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1 Introduction

Quantum field theories (QFT’s) can in general admit extended objects which covers an entire
submanifold Σp ⊂ Md of the theory (with p ≥ 1). We call such p-dimensional operator
a defect. Defects will not satisfy the same symmetries as local operators. Properties (like
scaling dimensions) of local operators change if they are localized to the defect. This
naturally gives rise to an effective theory for adsorption where particles are glued onto a
submanifold, see [2] and references therein. We thus have to differ between the space outside
of the defect, called the bulk (or the ambient space), and the space along the defect itself

xµ = xa‖ ⊕ x
i
⊥ , (1.1)

where µ ∈ {0, . . . , d−1}, a ∈ {0, . . . , p−1} and i ∈ {1, . . . , d−p} (if the time-axis is parallel
to the defect).

It is physically important to study defects for various reasons. In condensed matter
they give rise to new critical phenomena near the defects. In particular, they can be used to
describe impurities in materials (where the underlying microscopic structure of the material
may differ). This makes defects important when studying the Kondō effect (scatterings of
electrons in metals due to an impurity) [3, 4].

A homogeneous QFT (without a defect) has ISO(d − 1, 1)-symmetry, and in the
conformal case O(d, 2). A defect of dimension p will be invariant under transformations
orthogonal to it. In the case of a flat or a spherical defect (the minimal amount of symmetry
breaking caused by a defect), this symmetry group will be SO(d − p) if the time-axis is
parallel to the defect

ISO(d− 1, 1)→ SO(d− p) , (1.2)

and SO(d − p − 1, 1) if the time-axis is orthogonal to the defect. In Euclidean signature
there is no time direction, and thus the defect enjoy SO(d− p)-symmetry.

A defect-local operator will satisfy a subgroup of the bulk symmetries, with one part
describing transformations along the defect, and the other orthogonal to it (the same as
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the defect itself). The orthogonal symmetry group will act as a global symmetry group
for the defect-local fields. A defect is said to be conformal if defect-local operators satisfy
conformal symmetry in p dimensions, i.e. O(p, 2)× SO(d− p) if the time-axis is parallel to
the defect

O(d, 2)→ O(p, 2)× SO(d− p) , (1.3)

and O(p+1, 1)×SO(d−p−1, 1) if the time-axis is orthogonal to it.1 In Euclidean signature
the corresponding symmetry group is O(p + 1, 1) × SO(d − p). If both the bulk and the
defect is conformal, we call the theory a defect conformal field theory (DCFT).

Global symmetries are not necessarily broken by the defect. However, they can be, and
this can either occur spontaneously or explicitly. A global symmetry might also break due
to the monodromy of a codimension two defect (p = d− 2). Such defects are special in the
sense that they can carry a monodromy action for the fields [6, 7], which means that a bulk
field transforms under the global symmetry group as we transport it around the defect.
This leads to a symmetry breaking of the global symmetry in the bulk. This was studied
in [8] for an O(N)-model, where the monodromy action is

φi(x‖, r, θ + 2π) = gijφj(x‖, r, θ) , gij ∈ O(N) . (1.4)

Here we use polar coordinates for the normal directions: r > 0, θ ∈ [0, 2π). Due to
this constraint, we refer to these defects as (O(N)-flavoured) monodromy twist defects (or
symmetry defects). The choice of the group element gij is referred to as the twist and
characterizes the defect. In fact, above monodromy relation describes a branch cut in the
plane of the normal coordinates. We can choose to treat the monodromy defect as a defect
of codimension one which spans a half-plane along this branch cut [6].

This monodromy constraint can be generalized to branch cuts with n Riemann sheets

φia(x‖, r, θ + 2π) = gijφja+1(x‖, r, θ) , gij ∈ O(N) , (1.5)

where φia, with a ∈ {1, . . . , n} and i ∈ {1, . . . , N}, is the fundamental scalar on the ath

sheet. The replica twist defect (or Rényi defect) is the defect with above monodromy where
the QFT on each sheet are all the same. They enter in QFT’s when applying the replica
trick used to find the Rényi entropy [9, 10]

Sn = logZ(n)− n logZ(1)
1− n

n→1−→ SEE , (1.6)

where Z(n) is the partition function for the theory with n replicas. In the n→ 1 limit we
find the entanglement entropy, SEE , in a QFT, which loosely speaking is a measure on how
much information of the total system is preserved on a subregion of the full space of the
theory [9, 10].

1In two dimensions we can consider one-dimensional defects. Then the group of rotations around the
defect is trivial: SO(d− p) = SO(1) = 1. In such case only one copy of the extended Virasoro symmetry [5]
is preserved by the defect: Vir×Vir→ Vir.
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If we consider n replicas of the bulk theory, we should identify the (n+ 1)th bulk field
with the first one. This gives us the monodromy constraint for a general φia

φin+1 ≡ φi1 ⇒ φia(x‖, r, θ + 2π n) = gij1
n∏

m=2
gjm−1jmφjma (x‖, r, θ) . (1.7)

Since O(N) is closed, gij1 ∏n
m=2 g

jm−1jm ∈ O(N). To avoid clutter we thus write above
monodromy constraint as

φia(x‖, r, θ + 2π n) = gijφja(x‖, r, θ) , gij ∈ O(N) . (1.8)

We refer to gij as the twist of the replica twist defect.
In this paper we study how this monodromy breaks the O(N)-symmetry. We do this

using the defect operator-product expansion (DOE): the OPE between a bulk-local field and
the defect itself. For a codimension two defect in a DCFT, it is given by [7]

φi(x) =
∑
Ôs

µφ
i

Ôs
ei s θ

r∆−∆̂s
Ĉ(r2∂2

‖)Ôs(x‖) , Ĉ(x) =
∑
m≥0

xm

(−4)mm!
(
∆̂− d−4

2

)
m

, (1.9)

Here s is the SO(2)-charge of the defect-local field Ôs. These are all primaries (annihilated
by the generators of the special conformal transformations along the defect), and the
differential operator, Ĉ(r2∂2

‖), generates the towers of descendants.
By applying the DOE to both sides of the monodromy constraint (1.8), we find how the

global symmetry group is broken along the defect. This was first studied for a O(1)(= Z2)-
flavoured monodromy twist defect in [7]. In the case of O(N) with N ≥ 2, this was first
studied in [8], and further studied in [11]. In section 2 we will see that this breaking will
occur in the same way for (1.8). The difference lies in the charges, s, of Ôs, which now
depend on the number of replicas, n.

The analysis in section 2 is independent of any interactions invariant under O(N). If
we were to consider interactions which only preserve a subgroup H ∈ O(N), then we would
have to redo the analysis for H (rather of O(N)).

Furthermore, in section 3 we show how the anomalous dimension of the defect-local
fields can be extracted using the e.o.m. and the defect operator product expansion (DOE).
This idea was first developed in [12] where it was applied to the OPE in a homogeneous
CFT. It was generalized to a codimension one defect in a free scalar theory in [13], and
later to a boundary in an interacting theory in [14] (see also section 3.2 in [15]). For a
monodromy twist defect (1.4) this method has been used in [16] for a Z2-twist, and in [8]
for an O(N)-twist. This method was generalized in [17, 18] for codimension one and two
defects (respectively) to extract the anomalous dimension of defect-local tensorial operators

In section 3 we apply it to the O(N)-flavoured replica twist defect in a CFT near four
dimensions, where we consider a quartic bulk-interaction

S =
∫
Rd
ddx

(
(∂µφi)2

2 + λ

8φ
4
)
. (1.10)

Here φ4 ≡ [(φi)2]2 and summation over the group indices, i ∈ {1, . . . , N}, is implicit. The
anomalous dimension of Ôs is found (upto first order in the coupling constant), which gives
us a new result which reduces down to that in [8] when we only consider one replica (n = 1).
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2 Monodromy of replica twist defects

We will consider a replica twist defect in an O(N)-model, where there are n replicas
of the bulk theory. Its monodromy action is given by (1.8). By conjugation, a general
O(N)-element is given by

(gij) = diag(R±1 , . . . , R±p ,±1) , (2.1)

where the last O(1) = Z2-element is not present if N is even, and R±α , α ∈ {1, . . . , p}, is a
general O(2)-matrix characterized by an angle ϑa

R±α =
(
± cosϑα ∓ sinϑα
sinϑα cosϑα

)
, ϑα ∈ [0, 2π) . (2.2)

Here R+
α ∈ SO(2) ⊂ O(2) is a proper rotation (with determinant one), and R−α ∈ O(2) an

improper one (with determinant minus one). We allow each element in the twist (2.1) to
differ in this aspect (±).

To understand how the global O(N)-symmetry is broken along the defect we make use
of the DOE (1.9). The idea is to study which values of s is valid for the monodromy (1.8)
to hold. From this we can find the subgroups of O(N) under which defect-local fields might
be charged under.

Due to the form of the twist (2.1) we need to study the cases R±1 and ±1 separately.
We will start with the latter

φNa (x‖, r, θ + 2π n) = ±φNa (x‖, r, θ) . (2.3)

If we now apply the DOE (1.9) to both sides of this equation we find

e2π i n s = ±1 ⇒ s = m±
2n ∈ Q . (2.4)

Here m± is even/odd for ±1 respectively.
Let us now proceed with R±1 , where we find the system of equations{

φ1
a(x‖, r, θ + 2π n) = ± cosϑ1φ

1
a(x‖, r, θ)∓ sinϑ1φ

2
a(x‖, r, θ) ,

φ2
a(x‖, r, θ + 2π n) = sinϑ1φ

1
a(x‖, r, θ) + cosϑ1φ

2
a(x‖, r, θ) .

(2.5)

We now use the DOE (1.9) and compare powers of r. This is the same as comparing the
terms including the same defect-local operators Ôs(x‖) on the two sides.2 We find{

e2π i n sµφ
1

Ôs = ± cosϑ1µ
φ1

Ôs ∓ sinϑ1µ
φ2

Ôs ,

e2π i n sµφ
1

Ôs = sinϑ1µ
φ1

Ôs + cosϑ1µ
φ2

Ôs .
(2.6)

When one of the trigonometric functions in R±1 vanish (i.e. ϑ1 ∈ {0, π2 , π,
3π
2 }), we find charges

in the same class as (2.4). This is expected as in such case we have R±1 = diag(±1,±1) (±
signs not related) after conjugation.

2Since the anomalous dimensions are included in ∆̂s it is safe to assume no mixing.
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Otherwise, the first equation is generally solved by

µφ
1

Ôs = ∓ sinϑ1
e2π i n s ∓ cosϑ1

µφ
2

Ôs . (2.7)

Then from the second equation of (2.6) we find

(e2π i n s − cosϑ1)(e2π i n s ∓ cosϑ1) = ∓ sinϑ2
1 . (2.8)

This equation has different solutions for s depending on whether R±1 is proper or improper.
In the proper case we find

(e2π i n s − cosϑ1)2 = − sinϑ2
1 ⇒ e2π i n s = cosϑ1 ± i sinϑ1 , (2.9)

which has the solution
s = m

n
+ ϑ1

2π n , m ∈ Z . (2.10)

If we insert this charge back into (2.7) we find3

µφ
1

Ôs = ±i µφ2

Ôs . (2.11)

The corresponding two defect-local operators both have SO(2)-charge given by (2.10).
Let us now move on to the improper solution of (2.8). In such case

(e2π i n s − cosϑ1)(e2π i n s + cosϑ1) = sinϑ2
1 ⇒ e4π i n s = ±1 . (2.12)

This is solved by (2.4). It corresponds to one defect-local operators with even SO(2)-charge
(w.r.t. m±), and another with odd charge.

To summarize:

• The Z2-element in (2.1) gives us one defect operator with either even or odd (w.r.t.
m±) SO(2)-charge (2.4).

• Each proper R+
a gives us a pair of defect operators with the fractional charge (2.10).

Their DOE coefficients are related by (2.11).

• Lastly, each improper R−a gives us one defect operator with even (w.r.t. m±)
charge (2.4), and another defect operator with odd charge.

With this information at hand we can see how the bulk O(N)-symmetry is broken along
the defect by counting the number of defect fields with the same SO(2)-charge. That is,
the DOE splits into several different sums, where each sum runs over different classes of
SO(2)-charges. If we assume that in total there exist:

• n+ defect fields with charge s ∈ Z
n ,

• n− with s ∈ Z
n + 1

2n ,
3This relation tells us that the DOE coefficient, µΦ

Ôs
, for the complex scalar Φ = φ1 + i φ2 (transforming

under U(1)) is real-valued.
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• 2n1 with s ∈ Z
n + ϑ1

2π n ,

• 2n2 with s ∈ Z
n + ϑ2

2π n ,
...

• 2nq with s ∈ Z
n + ϑq

2π n ,

where 0 ≤ n± ≤ N , 0 ≤ nr ≤ N
2 , r ∈ {1, . . . , q} and 0 ≤ q ≤ p with p from the twist (2.1),

then the O(N)-symmetry is broken down to

O(N)→ O(n+)×O(n−)×O(2n1)× . . .×O(2nq) . (2.13)

This means that the defect-local fields are in irreducible representations of these subgroups
of O(N). This result still holds when we turn on bulk-interactions, assuming they are
invariant under O(N).

3 Anomalous dimensions from the equation of motion

Let us now consider an interacting O(N)-model in the presence of a replica twist defect
(with n replicas, breaking the O(N)-symmetry in the same way as in the previous section).
We will extract the anomalous dimensions of the defect-local operators from the DOE (1.9)
using the e.o.m. (in the process we will also find the DOE coefficients in the free theory).
In d = 4− ε we can consider a quartic bulk-interaction (1.10) invariant under O(N). The
bulk coupling has the non-trivial Wilson-Fisher (WF) fixed point (f.p.) [19]

λ∗ = (4π)2ε

N + 8 +O(ε2) , (3.1)

which gives us the following e.o.m. at the conformal f.p.

∂2
µφ

i = λ∗(φj)2φi , λ∗ = 8π2ε

N + 8 +O(ε2) . (3.2)

This yields the following Dyson-Schwinger (DS) equation

∂2
yµ〈Ôs(x‖)φi(y)〉 = λ∗〈Ôs(x‖)(φj)2φi(y)〉 . (3.3)

We will start by studying the free theory where r.h.s. of this equation is zero. For simplicity
we will consider the bulk-defect correlator, which using the DOE (1.9) can be written as

〈Ôs(x‖)φi(y)〉 = µφ
i

Ôse
i s θ

∑
m≥0

a∆̂s,m

r∆φ−∆̂s−2m
∂2m
‖

Ad
|s‖|2m

,

a∆̂s,m
= 1

(−4)mm!
(
∆̂s − d−4

2

)
m

.
(3.4)

Here Ad is a (normalization) constant related to the solid angle, Sd, in d dimensions

Ad = 1
(d− 2)Sd

, Sd =
2 Γ d

2

π
d
2
, (3.5)
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where Γx ≡ Γ(x) is a shorthand notation for the Gamma function. The l.h.s. of the classical
DS eq. (3.3) is then

∂2
µ〈Ôs(x‖)φi(y)〉= (∂2

‖+∂2
r+r−1∂r+r−2∂2

θ )〈φi(x)Ôs(y‖)〉

=µφ
i

Ôse
isθ

∑
m≥0

a∆̂s,m−1+(∆̂s−∆φ+2m+s)(∆̂s−∆φ+2m−s)a∆̂s,m

r∆φ−∆̂s−2(m−1)
×

×∂2m
‖

Ad
|s‖|2m

. (3.6)

In the free theory this is to be zero on its own. By comparing powers of r and avoiding
trivial solutions, we find

(∆̂s −∆φ)2 − 2m(2(∆φ + 1)− d)− s2

(−4)mm!
(
∆̂s − d−2

2

)
m

= 0 , ∆φ = d− 2
2 . (3.7)

This has several different solutions. The Pochhammer symbol in the denominator is zero if

∆̂s = ∆φ − k −m, k ∈ Z≥1 , (3.8)

which is only valid for non-unitary theories on the defect (as it violates the unitary bound
in p = d− 2 dimensions). Another solution is when the numerator of (3.7) is zero

∆̂s = ∆φ ± s . (3.9)

3.1 Dyson-Schwinger equation

We will now move on to the interacting theory, and study the r.h.s. of the DS eq. (3.3)

λ∗〈Ôs(x‖)(φj)2φi(y)〉 = (N + 2)λ∗〈φ2(y)〉〈Ôs(x‖)φi(y)〉+O(ε2) . (3.10)

In order to extract CFT data from this equation, we need the one-point function of φ2 (at
O(ε0)), which is found from the coincident-limit of the φ − φ correlator. This correlator
can be found from the Klein-Gordon equation in radial coordinates

(∂2
‖ + ∂2

r1 + r−1
1 ∂r1 + r−2

1 ∂2
θ1)Dij(s‖, r1, r2, ϕ) = r−1

1 δijδ(d−2)(s‖)δ(r1 − r2)δ(ϕ) ,

where Dij(s‖, r1, r2, ϕ) ≡ 〈φi(x‖, r1, θ1)φj(y‖, r2, θ2)〉 and ϕ ≡ θ2 − θ1. Details on how this
differential equation is solved are in appendix B of [20]

Dij(s‖, r1, r2, ϕ) = Adδ
ij
∑
s

Γ∆̂s

Γ∆φ
Γ∆̂s−∆φ+1

ei s ϕ

(r1 r2)∆φ
(4 ξ)−∆̂s×

× 2F1

(
∆̂s, ∆̂s −

p− 1
2 , 2 ∆̂s − p+ 1,−ξ−1

)
.

(3.11)

Here ∆̂s is given by
∆̂s = ∆φ + |s| , (3.12)

– 7 –
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which is a subclass of the free theory solution (3.9), and the cross-ratio is

ξ =
s2
‖ + (r1 − r2)2

4 r1r2
. (3.13)

Before we find 〈φ2〉, let us extract the DOE coefficients. We do this by comparing (3.11) to
the expression found from the DOE (1.9)

Dij(s‖, r, r′, δθ) =
∑
s

(µφiÔs)
†µφ

j

Ôs
ei s ϕ

(r1r2)∆φ

Ad

|s‖|2 ∆̂s
. (3.14)

If we know expand (3.11) in r1, r2 we find

(µφiÔs)
†µφ

j

Ôs = δij
Γ∆̂s

Γ∆φ
Γ∆̂s−∆φ+1

. (3.15)

These are on the same form as in [7, 8], with the difference lying in the SO(2)-spin s.
Now we will proceed with finding 〈φ2〉. In d = 4 the summand simplify using the

following 2F1-identity

2F1

(
|s|+ 1

2 , |s|+ 1, 2 |s|+ 1,−ξ−1
)

= 4|s|
√

ξ

ξ + 1
ξ|s|

(
√
ξ +
√
ξ + 1)2|s| . (3.16)

The coincident-limit, r2 → r1 ≡ r, ϕ→ 0, of (3.11) is then

Dij(s‖, r, r, 0) = Adδ
ij

|s‖|
√
s2
‖ + 4 r2

∑
s

 2 r
|s‖|+

√
s2
‖ + 4 r2

|s| . (3.17)

After the change in variables s = t
n (s.t. t ∈ Z + υ with υ ≡ ϑ

2π ), this is resummed in the
same way as in appendix B.2 of [8]. We find

Dij(s‖, r, r, 0) = 2Adδij

|s‖|
√
s2
‖ + 4 r2

 2 r
|s‖|+

√
s2‖+4 r2

 2 υ
n

1−

 2 r
|s‖|+

√
s2‖+4 r2

 2
n

= Adδ
ij

(
n

s2
‖
− 2 υ − 1

2 r |s‖|
+ 6 υ(υ − 1)− n2 + 1

12n r2 +O(s‖)
)
.

(3.18)

We can identify one-point functions of a bulk-local operator O (times |s‖|∆−2 ∆φλφφOµ
O
1)

by comparing above expansion with the bulk OPE. The first term corresponds to the
identity exchange, the second to the bulk scalar φ itself (since the bulk O(N)-symmetry is
broken by the defect)

〈φi(x‖, r, θ)〉 = Adµ
φ
1δ
iN

r2 +O(ε) , µφ1 = 1
2 − υ , (3.19)

– 8 –
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and the last one to φ2 which we are interested in

〈φ2(x‖, r, θ)〉 = Adµ
φ2
1

r2 +O(ε) , µφ
2
1 = 6 υ(υ − 1)− n2 + 1

12n . (3.20)

As a sanity check we see that this reduces to the result in [8] when there is only one replica:
n = 1.

3.2 Anomalous dimensions

We are now ready to find the anomalous dimensions of the defect-local operators, Ôs, that
appear in the DOE (1.9) using the DS eq. (3.3). The r.h.s. of the DS eq. (3.10) is given by

〈Ôs(x‖)λ(φj)2φi(y)〉 = µφ
i

Ôse
i s θ

∑
m≥0

(N + 2)Adµφ
2
1a∆̂s,m

λ

r∆φ−∆̂s−2(m−1)
∂2m
‖

Ad
|s‖|2m

. (3.21)

Powers in r can now be compared to the l.h.s. of (3.3), i.e. (3.6), which gives us

a∆̂s,m−1 + (∆̂s −∆φ + 2m+ s)(∆̂s −∆φ + 2m− s)a∆̂s,m
= (N + 2)Adµφ

2
1a∆̂s,m

λ .

Let us now expand both sides in ε (where we use as input that the bulk anomalous dimension,
γφ, start first at O(ε2) [19])

∆φ = d− 2
2 +O(ε2) , ∆̂s = d− 2

2 + |s|+ ε γ̂s +O(ε2) , (3.22)

which yields the anomalous dimension of the defect-local fields

γ̂s = N + 2
N + 8

µφ
2
1

|s|
= N + 2
N + 8

6 υ(υ − 1)− n2 + 1
12n |s| . (3.23)

This is a new result, which reduces down to the result in [8] when n = 1.

4 Conclusion

In this work we showed that the replica twist defect with monodromy action (1.8) breaks
a global O(N)-symmetry in the same way (2.13) as the monodromy defect in [8]. We
found that the difference lies in the defect-local operators, Ôs, which now has SO(2)-
charge (2.4), (2.10) (depending on which subgroup of O(N) it transforms under). At the
conformal f.p. (3.2) near four dimensions (1.10) we found the scaling dimension of Ôs to be
given by (3.22), (3.23) upto O(ε).

There are several interesting directions to further pursue studies. It would be interesting
to find the anomalous dimension of Ôs for different models. E.g. near three dimensions
with a sextic interaction [21], or near six dimensions with cubic interactions [22, 23]. To
use the method in section 3 we need 〈φ2〉. However, if we are not near four dimensions we
cannot use the 2F1-identity (3.16), making the calculations more difficult.

We could also follow the lines of [18], and apply the techniques from section 3 to
extract the anomalous dimension of tensorial operators localized to the defect. A possible
challenge with this approach is the existence of multiple-copy operators in the bulk. These
are composite operators of fields from different replicas, e.g. φaφa+1 and φaφa+1φa+2.
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Alternatively we can study the DOE of the bulk Noether current corresponding to
O(N), and try find the tilt operator on the defect corresponding to the conformal manifold
O(N)/O(n+)×O(n−)×O(2n1)×. . .×O(2nq) (the broken part of the symmetry group) [24–
26]. See also section 2.2.1 in my thesis [1]. In turn, from the four-point function of the
protected tilt operator we can read off the curvature of the conformal manifold [27, 28].

This tilt operator is also of great importance in numerical bootstrap [29], wherein an
O(N)-flavoured monodromy twist defect (1.4) was considered. This defect has also been
analytically conformally bootstrapped in [30], where Lorentzian inversion formulas for the
bulk- and defect-channels were used. It would be interesting to apply similar bootstrap
techniques (either numerically or analytically) to the replica twist defect (1.8).
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