, d, wavelength , theta_i , Kerr=True):

63 alpha_y = [np.sin(theta_i)]

64 alpha_z = [np.sqrt(1-alpha_y [0]**2)]

65 for i in range(len(N) -1):

66 alpha_y.append(N[i]/N[i+1]* alpha_y[i])

67 alpha_z.append(np.sqrt(1-alpha_y[i+1]**2))

68 A_i = boundarymatrix(Q[0],M,alpha_y [0], alpha_z [0],N[0])

69 A_iinv = inv(A_i)

70 A_f = boundarymatrix(Q[-1],M,alpha_y[-1], alpha_z[-1],N[-1])

71 A = []

72 D = []

73 for i in range(len(N) -2):

74 A.append(boundarymatrix(Q[i+1], M, alpha_y[i+1], alpha_z[i

+1], N[i+1]))

75 D.append(propagationmatrix(Q[i+1], M, alpha_y[i+1], alpha_z

[i+1], N[i+1], wavelength , d[i+1]))

76 T = Tmatrix(A_iinv , A_f , A, D)

77 G = np.array ([[T[0,0], T[0,1]],

78 [T[1,0], T[1 ,1]]])

79 I = np.array ([[T[2,0], T[2,1]],

80 [T[3,0], T[3 ,1]]])

81 R = I@inv(G)

82 if Kerr == True:

83 return R[1 ,0]/R[0,0], R[0,1]/R[1,1]

84 else:

85 return np.abs(R[0,0] + R[0 ,1])**2, np.abs(R[1,0] + R[1 ,1])

**2

86

87 #Runs the MOKE function and vary two variables. It can vary M, d,

wavelength or angle of incidence.

88 #Assumes:

89 # N, Q: 1D arrays.

90 # M: nx3 , n = number of different directions. A = 1 if this is not

varied (e.g np.array ([[0 ,0 ,1]]))

91 # d: nxm , n = number of variations , m = number of slabs

92 #Returns the magniture of Kerr rotation for s and p

93 def runMOKE(N, Q, M, d, wavelength , theta_i , MOsignal = True , Kerr

= True):

94 if MOsignal == True:

95 if len(M) > 1 and len(d) > 1:

96 MOsignal_s = np.zeros((len(M),len(d)))

97 MOsignal_p = np.zeros((len(M),len(d)))

64



98 for i in range(len(M)):

99 for j in range(len(d)):

100 Kerr_s , Kerr_p = MOKE(N[0], Q[0], M[i], d[j,:],

wavelength , theta_i [0])

101 MOsignal_s[i,j] = np.abs(Kerr_s)

102 MOsignal_p[i,j] = np.abs(Kerr_p)

103 return MOsignal_s , MOsignal_p

104

105 elif len(M) > 1 and len(theta_i) > 1:

106 MOsignal_s = np.zeros((len(M),len(theta_i)))

107 MOsignal_p = np.zeros((len(M),len(theta_i)))

108 for i in range(len(M)):

109 for j in range(len(theta_i)):

110 Kerr_s , Kerr_p = MOKE(N[0], Q[0], M[i], d[0],

wavelength , theta_i[j])

111 MOsignal_s[i,j] = np.abs(Kerr_s)

112 MOsignal_p[i,j] = np.abs(Kerr_p)

113 return MOsignal_s , MOsignal_p

114

115 elif len(M) > 1 and len(wavelength) > 1:

116 MOsignal_s = np.zeros((len(M),len(wavelength)))

117 MOsignal_p = np.zeros((len(M),len(wavelength)))

118 for i in range(len(M)):

119 for j in range(len(wavelength)):

120 Kerr_s , Kerr_p = MOKE(N[0], Q[0], M[i], d[0],

wavelength[j], theta_i [0])

121 MOsignal_s[i,j] = np.abs(Kerr_s)

122 MOsignal_p[i,j] = np.abs(Kerr_p)

123 return MOsignal_s , MOsignal_p

124

125 elif len(theta_i) > 1 and len(wavelength) > 1:

126 MOsignal_s = np.zeros((len(theta_i),len(wavelength)))

127 MOsignal_p = np.zeros((len(theta_i),len(wavelength)))

128 for i in range(len(theta_i)):

129 for j in range(len(wavelength)):

130 Kerr_s , Kerr_p = MOKE(N[0], Q[0], M[0], d[0],

wavelength[j], theta_i[i])

131 MOsignal_s[i,j] = np.abs(Kerr_s)

132 MOsignal_p[i,j] = np.abs(Kerr_p)

133 return MOsignal_s , MOsignal_p

134

135 else:

136 print(’Hejsan ’)

137

138 elif MOsignal == False:

139 if len(M) > 1 and len(d) > 1:

140 AllKerr_s = np.zeros((len(M),len(d)), dtype=’complex ’)

141 AllKerr_p = np.zeros((len(M),len(d)), dtype=’complex ’)

142 for i in range(len(M)):

143 for j in range(len(d)):

144 Kerr_s , Kerr_p = MOKE(N[0], Q[0], M[i], d[j,:],

wavelength , theta_i [0])

145 AllKerr_s[i,j] = Kerr_s

146 AllKerr_p[i,j] = Kerr_p

147 return AllKerr_s , AllKerr_p

148

149 elif len(M) > 1 and len(theta_i) > 1:

65



150 AllKerr_s = np.zeros((len(M),len(theta_i)), dtype=’

complex ’)

151 AllKerr_p = np.zeros((len(M),len(theta_i)), dtype=’

complex ’)

152 for i in range(len(M)):

153 for j in range(len(theta_i)):

154 Kerr_s , Kerr_p = MOKE(N[0], Q[0], M[i], d[0],

wavelength , theta_i[j])

155 AllKerr_s[i,j] = Kerr_s

156 AllKerr_p[i,j] = Kerr_p

157 return AllKerr_s , AllKerr_p

158

159 elif len(M) > 1 and len(wavelength) > 1:

160 AllKerr_s = np.zeros((len(M),len(wavelength)), dtype=’

complex ’)

161 AllKerr_p = np.zeros((len(M),len(wavelength)), dtype=’

complex ’)

162 for i in range(len(M)):

163 for j in range(len(wavelength)):

164 Kerr_s , Kerr_p = MOKE(N[0], Q[0], M[i], d[0],

wavelength[j], theta_i [0])

165 AllKerr_s[i,j] = Kerr_s

166 AllKerr_p[i,j] = Kerr_p

167 return AllKerr_s , AllKerr_p

168

169 elif len(theta_i) > 1 and len(wavelength) > 1:

170 AllKerr_s = np.zeros((len(theta_i),len(wavelength)),

dtype=’complex ’)

171 AllKerr_p = np.zeros((len(theta_i),len(wavelength)),

dtype=’complex ’)

172 for i in range(len(theta_i)):

173 for j in range(len(wavelength)):

174 Kerr_s , Kerr_p = MOKE(N[0], Q[0], M[0], d[0],

wavelength[j], theta_i[i])

175 AllKerr_s[i,j] = Kerr_s

176 AllKerr_p[i,j] = Kerr_p

177 return AllKerr_s , AllKerr_p

178

179 #Q depends on wavelength , so len(Q) = len(wavelength)

180 elif len(Q) > 1:

181 if Kerr == True:

182 print(’not working ’)

183 AllKerr_s = np.zeros(len(Q), dtype=’complex ’)

184 AllKerr_p = np.zeros(len(Q), dtype=’complex ’)

185 for i in range(len(Q)):

186 Kerr_s , Kerr_p = MOKE(N[i], Q[i], M[0], d[0],

wavelength[i], theta_i [0], Kerr)

187 AllKerr_s[i] = Kerr_s

188 AllKerr_p[i] = Kerr_p

189 return AllKerr_s , AllKerr_p

190

191 elif Kerr == False:

192 print(’working ’)

193 AllKerr_s = np.zeros(len(Q))

194 AllKerr_p = np.zeros(len(Q))

195 for i in range(len(Q)):
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196 Kerr_s , Kerr_p = MOKE(N[i], Q[i], M[0], d[0],

wavelength[i], theta_i [0], Kerr)

197 AllKerr_s[i] = Kerr_s

198 AllKerr_p[i] = Kerr_p

199 return AllKerr_s , AllKerr_p

200

201 else:

202 print(’Hejsan ’)

203

204 else:

205 print(’Something is wrong’)

Code that runs the simulation above.

1 import numpy as np

2 import improved_general as ig

3 from get_data import load_data

4

5 #Inputs:

6 # element(type=tuple): (’element ’, d), where element = ’Ni’, ’Fe’

or ’Co’, and d = thickness

7 # coating(type=tuple): (N,d) - refractive index and thickness (in

nm), put = None if no coating

8 # substrate(type=complex): N - refractive index , put = None if no

substrate

9 # AoI(type=numpy array): np.array ([]) - array of angle of

incidence in radians

10 # MOKEtype(type=str): ’L’, ’T’ or ’P’, for LMOKE , TMOKE or PMOKE

11 # measurement(type=str): ’K’, ’S’, ’A’, for Kerr rotation , Signal

(abs(Kerr rot)), or Asymmetry measurement

12 # filename(type=str): ’filename ’ - filename for the data to be

stored (it will be stored as np arrays)

13 def runSim(element , coating , substrate , AoI , MOKEtype , measurement ,

filename):

14

15 epsilonRe , epsilonIm , energies , N, Q = load_data(f’{element [0]}

’)

16

17 #Wavelength and d(thickness) need to have same unit. Only

things with units!

18 #From eV to meter

19 wavelength = 1239.84193/ energies #nm

20

21 #Experimental setup

22 N_air = np.zeros(len(N)) + 1

23 Q_air = np.zeros(len(N))

24

25 if coating is None and substrate is None:

26 Ns = np.vstack ((N_air , N)).T

27 Qs = np.vstack ((Q_air , Q)).T

28 ds = np.array ([[0 ,0]])

29

30 elif coating is None and substrate is not None:

31 N_substrate = np.zeros(len(N)) + substrate

32 Q_substrate = np.zeros(len(N))

33 Ns = np.vstack ((N_air , N, N_substrate)).T

34 Qs = np.vstack ((Q_air , Q, Q_substrate)).T

35 ds = np.array ([[0, element [1], 0]])
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36

37 elif coating is not None and substrate is None:

38 N_coating = np.zeros(len(N)) + coating [0]

39 Q_coating = np.zeros(len(N))

40 Ns = np.vstack ((N_air , N_coating , N)).T

41 Qs = np.vstack ((Q_air , Q_coating , Q)).T

42 ds = np.array ([[0, coating [1], 0]])

43

44 else:

45 N_coating = np.zeros(len(N)) + coating [0]

46 Q_coating = np.zeros(len(N))

47 N_substrate = np.zeros(len(N)) + substrate

48 Q_substrate = np.zeros(len(N))

49 Ns = np.vstack ((N_air , N_coating , N, N_substrate)).T

50 Qs = np.vstack ((Q_air , Q_coating , Q, Q_substrate)).T

51 ds = np.array ([[0, coating [1], element [1], 0]])

52

53 #Magnetizaiton diraction

54 if MOKEtype == ’L’:

55 M = np.array ([[0 ,1 ,0]])

56 elif MOKEtype == ’T’:

57 M = np.array ([[1 ,0 ,0]])

58 elif MOKEtype == ’P’:

59 M = np.array ([[0 ,0 ,1]])

60 else:

61 print(’Specify MOKE type’)

62

63 thetas = AoI

64 if measurement == ’A’:

65 data = np.empty ((0,4, energies.size))

66

67 for theta in thetas:

68 theta = np.array([theta ])

69 I_spos , I_ppos = ig.runMOKE(Ns , Qs, M, ds, wavelength ,

theta , False , False)

70 I_sneg , I_pneg = ig.runMOKE(Ns , Qs, -M, ds, wavelength ,

theta , False , False)

71 I_all = np.concatenate (( I_spos.reshape (1,-1), I_ppos.

reshape (1,-1), I_sneg.reshape (1,-1), I_pneg.reshape (1,-1)),axis

=0)

72 data = np.concatenate ((data , I_all.reshape (1,4,-1)),

axis =0)

73

74 np.save(f’Data/{ filename}_Asymmetry_data.npy’, data)

75 np.save(f’Data/{ filename}_Asymmetry_energies.npy’, energies

)

76 np.save(f’Data/{ filename}_Asymmetry_thetas.npy’, thetas)

77 else:

78 print(’Specify what kind of measurement you want. Currently

only A for asymmetry works.’)
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