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ABSTRACT
To overcome the limited oxidation resistance of the emerging class of transition metal borides,
we suggest within this study novel quaternary diborides, Ti-TM-Si-B2± z (TM = Ta, Mo), achieving
the compromise between excellent oxidation resistance and requirements of hard coatings. Single-
phase AlB2-type structured Ti-TM-Si-B2± z films (3–5 µm) are sputter-deposited from TiB2/TMSi2
targets. The Ti-Ta-Si-B2± z coatings exhibit 36GPa in hardness, while maintaining strongly retarded
oxidation kinetics till 1000°C. Ti-Mo-Si-B2± z coatingspreserve ahardness up to27GPa, althoughout-
performing all their counterparts by featuring outstanding oxidation resistance with 440 nm oxide
scale thickness after 1 h at 1200°C.

IMPACT STATEMENT
First report on quaternary Ti-TM-Si-B2± z coatings stabilized in hexagonal AlB2-prototype structures.
These hard coating materials exhibit unprecedented oxidation resistance up to 1200°C due to the
formation of Si-rich scales.
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1. Introduction

Boron based thin film materials are subject of growing
research interests and considered as potential future pro-
tective and functional coatings applied in diverse appli-
cations ranging from energy production to aerospace or
cutting tool industry [1–9]. Within the interesting family
of transitionmetal diborides (TMB2), TiB2± z exhibits an
attractive aggregate of properties with high thermal sta-
bility (TM ∼3225°C), super-hardness (> 40GPa), low
density, but also good thermal and electrical conductivity
accompanied by chemical inertness [1,5,10–15]. How-
ever, still one of the major obstacles against the wide
applicability of TiB2± z based films is their limited oxi-
dation resistance above 400°C [16–18].
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The oxidation behavior for TiB2± z bulk and thin film
materials has been extensively studied [16,17,19–22],
and features specific morphological and kinetic-related
aspects. According to Cai et al., monolithic bulk TiB2
starts to oxidize at 400°C, whereas a rapid, anomalous
oxidation sets in at around 500°C. The reported accel-
erated oxidation at 500°C is related to the formation
of an outer mixed amorphous/crystalline B2O3/TiO2
scale, and an inner unstable Ti-B-O layer [21]. Between
650°C and 1000°C—also referred as the low-temperature
regime—the scale formation changes to a laminated
configuration with crystalline TiO2 and a glassy amor-
phous B2O3 providing a certain oxidation resistance
[19–22]. At higher temperatures, the accelerated kinetics
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predominates the oxidation process, forming volatile
B2O3 accompanied by non-protective porous TiO2 scales
[19,23,24]. However, this oxidation sequence is reported
to be different for TiB2± z-based thin film materials.
Huang et al. highlighted the formation of the B2O3
(l) phase, evolving volatile at around 720°C, and hence
results in a rapid oxidation of their chemical vapor
deposited TiB2 coating [22]. In contrast, the oxidation
of physical vapor deposited (PVD) TiB2± z below 800°C
in air did not exhibit the formation of B2O3 (l), and the
oxide scales have been reported to be Ti-rich [16–18].
Thörnberg et al. indicated that the B concentration plays
a prominent role on the oxidation kinetics of sputtered
TiB2± z thin films [16]. Their sub-stoichiometric TiB1.43
films exhibited lower oxidation rates compared to the B-
rich films, due to the absence of the rapidly oxidizing
B-rich tissue phases. Nevertheless, all their investigated
TiB2± z films follow linear-rate laws with low oxidation
resistance over 400°C [16].

Different routes have been attempted to enhance the
oxidation resistance of TiB2± z coatings mainly based on
alloying with strong oxide formers such as Al [18,25,26]
or Si [27,28]—which are prone to form protective oxide
scales. Bakhit et al. reported an improvement in the
oxidation resistance of sputtered Ti0.68Al0.32B1.35 with
retarded kinetics at 800°C for 0.5 h, due to the forma-
tion of a dense Al-based oxide scale of 470 nm com-
pared to a scale thickness of 1900nm obtained for their
binary TiB2.4 counterpart [18]. Recently, Navidi et al.
followed the Al-alloying strategy to deposit Al-rich but
nearly stoichiometric (Ti0.35Al0.65)B2 films revealing an
outstanding oxidation resistance at 700°C by forming a
thin Al-based oxide scale of only 39± 7 nm after 8 h
[25]. The high Al-content predominates the oxidation
behavior, but on the expense of the mechanical prop-
erties with reported hardness between 9 and 24GPa
[25]. The influence of Si-alloying on the oxidation resis-
tance of several TMB2± z based coatings was studied
by Glechner et al. [27]. For Ti-Si-B2± z coatings, the
Si addition provided high-temperature oxidation resis-
tance with strongly retarded kinetics up to 1200°C, while
the reported hardness drastically decreased upon high-
Si content addition to a value around 16GPa [27]. Still,
the above-mentioned alloying routes by Al and Si to
form oxidation-resistant ternary diborides are limited
by the deterioration of the coatings’ mechanical proper-
ties. For bulk refractory diborides, a different strategy is
followed to enhance the oxidation resistance. Through
the addition of secondary Si-based phases (i.e. SiC or
TMSi2), which minorly influence the desired mechani-
cal properties, highly protective glassy-like borosilicate
scales can be formed [23,29–34]. A similar approach
has been also applied for Zr-Mo-Si-B based-coatings to

provide high-temperature oxidation resistance [35,36].
Merging now these ideas to form quaternary, hexagonal
structured diboride-based thin film materials by alloy-
ing TMSi2 phases into binary TiB2± z is a promising—yet
relatively unexplored—strategy offering new possibilities
to achieve the challenging compromise between good
mechanical properties and highest oxidation resistance.

To prove the suggested concept, this study explores
the alloying of physical vapor deposited TiB2± z coat-
ings with TMSi2 based phases (TM = Ti, Mo, Ta) grown
from TiB2/TMSi2 compound target materials with vari-
ous compositions—TiB2/TiSi2 (90/10 and 80/20mol%),
TiB2/TaSi2 (90/10 and 80/20mol%), and TiB2/MoSi2
(85/15, 80/20 and 70/30mol%).

2. Materials andmethods

All the ternary and quaternary Ti-TM-Si-B2± z coat-
ing materials have been deposited in a laboratory-scale
magnetron sputtering system using 3-inch sized tar-
get materials from Plansee Composite Materials GmbH.
Each of the seven targets was solely DC-sputtered
at a target current of 0.5 A in pure argon atmo-
sphere (working pressure of 0.4 Pa). Additionally, a
binary TiB2.57 coating was deposited from a TiB2
target at a pressure of 0.56 Pa. The coatings were
grown onto sapphire and single-crystalline Si substrates
(10N11-oriented, 10× 10× 0.53mm3 and 100-oriented,
20× 7× 0.38mm3) as well as poly-crystalline Al2O3
(20× 7× 0.38mm3). The obtained film thicknesses of
the quaternary Ti-TM-Si-B2± z coatings were in the
range between 3.2 and 4.9 μm.

The chemical composition of the coatings was deter-
mined by ion beam analysis techniques using Time-of-
Flight Elastic Recoil DetectionAnalysis (ToF-ERDA) and
Rutherford Backscattering Spectrometry (RBS) at the 5
MV Pelletron Tandem accelerator laboratory at Uppsala
University [37]. For ToF-ERDA, 127I8+ projectiles with a
primary energy of 36 MeV were employed with an inci-
dent angle of 67.5o with respect to the surface normal and
a recoil detection angle of 45o. RBS was carried out using
3MeV 4He+ ions and a detection angle of 170°. The anal-
ysis of the ToF-ERDA experimental data was performed
using the Potku software [38], while the RBS data were
analyzed using the SIMNRA software [39]. The total sys-
tematic and statistical uncertainties were estimated to be
5-8% of the deduced value for the major constituents.

The oxidation behavior of the coatings was inves-
tigated using DTA/TG system (Netzsch STA 449 F1).
The dynamic measurements up to 1400°C were done
at a heating rate of 10°C/min, under flowing syn-
thetic air (50ml/min) and helium (20ml/min). The
employed samples for these measurements were the
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coated polycrystalline Al2O3. Further isothermal anneal-
ing measurements were done in ambient air using
conventional furnace at 800°C and 1200°C. Moreover,
the mechanical properties of the coatings were investi-
gated using an ultra-micro indentation (UMIS) system
equipped with Berkovich diamond tip. For each sample,
31 surface indents were done in a load-controlled mode
with indentation loads varied between 3 and 45mN and
consequently evaluated based on the Oliver and Pharr
method [40]. The Poisson’s ratios were taken from [41].

The structure of the as-deposited coatings was inves-
tigated by X-ray diffraction (XRD) in Bragg–Brentano
configuration using a Panalytical Xpert Pro MPD sys-
tem equippedwith Cu-Kα radiation source (λ = 1.54Å).
Furthermore, the morphology for selected oxidized
samples was investigated using transmission electron
microscopy (TEM FEI TECNAI F20) combined with a
selected area electron diffraction analysis. Additionally,
electron energy-loss spectroscopy (EELS)mappings were
performed to determine the elemental chemical compo-
sition.

3. Results and discussion

In Table 1 the chemical compositions evaluated by Time-
of-Flight Elastic Recoil Detection Analysis (ToF-ERDA)
and Rutherford Backscattering Spectrometry (RBS) are
summarized for all grown films. The binary TiB2.57 coat-
ing shows boron super-stoichiometry, while the B/TM
ratio tends to decrease in all the alloyed coatings by
increasing the Si content. The lowest total metal content
(Ti+TM) of 25± 1 at. % was evaluated for the ternary
Ti-Si-B2± z coatings, while the Ti-Ta-Si-B2± z coatings
exhibit nearly 34± 1 at. % metal content for both com-
positions, followed by 30± 1 at. % for Ti-Mo-Si-B2± z
coatings. The oxygen content in all grown films is below
2.6 at. %.

Figure 1 presents the X-ray diffractograms of the
as-deposited Ti-TM-Si-B2± z coatings in comparison
with the binary TiB2.57. Only peaks corresponding to
the hexagonal-TiB2 phase (SG 191)—in addition to the

Al2O3 substrate—can be indexed. Apart from the amor-
phous Ti0.20Mo0.11Si0.26B0.43, all alloyed coatings exhibit
a single-phased hexagonal structure with broad 001
peaks as the preferred orientation. The high Si content
in Ti0.20Mo0.11Si0.26B0.43 leads to the amorphous char-
acter with diminished peaks. In contrast, the higher Ta-
containing Ti0.28Ta0.07Si0.12B0.53 shows an increase in the
predominant 001 peak intensity accompanied by a shift
towards lower 2θ values, suggesting the dissolution of
Ta in the hexagonal phase. Moreover, the calculated c/a
ratios are in the range between 1.03 and 1.05. The qua-
ternary systems show slightly lower c/a values compared
to the binary TiB2.57 (see Table 1), indicating the substi-
tution of Ti by the dissolved Ta or Mo in the hexagonal
lattice.

Moreover, the mechanical properties (surface hard-
ness and Young’s modulus) of the coatings are summa-
rized in Table 1. The Ta-alloyed coatings maintained rel-
atively high hardness values with an observed hardening
effect by increasing the Ta-Si content from 32.8 to 36GPa
forTi0.31Ta0.04Si0.06B0.59 andTi0.28Ta0.07Si0.12B0.53, respec-
tively. The increase in hardness is related to solid solution
hardening with Ta addition, which was also reported
for other Ta-alloyed borides, i.e. ZrTaB2± z [42] and
WTaB2± z [43]. In contrast, the Ti-Si and Mo-Si alloy-
ing routes lead to decreased hardness with increasing the
alloying content. Generally, the alloying of TiB2± z with
Si was emphasized to result in material softening [27,28].
Grančič et al. reported hardness values between 14 and
24GPa for their amorphous Ti-Si-B2± z films [28]. The
here reported hardness exceeds those values, even at
higher Si-contents. This difference is related to the forma-
tion of single-phase structured coatings and a predom-
inant 001 orientation—being the preferred one for the
anisotropic hardness of hexagonal diborides [8].

Figure 2 summarizes themass change during dynamic
oxidation of Ti-TM-Si-B2± z coatings as a function of the
annealing temperature up to 1400°C. The onset oxida-
tion temperature for the un-alloyed TiB2.57 is observed
to be around 490°C. Above this temperature, the coat-
ing exhibits a mass increase with accelerated oxidation

Table 1. Chemical composition, crystallographic parameters (c/a ratio), and mechanical properties (H and E) for all grown Ti-(TM)-Si-
B2± z coating materials.

Chemical composition [at. %]

Coating material Ti Ta Mo Si B O B/(Ti+ TM) c/a H [GPa] E [GPa]

TiB2.57 27.7 – – – 71.2 1.1 2.57 1.054 38.2± 3.3 552.0± 90.2
Ti0.25Si0.08B0.67 23.9 – – 7.6 65.5 2.6 2.74 1.051 30.4± 1.6 443.9± 21.5
Ti0.26Si0.15B0.59 25.7 – – 14.2 58.2 1.6 2.26 1.054 23.7± 1.0 399.0± 21.5
Ti0.31Ta0.04Si0.06B0.59 30.4 3.7 – 6.1 58.4 1.3 1.72 1.032 32.8± 2.8 439.7± 29.5
Ti0.28Ta0.07Si0.12B0.53 27.7 6.8 – 11.6 52.5 1.3 1.52 1.041 36.0± 2.5 434.8± 26.1
Ti0.24Mo0.05Si0.12B0.59 23.3 – 5.2 11.6 57.4 2.2 2.01 1.042 27.3± 1.0 428.1± 10.0
Ti0.23Mo0.07Si0.16B0.54 22.7 – 6.6 16.2 52.2 2.1 1.78 1.034 24.4± 0.9 409.1± 25.7
Ti0.20Mo0.11Si0.26B0.43 19.8 – 10.3 25.5 42.1 1.8 1.40 – 19.1± 1.0 330.9± 17.4
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Figure 1. X-ray diffractograms of (a) TiB2.57, (b) Ti-Si-B2± z, (c) Ti-Ta-Si-B2± z, and (d) Ti-Mo-Si-B2± z alloyed coatings with their stoi-
chiometries indicated.

kinetics till it is fully oxidized at 975°C, followed by
a mass decrease above 1000°C due to the volatiliza-
tion of B2O3. The ternary Ti-Si-B2± z coatings show
a slight improvement compared to their binary coun-
terpart with a delayed onset at around 550°C for both
Ti0.25Si0.08B0.67 and Ti0.26Si0.15B0.59 (Figure 2(a)). How-
ever, both coatings exhibit the same accelerated oxidation

behavior above the onset temperature and a subsequent
evaporation. In contrast, the alloying with Ta-Si pro-
vides a clear improvement in the oxidation resistance
with a significant shift in the onset temperature up
to 770°C for Ti0.28Ta0.07Si0.12B0.53 (see dark-red line
in Figure 2(b)). Additionally, the slope of the mass
curve reduces significantly till 1000°C—compared to
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Figure 2. Thermogravimetric (TG) curves of mass change during dynamic oxidation of (a) Ti-Si-B2± z, (b) Ti-Ta-Si-B2± z, and (c) Ti-Mo-Si-
B2± z coatings in synthetic air under heating rate of 10°C/min. The TG curve for the binary coating TiB2.57 is indicated by a dashed line in
(a), (b) and (c).

the binary coating—indicating retarded oxidation kinet-
ics due to the formation of protective scales. Fur-
thermore, the Ti-Mo-Si-B2± z coatings exhibit excel-
lent oxidation resistance, where the slope of the mass
gain curves significantly flattens upon alloying. By
increasing the Mo-Si content, the mass signal shows a
plateau over 1000°C indicating the formation of highly
protective oxide scale for both Ti0.23Mo0.07Si0.16B0.54
and Ti0.20Mo0.11Si0.26B0.43, respectively. The observed
enhancement in oxidation resistance for the quater-
nary Ti-TM-Si-B2± z coatings is related to a benefi-
cial phase separation of the silicide phases (TaSi2 and
MoSi2) at around 700°C (also confirmed by XRD anal-
ysis, see in supplementary Figure S1), followed by pref-
erential oxidation of Si to form protective Si-based oxide
scales, which inhibit oxygen inward-diffusion. MoSi2 is
known as an effective oxidation resistant phase due to
the capability to form protective SiO2 scales, especially

at high temperatures. In contrast, TaSi2 is reported to
exhibit a proper oxidation resistance only up to 800°C,
due to competing Ta-based oxides [44,45].

To gain a more detailed understanding on the oxide
scale formation process, the morphology of selected
oxidized samples was investigated using TEM analysis.
Figure 3 presents the cross-sectional TEM analysis for
Ti0.28Ta0.07Si0.12B0.53 after 1 h oxidation in ambient air
at 800°C. The bright-field image shows an oxide scale
of 535 nm on top of an unoxidized intact coating fea-
turing columnar morphology (see Figure 3(a)). In more
detail, the formed oxide scale is composed of two layers
with a distinct interface: an outer dense glassy amorphous
layer with a thickness of 140 nm, and an inner layer com-
posed of mixed equiaxed and columnar crystallites (see
Figure 3(b)). The inner scale exhibits a relatively dense
morphology with small, globular crystallites near to the
coating-oxide interface, while more columnar structures
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Figure 3. TEM analysis of Ti0.28Ta0.07Si0.12B0.53 coating oxidized in ambient air at 800°C for 1 h. (a) BF image of the whole coating with
the substrate at the bottom and oxide scale on top. (b) magnified area of the oxide scale with coating interface. (c) SAED image for the
area indicated in (a). (d) STEM image and corresponding EELS maps for the area illustrated in (b).

with larger grains predominate the upper interface. The
corresponding EELS maps (see Figure 3(d) and the
respective elements) clearly reveal that the outer oxide
scale is Si-rich with small amounts of boron, while the
inner crystalline scale mainly consists of Ti and Ta-based
oxides (Ta is also confirmed by EDX, not shown) with
no boron detected. The formation of an outer dense Si-
rich borosilicate scale is the key to the excellent oxidation
resistancewith retarded kinetics. Furthermore, the SAED
pattern presented in Figure 3(c) reveals an initiation
of phase separation processes between the TiB2-based
matrix and TaSi2 after annealing at 800°C.

Figure 4 depicts the TEM analysis for the air-
annealed Ti0.23Mo0.07Si0.16B0.54 after 1 h at 1200°C. The
unoxidized coating exhibits globular morphology with

clear indications for recrystallization processes as bulk
diffusion was already activated at 1200°C—evidence for
reaching about 0.4 of the melting temperature [46]—(see
Figure 4(a)). Moreover, the BF-image clearly shows a
dense oxide scale of 440 nm which is amorphous accord-
ing to the SAED analysis (see Figures 4(b,c1)). This coat-
ing experienced a separation of the MoSi2 phase as indi-
cated in SAED image (Figure 4(c2)) after the annealing
at 1200°C. The EELS maps in Figure 4(d) reveal that
the oxide scale is based only on Si with no competing
boron. However, boron-rich pockets can be observed at
the coating-oxide interface due to the formation of MoB
phase according to reaction (1). The formation of MoB
was reported by Silvestroni et al. for ZrB2/MoSi2 bulk
system at 1200°C [30]. Here, the seperated MoSi2 phase

Figure 4. TEM analysis of Ti0.23Mo0.07Si0.16B0.54 coating oxidized in ambient air at 1200°C for 1 h. (a) BF image of the whole coating with
the substrate at the bottom and oxide scale on top. (b) magnified area for oxide scale with coating interface. (c1) and (c2) SAED patterns
for areas indicated in (a). (d) elemental EELS maps for the area illustrated in (b).
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beneficially acts as an active reservoir for selective oxi-
dation of Si and the formation of the highly dense and
protective Si-based scale, while concomitantly suppress-
ing the detrimental volatile B2O3 phase (see equation
1).

2MoSi2 + B2O3 + 5
2
O2 = 4SiO2 + 2MoB (1)

To present the best compromise between mechani-
cal properties and oxidation resistance, we correlate in
Figure 5 in an uncommon way the as-deposited hardness
to the oxidation resistance for selected Ti-(TM)-Si-B2± z
coatings in relation to literature data. Please note, that
the oxidation temperature and the given time refer to an
oxidation treatment in air, where a stable and adherent
scale was formed. The unalloyed TiB2± z film exhibits
high hardness of up to 43GPa with the lowest onset oxi-
dation temperature of 400°C as reported by Thörnberg
et al. [16]—see red star in Figure 5. Increasing the alloy-
ing content, in detail Al, the Ti0.9Al0.1B1.3 provides an
improvement in the oxidation resistance up to 600°C
for 10 h, while maintaining a high hardness of 45GPa
[26]. Navidi et al. achieved higher oxidation resistance
for their stoichiometric Ti0.35Al0.65B2.0 at 700°C, while
the high Al-content leads to reduced hardness value of
19GPa [25]. In comparison, Bakhit et al. employed a
lower Al-content tomaintain high hardness of 39GPa for
Ti0.68Al0.32B1.35 leading also to delayed oxidation kinet-
ics at 800°C for 0.5 h [18]. On the other hand, Grančič
et al. reported at 800°C higher scale thickness of 1.2 μm
for their alloyed Ti-Si-B2± z with 20 at. % Si obtaining
only a hardness of 14GPa [28]. Recently, Glechner et al.

highlighted an outstanding oxidation resistance up to
1100°C in synthetic air for the ternary Ti0.13Si0.41B0.46,
while the high Si content results also in reduced hard-
ness of 16GPa [27]. The here described TiB2± z coatings
with alloyed TMSi2 secondary phases exhibit delayed
oxidation kinetics compared to their Al-alloyed coun-
terparts, but a higher hardness with respect to the Si-
alloyed literature data. This data underlines the need for
further alloying concepts, i.e. quaternary diborides. The
Ti0.28Ta0.07Si0.12B0.53 coating exhibits delayed oxidation
kinetics obtaining a scale thickness of 550 nm after 1 h
at 800°C, while featuring a relatively high hardness of
36GPa in the as-deposited state. Moreover, the Ti-Mo-
Si-B2± z alloyed coatings show moderate hardness up to
27GPa, but outperforming all the reported coatings con-
cerning the high-temperature oxidation resistance up to
1200°C due to the formation of protective Si-based scales.
The Ti0.20Mo0.11Si0.26B0.43 coating preserved superior
oxidation resistance at 1200°C by obtaining thin Si-based
scale of 335 nm after 10 h at 1200°C (see in supplemen-
tary Figure S2).

4. Conclusions

In this study, novel quaternary Ti-TM-Si-B2± z coatings
(TM = Mo, Ta) with single-phase AlB2 structures were
deposited by DC magnetron sputtering from alloyed
TiB2 / TMSi2 targets and investigated in comparison
to binary TiB2± z and ternary Ti-Si-B2± z coatings. The
incorporation of TMSi2 in TiB2 yielded mechanically
stable quaternary coatings with significantly improved
high-temperature oxidation resistance compared to their

Figure 5. As-deposited hardness of diverse alloyed TiB2± z coatings in relation to their oxidation temperature Tox. The obtained scale
thickness (at Tox) for each coating is indicated in relation to the reported oxidation time. The as-deposited coating thicknesses are: 2 μm
for Ti0.26Si0.15B0.59, 4.9 μm for Ti0.28Ta0.07Si0.12B0.53, 3.5 μm for Ti0.23Mo0.07Si0.16B0.54, 4.9 μm for Ti0.20Mo0.11Si0.16B0.54, 400 nm for TiB1.43
[16], 980 nm for Ti0.9Al0.1B1.3 [26], 1.3 μm for (Ti0.35Al0.65)B2 [25], ∼ 1.5 μm for (Ti0.68Al0.32)B1.35 [18],and ∼ 1.4 μm for Ti0.13Si0.41B0.46
[27].
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binary and ternary counterparts. The Ti-Ta-Si-B2± z
coatings maintained high hardness up to 36GPa due to
solid solution hardening effect of Ta. In addition, the
Ti0.28Ta0.07Si0.12B0.53 coating exhibited strongly retarded
oxidation kinetics at 800°C owing to the formation of an
oxide scale with an outer protective glassy Si-rich borosil-
icate phase. Furthermore, the Ti-Mo-Si-B2± z alloyed
coatings preserved an outstanding oxidation resistance
up to 1200°C, which is attributed to the selective oxida-
tion of Si and the formation of highly stable and protec-
tive Si-based oxide scales, inhibiting oxygen inward diffu-
sion, while suppressing the formation of the detrimental
volatile B2O3 phase.

The alloying strategy by incorporating TMSi2 phases
into TiB2± z provides a wide playground to stabi-
lize single-phase quaternary Ti-TM-Si-B2± z coatings,
featuring remarkable oxidation resistance and good
mechanical stability. Nevertheless, the B stoichiometry,
as well as high-temperature phase separation processes,
need to be considered for further improvements of these
novel quaternary diborides.
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