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DFT often becomes intractable due to the large system sizes required for simulating amorphous
materials. In this thesis, amorphous metallic glasses and 2D materials were comprehensively
investigated through the combined application of classical molecular dynamics simulations
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thermal and vibrational properties using CMD, while DFT was used to explore their electronic,
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Part I:
Introduction and Theoretical Background





1. Introduction

Amorphous materials, like silica, have captivated humanity for centuries, serv-
ing various purposes such as cutting, ornamentation, and construction. Re-
markably, remnants of iron-rich siliceous glassy materials, billions of years
old, were retrieved from the moon during the Apollo missions [1]. In a breath-
taking discovery, Bouchy et al. unveiled the existence of an exoplanet called
“HD 189733 b”, situated a staggering 64.5 light-years away from Earth, where
molten glass rains from the skies [2, 3]. However, these enigmatic materials
possess intricate structures that defy the ordered patterns of their crystalline
counterparts. It was in 1932 that Zachariasen revolutionized our comprehen-
sion of glass by establishing a fundamental connection between its composition
and structure [1, 4]. Nevertheless, verifying Zachariasen’s proposed structure
remained elusive for decades due to the ineffectiveness of X-ray diffraction, the
conventional method for determining material structure in the case of glasses
and amorphous materials. It was only in 2012 that the breakthrough finally ar-
rived, allowing precise atomic positioning within these intriguing substances
[5, 6, 7]. The profound implications of this research extend beyond the realm
of scientific curiosity, holding the potential to revolutionize the semiconduc-
tor field by enabling the production of amorphous silica with unprecedented
precision and accelerating the discovery of novel and more potent catalysts.
However, the journey toward understanding and manipulating these materials
began much earlier than in 2012.
In 1959, a team of researchers at Caltech experimentally confirmed the pro-

duction of the first metallic glass alloy with a composition of Au75Si25 through
splat quenching [8]. However, it was the first metallic glass (MG) and its pro-
duction was expensive. In the 90s, cheaper binary metallic glasses (BMG) that
included one of the excellent glass former, Zr, were discovered. It was mixed
with cheaper ferrous materials such as iron (Fe), nickel (Ni), and chromium
(Cr) to decrease the production cost and to open up their industrial usage such
as those involving magnetic cycling where MGs exhibit smaller energy losses
[8, 9, 10, 11, 12]. BMG have improved properties such as greater hardness,
strength, and corrosion resistance, while still being easy to process. Addition-
ally, their production costs are comparable to those of stainless steel [13].
Moreover, disordered materials have low thermal conductivity due to the

localized nature of their heat carriers, making them useful in applications such
as wearable electronics where flexibility and low heat transfer are desirable
[14, 15, 16]. Amorphous semiconductors based on silicon are even being con-
sidered for use in advanced AI chips, as they may be better able to manage heat
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dissipation [14, 17, 18]. Amorphous semimetallic and semiconductor materi-
als may be also suitable for use in thermoelectric applications [19]. Metal-
lic glasses and glassy alloys, which are often used in these applications, have
been shown to have thermal conductivity below 9 W/Km, with lattice ther-
mal conductivity below 2W/Km [20, 21, 22]. It has been shown that Zr-based
metallic glass thin films, when used in conjunction with an AgSbTe2 substrate,
can serve as an effective diffusion barrier [21]. Zr-based metallic glasses are
good candidates to maintain a balance between the electronic component and
thermoelectric materials in thermoelectric modules to increase the device effi-
ciency.
Additionally, variations in local composition can affect atomic interactions,

leading to changes in short-to-medium range structural order during the growth
process of magnetic amorphous structures [23]. CoZr-based metallic glasses’
saturation magnetization and magnetic ordering temperature were found to in-
crease in a linear fashion with the Co content, starting from zero at a criti-
cal concentration that usually falls within the range of 40 - 60 at. % [24, 23].
Furthermore, the superconductivity of amorphous MoGe structures has been
experimentally observed to be concentration-dependent [25, 26].
In the past decade, many stable two-dimensional (2D) amorphous inor-

ganicmaterials with atomic layer thickness, such as amorphous-C, amorphous-
BP, amorphous-TMD, amorphous-BN, amorphous-MoS2, etc., have been syn-
thesized successfully with different techniques such as exfoliation, electron
irradiation, chemical vapor deposition (CVD), or physical vapor deposition
(PVD) [27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. While some 2D amorphous
structures have been synthesized, their characteristics and structures are not as
well known as those of 2D crystalline materials. Molecular dynamics simula-
tions have made it possible to predict low dimensional amorphous structures,
such as amorphous-graphene [37, 38, 28, 39, 40, 41, 42], amorphous-silicene
[43, 44, 45, 46, 47, 48], amorphous-silicon carbide [49, 50, 51], amorphous-
germanene [52], amorphous-BN [53], etc. These simulations provide a deeper
understanding of how the amorphous structure affects mechanical, thermal,
and electronic properties. These low-dimensional amorphous materials, with
their known and yet-to-be-discovered properties, can be used in various appli-
cations such as thermoelectric and thermal coatings, electronics, optoelectron-
ics, and more.
Even though MG and 2D amorphous structures have been extensively in-

vestigated, their structure-dependent properties need to be enlightened. On the
other hand, the reproducibility of experimental and theoretical results is only
possible in statistical averages due to their complex structures [54]. Despite
this limitation, classical molecular dynamics simulations (CMD) and density
functional theory (DFT) remain accurate tools for studying amorphous struc-
tures. In this thesis, we use realistic modeling within the computational lim-
its to analyze the structure-dependent properties of glass. Papers I, II, and
III present our results on 3D amorphous metallic glasses. Paper I focuses
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on Fe85Zr15 MG, a non-magnetic and thermally low conductor. Tuning its
lattice thermal conductivity is discussed from both a structural perspective
and in terms of systems with nanostructured voids. Paper II investigates the
concentration-dependent magnetization of CoxZr100−x MG by incorporating
the effects of local orderings. Paper III concludes the MG section by dis-
cussing the dependence of MoxGe100−x’s superconductivity on its structure
and composition. Papers IV and V explore the properties of low-dimensional
(2D) amorphous structures. Paper IV explains the experimentally observed
decrease in graphene’s elastic modulus with defect density by studying the
binding energy change from crystal to amorphous structures. This study sheds
light on graphene’s mechanical properties. Paper V examines the structure-
dependent thermal, vibrational, electronic, and optical properties of 2D amor-
phous graphene, silicene, and silicon carbide. They can serve as more durable,
efficient, and cost-effective alternativematerials to crystallinematerials in func-
tional devices with their structure-specific and tunable properties in the near
future.
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2. Theoretical Background

In this chapter, the theoretical foundation for the study is established, with a
focus on essential concepts related to glass and molecular dynamics simula-
tions, as well as a delve into density functional theory. The examination of
the structure-dependent properties of glass begins with a discussion of the pro-
duction and characterization of glassy systems. The glasses were produced by
usingmolecular dynamics simulations which is a powerful computational tech-
nique for studying the behavior of atoms and molecules over time. Within this
context, various thermostats are used to control the system’s temperature, and
different potential models are discussed. Subsequently, techniques for evalu-
ating properties such as lattice thermal conductivity and the vibrational density
of states are reviewed. Afterward, the background of density functional theory
is investigated, which is used as a quantum mechanical method for studying
the electronic structure and optical properties of materials. This chapter pro-
vides a solid foundation for the rest of the thesis by presenting a comprehensive
theoretical background that paves the way for the investigations and analyses
to come.

2.1 Glass
The process of glass formation can be likened to a time-sensitive endeavor,
governed by thermodynamics. As the liquid is cooled below its melting tem-
perature (Tm), the countdown starts. As the temperature of the supercooled liq-
uid drops, there is a concomitant drop in both its enthalpy and volume. When
the glass transition temperature (TG), is reached, the atoms in the liquid be-
come densely packed, inhibiting their ability to rearrange. This results in a
glassy state where the system exhibits solids behavior, despite the presence of
a frozen liquid-like disorder in its structure. To overcome the nucleation and
growth of a crystalline phase, the liquid has to rapidly supercool from melting
temperature Tm, to TG. Rapid cooling results in glass structures resembling
high-temperature liquids, due to entrapment at higher energy landscape lev-
els. Even the slowest cooling rates result in entrapment at levels significantly
higher than the lowest energy dip [55, 56, 57]. Metals, bound by conduction-
band electrons that are freely shared, have no orientational requirement and
only need to adopt translational order to crystallize. Consequently, super-
cooled metals tend to crystallize rapidly. However, specific metallic alloys
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exhibit a significantly reduced tendency to crystallize compared to pure met-
als. Some of these alloys are composed of metal-metal combinations, includ-
ing elements such as zirconium, copper, iron, and nickel. Others incorporate
metals with near-metalloids like silicon, carbon, and phosphorus. This dis-
covery started the rapidly expanding new category of materials referred to as
metallic glasses (MG) [55]. The first MG (Au75Si25), with a thickness of ap-
proximately 10 µm, was produced at very high cooling rates of 105 − 106

K/s. However, by carefully selecting and adjusting the composition of con-
stituent elements, it is possible to create alloys with enhanced glass-forming
ability (GFA). This allows for the mass production of MG using slower cool-
ing rates and increased stability at room temperature [54, 58]. MG exhibit
exceptional hardness and strength, rendering them highly desirable for use in
applications where these properties are crucial. The mechanical properties of
MG are known to be closely linked to the chemical and physical properties of
their constituent elements. Variations in the chemical composition of MG re-
sult in significant differences in mechanical performance, such as strength and
ductility, indicating an inherent connection between their mechanical proper-
ties and atomic, electronic structures [11]. Since amorphous materials lack
long-range order, explanations for many phenomena, including mechanical
and low thermal conductivity, depend on atoms’ short-range ordering (SRO)
and medium-range ordering (MRO) in the structure [59]. Classical molecular
dynamics simulations (CMD) are significant tools for producing and calculat-
ing the equilibrium and non-equilibrium properties of materials of glasses and
MG with the capability of involving millions of atoms. However, the time
and length scales used in molecular dynamics simulations are usually much
different from those used in laboratory experiments. CMD simulations can
be performed by defining an interatomic potential, such as empirical poten-
tials produced by fitting to experimental data [60, 61]. However, the most
accurate approach to determining interatomic forces is through the use of first-
principles calculations, whereas First Principles Molecular dynamics (FPMD)
has limitations on the number of atoms and simulation time [62]. Both meth-
ods have their advantages and disadvantages in producing and calculating the
properties of glasses. A benchmark calculation can be performed for both sys-
tems by employing a carefully selected cooling procedure that is fast enough
to accurately produce the structural properties and the number of atoms in the
simulation box. This can help produce the optimal glass structure and enable
calculation using both methods through the use of transferable glass structures
between them. In Fig. 2.1, we show a cooling procedure to produce a glass
system that can be performed with both methods. In this thesis, Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) [63] was used
for CMD calculations, and Vienna Ab initio Simulations Package (VASP) [64]
was used for density functional theory calculations, including FPMD.
Characterization of the produced glass reveals its properties. The produced

glass can be characterized using structural analysis methods such as radial and
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Figure 2.1. Cooling procedure which can be performed successfully by using CMD
and FPMD methods.

angular distribution functions, Voronoi tessellation, and ring analysis. The
structural analysis provides statistical information about local orderings, in-
cluding SRO and MRO.

2.1.1 Radial Distribution Function
The radial distribution function (RDF) quantifies the probability of locating a
particle at a specified distance, denoted as r, from a reference particle within
a given system. The fundamental methodology entails calculating the number
of particles situated within a radial range of r to r + dr from a reference par-
ticle. The volume of the spherical layer within a radial range of r to r + dr is
equivalent to 4πr2dr. RDF (g(r)) can be written as

g(r) =
1

4πr2ρN

N∑
i=1

N∑
j=1,j ̸=i

δ(r − |rij |), (2.1)

whereN represents the total number of the atoms in the system, ρ is the number
density, and |rij | is the interatomic distance between atoms i and j [65]. The
partial radial distribution function can be written as

gab(r) =
N

4πr2ρNaNb

Na∑
i=1

Nb∑
j=1

δ(r − |rij |), (2.2)

where a and b represent atom types. The quantity of type a and b atoms are
represented as Na and Nb respectively. In Eq. 2.2, |rij | is the interatomic
distance between atoms i (a type) and j (b type).
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RDF denotes the likelihood of the presence of atoms within a particular
layer at a specified distance from any selected atom. At a distance equiva-
lent to the first coordination sphere, the radial distribution function exhibits a
peak, corresponding to the first nearest neighbor distance. This phenomenon
is also observed at distances corresponding to the second, third, and subse-
quent coordination spheres. Apart from ideal crystalline materials, the fluctu-
ations in the radial distribution function typically diminish after the fifth peak
as in amorphous systems due to the existing short and medium-range order-
ing where long-range ordering cannot exist [1, 66, 67]. Amorphous solids,
especially bulk metallic glasses radial distribution show a unique splitting on
the second peak due to the special atomic configurations created by tetrahedra
and/or quartotetrahedra [67, 68]. The short, and medium-range orderings can
occur locally due to the electronic influence on the structure through spherical-
periodic order [69]. Medium-range ordering can be constructed by a group of
short-range ordering arrangements and/or one-dimensional translation of a lo-
cally favorable short-range ordering at the 1 - 2 nanometer range.

2.1.2 Angular Distribution Function
The angular distribution function is a measure of three-body correlations, pro-
viding insight into the spatial relationships between three adjacent atoms. The
initial step involves identifying the nearest-neighbor atoms that are connected
to the central atom through bonds. Subsequently, the angles between each pair
of bonds are computed. This process is repeated for all atomswithin the system
to generate the overall distribution of bond angles. In particular, for a given
atom i with Ni nearest neighbors, the bond length between neighbor j and
atom i is denoted as rij , while the bond length between neighbor k and atom i
is denoted as rik. The spatial separation between points j and k is denoted by
rjk. The bond angle (θijk) between rij and rik can be written as

θijk = cos−1
(r2ij + r2ik − r2jk

2rijrik

)
. (2.3)

The angular distribution function can be expressed as

g(θ) =
1∑N

i=1Ni(Ni − 1)

N∑
i=1

Ni∑
j=1

Ni∑
k=j+1

δ(θ − θijk). (2.4)

Eq. 2.4 reveals the positioning of bonded atoms and neighbors [54]. In contrast
to the sharp peaks observed at specific angles in crystalline solids, the angular
distribution function of amorphous solids displays a broad spectrum.
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2.1.3 Voronoi Tessellation
Voronoi Tessellation is a structural characterization method that provides in-
sight into the short-range ordering of amorphous structures by dividing the
structure into three-dimensional polyhedra centered around each atom, simi-
lar to the Wigner-Seitz primitive cell. This is done by drawing lines from a
given atom to its neighboring atoms and constructing perpendicular planes at
the midpoint or at a point determined relative to the different radii of the con-
stituent atoms. The method gives coordination numbers by considering the
nearest neighboring atoms sharing a common cell surface, which is the defi-
nition of the number of atoms located within the nearest-neighbor shell of a
specific central atom. Voronoi polyhedra can be expressed with a vector of
Voronoi indexes < s3, s4, s5, s6 > where s is the polyhedron’s surfaces and
subindexes represents the polyhedron’s edges (e.g. triangles, polyhedron, pen-
tagon, etc numbers in the polyhedron). A k-edged polygon between bonding
atoms typically indicates the presence of k common neighbors surrounding the
pair, forming a k-fold bond local environment [70, 71, 72]. A widely obtained
local structures in amorphous solids exhibit a 5-fold rotational symmetry and
can be seen in two forms, perfect icosahedron (< 0, 0, 12, 0 >) and distorted
icosahedron (< 0, 2, 8, 2 >; < 0, 1, 10, 2 >; < 0, 1, 10, 4 >; etc.). Fcc-type
(< 0, 2, 8, 4 >, etc.) and bcc-type (< 0, 3, 6, 4 >, etc.) of local orderings can
also frequently exist in an amorphous solid. The Voronoi indices representing
crystalline fcc/hcp and bcc are< 0, 12, 0, 0 > and< 0, 6, 0, 8 >, respectively.

2.1.4 Ring Statistics
Ring statistics is used to simplify the structures of topological networks. Atoms
and bonds are represented as nodes and links, regardless of atom species or
bond characteristics. A path is defined as a chain of continuously associated
nodes and links without overlap, while a ring is defined as a closed path. Rings
with n links are referred to as n−ring. Each node or link should have an asso-
ciated local cluster of rings, known as a ring cluster. A ring can be described
as primitive when it cannot be broken down into two smaller rings. To deter-
mine whether a ring structure is primitive, one can systematically analyze each
pair of nodes on the ring to ascertain the presence or absence of a shortcut. If
no shortcuts are found between any node pairs, the ring can be classified as
primitive. A ring structure with a path connecting any two of its nodes can be
considered as an example in Fig. 2.2.
As depicted in Fig. 2.2, a path designated as Y (i− Y − j) connects nodes

i and j within the ring labeled as X − Z (i − X − j − Z − i). The length
relation between paths X , Z, and Y determines whether the ring is primitive
or not according to whether it fits the three criteria. First, if the length between
the paths is equal (X = Y = Z), the rings XY , XZ, and XY are primitive
rings. Second, if the two path lengths are equal and smaller than the third path’s
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Figure 2.2. Primitive ring example.

length, there are one small and two bigger rings (e.gX = Y < Z meansXY is
the small ring and twoXZ, and Y Z are the bigger rings.). Because any of the
three rings is the sum of two smaller rings, all three are classified as primitive
rings. Third, if the path two paths’ length is equal and bigger than the other, or
if the path lengths are increasing respectively, there is one shortest path. For
example; if the case is X < Y = Z, or X < Y < Z, then the shortest path is
X . The ring labeled Y Z, which is constructed without the shortest path, can
be decomposed into the sum of two smaller rings, XY , and XZ. As a result,
this ring is not considered a primitive ring [73].

2.2 Molecular Dynamics Simulations
Classical molecular dynamics simulations (CMD) is an effective method for
simulating the thermodynamic, mechanical, and chemical properties of solids
and liquids in a detailed and precise manner. The accuracy of the simulation is
determined by the interatomic potential (force field), which calculates the po-
tential energy of the system based on the positions of atoms and other factors.
The time evolution of the system is calculated by numerically integrating New-
ton’s equations of motion over a significant number of timesteps to track the
positions and velocities of the atoms [74, 63]. Molecular dynamics (MD) sim-
ulations are characterized by their deterministic nature, where the outcome is
dictated by the initial conditions and equations of motion. Conversely, Monte
Carlo simulations are stochastic and depend on random sampling to gener-
ate results. The molecular dynamics (MD) technique comprises two primary
forms: one for systems that are in equilibrium and another for systems that
are out of equilibrium. Nonequilibrium molecular dynamics (NEMD) is an al-
ternative to equilibrium molecular dynamics to calculate transport coefficients
under an applied external force applied to the system. Equilibrium molecular
dynamics is typically used for an isolated system with a fixed number of atoms
(N ) in a fixed volume (V ). Since the system is isolated, the total energy (E),
which is the sum of the kinetic and potential energies, remains constant. This
is known as a microcanonical ensemble (NVE). The thermodynamic state of
the system is determined by the variablesN , V , andE and atomic position rN
is found by solving Newton’s equations of motion:
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Fi(t) = mr̈i(t) = −∂U(rN )

∂ri
, (2.5)

where Fi represents the force on ith atom created by the N -1 other atoms.
m is the mass molecular mass and U corresponds to interatomic potential en-
ergy. The double integral of Eq. 2.5 yields the atomic positions. By repeatedly
integrating, individual atomic trajectories can be generated, enabling the cal-
culation of time averages < A > for macroscopic properties:

< A >= lim
t→∞

1

t

∫ t0+t

t0

A(τ) dτ . (2.6)

< A > in Eq.2.6 cannot rely on t0 at equilibrium. Because it stands for both
static (e.g. thermodynamic) and dynamic (e.g. transport coefficients) proper-
ties, due to the positions andmomenta being calculated. In accordance with the
principles of the ergodic hypothesis, a Molecular Dynamics trajectory that sat-
isfies certain criteria permits the equivalence of time and ensemble averages,
thereby rendering MD averages a valuable tool. The ergodic hypothesis posits
that, given sufficient time, a system will explore all microstates within a given
energy range with equal probability. Therefore in an ergodic system, the time
and ensemble averages should be the same. The velocity Verlet algorithm is
one of the commonly used computational techniques for integrating Newton’s
equations of motion, to determine the trajectories of particles in molecular dy-
namics simulations [75, 76]. The Verlet algorithm forms the basis of molecular
dynamics which is defined as

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2, (2.7)

where δt is the time increment of the system, r, v, and a represent respectively
the position, velocity, and acceleration vectors at time t and t + δt. Velocity
Verlet algorithm can be derived by using Taylor expansion of reverse motion
of displacement vector from forward one as below

v(t+ δt) = v(t) +
a(t) + a(t+ δt)

2
δt. (2.8)

In accordance with the law of energy conservation, the numerical solution
can be satisfied by the instantaneous sum of kinetic and potential energy. The
Verlet algorithm can produce realistic results when calculations are performed
over a large number of time steps.
The microcanonical ensemble can serve as a thermal reservoir in simula-

tions utilizing the canonical ensemble. Variables of the canonical ensemble are
the number of atoms (N ), the volume of the system (V ), and temperature (T ).
This is known as (NVT) also. In the canonical ensemble, probabilities are as-
signed to individual microstates of a system in accordance with the Boltzmann
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distribution. The probability (P ) of a givenmicrostate is proportional to the ex-
ponential of the ratio of its negative energy (E) to the product of Boltzmann’s
constant (kB) and the system’s temperature (T ); P ∝ e

−E

kBT . Thermostats may
be employed to regulate the temperature of an NVE simulation by linking it to
a heat bath maintained at a constant temperature, thereby converting it into an
NVT simulation. AIMD forces are derived from solutions to the Schrödinger
equation.

2.2.1 Thermostats
Thermostat refers to the process of regulating the temperature of particles in an
MD simulation. The goal of the thermostat is to bring the system to equilibrium
at the desired temperature. The thermostat algorithm modifies the Newtonian
MD scheme to generate a thermodynamic ensemble at a constant tempera-
ture. This is important for matching experimental data, studying temperature-
dependent processes, evacuating heat in dissipative NEMD, enhancing the ef-
ficiency of conformational studies, and avoiding steady energy drifts caused by
the accumulation of numerical errors. The initial requirements for thermostats
include instantaneous temperature, reference temperature of the heat bath, and
average internal kinetic energy, which is related to macroscopic temperature
through the equipartition theorem. Several modeling methods are available for
maintaining temperature or pressure, including stochastic (which constrains a
system variable to present a distribution function, such as Andersen, Langevin
thermostats), strong-coupling (which scales a system variable to give an ex-
act present derived value, such as Nose-Hoover thermostat), weak-coupling
(which scales a system variable in the direction of the desired derived value,
such as Berendsen thermostat), and extended system dynamics (which extends
degrees of freedom to include temperature or pressure terms, such as Parinello-
Rahman (NPE), (Nose-Parinello-Rahman (NPT)). In CMD, we used Berend-
sen thermostat. In AIMD, we employed velocities rescaling which enables a
gradual increase or decrease in kinetic energy. During the intermediate period,
a micro-canonical ensemble is simulated. The velocities are adjusted at each
NB step, starting from the first step (i.e., when MOD(Ns,NB)=1), to match
the temperature calculated as T = TBegin + (TEnd − TBegin)×Ns/Nsim. Ns

represents the current step, starting from 1, while Nsim is the total simulation
time in multiples of NB .

2.2.2 Berendsen Thermostat
The Berendsen thermostat [77] is designed to alter the Langevin equation of
motion (miv̇i = Fi − miγivi + Ri; where systematic force is Fi; friction
term is γi and Ri is Gaussian stochastic variable) by eliminating the local tem-
perature coupling that occurs through random noise while keeping the global
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coupling intact. This is done to minimize local disturbances. The Berendsen
thermostat simulates the disturbance that would happen in a perfect physical
non-equilibrium experiment. Additionally, the strength of the coupling can be
adjusted, allowing for easy evaluation and control of its impact. It is a reliable
method that enables smooth transitions to new pressure or temperature values
without requiring any intermediate modifications. The Berendsen thermostat
uses a time scale to update velocities, rather than scaling them to the desired
temperature at each time step. This approach weakly couples the system to a
heat bath, with the coupling constant or heat transfer time scale referred to as
τ and can be written as

λ2 = 1 +
δt

τ

(
T

Tins
− 1

)
, (2.9)

where the thermostat temperature is denoted by T , while the instantaneous
kinetic temperature is denoted by Tins, δt is time step, and λ is the velocity
rescaling factor. Although the Berendsen thermostat does not produce exact
energy fluctuations, it closely approximates the real canonical ensemble.

2.2.3 Embeded Atom Method Potential
The embedded atom method (EAM) is a semi-empirical, interatomic potential
approximation that describes the energy between atoms as a function of the
sum of functions of the separation between an atom and its neighbors. These
functions represent the electron density. EAM is related to the second mo-
ment approximation to tight-binding theory, also known as the Finnis-Sinclair
model. ith atom’s total energy can be described as

Ei = Fα

∑
j ̸=i

ρβ(rij)

+
1

2

∑
j ̸=i

ϕαβ(rij), (2.10)

where the embedding energy, denoted asFi, is a function of the atomic electron
density represented by ρβ . The interaction between pairs of atoms is described
by the pair potential, ϕαβ , with alpha and beta representing the element types
of atoms i and j, respectively. The multi-body nature of the EAM potential
arises from the inclusion of the embedding energy term. The formula includes
summations over all neighboring atoms j within a specified cutoff distance
from atom i [60].
EAM potential was derived by fitting experimental data and parameterizing

it for a range of physical properties, including enthalpy of formation or mix-
ing, lattice parameter, and elastic constant. It is particularly suitable for metal-
lic systems with empty or filled d bands with large unit cells. EAM is widely
used in molecular dynamics simulations to explore a wide range of topics, in-
cluding point defects, melting, alloying, grain boundary structure and energy,
dislocations, segregation, fracture, surface structure, and epitaxial growth.
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2.2.4 Tersoff Potential
The Tersoff potential [61, 78] is a bond-order potential that belongs to a class of
empirical interatomic potentials utilized in molecular dynamics and molecular
statics simulations. It is a three-body potential function that incorporates an an-
gular contribution from the force, allowing for the explicit modeling of three-
body interactions. The total binding energy of a system is calculated as the
sum of the binding energies of each individual bond. Each bond’s energy con-
sists of a repulsive pairwise contribution and an attractive contribution, with
the latter being the product of the bond order and the pairwise energy. The
bond order takes into account both the local coordination number and bond
angles, allowing for the modeling of different geometries such as linear, trigo-
nal, or tetrahedral configurations. This is particularly important for accurately
representing covalent materials. The Tersoff potential takes into account the
number of bonds between two atoms when calculating their interaction energy.
It is composed of two-body terms that are influenced by the local environment
surrounding the atoms. The potential energy can be represented as

E =
∑
i

Ei =
1

2

∑
i ̸=j

Vij (2.11)

Vij = fc(rij)[fR(rij) + bijfA(rij)] (2.12)

fR(rij) = Aijexp(−λijrij) (2.13)

fA(rij) = Bijexp(−µijrij) (2.14)

fc(rij) =


1 rij < Rij

1
2 + 1

2cos
(
π rij−Rij

Sij−Rij

)
R <ij< rij < Sij

0 rij > Sij

(2.15)

bij = ξij(1 + βni

i ζ
ni

ij )
−1/2ni (2.16)

ζij =
∑
k ̸=i,j

fc(rik)ωikg(θij) (2.17)

g(θij) = 1 + c2i /d
2
i − c2i /[d

2
i + (hi − cosθijk)

2] (2.18)

λij =
λi + λj

2
, µij =

µi + µj
2

(2.19)

Aij = (Ai +Aj)
1/2, Bij = (Bi +Bj)

1/2 (2.20)

Rij = (RiRj)
1/2, Sij = (SiSj)

1/2, (2.21)

where i, j, and k denote the atomic labels, rij represents the bond length be-
tween atoms where i and where j, and θijk signifies the bond angle formed by
the ij and ik bonds. In Eq. 2.16, the ξij variable serves to either weaken or
reinforce heteropolar bonds. The ωik variable in Eq. 2.17 allows for increased
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adaptability when handling significantly dissimilar atomic species. The λij ,
µij , Aij , Bij , Rij , and Sij variables are presumed to be represented by single-
subscript parameters that rely solely on atomic types, as demonstrated in Eq.
2.19 through Eq. 2.21. The Tersoff potential can well describe the properties
of liquid and amorphous phases of silicon.

2.2.5 Lattice Thermal Conductivity
The calculation of lattice thermal conductivity can be achieved through equi-
libriummolecular dynamics simulations utilizing the Green-Kubo theory. This
method employs the autocorrelation function of heat flux in its calculations.

Green-Kubo Thermal Conductivity Approach
The Green-Kubo thermal conductivity approach is used for determining the
transport characteristics of systems, including thermal conductivity, using equi-
librium molecular dynamics simulations. This method is founded on linear re-
sponse theory and the fluctuation-dissipation theorem, which connects a sys-
tem’s response to external disturbances with its equilibrium fluctuations [79,
80]. The thermal conductivity tensor, denoted by kappa (κκκ), quantifies a mate-
rial’s ability to transfer heat energy through diffusion, as described by Fourier’s
law:

J = −κκκ∇(T ), (2.22)

where J represents the heat flux, measured in energy per area per time, while
∇(T ) denotes the temperature’s spatial gradient. Thermal conductivity, often
considered an isotropic scalar quantity, is expressed in units of energy per dis-
tance per time per degree Kelvin. The heat flux J can be written for two-body
interactions as

J =
1

V

[∑
i

ϵivi +
∑
i

Sivi

]

=
1

V

∑
i

ϵivi +
∑
i<j

(Fij · vj)rij

 , (2.23)

where V is the volume, ϵi is the total energy of the ith atom (which is a summa-
tion of kinetic and potential), Si represents the per-atom stress tensor (which
includes the ith atom’s kinetic energy contribution, intra, and intermolecular
interactions’ virial contribution, and can be written in terms of r · F as in the
following equation). vi corresponds to the velocity of atom i, Fij represents
the force on atom i from atom j and rij stands for the position vector of atom
i relative to atom j. The first term represents the impact of convection, or the
diffusion of atoms, while the second term accounts for energy transfer between
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adjacent atoms [81]. In the case of non-diffusive atoms, the convection term
is zero and negligible.
The Green-Kubo formulas establish a relationship between the thermal con-

ductivity, denoted by κ, and the ensemble average of the heat flux’s (J) auto-
correlation as

κ =
V

3kBT 2

∫ ∞

0
⟨J(t) · J(0)⟩ dt, (2.24)

where kB is the Boltzmann constant, and the angular brackets denote an auto-
correlation function. The auto-correlation function is used to identify the sim-
ilarity of functions or a series of values between a delayed version of itself. It
calculates the correlation between the values of a function, based on the time
lag separating them. So, Eq.2.24 can be written as

κ =
V

3kBT 2
∆t

M∑
m=1

1

N −m

N−m∑
n=1

J(n+m) · J(n) , (2.25)

where N represents the total time, ∆ is timestep, index n corresponds to the
time-origins whereas indexm corresponds to the time-lags andM is the max-
imum time-lag [82].

2.2.6 Vibrational Density of States
The vibrational density of states is a crucial characteristic of a solid system,
as it influences both optical and thermodynamic properties [83]. For amor-
phous solids, the calculation of the vibrational density of states (VDOS) can
be achieved through the application of a Fourier transform to the velocity au-
tocorrelation function (VACF). At a given instant time (t), vi(t) represents the
random value of the particle’s velocity, assuming that its initial velocity at
t = 0 was vi(0), where the average is zero (< v(t) >= 0). If the net force
acting on the ith particle is zero, its velocity will remain constant. Nonethe-
less, particle velocity is subject to variation due to inter-particle interactions,
resulting in a significant loss of correlation between initial and subsequent ve-
locities over time. The local density of states at an atom can be determined
by performing a Fourier transform on the time-dependent velocity of the said
atom. This process is repeated for all non-equivalent atoms within the solid.
By definition VACF can be written as Z(t) and VDOS (g(ω)):

V ACF = Z(t) =

〈
vi(t) · vi(0)

〉
〈
vi(0) · vi(0)

〉 , (2.26)

g(ω) =
1

3NkBT

∫ ∞

−∞

N∑
1

Z(t)eiωtdt, (2.27)
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where i denotes the ith atom and N is the total number of atoms in the unit
cell.
The calculated g(ω) encompasses all possible excitations within the sys-

tem, which are called ‘vibron modes’ in contrast to a crystal’s lattice vibrations
(‘phonon modes’). Vibrons include ‘extendons’ and ‘locons’ modes. In amor-
phous solids, the main heat carriers are extendons, where the constituents are
described as; ‘propagons’ and ‘diffusions’. Locon modes do not contribute to
heat carrying [84]. By using molecular dynamics, it is not possible to make a
quantitative comparison of these modes, but a qualitative comparison can be
calculated with the participation ratio (PR) [85]. PR can be used to determine
the contribution of each excited mode by using g(ω) as

PR(ω) =
1

N

(
∑

i gi(ω)
2)2∑

i gi(ω)
4
. (2.28)

In the crystalline case, when PR is 1 according to Eq.2.28 this corresponds to a
phonon mode to which all atoms contribute equally. Similarly, in amorphous
solids, propagons are a kind of plane wave propagating modes like phonons at
low frequencies. Although diffusions are propagating modes, they cannot be
written as plane waves. Propagons are the dominant vibrational modes until
the Ioffe-Regel limit. Between the Ioffe-Regel limit and the mobility edge, the
vibrational modes are the diffusion modes. On the contrary, the locons can be
thought of as localized modes confined to the atomic region without propaga-
tion at high frequencies. Beyond the mobility edge, locons are the dominant
excitations [84]. The qualitative comparison used is that the decreasing value
from ‘1’ in PR with increasing frequency shows the fingerprints of propagons,
and diffusions, whereas the decreasing value from ‘0.2’ corresponds to locons
in an amorphous system.We quantified the change in VDOS (Eq. 2.29) and PR
(Eq. 2.30) in relation to a reference system (bulk referred to as ‘0’), in cases of
systems with modifications such as voids, by dividing it by the referred system
value as defined below

∆g(ω) =
g0(ω)− gv(ω)

g0(ω)
, (2.29)

∆PR(ω) =
PR0(ω)− PRv(ω)

PR0(ω)
, (2.30)

where v represents the system with voids.

2.3 Density Functional Theory
The density functional theory (DFT) uses Thomas and Fermi’s idea of elec-
tron density by describing the many-body in the ground state. This theory was
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presented at the same time as Hartree-Fock’s theory which was based on wave-
functions. The DFTwas named after the two equations’ proposers; Hohenberg
and Kohn (KH) [86] and Kohn-Sham (KS) [87]. Hohenberg and Kohn (KH)
presented two theorems; the first was that the ground state particle density
ρ0(r) defines the external potential Vext for a system including interacting par-
ticles under an Vext, apart from an additive constant. Accordingly, the ground
state expectation value is a function of the ground state particle density ρ0(r)
for each physical observable. The second was that it is possible to define the
total energy as a function of ρ(r), (E[ρ(r)]), for an interacting system under
an external potential, (Vext), as in the following Eq. 2.31:

E[ρ(r)] = FHK [ρ(r)] +
∫
Vext(r)ρ(r)dr, (2.31)

where FHK [ρ(r)], includes each internal energies in an interacting system un-
der Vext. It is also the same for each electron system autonomously from the
applied external potential. When the condition of that the integral of ρ0(r)
maintains the total number of electrons is satisfied, the ground state energy
can be calculated by minimizing E[ρ(r)] as below:

∂

∂ρ
E[ρ(r)]|ρ=ρ0

= 0, (2.32)

E0 = E[ρ0(r)]. (2.33)

In order to match the nature of the antisymmetric wavefunction in ground
state energy and energy density calculations, some bounds must be placed on
the subspace of all antisymmetric wavefunctions corresponding to the same en-
ergy density [88, 89]. These two theorem forms the basis of DFT. HK theory’s
kinetic energy representation was proposed in Kohn-Sham paper [87].

2.3.1 Kohn-Sham Equations
Transformation of an interacting electron system’s ground state to a reference
system with a non-interacting and equivalent electron density is suggested by
Kohn-Sham (KS). Each electron in the transferred reference system moves
freely under the potential applied by cores and all other electrons. By collecting
all other many-body terms in exchange-correlation energy; Exc, KS rewrote
the FHK [ρ(r)] as

F [ρ(r)] = T0[ρ(r)] +
1

2

∫
ρ(r)ρ(r′

)

|r− r′ |
drdr

′
+ Exc[ρ(r)], (2.34)

where the kinetic energy term of independently moving electron is shown by
T0[ρ(r)]. Afterward, the Kohn-Sham density functional theory is
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EKS [ρ(r)] = T0[ρ(r)]+
∫
Vext(r)ρ(r)dr+

1

2

∫
ρ(r)ρ(r′

)

|r− r′ |
drdr

′
+Exc[ρ(r)].

(2.35)
Reduction of EKS [ρ(r)] respect to ρ(r) by unchanging of the total number of
electrons, is written as

∂

∂ρ(r)
(EKS [ρ(r)]− µ

∫
ρ(r)dr) = 0. (2.36)

Thereupon, Kohn-Sham’s effective potential is written as

Veff (r) = Vext(r) +
∫

ρ(r)
|r− r′ |

dr
′
+
∂Exc

∂ρ(r)
. (2.37)

When the definedVeff (r) is added to the Schrödinger equation, it can be solved
for the single electron orbital.
The interacting system in the Kohn-Sham framework is matched by the sys-

tem which is non-interacting and has the same charge density. The ground
state charge density ρ(r) and kinetic energy functional can be written by using
Kohn-Sham orbitals ψn(r):

ρ(r) = 2

N/2∑
n=1

|ψn(r)|2, (2.38)

and

T0[ρ(r)] = −2
ħ2

2m

N/2∑
n=1

∫
ψ∗
n(r)

∂2ψn(r)
∂r2

dr, (2.39)

where N represents the total number of electrons in the non-magnetic sys-
tem. Accordingly,N/2 can verify the lowest orbital states which are occupied
by two electrons with opposite spins; ρ↑(r) = ρ↓(r). n as a composite in-
dex describes the set of bands in a periodic system and the wave vector in
the Brillouin zone (BZ). Moreover, the Kohn-Sham equation can be solved
for collinear magnetic systems by writing electron density as the sum of two
different spin densities.
Solving the Kohn-Sham equation to find the KS orbitals primarily begins

with defining the Veff with respect to the initial charge density. The follow-
ing step is to use the calculated KS orbitals to calculate the new density after
mixing it with the one calculated in the previous step and to use it in the next
density calculation as well. Repetition of these two steps continues until the
charge density is comparable to the previous step within the defined tolerance
limit. This is referred to as self-consistent calculation.

2.3.2 Exchange Correlation Energy
The exchange-correlation energy (Exc) must be well defined for solving the
Kohn-Sham equations accurately. There have been several approximations to
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define the Exc 2.40. One of these approximations is known as local density
approximation (LDA) [87]. LDA suggests calculating an electron’s exchange-
correlation energy ϵxc(r) assuming the electron is in a homogeneous electron
gas that has the same density at that point in the real system ϵxc(r) as:

ELDA
xc [ρ(r)] =

∫
ϵxc[ρ(r)]ρ(r)dr. (2.40)

LDA produces reliable results in the calculation of structural, elastic, vibra-
tional, electronic (except for electronic band gap), and magnetic properties.
The weakness of LDA is in the calculation of activation energies and chemical
interactions. Aside from LDA, generalized gradient approximation (GGA) is
another efficient approximation that we used in our works in this thesis.
The GGA method could overcome the overbinding problem of LDA. The

GGA is more advanced compared to LDA because while GGA is still a local
function, it includes both density and its gradient at each point in the same
coordinate system. The inclusion of gradient corrections supports an enhanced
exchange of energy by the increased charge density. GGA is able to precisely
forecast the molecular geometries and ground state energies by both enlarging
lattice constant and reducing bulk moduli. Nonetheless, it is not successful
in precisely predicting the band gap and the interactions between layers that
result from Van der Waals forces. The inclusion of vdW corrections into GGA
calculations makes it possible to calculate vdW. One of the most commonly
used GGA-functional is the PBE method which was introduced by Perdew,
Burke, and Ernzerhof in 1996 [90]. PBE suggests the following exchange
functional,

EPBE
xc [ρ(r)] =

∫
ρ(r)ϵhomx [ρ(r)]Fxc(rs, τ, s)dr, (2.41)

where ϵhomx denotes exchange term of uniform density system and is equiva-
lent to −3e2kF /4π, s is dimensionless density gradient, τ stands for the spin
polarization, and Fxc represents the enhancement factor relative to the local
Seitz radius; rs. PBE functional can successfully calculate bond lengths, an-
gles while it can not accurately estimate the electronic energy band gap.

2.3.3 Bloch Equation and k-point Sampling
A crystal structure is built by the regular placement of its unit cell in specific
crystal directions. It can be inferred that the total number of electrons in the
crystal is infinite due to the bulk form of the structure containing a significantly
larger quantity of atoms. Accordingly, the calculation of the crystal properties
including relevant electronic interactions in a single unit cell is feasible by
utilizing Bloch’s theorem. Bloch theorem denotes the wavefunction at r in the
following form:
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ψn = eik·rfn(r). (2.42)
The periodic component can be augmented using a basis set of plane waves in
the following way;

fn(r) = cn,Ge
iG·r, (2.43)

whereG represents a reciprocal lattice vector. The wavefunction of each elec-
tron can be expressed in the following manner;

ψn(r) =
∑
G

cn,k+Ge
[i(k+G)·r]. (2.44)

In a bulk solid, the restricted boundary conditions of electronic states are
only specified at certain k points. The number of allowed k points is deter-
mined by the volume of the crystal in reciprocal space. With Bloch’s theory, it
is possible to determine a finite quantity of electron wavefunctions in contrast
to a limitless number of wavefunctions at an infinite number of k points. As the
number of k points increases, the total energy becomes more precise. At the
same time, this also results in a higher demand for computational resources.
Therefore, we increment the number of k points until the required precision
is attained. The selection of k points is based on the approach developed by
Monkhorst-Pack [90].
The expansion of the plane wave is terminated at a specific cut-off energy

Ecut as illustrated below
ħ|k+G|2

2m
≤ Ecut. (2.45)

Utilizing plane waves with energies exceeding Ecut yields a more precise cal-
culation of the system’s total energy, however, results in a higher demand for
computational resources. The achieved accuracy may not be considered sig-
nificant compared to the extensive computational resources required.
The Kohn-Sham equation by using plane waves is shown below∑

G′

[
ħ2

2m
|k+G|2δGG′ + Vion(G−G

′
) + VH(G−G

′
) + VXC(G−G

′
)]cn,k+G′

= ϵncn,k+G,

(2.46)
where the electronic kinetic energy is represented diagonally when expressed
through Fourier transformation. The size of the eigenvalue matrix is defined
by the selected cut-off energy.

2.3.4 Pseudopotentials and PAWMethod
The pseudopotential method is essential in illustrating the interactions between
electrons and ions. Valence electrons have a higher level of importance com-
pared to core electrons. The pseudopotential theory [91] relies on the use of
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Figure 2.3. A schematic representation shows the behavior of wavefunctions near
(r < rc) and far from (r > rc) atomic nuclei, where rc is the cutoff radius. The cyan
curve and magenta represent all-electron (|Ψ⟩, V ) and pseudo (|Ψ̃⟩, Ṽ ) wavefunctions,
and potentials, respectively.

softer pseudopotentials that are described with pseudo wavefunctions, which
are mainly contributed by valance electrons.
Employing pseudopotentials results in a highly similar total energy value in

the case of all-electron potential (full-potential) use. A well-defined pseudo
wavefunction (ψ̃) and the accurate all-electron wavefunction (|Ψ⟩) are related
through a linear transformation:

|Ψ⟩ = T |Ψ̃⟩ . (2.47)

Fig. 2.3 illustrates that the two wavefunctions are the same beyond rc. In
Eq. 2.47, T is the transformation operator adjusting the smooth pseudo wave-
function inside each atomic region. Inside the core regions, the transformation
operator is considered a summation of an identity operator with the addition of
atomic orbital-based modification:

T = 1 +
∑
R

T̂R, (2.48)

where T̂R is only non-zero within a specific spherical region, called the aug-
mentation region ΩR, that surrounds atom R.
The projector augmented wave (PAW) method, which combines ultrasoft

pseudopotentials and all-electron methods, was derived by Bloch [92]. PAW
method reduces the number of required planewave basis sets by superimposing
atomic orbital wavefunctions in the core region. The related canonical basis
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Figure 2.4. The (PAW) method technique for constructing an all-electron wavefunc-
tion.

sets of the PAW can be written as

|Ψ̃⟩ =
∑
i

|ϕ̃i(r)⟩ ci, (2.49)

where Ψ̃i(r) represents the pseudo partial wave solutions of the Schrödinger
equation for an isolated atom, ci denotes expansion coefficients, and i ≡ (R, l,m, n).
l, m are orbital and magnetic quantum numbers, respectively, and n denotes
the plane wave index. The relationship between the pseudo-partial wave and
the partial wave can be expressed as follows

|ϕi⟩ = T |ϕ̃i⟩ , r < rc

|ϕi⟩ = |ϕ̃i⟩ , r > rc.
(2.50)

T is a linear operator and ci can be expressed as

ci = ⟨p̃i|Ψ̃⟩ , (2.51)

where |p̃i⟩ are a group of projector functions satisfying the following criteria:

⟨p̃i|ϕ̃j⟩ = δij , (2.52)

and ∑
i

|ϕ̃i⟩ ⟨p̃i| = 1. (2.53)

The specification of the transformation operatorT relies on three key elements:
the all-electron partial waves, denoted by |ϕi⟩, the pseudo partial waves, rep-
resented by |ϕ̃i⟩, and the projector functions, symbolized by |pi⟩, which can be
represented as

T = 1 +
∑
R

T̂R = 1 +
∑
i

(
|ϕi⟩ − |ϕ̃i⟩

)
⟨pi| . (2.54)

Fig. 2.4 displays the all-electron wavefunction which can be described as

Ψ = T Ψ̃ = Ψ̃ +
∑
i

(
|ϕi⟩ ⟨p̃i|Ψ̃⟩ − |ϕ̃i⟩ ⟨p̃i|Ψ̃⟩

)
. (2.55)
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By using Eq. 2.54 and Eq. 2.55, the density and the energy can be written
respectively as in Eq. 2.56, and Eq. 2.57:

n(r) = ñ(r) + n1(r) + ñ1(r), (2.56)

E = Ẽ + E1 − Ẽ1. (2.57)

All elements are possible to be expressed as a particular PAW pseudopotential.

2.3.5 Structure Definition
Theminimum energy state of a structure can be attained by reducing theHellman-
Feynman force [93] applied on each individual atom located in the unit cell.
In terms of the force exerted on the Ith nuclei in an electronically steady state,
the Hellman-Feynman force can be expressed as follows

FI = −∂E(R)
∂RI

= −
〈
ψ
∣∣∣ ∂H
∂RI

∣∣∣ψ〉, (2.58)

whereR denote the coordinates of nuclei,H is Hamiltonian, andE(R) express
the total energy. The Kohn-Sham electronic wavefunction at the ground state
is represented as ψ. A nucleus is considered to be in equilibrium when the
forces acting upon it are zero:

FI = −∂E(R)
∂RI

= 0. (2.59)

2.3.6 Van der Waals Interaction
Van der Waals (vdW) forces are long-range attractive interactions that are par-
ticularly significant in materials with a layered structure similar to graphite.
The inclusion of vdW corrections results in a reduction of lattice constants and
bond lengths. Several different approximations have been developed to date
[94, 95, 96, 97]. We chose to perform our research using Grimme’s DFT-D3
correction method [95] as described below

EDFT−D = EDFT + Edisp, (2.60)

whereEDFT represents self-consistent DFT energy andEdisp serve as the cor-
rection term;

Edisp = −1

2

N∑
i=1

N∑
j=1

∑
L

′

(
fd,6(rij,L)

C6ij

r6ij,L
+ fd,8(rij,L)

C8ij

r8ij,L

)
. (2.61)

whereN represents all atoms in the simulation cell, and L is all translations of
unit cell where i ̸= j for L = 0. rij,L is the distance between atom i, which is
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situated in the reference cell L = 0, and atom j, which is located in cell L. In
this approach, the dispersion coefficients (C6ij and C8ij) vary depending on
the geometry around i and j atoms. The Becke-Johnson (BJ) damping function
can be written as

fd,n(rij) =
snr

n
ij

rnij + (a1R0ij + a2)n
, (2.62)

where (order n = 6, 8, 10, ..), s6 is set to the value 1, and a1, a2, and s8 are
adjustable parameters.

2.3.7 Optical Properties
DFT has emerged as a groundbreaking approach that facilitates the discovery
of optical materials without the necessity of physical experimentation. Meth-
ods for calculating optical functions using DFT have been established and
a plethora of optical spectra have been derived from DFT calculations[98].
However, the selection of an approximation method can have a significant im-
pact on the resulting DFT spectra. As such, it is imperative to validate DFT
calculation results against experimental data [99].

Independent Particle Approximation
The independent-particle approximation (IPA) is used for determining the op-
tical response of materials using first-principles calculations. This method as-
sumes that electrons within the material act as individual particles and do not
interact with one another through many-body interactions when calculating
the material’s optical properties [100]. Although IPA can be computationally
expensive, this cost can be reduced by only considering interband transitions
where exchange and correlation are not taken into account and by neglecting
local field effects (LFE) arising from density variations in the Hartree poten-
tial [101]. The imaginary part of the frequency-dependent dielectric functions
at the long-wavelength limit, denoted as (εij2 ) tensor, is calculated using Eq.
2.63:

εij2 =
4π2e2

Ω
lim
q→0

1

q2

∑
v,c,k

2wkδ(ϵck−ϵvk−ω)×⟨uck+qei | uvk⟩⟨uvk | uck+qej ⟩,

(2.63)
where Ω represents the volume of the cell, and ei,j are the unit vectors along
three directions. In Eq. 2.63, q stands for one direction of the unit vector
defined as q̂ = q/|q|, where q is the Bloch vector of the incident wave, and
wk is the k-point weights. c and v refer to the conduction and valence states,
respectively. The conduction band energy is denoted by ϵck, while the valence
band energy is denoted by ϵvk. The cell periodic part of the orbitals at the
k-point k is represented by uck. The real part, denoted as (εij1 ), is obtained
through the Kramers-Kronig transformation using Eq. 2.64:
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εij1 = 1 +
2

π

∫ ∞

0

εij2 (ω
′
)ω

′

ω′2 − ω2
dω

′
. (2.64)

Both perpendicular (in-plane polarization, represented as ij = xx) and parallel
(out-of-plane polarization, represented as ij = zz) components are calculated
by considering a single k-point at Γ point (1× 1× 1).
The complex dielectric function is associated with both the refractive index

(n) and the extinction coefficient (κ) as n(ω) + iκ(ω) =
√
ε(ω).Thus, the

extinction coefficient can be expressed as κ(ω) =
(√

ε1(ω)2+ε2(ω)2−ε1(ω)

2

)1/2
.

The absorption coefficient is related to the extinction coefficient through the
equation α(ω) = 2ωκ(ω)/c, where c represents the speed of light in a vacuum
[102]. As a result, the refractive index can be defined as Eq. 2.65:

n(ω) =
(√ε1(ω)2 + ε2(ω)2 + ε1(ω)

2

) 1

2

. (2.65)

The electron energy loss spectrum (EELS) can be computed using the imagi-
nary component of the dielectric function as shown in Eq. 2.66:

L(ω) = −Im
( 1

ε(ω)

)
=

ε2(ω)

ε1(ω)2 + ε2(ω)2
. (2.66)
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Part II:
Summary of the Results





3. Tuning the Lattice Thermal Conductivity of
Metallic Glasses

Metallic glasses are materials that lack long-range order in their atomic struc-
ture. They have a wide range of industrial applications due to their remark-
able stiffness, durability, and low thermal conductivity [8, 9, 10]. One way to
enhance their performance is by forming nanostructures to manipulate lattice
thermal conductivity [14, 103, 104, 105, 17, 18]. Pressure and temperature are
other external factors that can affect thermal conductivity [106, 107]. In my
first paper, I focused on tuning the lattice thermal conductivity of Fe0.85Zr0.15
metallic glasses by introducing nanostructured spherical voids with varying
radii. We studied the effects of temperature and pressure on these void-including
structures, as well as the contributions of perfect and distorted icosahedra in
these structures.

3.1 Structural Analysis
We used the same glass-production procedure defined in page 18 in Fig. 2.1.
Equilibrium simulationswere conducted using both FPMDandCMDmethods.
A supercell of BCC-Fe with 432 atoms was used, with 64 Fe atoms randomly
replaced by Zr atoms to achieve a Zr content of 14.81 %, close to the target
of 15 %. Benchmark calculations were performed to compare the results pro-
duced by FPMD and CMD.A 432-atom cell was chosen as a balance between
accuracy and efficiency. RDF and Voronoi Tesselation were used to analyze
the structures Fig. 3.1.
The RDF plots in Fig. 3.1 (b) display a reduction in long-range order and

a double peak, which is a common trait of a random closed-packed structure,
such as metallic glasses. A Gaussian fit to the first RDF peak reveals a near-
est neighbor distance of 2.33 Å which is consistent with the calculated Fe-Fe
nearest neighbor distance. The Fe-Zr nearest neighbor distance is found to be
2.67 Å.
In Fig. 3.1(c), displays the calculated Voronoi tessellations for structures

produced by using CMD and FPMD simulations. The highest fraction of
Voronoi tessellation corresponds to the perfect icosahedron,< 0, 0, 12, 0 >,
with a coordination number of 12. The next highest fraction has a distorted
icosahedral,< 0, 1, 10, 2 >, with one additional neighbor atom. On average,
Fe atoms have 12-13 geometrical neighbors, while Zr atoms have 15-16, which
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Figure 3.1. a) The image on the left shows the simulated structure of Fe0.85Zr0.15
metallic glass using CMD, while the image on the right shows the structure using
FPMD. Brown and green balls represent Fe and Zr atoms, respectively. b) The Radial
Distribution Function (RDF) of the glass at 300 K is shown for both CMD (left) and
FPMD (right). c) The final glass structures produced with CMD and FPMD are shown
using Voronoi tessellations on the left and right, respectively.
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is consistent with previous findings that Zr has a larger free volume than 3d
atom [108]. The calculated fractions of Voronoi tessellations differ slightly
between CMD and FPMD. CMD results in a higher fraction of perfect icosa-
hedron. The calculated equilibrium lattice constant for (Fe0.85Zr0.15) is 5 %
larger for CMD than for FPMD. In CMD simulations, the EAM pairwise po-
tential results in a larger atomic sphere radius for Fe and Zr than in FPMD.
CMD calculations give a higher filling factor than Wang et al. [109] calcu-
lated filling factor of 0.637 for the random closed packed structure where the
occurrence of the perfect icosahedron is at maximum.
The structure was also tested as a function of system size using 6750 atoms

by using CMD.

System (N) Types CN VP Fraction

43
2

Full icosahedral 12 < 0, 0, 12, 0 > 0.088

Distorted icosahedral

13 < 0, 1, 10, 2 > 0.088
12 < 0, 2, 8, 2 > 0.044
15 < 0, 1, 10, 4 > 0.019
13 < 0, 2, 8, 3 > 0.019
14 < 0, 1, 10, 3 > 0.016
16 < 0, 1, 10, 5 > 0.016

Distorted BCC 14 < 0, 3, 6, 4 > 0.076
Distorted BCC 14 < 0, 2, 8, 4 > 0.051
Distorted FCC 14 < 0, 4, 4, 6 > 0.016

67
50

Full icosahedral 12 < 0, 0, 12, 0 > 0.088

Distorted icosahedral

13 < 0, 1, 10, 2 > 0.087
12 < 0, 2, 8, 2 > 0.035
14 < 0, 1, 10, 3 > 0.018
15 < 0, 1, 10, 4 > 0.016
13 < 0, 2, 8, 3 > 0.015
16 < 0, 1, 10, 5 > 0.001

Distorted BCC 14 < 0, 3, 6, 4 > 0.067
Distorted BCC 14 < 0, 2, 8, 4 > 0.033
Distorted FCC 14 < 0, 4, 4, 6 > 0.001

Table 3.1. The short-range ordering fractions of large and relatively smaller cells are
compared using the Voronoi tessellation method. CN and VP stand for coordination
number and Voronoi polyhedra, respectively.

We found that RDF peak positions are in good agreement with the larger
system size. A detailed analysis of local structures for two system sizes is
shown in Table 3.1, where the coordination numbers and fraction of Voronoi
polyhedra are similar for both sizes. When comparing the MG produced by
FPMD and CMD, the FPMD is slightly better in terms of both the lack of long-
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Figure 3.2. We calculated slices of the MGNVwith a thickness of 2 Å for various void
diameters using NVT-CMD. For each void size, we display the initial configuration
(t=0) in the top panel and the atomic positions within the same slice after t=1.6 ns in
the bottom panel. The slice of the unit cell is shown on the left, while the slice of the
3×3 periodically repeated unit cell is shown on the right. For the void diameter of 1.0,
we also include a plot of the full cell in the middle to highlight that the void structure
remains connected.

range order and the splitting of the second peak. Therefore FPMD produced
structure is used for the nanostructuring of voids.

3.2 Nanostructing Stable Voids
Metallic glasses with nanostructured voids (MGNV) were generated by form-
ing spherical voids through the removal of atoms within a shell of radiusRvoid

at the cell’s center, following the relaxation of the bulk system’s volume (where
the lattice vector was calculated as (aCMD = 17.58 Å) at the end). We then
carried out NVT simulations at a constant temperature of 300 K to assess the
stability of the voids. Our findings indicate that void stability is dependent on
void size. The two smallest voids, with 2Rvoid values of 0.25 a and 0.4 a, cor-
responding to the removal of 1 % and 3 % of atoms, respectively, were found
to be unstable. Furthermore, all stable voids altered their shape from spheri-
cal to prolate ellipsoidal, but they remained clearly visible after 1.6 ns of MD
simulation, as depicted in Fig. 3.2

3.3 Lattice Thermal Conductivity
We also followed the same NVT steps applied for voids at 300 K for the bulk
system. Then, we followed the 2 ns NVE thermal equilibration step and used
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Ensemble Density(u/Å3) Volume(Å3) N κ (W/m·K)
NVT 4.86 5435.13 432 1.26 ± 0.08
NVT 4.86 84923.89 6750 1.26 ± 0.08
NPT ∼ 4.84 85198.23±11.45 6750 1.27 ± 0.08

Table 3.2. Thermal conductivity comparison between large and smaller cells using
NVT and NPT ensembles with a constant composition of∼ 85 % Fe and∼ 15 % Zr at
300 K.

sphere diameter (aCMD) N0 Fe % Zr % b κGK (W/m·K)
0 432 85.19 14.81 0 1.27 ± 0.10

0.25 428 85.28 14.72 0.01 1.20 ± 0.09
0.4 419 84.96 15.04 0.03 1.11 ± 0.10
0.5 405 85.19 14.81 0.06 0.97 ± 0.08
0.6 388 85.31 14.69 0.10 0.96 ± 0.08
0.75 338 85.21 14.79 0.22 0.71 ± 0.08
0.8 318 84.91 15.09 0.26 0.72 ± 0.07
1.0 206 83.01 16.99 0.52 0.28 ± 0.04

Table 3.3. MGNV were designed from Fe0.85Zr0.15 MG (represented with 0) by ex-
tracting atoms from the unit cell to form central spherical voids of different diameters,
measured in units of the lattice vector length aCMD) (in the first column). The follow-
ing columns show the remaining atoms (N0), the glass composition of MGNV with Fe
(NFe) and Zr (NZr) atoms, porosity as the ratio of extracted atoms to the total number
of atoms in the MG without a void inside, and calculated thermal conductivities with
uncertainties.

the Green-Kubo thermal conductivity method for all of the systems. First,
the thermal conductivity of the bulk MG was calculated as κ = 1.27 ± 0.10
(W/m·K). We obtained the same value of κ for both the CMD quenching-
produced MG structure, MG (CMD), and the FPMD quenching-produced MG
structure, MG (FPMD). We investigated the effect of system size on the calcu-
lated thermal conductivity by increasing the system size 2.5 times while main-
taining constant density and following the steps outlined in the production and
MD procedures. Our results indicated that system size has a negligible impact
on thermal conductivity. We further analyzed our small system by compar-
ing its thermal conductivity with that of a larger system calculated using NPT,
in order to continue using a small system size. All of our analyses support
the conclusion that thermal conductivity can be reliably calculated using our
obtained volume, which includes 432 atoms, as shown in table 3.2.
In Fig. 3.3 and Table 3.3, calculated lattice thermal conductivity ofMGNV’s

is represented by b = n/N0, where n is the number of atoms removed to
create the initial void and N0 is the number of atoms in the MG without a
void. Fig. 3.3, the vertical bars indicate uncertainty. The solid line represents
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Figure 3.3. Calculated Green-Kubo thermal conductivity (blue) is shown as a function
of b = n/N0, where n is the number of extracted atoms creating the initial void and
N0 is the number of atoms in the voidless MG. Uncertainty is represented by vertical
bars. The solid line represents the glass model (Eq.3.3), the dashed line displays one
limit case without voids (wov) (Eq.3.1), and the dotted line displays the other limit
case with a continuous vacuum (vac) (Eq.3.2).
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the glass model (Eq.3.3), while the dashed line shows one limit, without voids
(wov) (Eq.3.1), and the dotted line shows the other limit, vacuum continuous
(vac) (Eq.3.2). The first limiting case is without voids (wov), where the atoms
are packed with a vacuum between them (wov case), and the second limit is
vacuum continuous (vac), where no atoms exist (vac case). For the wov case,
κwov is expressed as a function of voids:

κwov(b) = κ0
b

2

3 + κ0

κV
(1− b

2

3 )

b
2

3 − b+ κ0

κV
(1− b

2

3 + b)
, (3.1)

where κV = 0.0 (W/m·K) represents the thermal conductivity of vacuum,
whileκ0 is a scaling factor equal to the calculated value ofκ for the Fe0.85Zr0.15
MG. The wov case is depicted as a green dashed line in Figure 3.3. For the vac
case model, κvac is defined as follows:

κvac(b) = κ0
b

2

3 − b+ κV

κ0
(1− b

2

3 + b)

b
2

3 + κV

κ0
(1− b

2

3 )
. (3.2)

The vac case of the model is represented by the red dotted line in Figure 3.3.
For small voids, κvac exhibits a steep linear decrease that eventually levels
off. In contrast to the wov case, the vacuum and without void structures are
reversed. As Russel noted, this is unstable, but we can assume that the struc-
tures are connected at corners or a limited number of points. The model accu-
rately predicts the limiting behavior for both cases (wov and vac), with κwov =
κvac = κ0 when b = 0 and κvac = κwov = κV when b = 1. This model does
not contain any fitting parameters. The two cases of the model define the range
within which we expect thermal conductivities to fall. For a given void size, a
material cannot have a lower thermal conductivity than the vacuum model, as
this lower bound implies a situation where the material is in a vacuum and the
number of conduction pathways through the material is minimal. Conversely,
for a given porosity, a material cannot have a higher thermal conductivity than
the voidless model, as this upper bound implies a situation where the vacuum
is immersed in the system and the number of conduction pathways through
the material is maximized. Consistent with this interpretation, all of our calcu-
lated values of κ fall within the range defined by the two limiting cases of the
models. This can be seen in Fig.3.3, where all of the blue stars (representing
calculated values of κ) lie between the dashed and dotted lines. Furthermore,
the calculated values of κ are best described by a linear combination of the
solid continuous (wov) and air continuous (vac) cases which we described as
a ‘glass model’:

κ(b) =
1

2
(κwov + κvac). (3.3)

The glass model accurately predicts the dependence of thermal conductivity on
voids. As expected, κ decreases as void size (Table 3.3). The calculated value
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of κ with the largest void (b=0.52) is more consistent with the vac case of the
Brick model. From Figure 3.2, we can see that the structure with the largest
void (void diameter 1.0) is indeed disconnected along the shown slice, unlike
the other voids. However, it is important to note that the structure remains
connected along the frame, and the MG is stable. We can conclude that in the
wov case, conduction is determined solely by pathways through the material,
with more pathways existing at higher densities. In contrast, in the vac case,
conduction is primarily determined by the few remaining pathways between
the remaining material, with very few pathways through the air and none in
the limit of vacuum. An ordered material will have more pathways than a
disordered material. Therefore, the inclusion of voids in a disordered material
can be viewed as a case between the wov and vac cases of the models. The
glass model, Eq.3.3, suggest a superposition of two limit cases that may be
applicable to a wide range of ordered and disordered materials that include
voids.

3.4 Vibrational Properties
The number of atoms in the cell directly affects the thermal conductivity of
MGNV. The decrease in thermal conductivity is due to the localized modes
formed by voids. Analyses of vibrational density of states (g(ω)), PR and
∆PR were performed for four cases with void diameters of 0.25, 0.5, 0.75,
and 1.0 times the lattice vector. The g(ω) and ∆g(ω) plots show a red-shift
with a decreasing number of atoms in the cell and an increase until 7 THz
followed by a decrease. The detailed analyses can be seen in the PR and
∆PR plots. Locons become largely dominant from 8 to 14 THz. Large voids
with diameters of 0.75 and 1.0 showmore distinct behavior in increasing locon
modes than systems with smaller voids.

3.5 Temperature and Pressure Effect on Lattice Thermal
Conductivity

The sensitivity of lattice thermal conductivity of the systems relative to the
system size was studied under three different pressures at 300 K. The volume
of the 432 atom system at ambient pressure, denoted as 0P), was 5433.21 Å3.
Positive pressure (PP) caused a volume shrink of approximately ∼ 4.65 %,
while negative pressure (NP) resulted in a volume increase of approximately
∼ 1.72 %.
Table 3.4 indicates that thermal conductivity is not significantly affected by

system size. Both large and small systems exhibit similar trends of decreasing
conductivity under negative pressure and increasing conductivity under posi-
tive pressure. Our findings also show that temperature does not impact thermal

48



g
(ω

)

P
R

(ω
)

0.01

0.02

0.03

0.04

0.05

0

0.2

0.4

0.6

0.8

1.0

0

1.0

2.0

3.0

4.0

0

-1.0

0

0.5

1.0

1.5

-0.5

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

∆
g

(ω
)

∆
P

R
(ω

)

0
0.25
0.5
0.75
1.0

[0.25-0]

[0.5-0]

[0.75-0]

[1.0-0]

a) b)

c) d)

0.01

0.02

0.03

0.04

0

ω(THz-1)
0 2 4 6 8 10 12 14

ω(THz) ω(THz)

Crystal

Figure 3.4. a) Vibrational densities of states for voids of varying diameters: 0; 0.25;
0.5; 0.75 and 1.0. Dashed lines indicate dominant peaks. b) Calculated participation
ratios for the voids. Normalized vibrational densities of states, obtained by subtract-
ing the ‘0-VDOS’ and dividing by ‘0-VDOS’, showing a red shift with increasing void
diameter. d) Normalized participation ratios, obtained by subtracting the ‘0-PR’ and
dividing by ‘0-PR’, showing an increase in localized modes with increasing void di-
ameter.

System (N) Pressure Volume (Å3) κ (W/m·K)

43
2 PP 5180.45 1.41 ± 0.08

0P 5435.13 1.26 ± 0.08
NP 5526.46 1.13 ± 0.08

67
50

PP 80944.51 1.41 ± 0.08
0P 84923.89 1.26 ± 0.08
NP 86350.89 1.17 ± 0.08

Table 3.4. Thermal conductivity values for large and smaller cells under positive
(PP), zero (0P), and negative (NP) pressures, causing respective volume changes of
approximately ∼ 4.65% decrease, no change, and ∼ 1.72% decrease at 300 K.
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System (N) Temperature κ (W/m·K)

43
2

200 1.19 ± 0.08
300 1.26 ± 0.08
500 1.28 ± 0.08
700 1.26 ± 0.08

67
50

200 1.21 ± 0.08
300 1.26 ± 0.08
500 1.26 ± 0.08
700 1.29 ± 0.08

Table 3.5. Thermal conductivities for two system sizes under zero pressure (0P) at
temperatures of 200 K, 300 K, 500 K, and 700 K.

conductivity. As shown in Tables 3.4 and 3.5, the small systems’ thermal con-
ductivity is influenced by pressure, but not temperature. We selected the small
system to study the effects of voids, pressure, and temperature while maintain-
ing constant density and void size for reliable comparison.
Table 3.6 shows that the thermal conductivity of MGNV is affected by

pressure and less so by temperature. This suggests that thermal conductiv-
ity can be tailored by creating nanostructured voids of different diameters. We
aimed to fine-tune thermal conductivity by combining pressure and voids, us-
ing the same void diameters and three defined pressure values (PP, 0P, and
NP). The results are presented in Table 3.6 and Fig. 3.5. At 300 K and under
PP, all structures show an increase in thermal conductivity of approximately
∼ 0.2(W/K.m), while under NP some structures (0.5, 0.75, 1.0) show a small
decrease due to less local structural changes. Thus, it can be concluded that
thermal conductivity can be adjusted by creating voids and applying external
pressure, resulting in a change of roughly ± 10− 15 %.

Figure 3.5. Thermal conductivity as a function of temperature for systems with voids
under a) positive pressure of 137 GPa, b) zero pressure, and c) negative pressure of -5
kB.
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Void Diameter Pressure κ(W/m ·K)
200 K 300 K 500 K 700 K

bu
lk

PP 1.41 1.41 1.33 1.38
0P 1.19 1.26 1.28 1.26
NP 1.19 1.15 1.18 1.21

0.
25

PP 1.38 1.46 1.29 1.39
0P 1.25 1.20 1.19 1.20
NP 1.08 0.97 1.19 1.13

0.
4 PP 1.27 1.28 1.26 1.29

0P 1.24 1.11 1.11 1.17
NP 1.0 1.12 1.13 1.16

0.
5 PP 1.24 1.26 1.18 1.16

0P 0.91 0.97 1.09 0.97
NP 1.09 0.97 1.01 1.01

0.
6 PP 1.33 1.12 1.00 1.03

0P 0.90 0.96 0.95 0.94
NP 0.78 0.91 0.93 0.92

0.
75

PP 0.80 0.87 0.82 0.80
0P 0.73 0.71 0.70 0.69
NP 0.74 0.79 0.69 0.69

0.
8 PP 0.51 0.79 0.70 0.72

0P 0.74 0.72 0.65 0.68
NP 0.69 0.63 0.64 0.62

1.
0 PP 0.28 0.35 0.31 0.31

0P 0.29 0.28 0.30 0.30
NP 0.31 0.29 0.26 0.28

Table 3.6. Thermal conductivities as a function of void size under PP, 0P, and NP
pressures at varying temperatures.
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3.6 Temperature and Pressure Effect on Vibrational
Properties of MGNV

We demonstrated that temperature has little effect on thermal conductivity.
This can be further examined by analyzing the vibrational density of states
(VDOS) and the corresponding participation ratio (PR). Our calculations show
that the VDOSs for two different system sizes (432 atoms and 6750 atoms in-
cluding systems at 300 K) are qualitatively similar. We determined that the
smaller system size is suitable for further analysis of vibrational characteris-
tics. We also calculated the mode participation ratio to determine the contribu-
tion of specific atoms to heat transport. To do this, we selected atoms located
in spherical shells of increasing diameter from the center of the cell. We found
that the frequency of heat carriers shifted and the number of localized modes
decreased in all shells from 200 to 700 K under NP, PP. At 200 K, both positive
and negative pressures caused an increase in localized modes. Positive pres-
sure resulted in a slight blue shift in the frequencies of the modes, while neg-
ative pressure caused a relatively larger blue shift. Interestingly, temperature-
dependent changes did not result in an increase in thermal conductivity with
increasing temperature. On the other hand, pressure had a more significant im-
pact on both VDOS and PR in shells. While PP caused a spread in frequency
in the diffusion regime for all shells, NP resulted in the creation of more lo-
con peaks. This supports the idea that thermal conductivity can be fine-tuned
with pressure. The shift in frequency and sharp changes in the modes of the
outer shell with pressure show the effect of local structural ordering. At 200
K, where localized modes are prominently visible, the modes at around 10 to
12 Hz mainly arise from perfect icosahedra, distorted icosahedra, and distorted
BCC structures. However, the dominance of localized modes decreases with
increasing temperature. The selected SROs are mostly present outside the 0.5
shell radius and contribute to non-propagating modes, resulting in a decrease
in heat conductivity. To observe locons modes in MGNV, we chose to work at
200 K under PP. In Fig. 3.6, The presence of voids causes a red-shift in VDOS
frequency, which in turn increases the intensity of the first peak, similar to the
VDOS observed at NP. This effect becomes more pronounced as the void size
increases from bulk to 0.75 voids. In the case of 0.25 voids, the PR indicated
that inner shell atoms, rather than outer shell atoms, contributed to localized
modes. This transition between atoms disappears as the void size increases.
The observed transition may be due to the reorientation of inner atoms relative
to the void size. The PR indicates that the contribution of SROs supports the
idea that Distorted Icos and BCCs contribute to localized modes as their den-
sity increases relative to the bulk. Interestingly, at 200 K, the outer shells of 0.5
voids give rise to soft localized modes, which is unexpected at high tempera-
tures. This effect is not observed in the SROs’ PR. However, the contribution
of different SROs to localized modes increases with size, while the full icosa-
hedral contribution becomes visible. In the case of 0.75 voids, the density of
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perfect and distorted icosahedra increases because they are mostly located in
the outer shell, and their contribution to localized modes also red-shifts.

3.7 Conclusion of Paper I
We investigated the potential for tailoring thermal conductivity by introducing
nanostructured voids and assessed the stability of these structures. Our find-
ings show that thermal conductivity decreases with increasing b, but not with
void size directly. Our calculated thermal conductivities fall within the range
defined by the glass model. For a given b, the atomic structural details deter-
mine the thermal conductivity relative to the glass model. We also analyzed
vibrational modes and participation ratios to establish a link between an in-
crease in localized vibrational modes and a decrease in thermal conductivity
as void size increases.

53



Figure 3.6. Shell-wise VDOS (left) and PR (right) plots for selected atoms in bulk and
void systems of 0.25, 0.5, and 0.75 diameters at 200 K under positive pressure (PP).
Insets present corresponding shell-wise PRs. Pie plots show the distribution of SROs,
with colors matching the PR plots on the right.
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4. Structure Dependant Magnetic Properties of
Amorphous CoxZr100−x films

The use of amorphous alloys as precursors for the production of magnetically
soft nanocrystalline materials has become a common practice in various ap-
plications [24, 110]. In amorphous Co-Zr-based alloys, the magnetic order-
ing temperature Tc and saturation magnetizationMs generally exhibit a linear
increase with the concentration of Co. This increase begins at a critical con-
centration, typically between 40 − 60 at. % Co atomic percent [24, 23]. It is
intriguing to consider if the magnetic properties of pure amorphous Co can be
identified by extrapolating the Co content to 100 at. % atomic percent for this
system. In my second paper, We investigated how the composition of amor-
phous CoxZr100−x thin films, with 60 ≤ x ≤ 70 at. %, affects their magnetic
moment, ordering temperature, and effective interaction strength. We used
DFT calculations to interpret our experimental observations and to understand
how local order and composition influence the macroscopic properties of these
amorphous alloys.

4.1 Structural Analysis of CoxZr100−x Films
We produced glasses by following the recipe, randomly distributing 432 atoms
in a cubic lattice relative to the experimentally obtained densities for each sys-
tem with 40 − 95 at. % Co concentration, using CMD and EAM potential.
The quality of the produced metallic glasses structure was verified using the
Co65Zr35 as a test case, through FPMD. The RDF plots showed the first peak

Figure 4.1. Analysis of total and partial RDF of selected compositions from the struc-
tures.
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Figure 4.2. Voronoi tesselation of MG structures with 40, 65, and 70 at. % Co content.

position for both at ∼ 2.60 Å, whereas CMD voronoi tesselation showed the
perfect icosahedron ratio 0.33 more than FPMD produced glass. Therefore,
we selected the CMD method for CoxZr100−x MG films. The total and partial
RDF plots for 40, 65, 70, and 95 at. % Co content are represented in Fig. 4.1.
As the Co content increases, g(r) shifts towards smaller distances, consistent
with the GIXRD findings. This shift enhances the visibility of the double-peak
feature in g(r), a fingerprint of Zr-based metallic glasses.
The short-range local ordering analysis was performed on structures with

40, 65, and 70 at. % Co for selected SROs. These include perfect icosahe-
dra (< 0, 0, 12, 0 >); distorted icosahedra (< 0, 2, 8, 2 >; < 0, 1, 10, 2 > ; <
0, 1, 10, 4 >; etc.); FCC-types (< 0, 2, 8, 4 >, etc.); BCC-types (< 0, 3, 6, 4 >,
etc.), as shown in Fig. 4.2. Perfect icosahedra and distorted icosahedra motifs
increase with increasing Co content from 65 to 70 at. % Co content Fig. 4.2.
A detailed motif analysis is presented in Fig. 4.3.
The presence of various motifs at different Co concentrations results in sig-

nificant variations. This suggests that alterations in the material’s physical
properties can be attributed to changes in its local configuration. It’s important
to mention that the change in local structure patterns based on the amount of
Co may not be seen clearly in this case. This is partly because of the magnetic
properties and partly because the size of the samples used in the simulations is
limited.

4.2 Magnetic Properties of CoxZr100−x Films
The saturation magnetization,Ms, as a function of Co content, x, is presented
in Fig. 4.4, with both experimental (SQUID) and theoretical (DFT) results.
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Figure 4.3. Analysis of Voronoi polyhedra of selected compositions from the structures
obtained from CMD simulations.

The discrepancy between the theoretical and experimental results could be due
to the choice of exchange and correlation functional in DFT or the limited size
of the sample used in our simulations. Nonetheless, both data sets show a linear
increase inMs with x within the studied composition range. Extrapolating the
linear dependence to pure Co (x = 100 at. %) yields an effective moment per
Co atom of 2.5 µB from experiments and 2.0 µB from DFT calculations, both
of which are higher than the hcpComoment (1.55µB) [111]. The experimental
data’s linear fit intersects the point whereMs = 0 at an atomic percentage of
x = 61.5 at. % (x = 50.6 at. % for calculatedMs), which is consistent with
the observation that the sample with an atomic percentage of x = 60 at. % is
nonmagnetic at a temperature of 5 K.

4.3 Conclusion of Paper II
In the CoxZr100−x alloys, a linear relationship was observed between the sat-
uration moments and the Co concentration, for concentrations ranging from
(65 ≤ x ≤ 70 at. %) atomic percent. Using Voronoi polyhedra analysis, we
found that the coordination numbers of Co atoms vary with concentration. We
observed a correlation between changes in effective coupling and coordina-
tion number of Co with composition. However, we cannot establish a causal
relationship between these observations.
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Figure 4.4. The relationship between saturation magnetizationMs, expressed as the
magnetic moment per Co atom, and Co content is shown. Data points are represented
by stars which were calculated using DFT at 0 K, and circles which were measured
using SQUID at 5 K), while linear fits are indicated by dashed red lines.
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5. Superconductivity of Amorphous
MoxGe100−x systems

The lattice periodicity of crystalline materials allows for the utilization of re-
ciprocal space, leading to awell-established theoretical understanding of phonon-
mediated superconductivity in these materials. However, amorphous materials
can exhibit superconductivity despite their disordered nature. Kim et al. [25],
have shown that amorphous MoxGe100−x can be a superconductor. In amor-
phous alloys, the absence of crystal symmetries necessitates a thorough com-
prehension of local geometries and their role in the coupling between electronic
and vibrational degrees of freedom. Our aim in this paper is to investigate
superconductivity in amorphous MoxGe100−x by calculating electron-phonon
coupling parameters within the context of local electronic structures.

5.1 Structural Modelling and Vibrational Analysis of
MoxGe100−x Systems

We produced amorphousMoxGe100−x, where xwas selected as 70, 50, and 30,
by using first-principles molecular dynamics. A total of 432 atoms were used
to create three different concentrations of Mo-Ge alloys. The initial structure
was a BCC unit cell with randomly distributedGe atoms. The unit cell volumes
remained constant after the structural optimizations. The amorphous structures
are produced by following the defined recipe in the glass section.
RDF (g(r)) and Voronoi tesselations were used as structural analysis tools

as shown in Fig. 5.1. The first RDF peak of Mo70Ge30 was found at 2.61 Å,
which is in line with the first peak of the Mo-Ge distance. The second RDF
peak is a double peak, a common feature in many binary metallic glasses where
there is a difference in mass between the constituent elements [54]. The double
peak positions for Mo70Ge30 are located at approximately 4.59 and 5.32 Å,
where the total and partial RDF plots are in agreement. ForMo50Ge50, the first
peak is located at approximately 2.60 Å, whereas the double peak is located at
4.77 and 5.58 Å. Compared to Mo70Ge30, the first peak location is conserved,
but an increase in Ge concentration causes a shift in the double peak position
and distortion into large, slightlymerged peaks. ForMo30Ge70, the first peak is
located at 2.61 Åand the double peak nature is lost, replaced by a large second
peak at 4.77 Å. The first nearest neighbor distance is preserved in all structures,
with total andMo-Ge partial distribution functions giving agreeing results. The
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Figure 5.1. Partial RDF plots (left) and Voronoi tessellations (right) are shown for
Mo70Ge30, Mo50Ge50, Mo30Ge70.
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Figure 5.2. Projected vibrational density of states of Mo70Ge30.

smoothness and shifting of partial radial distribution functions of Mo-Mo and
Ge-Ge change relative to atomic concentrations, with the second peak strongly
affected by Mo concentration.
We focused on local structureswith a fraction greater than 0.01. TheVoronoi

tesselation of Mo70Ge30 revealed a variety of local structures, a characteristic
feature of metallic glasses. The highest fraction,(< 0, 1, 10, 2, 0 >),is known
as a distorted icosahedron, while (< 0, 0, 12, 0, 0 >) is a perfect icosahedron.
These two types SROs are related to the double peak. As seen in the RDF
plots, the metallic glass nature of Mo50Ge50 decreases in connection with the
local structures. However, an increase in Ge content results in a decrease in
the fraction of distorted icosahedra by approximately 31 %, consistent with
the distortion observed in the double peak on the total RDF plot. In contrast,
the unified double peak nature of Mo30Ge70 caused a steep decrease in SROs
fraction. As Kim et al. [25] demonstrated superconductivity in amorphous
Mo70Ge30 and our produced Mo70Ge30 exhibited similar structural properties
with an abundance of perfect and distorted icosahedra, we were encouraged to
use this concentration for the analysis of superconductivity.
We studied the analysis of VDOS (g(ω)) of Mo70Ge30 as displayed in Fig.

5.2 for using in Eq. 5.1. The VDOS of Ge atoms has a broad frequency spec-
trum with two merging peaks at around 3 and 8.5 THz, while the Mo atoms’
spectrum has a single broad but sharper peak at around 4 THz. The Ge atoms’
spectrum was 0.4 THz broader and ended around 11 THz, while both atoms’
spectra ended in almost the same frequency range between 10 - 11 THz. The
accuracy could be improved by performing longer molecular dynamics simu-
lations, which are limited to first-principles molecular dynamics.
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5.2 Superconductivity in Amorphous MoxGe100−x
The superconducting temperature is calculated usingMcMillan’s formula, which
is proposed for one electron in the rigid-ion approximation, as shown in Eq.
5.1

λ =
∑
i

λi =
∑
i

ηi

Mi

〈
ω2
i

〉 , (5.1)

in which ηi, the Hopfield parameter captures the information of electronic
structure at the ith atom (inside the cell), Mi is the atomic mass, and

〈
ω2
i

〉
is the average phonon frequency. Gaspari and Gyorffy (GG) approach can be
used for calculating the Hopfield parameter:

ηi =
∑
l

2(l + 1)Ni,l(EF )Ni,l+1(EF )

(2l + 1)(2l + 3)N(EF )
|βl,l+1|2 , (5.2)

where Ni,l(EF ) represents the partial density of states at the Fermi level of
the ith atom (l being the azimuthal quantum number),N(EF ) is the total DOS
at the Fermi level per primitive cell and βl,l+1 is the electron-phonon matrix
element that contains the information about the potential and regular solutions
of the radial Schrödinger equation inside each muffin-tin sphere [112]. The
superconducting temperature can be evaluated using theMcMillan expression,
[113] by inserting the calculated value of λ:

Tc =
θD
1.45

exp
[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
, (5.3)

where θD represents the Debye temperature related to some average phonon
frequency and µ∗ denotes the Coulomb coupling constant, which can be ap-
proximated by the commonly accepted value of µ∗ = 0.13 [114]. The input
parameters for Eq. 5.2 was computed using the tight-binding linear muffin-tin
orbital (TB-LMTO) method within the atomic sphere approximation (ASA)
[115].
As a test case, we selected one of the simplest Mo-Ge materials with su-

perconducting properties, Mo3Ge. Experimental results have shown that the
superconducting temperature for this material is approximately Tc ∼ 1.45 K,
and it has been observed to increase with the disorder, as reported in [116, 117].
The calculated electronic density of states of Mo3Ge’s near EF is found

to be composed of Mo d-states hybridized with p-states and d-states from the
Ge sites and localized in a valley. η is dominated by the Mo-df and Mo-pd
channels, as represented in Table 5.1. To determine the site-decomposed con-
tribution to the electron-phonon coupling, represented by λi, it is necessary to
calculate the average phonon frequency, denoted as (

〈
ω2
i

〉
). The results of this

calculation are presented in Table 5.2 for the case of the empirical relationship
suggested by Butler [118], which states that

√
⟨ω2⟩ ∼ 0.69θD, in conjunction
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Si Ni,s(EF ) Ni,p(EF ) Ni,d(EF ) Ni,f (EF ) ηi-sp ηi-pd ηi-df ηi
Mo 2.72 0.18 (0.15) 0.40 (0.37) 7.38 (7.43) 0.25 (0.24) 1.2 (0.9) 6.6 (5.9) 17.2 (17.1) 25.0 (23.9)
Ge 3.36 0.34 (0.25) 1.32 (1.27) 2.02 (1.92) − (0.54) 0.2 (0.2) 0.3 (0.3) − (0.8) 0.5 (1.3)

Table 5.1. Site-dependent electronic properties of Mo3Ge are presented. Si repre-
sents the Wigner-Seitz radius of each atom i considered in the calculation (in Bohr).
Ni,l(EF ) refers to the l-th partial density of states at the Fermi level, expressed in units
of Ry−1/atom. In turn, ηi denotes the Hopfield parameter at site i, in mRy/Bohr2. Val-
ues in parenthesis indicate the results obtained when using a spdf -basis for Ge.

Mi

〈
ω2
i

〉 √〈
ω2
i

〉
λi

Mo 257 5.6 0.098 (0.093)
Ge 194 5.6 0.003 (0.007)

Table 5.2. Site-dependent phonon and electron-phonon parameters for Mo3Ge are
presented. Mi

〈
ω2
i

〉
is in mRy/Bohr2, while

√
⟨ω2

i ⟩ is in THz (see text). Values in
parenthesis correspond to the same meaning as in Table 5.1.

with the experimentally determined value of θD. According to these results,
Mo plays a significant role in the superconducting properties of the Mo3Ge,
which aligns with experimental findings that MoxGe100−x alloys tend to ex-
hibit an increased Tc with higher Mo content [119].

5.3 Conclusion of Paper III
The structural analysis of MoxGe100−x showed that increasing the Mo content
enhances the production of both perfect and distorted icosahedra throughout
the sample. The implications of these structural changes were investigated by
analyzing the crystalline Mo3Ge system as a test case. It was demonstrated
that the Hopfield parameter is primarily composed of Mo-df and (to a lesser
extent) Mo-pd scattering channels. This suggests that the local changes in the
electronic structure of Mo sites, specifically related to p and d orbitals, are
crucial for understanding the contribution of short-range order to supercon-
ductivity in amorphous MoxGe100−x.
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6. Amorphous Graphene Flake

Graphene has gained a lot of attention as a material with many potential uses
in electronics, magnetics, mechanics, and quantum physics since it was first
isolated. Its unique two-dimensional honeycomb lattice structure is responsi-
ble for its unusual properties [120, 121, 122, 123, 124, 125, 126, 127, 128].
Despite being a crucial physical characteristic, the effect of changes on the
nanomechanical traits of graphene is still mostly unknown to this day. While
it is widely believed that the mechanical properties of graphene may be com-
promised by defects disrupting the sp2 hybridized carbon network, the reality
is more nuanced. In my fourth paper, we demonstrated that the elastic modulus
of graphene decreases with increasing defect density due to structural changes.

6.1 Defect Density Dependent Elastic modulus of
Graphene

Focused Ion Beam (FIB) irradiated graphene’s defect density shows a clear
increasing trend as ion dosages increase. The highest level of ion dose irradia-
tion resulted in a defect density of 3.3×1012 cm−2, which caused a significant
reduction in the crystallite lattice contrast in the graphene areas. Previous Ra-
man studies on defected graphene have shown that a sample with an ID/IG
(intensity ratio of the D and G bands or intensity ratio of sp3/sp2 bonds) as
low as 0.7, is typically classified as amorphous graphene. AFM (Atomic Force
Microscopy) based elastic modules measurements of defect density dependant
elastic modules are shown in Fig. 6.1.
The plot exhibits a plateau region where the elastic modulus is relatively

constant at defect density below 1012 cm−2. However, when the defect density
exceeds 1012 cm−2, there is a significant decrease in the elastic modulus as the
defect density continues to rise. The reduction in the elastic modulus can be
primarily attributed to the emergence of amorphous graphene, which begins to
occur when the defect density exceeds 1012 cm−2.

6.2 Amorphous Graphene and Binding Energy
The binding energy and elastic modulus of graphene have been shown to have
a linear correlation through theoretical calculations [130], suggesting that the-
oretical methods can be used to qualitatively study the mechanical properties
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Figure 6.1. Evolution of the elastic modulus of the graphene on SiO2 substrate with
different defect densities. The white dotted line indicates the elastic modulus of the
SiO2 substrate. Reproduced from [129], with the permission of AIP Publishing.

of graphene. To further verify the impact of amorphous graphene on the elas-
tic modulus of graphene, MD simulations were conducted on nanocrystalline
and amorphous graphene of varying sizes. Graphene flakes were created by
introducing a 10 Å space in the x − y directions in the supercells; (18 × 18),
(20×20), (23×23), (25×25), (30×30), (35×35), (40×40), (45×45), (50×50)
where we set lattice parameter of the unit cell as 2.46 Å and we set the vacuum
region at 40 Å by using CMD with Tersoff potential. Amorphous graphene
structures were then generated by randomly distributing atoms within the de-
fined 2D crystalline graphene supercells and the defined glass production steps
(in theoretical background section) were performed. The amorphous graphene
flakes were created by adding a 10 Å space in the x−y plane to the periodic 2D
amorphous structures. The nanocrystalline graphene and amorphous graphene
flakes were then subjected to force minimization at T= 0 K, with an energy
tolerance of 1×10−8 eV for stopping. In Fig. 6.2 the produced stable (20×20)
and (50× 50) amorphous and nanocrystalline sheets are shown, which corre-
spond respectively to 4.94 and 12.34 nm in size. The binding energies of the
systems were calculated using the below formula,

BE = −
[Esystem − nEC

n

]
, (6.1)

where Esystem represents the total energy of the system, EC is the energy of
an individual carbon atom, and n is the total number of atoms in the system.
Fig. 6.3 displays the binding energy plots, which reveal that amorphous

graphene has a significantly lower binding energy compared to nanocrystalline
graphene. This supports our argument that amorphousness negatively impacts
the mechanical properties of graphene.
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Figure 6.2. Amorphous (a, b) and nanocrystalline graphene (c, d) sheets are shown,
where (a and c) are 4.94 nm in size and (b and d) are 12.34 nm in size.

Figure 6.3. The variation of binding energy is displayed in relation to the size of both
amorphous and nanocrystalline graphene sheets.
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6.3 Conclusion of Paper IV
The variation of elastic modulus variation relative to the defect density of the
graphene sheet was studied experimentally. It was found that the elastic modu-
lus of graphene remains relatively unchanged when the defect density is below
1012 cm−2. However, when the defect density exceeds 1012 cm−2, the elas-
tic modulus begins to decrease significantly and the structure becomes amor-
phous. Our CMD simulations support the idea that the structural changes in the
system lead to a decrease in the elastic modulus, as explained by the calculated
binding energies.
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7. Systematic Atomistic Study of Amorphous
2D- Graphene, Silicene and Silicon Carbide

Low-dimensional materials have gained prominence in the electronics indus-
try since the discovery of graphene in 2004, through the functionalization of
2D materials or the creation of combinations of these structures [131, 132,
133]. On the other hand a variety of stable, inorganic amorphous 2D ma-
terials with an atomic layer thickness, including amorphous-C; amorphous-
BP, amorphous-TMD, amorphous-BN, amorphous-MoS2, etc., have been suc-
cessfully synthesized using techniques such as exfoliation, electron irradia-
tion, chemical vapor deposition (CVD), and physical vapor deposition (PVD)
[27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. However, the structures and properties
of these materials are not as well understood as those of 2D-crystalline materi-
als. In my fifth paper, we performed a systematic analysis of amorphous 2D-
graphene (A-Gra); silicene (A-Si), and silicon carbide (A-SiC). These struc-
tures’ electronic, optical, and low thermal conductivity properties may make
them promising candidates for use in future thermoelectric and thermal coat-
ings, electronics, optoelectronics, and a variety of other application areas.

7.1 Structural Properties
2D A-Gra, A-Si, and A-SiC structures were respectively created in two su-
percell sizes: one with 200 atoms in a 10×10 arrangement and another with
5000 atoms in a 50×50 arrangement with CMD. The lattice parameters for
the unit cell of these structures were chosen to be 2.46 Å, 3.87 Å, and 3.10
Å respectively. A vacuum region of 40 Å was also included. The recipe for
glass production was implemented in the 2D (x−y) plane, with atomic move-
ments constrained along the z-direction. Following force minimization, the
number densities of the A-Gra, A-Si, and A-SiC structures were calculated to
be 3.32× 1015 cm−2, 1.38× 1015 cm−2 and 2.18× 1015 cm−2, respectively.
A comparison of the produced structures in the 10×10 and 50×50 supercells
showed good agreement with each other and with the literature [37, 38, 40,
41, 42, 28, 43, 47, 48, 46], in terms of radial, angular distributions and ring
statistics. The 10×10 structures were deemed suitable for DFT calculations to
analyze the electronic and optical properties of 2D A-Gra, A-Si, and A-SiC.
The structural relaxation of the structures at 0 K is depicted in Fig. 7.1, which
also shows the variations in bond lengths, angles, and rings. Side views of the
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Figure 7.1. The side and top views of the small (10 × 10) systems, a) A-Gra, b) A-
Si, and c) A-SiC, are shown along with their varying bond lengths and angles at 0 K.
Selected rings specific to each system are also depicted with different color fills. For
A-Gra, the smallest 4-fold rings and larger 7-fold and 8-fold rings are indicated. For
A-Si, rings of varying sizes from 3-fold to 8-fold are marked, and a “chain defect” is
shown in orange. For A-SiC, examples of existing 3-fold to 7-fold rings are shown in
shades of green.

structures reveal similarities between crystalline and amorphous graphene and
silicene in terms of planarity and buckling at 0 K, while appearing wavy at 300
K. In contrast, A-SiC retains its buckled nature at both temperatures.

7.2 Electronic Properties
All the studied structures were found to have metallic properties. Previous re-
search has confirmed the metallic nature of A-Gra’s electronic structure [40,
28]. While A-Si was previously assumed to be a semiconductor [43], our find-
ings indicate that it is actually metallic. This is the first time A-SiC’s electronic
nature has been reported as in Fig. 7.2.
The charge distribution around the Fermi level varies with ring size, from

small to large. In A-Gra, hexagonal rings have equal charge distribution, while
pentagons near large rings and large rings with dangling bonds have higher
charge density. Some atoms bound in large rings also show high, equally
shared charge density. The charge density of A-Gra and A-Si around the Fermi
energy is due solely to contributions from pz orbitals, as in their crystalline
semimetallic phases. A-SiC’s charge distribution around the Fermi level has
py and pz orbitals contributions, while crystalline SiC has a 2.55 eV gap [134].
Unlike A-Gra, A-Si has a high charge density for all ring types. Si atoms on
the edge of large rings with dangling bonds have a larger charge, which is also
greater than the charge densities of A-Gra’s large rings’ dangling bonds. In
A-SiC, the charge densities of Si and C atoms vary due to differences in hy-
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Figure 7.2. The small systems’ partial charge distributions at the Fermi level at 0 K are
depicted for a) A-Gra; b) A-Si; and c) A-SiC. The electronic density of states for these
systems is shown in figures d) to f) in the same order. The atom-projected density of
states for A-SiC is also displayed in f).

bridization depending on neighboring atoms. In isolated rings, C or Si atoms
in A-Gra or A-Si can have comparable charge distributions.

7.3 Layered 2D Amorphous Structures: Bilayer,
Trilayer

We studied bilayer and trilayer amorphous structures by including van der
Waals interactions [94, 95] and using 20 Å vacuum distance with DFT. We
tested two stacking styles: one with all layers oriented in the same direction,
and another with the second layer rotated 90 degrees relative to the first layer
for bilayer systems. For trilayer systems, only the second layer was rotated
90 ◦ relative to the first and third layers. The examined scenarios for all struc-
tures were demonstrated in Table 7.1. The calculation of the interlayer binding
energy per atom (BEinterlayer) was performed utilizing Eq. 7.1:

BEinter−layer =
(Nlayer × ESL)− EML

Natom ×Nlayer
, (7.1)

where ESL represents the energy of the single-layer, while EML denotes the
energy of the bi- or tri-layers. The number of layers in the multilayer structure
is indicated byNlayer, andNatom refers to the number of atoms per layer [135].
The layer binding energy per atom, as calculated for A-Gra, in Table 3.3,

is consistent with the values reported for crystalline van der Waals-bonded bi-
layer graphene in previous studies [135, 136]. A-Si tends to form covalent
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A-Gra A-Si A-SiC
B
E i

n
te
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la
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er
(m
eV

)
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ila
ye
r

Identical

21.13 378.35 174.68

Rotated

21.75 353.83 172.18

Trilayer
20.04 459.31 234.38

Table 7.1. Calculated interlayer binding energies between A-Gra, A-Si, and A-SiC
layers in the multi-layered systems. Bilayer structures were classified into two groups;
identical, referring to the case that the same layer being top of each other, and rotated,
referring to the case of the second layer being rotated by 90 ◦. The energetically
more favorable structures’ side view was appended below the calculated energies of
that specific bilayer system. Trilayer structures were modeled by keeping the up and
bottom layers the same and only rotating the mid layers by 90 ◦ cases.

bonds between its layers, resulting in an increase in binding energy per layer.
Interestingly, our observations indicate that in A-SiC, the Si atoms form cova-
lent bonds with Si atoms in the adjacent layer, while the C atoms maintain van
der Waals bonding with C atoms in the adjacent layer. The metallic nature of
all the structures (bilayer and trilayer) is preserved.

7.4 Optical Properties
Initially, our attention was directed towards the absorption spectrum, repre-
sented by the imaginary component of dielectric functions as shown in Fig. 7.3
(a, d, g), in the absence of LFE. Our findings revealed that the optical prop-
erties of A-Gra, A-Si, and A-SiC were similar to their crystalline equivalents.
With the exception of A-Si’s parallelly polarized components, all calculated
spectra for the three structures exhibited a red-shift relative to their crystalline
equivalents. We discovered that all three structures absorbed light from the IR
to UV range and had plasmon frequencies in the UV range. The plasmon peak
of A-Si is sharp and 6 times higher than the second plasmon peak of crystalline
silicene. The rising static refractive index of A-Gra, A-Si, and A-SiC indicates
that their absorption range and capacity exceed those of their crystalline equiv-
alents, making them more suitable for use in optoelectronic devices.
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Figure 7.3. The optical properties of amorphous graphene (A-Gra), amorphous silicon
(A-Si), and amorphous silicon carbide (A-SiC) are compared with their crystalline
counterparts. The first row of figures (a, d, g) displays the calculated imaginary part
of the dielectric functions for both perpendicular (in-plane: A-xx; A-yy; C-xx,yy)
and parallel (out of plane: A-zz; C; ZZ) light polarizations, with IPA and without the
inclusion of local field effects. To facilitate comparison the crystalline counterparts
(C-xx,yy; C-zz) are multiplied by a factor of 8, 6, or 6, respectively. The insets show
the spectrum from 0 - 2 eV without multiplication. The second row (b, e, h) shows the
absorption coefficients, while the third row (c, f, i) displays the electron energy loss
spectra of the systems.
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Figure 7.4. The top row displays the VDOS plots for the systems, while the bottom
row shows the PR plots. The systems are represented as follows: a) A-Gra, b) A-Si,
and c) A-SiC, along with their total and atom-projected VDOS and PR.

7.5 Thermal Conductivity and Vibrational Properties
We utilized (50×50) big cells for thermal conductivity with CMD. Prior re-
search has demonstrated that thermal conductivity is influenced by the degree
of amorphicity in the structure [37, 38]. Antidormi et al [37]. found that the
rate of quenching during production is inversely proportional to thermal con-
ductivity. In our study, we selected a fixed quenching rate and calculated the
thermal conductivity of A-Gra, A-Si, and A-SiC. Our results showed that ther-
mal conductivity values of 55.30± 11.01W/Km forA-Gra, 2.68± 0.59W/Km
for A-Si, and 70.29± 12.03 W/Km for A-SiC. The calculated value for A-Gra
is consistent with the range reported in previous studies and differs signifi-
cantly from the thermal conductivity of pristine graphene, which falls within
the range of 2600 – 3050 W/Km [37]. A-Si’s thermal conductivity was calcu-
lated as similar to the thermal conductivity of bulk amorphous Silicon reported
in the literature [44, 45]. Zhou et al. also reported a value of 2.4± 0.25W/Km
for amorphous Si-Nanowire [44], which decreases with dimension compared
to their calculated value for amorphous bulk Si. Despite differences in struc-
tural quality between their reference work and our study, our calculated value
is in good agreement with the literature. Compared to A-Gra and A-Si, we
found that A-SiC had a higher thermal conductivity, which is acceptable given
the calculated statistical error range for A-Gra and A-SiC.
We analyzed the low thermal conductivity of (50×50) big cells A-Gra, A-Si,

and A-SiC by examining their vibrational density of states (VDOS) and mode
participation ratios (PR). It is well known that the VDOS of amorphous struc-
tures exhibits broader merged peaks compared to their crystalline counterparts.
Our work, as shown in Fig. 7.4, demonstrates that the vibrational properties
of amorphous structures follow similar trends to 3D-bulk cases as dimensions
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decrease. The density can alter these similarities by increasing or decreas-
ing mode intensity and shifting mode frequency relative to the new webbing
and hybridization of the constituent atoms. Our calculated VDOS for A-Gra
shows broadening similar to both its crystalline counterparts and literature data
at different densities and structural quality. While we cannot quantify exten-
don (propagons, diffusion) and locon modes due to the Green-Kubo method’s
equipartitioning of all modes, extendon modes are the primary heat carriers.
The cases we studied are neither at low nor high density. In structurally denser
systems, we expect to see an increase in sp3 hybridization states. As a re-
sult, our A-Gra system exhibits a thermal conductivity of approximately 55.30
W/Km, which is reflected in the VDOS and PR as an increase in extendon
modes. Without performing an Allen-Fellman modal analysis, it is difficult
to distinguish between the transition frequencies of propagon, diffusion, and
locon modes. Although our calculated PR for A-Gra shows a phonon-like con-
tribution (PR = 1) until the sharp decrease of loconmodes (PR = 0.2), this is
due to the inclusion of all modes’ contributions in equilibrium MD-based cal-
culations. Furthermore, the regime between 10 THz and 50 THz is dominated
by diffusions, indicating that they are significant heat carriers in the system,
along with propagons. Nonetheless, the increase in extendons is sufficient to
account for the thermal conductivity of A-Gra, as compared to the lower ther-
mal conductivities reported in previous studies [38, 37, 137]. TheVDOS of our
A-Si system is consistent with the literature VDOS of bulk amorphous silicon
at a similar density. In denser systems, the intensity of the first peak can de-
crease while the intensity of the second peak increases, resulting in a blueshift
in the tail observed as locon frequencies. However, our PR differs from the
literature in that our system does not exhibit a locon peak as defined for bulk
cases. We hypothesize that this may be due to a decrease in dimension. Inter-
estingly, our system exhibits low thermal conductivity despite the absence of
locon modes, which is consistent with reference [45], where propagons were
found to be the dominant heat carriers in amorphous silicene. The calculated
VDOS of our A-SiC system exhibits characteristics of both A-Gra and A-Si,
despite the differences in bonding nature and density between C and Si atoms.
These differences are evident as sharp redshifts in the locon modes (∼ 30 THz)
of C atoms in the partial VDOS shown in Fig. 7.4. A similar redshift is also
observed in the diffusion modes of Si atoms (beyond ∼ 20 THz). The overall
VDOS is in reasonable agreement with Li et al.‘s amorphous bulk SiC VDOS
plot at a similar density. In the atom-projected VDOS plots, Si atoms con-
tribute to the overall A-SiC VDOS as unified and red-shifted extendon modes,
while C atoms’ contributions are seen as an increase in the intensity of the
second peak. However, redshifts in the frequency ranges of both Si and C
atoms’ modes are present in both plots. In the A-SiC webbing, C atoms’ diffu-
sion modes visibly increase to a wide range of∼ 63 THz, while the frequency
range of locon modes narrows and shifts forward to ∼ 30 THz, as seen in the
PR plot. Although C atoms exhibit locon modes in the projected VDOS, over-
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all A-SiC does not show localized modes but instead exhibits a wider range of
diffusion modes.

7.6 Conclusion of Paper V
In conclusion, we conducted a detailed atomistic simulation study of 2D A-
Gra, A-Si, and A-SiC. Our simulated amorphous structures are in reasonable
agreement with the literature. All three structures exhibit unique bond lengths,
angles, and ring sizes. We also analyzed their electronic properties and found
them to be metallic with different charge distributions on local rings. Their op-
tical properties are comparable to their crystalline counterparts, with redshifts
observed in all calculated spectra except for A-Si’s parallelly polarized compo-
nents. We calculated thermal conductivity using the Green-Kubo method and
found that extendons are the primary carriers of thermal transport in all three
systems. A-SiC’s carbon atoms show localized modes in the atom-projected
DOS and PR, while this is not observed in the overall A-SiC. The dominance
of extendons is thought to explain the relatively high thermal conductivity of
A-Gra and A-SiC. These 2D amorphous structures with specific and tunable
electronic and thermal properties can serve as alternative materials for future
functional device designs.
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Part III:
Final Summaries & Remarks





8. Conclusion and Outlook

In this thesis, I discussed amorphousmetallic glasses and 2D amorphous glasses’
structural dependent properties by employing classical molecular dynamics
simulations and density functional theory-based calculations.
I first focused on the Fe0.85Zr0.15metallic glass’ lattice thermal conductivity

tuning by nanostructured voids. The effects of local structural orderings, tem-
perature, and pressure on these structures are investigated in detail. The results
revealed that the voids and pressure can be used as efficient methods for tuning
the lattice thermal conductivity of metallic glasses. The proposed glass model
offers a convenient approach for designing case-specific materials, particularly
for use in highly efficient thermoelectric modules, where the Zr-based MG’s
are employed as junction materials. In the second paper, I investigated exper-
imentally observed structural disorder-sourced magnetic properties of CoZr
MG’s. The simulation results, in which the saturation magnetic moments of
MGwere calculated for Co concentrations in the range of (40 ≤ x ≤ 70 at.%),
showed a linearly increasing trend and a good agreement with experimental
data was observed. Further theoretical simulations can shed light on the lo-
cal magnetic interactions due to the short-to-medium range local orderings in
a casual manner. In our third paper, I exhibited the compositional-structural
relationship and superconductivity in MoGe metallic glass. Electron-phonon
coupling parameters were calculated and the orbital channels responsible for
the dominating contribution were identified.
Papers four and five include investigations of the structure-dependent prop-

erties of 2D amorphous structures. In paper four, the experimentally observed
increase in defect density due to ion radiation on graphene, and the decrease
in elastic modulus, are explained using different-sized amorphous graphene
sheets and their binding energies. The findings offer crucial insights into the
rational design of graphene-based nanodevices, particularly in terms of their
mechanical properties. In paper five, I investigated the structural, thermal,
electronic, and optical properties of 2D amorphous graphene, silicene, and sil-
icon carbide structures. The analysis revealed that they are thermally low con-
ductors, showing the metallic electronic density of states and unique charge
distributions on their special ring structures. Their broad optical absorption
spectrum is the first insight into the 2D amorphous structures’ optical prop-
erties. Through our systematical analysis, we can conclude that with their
unique and adjustable electronic and thermal properties, 2D amorphous struc-
tures present a promising porous alternative for the design of future electronic,
optoelectronic, and on-demand devices such as gas sensors.
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Outlook
The discovery of hidden structural order and related properties in disordered
structures has made amorphous materials as valuable as crystalline materials
for the development of new functional materials. Metallic glasses, particu-
larly those based on Zr, are a valuable member of the glass family due to their
low cost, mass production capabilities, and low lattice thermal conductivity.
We proposed a model for analyzing the decrease in lattice thermal conductiv-
ity in the presence of nanostructured voids in FeZr metallic glass. This route
can be helpful in successfully overcoming heat-dependent efficiency loss in
devices, making it easier to sensitize porous materials or tailor functional coat-
ings. Further investigation into other Zr-based metallic glass compositions
can reinforce the validity of the formula. In our model, we only used spherical
voids to tune the lattice thermal conductivity. However, we were unable to
obtain a shape-dependent decrease in these systems. Therefore, further inves-
tigation into symmetrical and asymmetrical shaped voids and relatively larger
voids is needed. This will help to have a better formulation for predicting the
void-dependent decrease in lattice thermal conductivity. Investigating the con-
tribution of local structures in these systems is also essential to gain a deeper
understanding of the amorphous nature of solids. Similarly, revealing the role
of SRO to MRO local orderings in magnetic properties is a future aim, as
demonstrated by Thórarinsdóttir et al who obtained proximity effect in mag-
netic nanolaminates [138]. Xi et al. showed that 2D hydrogenated germanene
can show superconductivity [139]. After studying 3D-MoGe superconductiv-
ity, we can use our methodology to investigate the superconductivity of 2D
amorphous germanene. This field has much room for discovery and mod-
eling. Finally, 2D amorphous and layered structures should be studied and
discovered in a broader context by including optical and electronic properties
due to their open bonds and structure-dependent hybridization characteristics
and properties. The transition from 3D to 2D presents an abundance of hid-
den properties in amorphous structures, and while this thesis has addressed the
thermal, magnetic, superconductivity, and optical properties of selected amor-
phous structures, there is still much to explore and utilize in the pursuit of new
materials research. This field holds tremendous potential for uncovering novel
properties and developing cutting-edge materials with exceptional electronic,
thermal, and mechanical properties, thereby propelling the advancement of
materials science and technology.
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9. Popular science summary

Glass is a versatile and durable material with a wide range of applications,
from eyewear to cups and art crafts. Throughout human history, glass has
been used for various purposes, including cutting and crafting. Silica-based
glasses are particularly abundant and affordable, making them suitable for use
in fiber optics and various industries. Furthermore, glass is not only found on
Earth but also on the Moon and exoplanets such as “HD 189733b”. Namely,
nature and humanity love glass and its products. However, our understand-
ing of “glass” or “amorphous systems” or “frozen liquids” remains limited due
to their complex structural nature, characterized by short-to-medium range lo-
cal orderings without long-range ordering. Zachariasen’s definition of glass,
along with both theoretical and experimental findings about its amorphous
nature, has advanced our knowledge. However, our understanding of amor-
phous structure and its properties is still limited and needs to be discovered.
One of the simplest ways of understanding the amorphous structure is through
atomistic simulations using Newton’s equations of motion, which is known
as molecular dynamics. The time evolution of a system can be used to un-
derstand its structure and structure-dependent properties. However, producing
glassy systems is a challenge with time that limits our understanding. One re-
alistic way of simulating glass is the melt-quench method that we can perform
by employing thermostats on the system. Following production, the proper-
ties can be investigated based on the atomistic trajectories for some properties,
i.e., thermal conductivity and vibrational. However, the classical approach is
not enough for some properties, ie., electronic and optical due to obligatory
quantum corrections, especially for low temperatures. Therefore, we used a
deeper approach level of electrons. Both approaches have their own advan-
tages and disadvantages. In the classical approach, we have an inter-atomic
potential problem that acts on atoms to follow their trajectories. The potentials
used are mostly empirical or semi-empirical based on experimental results and
are mostly limited. Whereas an approach that includes quantum corrections
requires a limited system size of hundreds of atoms. This is also far from a re-
alistic material size. At this point, a benchmark calculation enables the transfer
between two methods, allowing for efficient usage and broader property anal-
ysis of amorphous systems. In this thesis, I first focused on benchmark cal-
culations for glass production. After obtaining an agreeing receipt, property
analysis was done by using the strengths of both approaches. We studied both
3D and lower-dimensional (2D) amorphous structures. Especially we focused
on metallic glasses (MG). MG are thermally low conductors and are used in
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Figure 9.1. Amorphous structures (glasses) are a future alternative to their crys-
talline counterparts, with their functionalizability from three-dimensional (i.e., metal-
lic glasses (MG) to low-dimensional structures (i.e., layered structures and two-
dimensional (2D) structures). Amorphous structures are known for their durability
and low thermal conductivity. The examples shown are also metallic but thermally
low conductors, which is more advantageous than crystalline metals that suffer from
heat in device applications.
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thermoelectric modules. Heat is one of the biggest problems in all electronic
devices limiting the device’s efficiency, durability, and life. Therefore, MG are
in focus in industries to develop new materials and/or functionalization of ma-
terials for increasing the device efficiency, durability, and also life. In the first
paper, we focused on tuning the thermal conductivity of Fe0.85Zr0.15 MG by
nanostructures and pressure. In this study, it’s shown that their lattice thermal
conductivities can be tuned by employing the suggested void size-dependent
glass thermal conductivity obtaining model. We also focused on the effect of
local structures on the global properties of the studied glass structure. In the
second paper, we focused on experimentally obtained saturation magnetiza-
tion of CoZr MG, which is affected by the structural composition of Co atoms.
The theoretically and experimentally obtained results show that structures de-
termine themagnetic properties, and this may include a short-to-medium-range
ordering effect. Similarly, in the third paper, structural-dependent supercon-
ductivity is obtained in MoGe MG. In addition to MG, in the fourth and fifth
papers, we show the dimensionality effect on properties. In the fourth paper,
graphene’s elastic modulus decrease is explained as a structural change from an
ordered to a disordered phase by causing a binding energy decrease. In the fifth
paper, both 2D and layered graphene, silicene, and silicon carbide’s structural,
thermal, vibrational, electronic, and optical properties are discussed in detail.
These structures are found to have metallic electronic properties and uneven
charge distribution, which can increase their functionalizability for specific ap-
plications such as gas sensing. Together with their low thermal conductivity,
they can be used as alternative materials to their crystalline counterparts in fu-
ture electronic, optoelectronic, and many other areas. Last, but not least, there
is still much to discover and learn about amorphous materials’ structurally de-
pendent properties and their potential applications in functional devices.
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10. Populärvetenskaplig sammanfattning

Glas är ett mångsidigt och hållbart material med en mängd olika användning-
sområden, från glasögon till koppar och konsthantverk. Genom hela mänsk-
lighetens historia har glas använts för olika ändamål, till exempel skärning
och hantverk. Silikabaserade glas är särskilt vanliga och prisvärda, vilket gör
dem lämpliga för användning inom fiberoptik och olika industrier. Dessutom
finns glas inte bara på jorden utan också på månen och exoplaneter som “HD
189733b”. Det verkar som älskar naturen ochmänskligheten glas och dess pro-
dukter. Men vår förståelse av “glas” eller “amorfa system” eller “frusna vät-
skor” är fortfarande begränsad på grund av deras komplexa strukturella natur,
som kännetecknas av kort-till-medellånga lokala ordningar utan långdistan-
sordning. Zachariasens definition av glas, tillsammans med både teoretiska
och experimentella resultat om dess amorfa natur, har utvecklat vår kunskap.
Men vår förståelse av amorfa strukturer och dess egenskaper är fortfarande
begränsad och behöver expanderas. Ett av de enklaste sätten att förstå den
amorfa strukturen är genom atomistiska simuleringar med Newtons rörelseek-
vationer, vilket går under betecknigen molekyldynamik. Tidsutvecklingen av
ett system kan användas för att förstå dess struktur och strukturberoende egen-
skaper. Men att producera glasartade system är en utmaning, där tidsåtgången
utgår en begränsande faktor för vår förståelse. Ett realistiskt sätt att simulera
glas är smält-kylmetoden som vi kan utföra genom att använda termostater
på systemet. Efter produktionen kan egenskaperna undersökas baserat på de
atomistiska banorna för vissa egenskaper, dvs. värmeledningsförmåga och vi-
brationer. Men den klassiska metoden räcker inte för vissa egenskaper, dvs.
elektroniska och optiska på grund av obligatoriska kvantkorrigeringar, särskilt
vid låga temperaturer. Därför använde vi en djupare metod på elektronnivå.
Båda metoderna har sina egna fördelar och nackdelar.I den klassiska metoden
beskriver vi atomerna och deras banor med hjälp av parpotentialer. De poten-
tialer som används är mestadels empiriska eller semi-empiriska baserade på
experimentella resultat och är mestadels begränsade. Medan en metod som
inkluderar kvantkorrigeringar kräver att vi begränsar systemets storlek till nå-
got hundratals atomer. Detta är också långt ifrån en realistisk vilket är långt
ifrån en realistisk beskrivning av materialen. Idag har vi nått en punkt där
vi kan göra benchmarkberäkningar mellan de två metoderna, vilket möjliggör
effektiv användning och bredare analys av egenskaper hos amorfa system. I
denna avhandling fokuserade jag först på benchmarkberäkningar för glaspro-
duktion. Efter att ha fått ett recept på överenstämmelse mellan metoderna,
gjordes egenskapsanalysen med hjälp av styrkorna hos båda metoderna. Vi
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Figure 10.1. Amorfa strukturer (glas) är ett framtida alternativ till deras kristallina
motsvarigheter, med deras funktionalitet från tredimensionella (t.ex. metalliska glas
(MG)) till lågdimensionella strukturer (t.ex. skiktade strukturer och tvådimensionella
(2D) strukturer). Amorfa strukturer är kända för sin hållbarhet och låga värmeled-
ningsförmåga. De exempel som visas är också metalliska, men har låg termisk led-
ningsförmåga, vilket är fördelaktigt i jämförelse med kristallina metaller där värme
leder till prestandaförluster i tillämpningar.
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studerade både 3D och lägre dimensionella (2D) amorfa strukturer. Särskilt
fokuserade vi på metalliska glas (MG). MG är termiskt låga ledare och an-
vänds i termoelektriska moduler. Värme är ett av de största problemen i all
elektronik, och begränsar effektivitet, hållbarhet och livslängd. Därför finns ett
industriellt fokus på MG för utvecklingen av nya material och/eller funktion-
alisering av material för att förbättra komponenters effektivitet, hållbarhet och
livslängd. I den första artikeln fokuserade vi på att justera termisk lednings-
förmåga hos Fe0.85Zr0.15 MG genom nanostrukturer och tryck. I denna studie
visar vi att gittrets bidrag till den termiska ledningsvörmågan kan justeras genom
att använda den föreslagna glasmodellen för termisk ledningsförmåga beroende
på tomrummets storlek. Vi fokuserade också på effekten av lokala strukturer
på globala egenskaper hos den studerade glasstrukturen. I den andra artikeln
fokuserade vi på experimentellt erhållna mättnadsmagnetiseringen för CoZr
MG, som påverkas av Co-atomernas strukturella position. De teoretiskt och
experimentellt erhållna resultaten visar att strukturen bestämmer magnetiska
egenskaper, och detta kan inkludera effekter på kort-till-medellång räckvidd.
På liknande sätt erhölls i den tredje artikeln strukturberoende supraledning i
MoGe MG. Förutom MG visar vi i den fjärde och femte artikeln dimension-
seffekten på egenskaper. I den fjärde artikeln förklaras minskningen av grafens
elasticitetsmodul som en strukturell förändring från ordning till en ordnad fas
genom att orsaka en minskning av bindningsenergin. I den femte artikeln
diskuteras både 2D och lagergrafens, silicen och kiselkarbidens strukturella,
termiska, vibrerande, elektroniska och optiska egenskaper i detalj. Dessa struk-
turer har metalliska elektroniska egenskaper och ojämn laddningsfördelning,
vilket kan öka deras funktionalitet för specifika tillämpningar som gassen-
sorer. Tillsammans med deras låga värmeledningsförmåga kan de användas
som alternativa material till deras kristallina motsvarigheter inom framtida
elektronik, optoelektronik och många andra områden. Sist men inte minst
finns det fortfarande mycket att upptäcka och lära sig om amorfa materialers
strukturberoende egenskaper och deras potentiella tillämpningar i funktionella
enheter.
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11. Populer Bilim Özeti

Camsı yapılar çok yönlü ve dayanıklı bir malzemedir ve gözlükten bardaklara
ve sanat eserlerine kadar geniş bir uygulama yelpazesine sahiptir. İnsanlık
tarihi boyunca cam, kesme ve el işçiliği gibi çeşitli amaçlarla kullanılmıştır.
Silika bazlı camlar özellikle bol ve uygun fiyatlıdır, bu da onları fiber optik
ve çeşitli endüstrilerde kullanım için uygun hale getirir. Ayrıca, cam sadece
Dünya’da değil, aynı zamanda Ay ve “HD 189733b” gibi egzoplanetlerde de
bulunur. Yani doğa ve insanlık camı ve ürünlerini sever. Ancak, “cam” veya
“amorf sistemler” veya “dondurulmuş sıvılar” hakkındaki anlayışımız, uzun
menzilli yapısal düzen olmadan kısa-orta menzilli yerel düzenle karakterize
edilen karmaşık yapısal doğaları nedeniyle sınırlıdır. Zachariasen’ın cam tanımı,
amorf doğası hakkındaki teorik ve deneysel bulgularla birlikte bilgimizi ilerlet-
miştir. Ancak, amorf yapı ve özellikleri hakkındaki anlayışımız hala sınırlıdır
ve keşfedilmeye ihtiyaç duymaktadır. Amorf yapının en basit yollarından biri,
Newton hareket denklemlerini kullanarak atomistik simülasyonlar yoluyla an-
laşılabilir, bu da moleküler dinamik olarak bilinir. Bir sistemin zaman evrimi,
yapısını ve yapıya bağımlı özelliklerini anlamak için kullanılabilir. Ancak,
camsı sistemlerin üretimi zamanla yarış ve bu sistemleri anlamamızı zorlaştırır.
Camın gerçekçi bir şekilde simüle edilmesinin bir yolu, sisteme termostat-
lar uygulayarak eritme-soğutma yöntemini gerçekleştirebilmemizdir. üretim-
den sonra, bazı özellikler atomistik yörüngelerine dayalı olarak incelenebilir,
örneğin termal iletkenlik ve titreşim gibi özellikler incelenebilir. Ancak, klasik
yaklaşım bazı özellikler için yeterli değildir, örneğin elektronik ve optik özel-
liklerin hesaplanması iç zorunlu kuantum düzeltmeleri nedeniyle, ve özellikle
düşük sıcaklık hesaplamaları için. Bu nedenle, elektron seviyesinde daha de-
rin bir yaklaşım kullandık. Her iki yaklaşımın da kendi avantajları ve deza-
vantajları vardır. Klasik yaklaşımda atomların yörüngelerini izlemeleri için
atomlar üzerinde etki eden bir atomlar arası tanımlanması gereken potansiyel
problemimiz var. Kullanılan potansiyeller çoğunlukla deneysel sonuçlara day-
alı ampirik veya yarı ampiriktir ve çoğunlukla sınırlıdır. öte yandan, kuan-
tum düzeltmelerini içeren bir yaklaşım yüzlerce atomdan oluşan sınırlı bir
sistem boyutu gerektirir. Bu da gerçekçi bir malzeme boyutundan oldukça
uzaktır. Bu noktada, bir referans hesaplama iki yöntem arasındaki transferi
sağlar ve ve verimli bir şekilde amorf sistemlerin daha geniş özellik anal-
izine izin verir. Bu tezde, ben ilk olarak cam üretimi için referans hesapla-
malara odaklandım. Sistemler arasında uyumlu bir yöntem elde ettikten sonra,
her iki yaklaşımın güçlerini kullanarak özellik analizi yapıldı. Hem 3D hem
de düşük boyutlu (2D) amorfa yapıları inceledik. Özellikle metalik camlara
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Figure 11.1. Amorf yapılar (camlar), üç boyutlu (örneğin, metalik camlar (MG’ler)) ile
düşük boyutlu yapılar (örneğin, katmanlı yapılar ve iki boyutlu (2D) yapılar) arasında
işlevselleştirilebilirlikleri ile kristal karşılıklarına gelecekte bir alternatiftir. Amorf
yapılar dayanıklılıkları ve düşük ısı iletkenlikleri ile bilinirler. Gösterilen örnekler de
metalik ancak termal olarak düşük iletkenlerdir, bu da cihaz uygulamalarında ısıdan
muzdarip kristal metallerden daha avantajlıdır.
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(MG) odaklandık. MG’ler termal olarak düşük iletkenlerdir ve termoelek-
trik modüllerde kullanılır. Isı, tüm elektronik cihazlarda cihaz verimliliğini,
dayanıklılığını ve ömrünü sınırlayan en büyük sorunlardan biridir. Bu ne-
denle, MG’ler kullanılarak endüstrilerde cihaz verimliliğini, dayanıklılığını
ve aynı zamanda ömrünü artırmak için yeni malzemeler geliştirmek ve/veya
malzemelerin işlevselleştirilmesine odaklanmaktadır. İlkmakalede, Fe0.85Zr0.15
MG’nin termal iletkenliğini nano yapılar ve basınç ile ayarlamaya odaklandık.
Bu çalışmada, önerilen boşluk boyutuna bağlı cam termal iletkenlik elde etme
modelini kullanarak kafes termal iletkenliklerinin ayarlanabileceği gösterilmiştir.
Ayrıca, çalışılan cam yapısının genel özelliklerine yerel yapıların etkisine de
odaklandık. İkinci makalede, deneysel olarak elde edilen CoZrMG’nin doyma
mıknatıslanmasına odaklandık, bu da Co atomlarının yapıdaki derişiminden
etkilenir. Teorik ve deneysel olarak elde edilen sonuçlar, yapıların manyetik
özellikleri belirlediğini ve bu kısa-orta menzilli bir düzenleme etkisini içere-
bileceğini göstermektedir. Benzer şekilde, üçüncü makalede MoGe MG’de
yapıya bağımlı süperiletkenlik elde edilmiştir. MG’ye ek olarak, dördüncü ve
beşinci makalelerde özellikler üzerinde boyut etkisini gösteriyoruz. Dördüncü
makalede, grafenin elastikmodülündeki azalma, bağ enerjisi azalmasına neden
olan düzenli bir fazdan düzensiz bir faza yapısal bir değişiklik olarak açıklan-
maktadır. Beşinci makalede, hem 2D hem de katmanlı grafen, silisen ve si-
likon karbürün yapısal, termal, titreşimli, elektronik ve optik özellikleri ayrın-
tılı olarak tartışılmaktadır. Bu yapılar metalik elektronik özelliklere ve düzen-
siz bir yük dağılımına sahip olarak bulunmuştur, bu da gaz sensörleri gibi
belirli uygulamalar için işlevselleştirilebilirliklerini artırabilir. Düşük termal
iletkenlikleri ile birlikte gelecekteki elektronik, optoelektronik ve diğer birçok
alanda kristal karşılıklarına alternatif malzemeler olarak kullanılabilirler. Son
olarak önemli noktalaradan biri, amorfa malzemelerin yapıya bağımlı özellik-
leri ve işlevsel cihazlardaki potansiyel uygulamaları hakkında hala keşfedile-
cek ve öğrenilecek çok şey var.
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