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Abstract
Li, C. 2023. Non-coding RNAs and Extracellular Vesicles in Cutaneous Squamous Cell
Carcinoma. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of
Medicine 1965. 75 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1863-9.

Cutaneous squamous cell carcinoma (cSCC) ranks among the most widespread malignancies
with metastatic potential. Investigating the molecular mechanism of tumorigenesis will enhance
our understanding of cSCC. Aberrant expression of non-coding RNAs has been extensively
reported in human cancers. Here, we summarize our work exploring the role of a microRNA
(miRNA) (Paper I) and a long non-coding RNA (lncRNA) (Paper II and III) in cSCC.
Additionally, we discuss the role of cSCC-derived extracellular vesicles (EVs) in tumor
formation (Paper IV).

In Paper I, we explored the function of miR-130a in cSCC. We reported that miR-130a
expression was downregulated in cSCC under the regulation of the MAPK pathway. We
demonstrated a tumor suppressor role of miR-130a in cSCC: ectopic overexpression of
miR-130a suppressed malignant behaviors of human cSCC cells and inhibited primary tumor
growth in cSCC xenograft models. Mechanistically, we revealed a link between MAPK and
BMP/SMAD signaling pathways, which was mediated by the direct target of miR-130a,
ACVR1.

In Paper II, we investigated the role of lncRNA PVT1 in cSCC. Elevated PVT1 expression
in cSCC, under MYC regulation, suggested it may contribute to keratinocyte transformation.
Subsequently, we revealed that PVT1 exerted an oncogenic role in cSCC through regulating
CDKN1A/p21 expression and preventing cellular senescence. We identified exon 2 as a crucial
element for maintaining PVT1's oncogenic role. In Paper III, we further investigated the
underlying mechanism for the oncogenic role of PVT1 in cSCC. Our data revealed that PVT1
is mainly distributed in the nuclei of cSCC cells and the exon 2 is essential for nuclear
localization of PVT1. Furthermore, we identified several subunits of the transcription-export
(TREX) complex as interacting partners of PVT1 and demonstrated that PVT1 modulated the
function of the TREX complex in nuclear export of poly (A)+ RNAs.

In Paper IV, we found that cSCC cells secreted more EVs than primary keratinocytes.
Blocking cSCC EV production suppressed xenograft growth, indicating a crucial role of cSCC
cell-derived EVs in tumor development. Transcriptome analysis on xenograft tissues suggested
that cSCC cell-derived EVs contribute to extracellular matrix organization. Further experiments
indicated that metastatic cSCC cell-derived EVs efficiently educated dermal fibroblasts into
cancer-associated fibroblasts. Additionally, metastatic cSCC cell-derived EVs activated the
TGFβ signaling pathway in dermal fibroblasts. Collectively, our study suggested that cSCC
cell-derived EVs play a key role in regulating cSCC development through modulating cancer-
stroma communication.
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1 Introduction 

1.1 The Structure and Functions of Skin  
Skin is the largest organ of the body, with a surface area of around 2m2, and 
accounting around 15% of the total adult body weight (Kanitakis 2002). The 
primary function of skin is to serve as the outermost protective barrier against 
ultraviolet (UV) light, microorganisms, chemicals and mechanical injury, to 
produce vitamin D, regulate body temperature, prevent water loss and to per-
mit the sensations of touch, heat, and cold (Cartlidge 2000). 

The epidermis, the dermis, and the hypodermis are the three layers made 
up of the skin: 

1.2 The epidermis 
The epidermis is the uppermost layer of the skin which consists of keratinized, 
stratified squamous epitheliumv. It is mainly composed of four layers from 
the basal lamina towards the skin surface: the stratum basale (basal layer), the 
stratum spinosum (spinous cell layer), the stratum granulosum (granular 
layer), and the stratum corneum (cornified layer) (Figure 1). From the stratum 
basale to the stratum corneum, keratinocytes gradually get differentiated and 
form the four functionally different layers of the epidermis (McGrath and 
Uitto 2016). The fifth layer, stratum lucidum, located between the stratum 
corneum and the stratum granulosum, only exist at certain body locations. 

The stratum basale, the bottommost layer of the epidermis, is a single 
layer anchoring the epidermis to the basement membrane. This basal cell layer 
contains the keratinocyte progenitor cells which maintain the epidermis 
throughout the lifetime of an individual. Keratinocytes in this cell layer are 
undifferentiated and constantly divide to produce new cells, pushing older 
cells to move up to the surface of the skin where they undergo terminal differ-
entiation (Fuchs and Green 1980; Fuchs 2008; Krieg, Bickers, and Miyachi 
2010; Yousef, Alhajj, and Sharma 2021).  The stratum spinosum is the thick-
est layer of the epidermis. It contains newly produced keratinocytes from the 
stratum basale which have permanently withdrawn from the cell cycle. The 
stratum granulosum is made of keratinocytes with flatter, more irregular 
morphology and thicker cell membranes. The grainy appearance of this layer 
is due to its keratohyalin granules and lamellar bodies, which create a 
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permeability barrier to water (Ishida-Yamamoto et al. 2004; Yousef, Alhajj, 
and Sharma 2021; Krieg, Bickers, and Miyachi 2010). Keratohyalin granules 
contain the precursor form of filaggrin, called profilaggrin. Filaggrin is a cru-
cial protein that crosslinks with keratin to form a tight barrier in the epidermis 
(Freeman and Sonthalia 2021). Lamellar bodies are secretory structures which 
produce components of the lipid layer essential for stratum corneum homeo-
stasis (Raymond et al. 2008). As keratinocytes mature and move upward, their 
nuclei and other organelles disintegrate, leaving behind keratin, keratohyalin, 
and cell membranes to form the stratum lucidum and stratum corneum. The 
stratum lucidum is a layer existing only on thick skin, such as the palms of 
hands and the soles of the feet (Yousef, Alhajj, and Sharma 2021; Krieg, Bick-
ers, and Miyachi 2010). The stratum corneum is the uppermost layer of the 
skin. Keratinocytes in this layer lose cell organelles, become flattened corne-
ocytes and die. These corneocytes make a barrier for the body and shed ap-
proximately every 14 to 28 days (Blank 1953; Tobin 2006; Krieg, Bickers, 
and Miyachi 2010; Yousef, Alhajj, and Sharma 2021).  

Keratinocytes account more than 90% of the cells in the epidermis. 
Keratinocytes provide structural integrity and physical barrier for the skin 
through producing keratins (intermediate filament proteins) and attaching to 
the basement membrane and other keratinocytes by hemidesmosomes and 
desmosomes (Barbieri, Wanat, and Seykora 2014). Keratinocytes also partic-
ipate in immune response and play an important role in the formation of the 
skin immune barrier through secreting cytokines and antimicrobial peptides 
(Barbieri, Wanat, and Seykora 2014). Besides keratinocytes, the other two 
types of cells in the stratum basale are melanocytes (2-4 % of the cells) and 
Merkel cells (Figure 1). The role of melanocytes is to produce the pigment 
melanin and protect body from ultraviolet radiation (UVR) damage; the role 
of Merkel cells is to serve as a sensation receptor of touch and stimulate sen-
sory nerves. Another type of cell in the stratum spinosum is Langerhans cells 
(Figure 1), which function as macrophages to prevent infection (Yousef, 
Alhajj, and Sharma 2021). 
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Figure 1. Schematic representation of human skin epidermis (created using BioRen-
der). From bottom to the surface of the skin, the epidermis is composed of four layers: 
stratum basale, stratum spinosum, stratum granulosum and stratum corneum. The ma-
jor cell types present in the epidermis including keratinocytes (more than 90% of the 
cells), melanocytes, Merkel cells and Langerhans cells. The stratum lucidum, hair fol-
licles, and other appendages are not shown.  

1.3 The dermis 
The dermis, a connective tissue layer lying between the epidermis and hypo-
dermis, is the thickest layer of the skin. It plays key roles in thermoregulation, 
sensation, skin structure support and protection. The dermis is an integrated 
structure consisting collagen, elastic tissue, hair follicles, blood and lymphatic 
vessels, nerve endings and sweat glands (Krieg, Bickers, and Miyachi 2010).  

The dermis is made of two layers with an indistinct border: the papillary 
dermis and the reticular dermis. The papillary dermis is the upper dermis 
which is composed of loose connective tissue and forms a finger-like border 
with the stratum basale of the epidermis. Reticular layer is the lower dermis 
which is much thicker and composed of dense connective tissue. The dermis, 
rich in extracellular matrix (ECM), contains relatively fewer cells compared 
to the epidermis. 

The predominant cells in the dermis are fibroblasts. They are responsible 
for the production and organization of ECM in dermis to maintain the struc-
tural integrity of connective tissues. Other resident cells in the dermis includes 
endothelial cells, various immune cells (e.g. macrophages, mast cells and 
Schwann cells) and stem cells which interact with fibroblasts and form an in-
tegrated system. 
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1.4 The hypodermis 
Below the dermis is the hypodermis which mainly composed of adipose tis-
sue, connective tissue with larger nerves and blood vessels throughout this 
layer. The hypodermis stores fat and regulates temperature, also provides me-
chanical support to upper layer of the skin (Yousef, Alhajj, and Sharma 2021). 
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2 Cutaneous Squamous Cell Carcinoma 

2.1 Epidemiology 
Cutaneous squamous cell carcinoma (cSCC) is the second most prevalent type 
of human cancer which is marked by abnormal, accelerated proliferation of 
epidermal keratinocytes. The incidence of cSCC continues to rise especially 
in Caucasian populations (Nehal and Bichakjian 2018; Rogers et al. 2015). In 
the United States, there is an estimated incidence of 1 million cases of cSCC 
each year in the Medicare population (Rogers et al. 2015; Muzic et al. 2017). 
The long-term increasing incidence of cSCC is seen in European countries as 
well (Rudolph et al. 2015; Brewster et al. 2007; Birch-Johansen et al. 2010). 
For example, Germany reported a 187% increase in the age-standardized in-
cidence rate for cSCC from 1998 to 2010, and a 141% increase for basal cell 
carcinoma (BCC), another keratinocyte carcinoma (Rudolph et al. 2015). In 
Sweden, cSCC is the fastest increasing type of skin cancer. During the last ten 
years, the incidence of skin cancer increased 4.6% per year among men and 
increased 5.7% per year among women (Statistik Om Cancer, 
https://www.cancerfonden.se/om-cancer/statistik/hudcancer). Over the last 
twenty years, the increase for men was 4.8% per year and for women was 
6.2% per year (Statistik Om Cancer). Here, the incidence of skin cancer was 
analyzed excluding melanoma and BCC, which essentially revealed an in-
creasing trend in cSCC. Until 2021, the growth trend of cSCC in Sweden 
showed no sign of slowing down, instead, has become more intense (Figure 
2). Most cSCC can be surgically excised and thus show a favorable prognosis, 
however, unlike extremely rare metastasis in BCC, cSCC is one of the com-
mon cancers with the potential to metastasize (Que, Zwald, and Schmults 
2018a). Around 4% of cSCC patients have lymph node metastases which will 
lead to a dramatic drop on their ten-year survival rate (Corchado-Cobos et al. 
2020). Even though metastasis is not that frequent, due to its high incidence, 
cSCC is the second leading cause of skin cancer-related death after melanoma 
and cause a major public health concern (Corchado-Cobos et al. 2020).  
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(Source: Swedish National Board of Health and Welfare) 

Figure 2. From 1980 to 2021, the age-standardized incidence of cSCC in Sweden, 
excluding malignant melanoma and basal cell carcinoma, was recorded per 100,000 
inhabitants, with population standardization based on the year 2000, for both women 
and men. cSCC, cutaneous squamous cell carcinoma. 

2.2 Risk factors 
Risk factors for cSCC include chronic UVR exposure, fair skin, older age, 
male sex and immunosuppression (Nagarajan et al. 2019; Que, Zwald, and 
Schmults 2018a; Corchado-Cobos et al. 2020; Gloster and Neal 2006; Ober-
yszyn 2008; Xiang et al. 2014).  

Chronic exposure to UVR (primarily UVA- and UVB radiation) is the most 
dominant risk factor for cSCC. UVR is capable of triggering DNA damage in 
cells. In response to this damage, cells activate a complex network of path-
ways known as the DNA damage response (DDR). However, a portion of this 
damage may remain unrepaired, eventually accumulating over time and trig-
gering tumorigenesis. The UV signature mutation refers to the C to T substi-
tution at a dipyrimidine site (Douglas E. Brash 2015). Interestingly, this UVR-
induced C to T mutation has been observed in the tumor suppressor gene TP53 
not only in cSCCs, but also in the premalignant cutaneous lesions - actinic 
keratosis, and even in UVR-exposed normal skin (Ren et al. 1996; Jonason et 
al. 1996; Nelson et al. 1994; Pierceall et al. 1991; Campbell et al. 1993; Mar-
tincorena et al. 2015).  
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Xeroderma pigmentosum (XP), first described by Moritz Kaposi in 1870, 
is a genetic disease with hypersensitivity to UVR and defective repair of UV-
induced DNA damage (Kraemer, Lee, and Scotto 1987). Patients with XP 
carry a higher proportion of C to T mutations. It has been reported that the 
incidence of cSCC or BCC was 4800 times greater in patients with XP than 
general population in the United States (Kraemer, Lee, and Scotto 1987; Stary 
and Sarasin 2002; Kraemer, Lee, and Scotto 1984). The median age of XP 
patients with skin cancer is 8 years old which is nearly 50 years younger than 
that in general population (Kraemer, Lee, and Scotto 1987). Epidermolysis 
bullosa (EB) is a group of rare genetic disorders characterized by mucocuta-
neous fragility and blister formation. Patients with EB, especially the severe 
subtype recessive dystrophic epidermolysis bullosa (RDEB), are susceptible 
to development lethal, metastatic cSCC and have a low age of onset (Dayal et 
al. 2021; Montaudié et al. 2016; Duong et al. 2021). The mechanisms under-
lying the high incidence of cSCC in patients with RDEB are not fully under-
stood, but lack of DDR is thought to be one of the contributing factors. Alt-
hough XP and EB are rare diseases, they are good models for confirming the 
link between UV-induced DNA damage and skin cancer proneness. 

Immune systems of organ transplant recipients (OTRs) are permanently 
suppressed by using immunosuppressive medications to prevent graft rejec-
tion. As a result, immunodeficiency makes OTRs at a high risk for developing 
malignant tumors with the most prominent risks for cSCC (Jensen et al. 1999; 
Lindelöf et al. 2000; Euvrard, Kanitakis, and Claudy 2003; Krynitz et al. 
2013). A Swedish population-based study revealed that the risk of post-trans-
plant cSCC shot up 100-fold overall, with 198-fold increase in heart and/or 
lung recipients, 121-fold in kidney recipients and 32-fold in liver recipients 
and the risk substantially and dramatically increased along with follow-up 
time (Krynitz et al. 2013). 

2.3 Molecular pathogenesis  
The development of cSCC involves a multistep process marked by a progres-
sion from preliminary stages, including premalignant cutaneous lesions such 
as actinic keratosis (AK) or cutaneous squamous cell carcinoma in situ 
(cSCCIS), to invasive cSCC, and ultimately metastatic SCC (Que, Zwald, and 
Schmults 2018a; Ratushny et al. 2012). AK, also known as solar keratosis, is 
a benign epidermal lesion due to proliferation of atypical keratinocytes. Long-
term exposure to UVR is the common predominant risk factor shared by AK 
and cSCC (Reinehr and Bakos 2019). An estimated 65% of cSCC arise from 
AK, making AK the most common premalignant lesion of cSCC (Criscione 
et al. 2009). cSCCIS, also referred to as Bowen's disease, is non-invasive cu-
taneous malignancy commonly found on sun-exposed skin. cSCCIS is 
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generally restricted to the epidermis, while approximately 5% of untreated 
cSCCIS will progress into invasive cSCC (Kao 1986). 

Identifying the driver mutations of cSCC will broaden our understanding 
about the disease and contribute to the development of targeted therapies and 
personalized cancer management. However, as a consequence of UVR-in-
duced DNA damage, cSCC is one of the most highly mutated cancers, bearing 
a mean somatic mutation rate of 50 mutations per megabase pair DNA (Pick-
ering et al. 2014; Y. Y. Li et al. 2015; South et al. 2014; Inman et al. 2018). 
The high level of background mutations presents challenges in determining 
the specific genomic changes driving the progression of cSCC. Among the 30 
distinct cancer mutational signatures described by the Catalogue of Somatic 
Mutations in Cancer (COSMIC) project (http://cancer.sanger.ac.uk/cos-
mic/signatures), signature 7, also known as “UV Signature”, exists in most 
cases of cSCCs (Inman et al. 2018). Signature 7 is characterized by C to T 
mutations at dipyrimidine sites. Signature 32 is a novel mutational signature 
discovered in immunosuppressed patients who have received immunosup-
pressant drug including azathioprine (Inman et al. 2018). Signature 32 is 
marked by a predominant occurrence of C to T mutations (75%), along with 
C to A, T to A, and T to C mutations.  

Despite the presence of this immunosuppression-associated mutational sig-
nature, both immunosuppressed and immunocompetent patients with cSCC 
share common driver gene mutations (Inman et al. 2018). Well accepted cSCC 
driver genes include TP53, NOTCH1/2 and CDKN2A (Y. Y. Li et al. 2015; 
Pickering et al. 2014; Inman et al. 2018; Chang and Shain 2021). TP53 muta-
tion was reported in 54%-90% patients with cSCC (D. E. Brash et al. 1991; 
Ziegler et al. 1994; D. E. Brash 2006). Mutated TP53 fails to maintain ge-
nomic stability and results in the accumulation of a serial of gene mutations 
(South et al. 2014; Cho et al. 2018; Chitsazzadeh et al. 2016; Inman et al. 
2018; Cammareri et al. 2016). Loss-of-function mutation of tumor suppressor 
genes NOTCH1 or NOTCH2 occurs in 75%-82% of cSCCs (South et al. 2014; 
N. J. Wang et al. 2011). p16INK4a and p14ARF, encoded by CDKN2A gene, are 
two crucial cell cycle regulators in the p53 and RB pathways. Inactivation of 
either p16INK4a or p14ARF may results in endless cell cycling and cell dividing 
(V. L. Brown et al. 2004). HRAS is mutated in about 3%-20% in cSCC (Pick-
ering et al. 2014; Y. Y. Li et al. 2015; South et al. 2014). Aberrant activation 
of RAS leads to overactive PI3K/AKT/mTOR and RAS/RAF/ERK signaling 
pathways subsequently. A recent meta-analysis performed on exome-se-
quencing data nominated 30 driver mutations for cSCC (Chang and Shain 
2021) (Figure 3). In addition to those well-known mutations, multiple novel 
driver mutations for cSCC were identified, including EP300, PBRM1, USP28 
and CHUK (Chang and Shain 2021). Following the mutations of individual 
genes, a succession of signaling pathways are disturbed in cSCC (Figure 3). 
The NOTCH pathway and the p53 pathway are perturbed in most cases of 
cSCC: loss-of-function mutations within the NOTCH pathway occur in 80% 
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of the cases, and loss-of-function mutations within the p53 pathway are pre-
sent in 71% of the cases (Chang and Shain 2021). Furthermore, mutations 
(primarily affecting CDKN2A) involved in cell cycle regulatory pathways ex-
ist in around 39% of cSCCs (Chang and Shain 2021). Additionally, mutations 
that activate the MAPK and/or PI3K pathways are found in approximately 
31% of cSCCs (Chang and Shain 2021). Collectively, exome-sequencing 
studies revealed a surprising complexity of the cSCC genome, with a striking 
heterogeneity in the driver genes. 

Surprisingly, AK and cSCC show strikingly similarity in terms of average 
tumor mutational burden and patterns of driver gene mutations (Thomson et 
al. 2021). UV-radiation-induced TP53 mutation is an important early event 
observed from AK to cSCC (Nelson et al. 1994; Kubo et al. 1994; Thomson 
et al. 2021; Zheng et al. 2021). Transcriptome analysis was conducted to fur-
ther elucidate key molecular events associated with progression from 
premalignant AK to invasive cSCC, which identified the MAPK pathway as 
a critical determinant of AK to cSCC progression (Lambert et al. 2014). In 
cSCC, the MAPK pathway can be activated due to RAS mutations, and another 
common cause is overexpression of EGFR (Shimizu et al. 2001). EGFR is a 
transmembrane tyrosine kinase growth factor receptor that transmits growth-
stimulatory signals to cells upon binding with peptide growth factors of the 
EGF family of proteins (Normanno et al. 2006). Eventually, activated MAPK 
pathway contributes to cell transformation through allowing evasion of apop-
tosis and unrestricted cell proliferation.  

Overall, the significant genetic heterogeneity of cSCCs is in line with the 
wide-ranging phenotypic diversity observed in patients. While TP53 and 
NOTCH stand out as principal driver mutations, present in the majority of 
cSCCs, the existence of numerous other mutations across patients underscores 
the intricate and varied genetic landscape underlying cSCC development and 
highlights the need for a comprehensive understanding of the underlying ge-
netic factors contributing to this disease. Such knowledge is crucial for the 
development of targeted therapies and personalized treatment approaches tai-
lored to the unique genetic makeup of individual cSCC cases. 
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(Adapted Chang, Darwin, et al. NPJ genomic medicine 6.1 (2021): 61.) 

Figure 3. The landscape of genomic mutations in cSCC. A total of 30 cancer genes 
were identified through the meta-analysis of exome-sequencing data in cSCC, reveal-
ing disrupted signaling pathways. cSCC, cutaneous squamous cell carcinoma. 

2.4 Treatment 
Surgical excision remains the first-line treatment option for the majority of 
cSCC patients (Work Group et al. 2018; E Maubec 2020). In addition, de-
struction (cryosurgery, electrodessication and curettage, and chemical peels), 
light-based therapies (photodynamic therapy and lasers), radiation, topical 
treatment (e.g., imiquimod and tazarotene) are options for primary superficial, 
low-risk cSCCs (Nagarajan et al. 2019). For advanced and unresectable 
cSCCs, the first line therapy is PD-1 inhibitor-cemiplimab mediated immuno-
therapy (E Maubec 2020). Cemiplimab is the first drug approved by the 
United States Food and Drug Administration (FDA) and the European Medi-
cines Agency (EMA) for the treatment of advanced cSCC, which functions 
through blocking PD-L1/PD-1 axis mediated cancer immune evasion and al-
low the immune system to recognize and attack cancer cells more effectively 
(Migden et al. 2018). Cemiplimab induces response in approximately half the 
advanced cSCCs accompanied with side effects such as diarrhea, fatigue, nau-
sea, constipation and rash (Migden et al. 2018). However, for immunocom-
promised individuals whose immune system is not functioning optimally, 
such as OTRs who are receiving medications to prevent organ transplant re-
jection, PD-1 inhibitor increases the risk of severe side effects and have po-
tentially compromised treatment efficacy. Second line therapy is cisplatin- or 
carboplatin-based chemotherapy, which shows clinical response rate lower 
than 30% and severe adverse events (Que, Zwald, and Schmults 2018b; Cran-
mer, Engelhardt, and Morgan 2010). Newer alternative for second line therapy 
is EGFR inhibitor mediated targeted therapy (E Maubec 2020). Considering 
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the prevalence of EGFR overexpression in cSCC, EGFR inhibitors are tested 
to treat cSCC. Two types of EGFR inhibitors are designed to inactivate down-
stream RAS/RAF/ERK and PI3K/AKT/mTOR signaling pathways: monoclo-
nal antibodies (e.g., cetuximab, panitumumab) blocking the binding of ligands 
and receptor; tyrosine kinase inhibitors (TKIs) (e.g., gefitinib, erlotinib) abol-
ishing the tyrosine kinase activity (Corchado-Cobos et al. 2020). EGFR inhib-
itors induce a moderate response in the treatment of cSCC but the usage is 
limited by severe side effects (Que, Zwald, and Schmults 2018b; Eve Maubec 
et al. 2011). 
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3 Non-Coding RNA 

In the human genome, more than two-third of the DNA is transcribed, how-
ever the vast majority of them do not encode protein and only 2% genomic 
DNA is translated into protein (Iyer et al. 2015; ENCODE Project Consortium 
et al. 2020). The function of transcripts that are not used for encoding for pro-
teins is still unclear, but increasing evidence suggests that they may be in-
volved in both physiological and pathological processes. Collectively, these 
transcripts are called non-coding RNAs. Based on the length and function, 
noncoding RNAs (ncRNAs) are classified into different categories: small 
noncoding RNAs, shorter than 200 nucleotides (such as microRNAs and piwi-
interacting RNAs (piRNAs)) and long noncoding RNAs that are longer than 
200 nucleotides.  

3.1 MicroRNAs 
MicroRNAs (miRNAs) is a dominating class of endogenous small noncoding 
RNAs with the length of ~22 nucleotides, which function as critical regulators 
of gene expression through mediating RNA silencing (Ha and Kim 2014). The 
first miRNA lin-4 miRNA was discovered in Caenorhabditis elegans in 1993 
(R. C. Lee, Feinbaum, and Ambros 1993). Lin-4 was first identified as an im-
portant development timing regulator of Caenorhabditis elegans in the mid of 
1970s (R. Lee, Feinbaum, and Ambros 2004). However, it took almost two 
decades to further characterize it as a short noncoding RNA with 22 nucleo-
tides which could regulate the expression of lin-14 mRNA at the post-tran-
scriptional level through binding to its 3’UTR region (R. C. Lee, Feinbaum, 
and Ambros 1993; R. Lee, Feinbaum, and Ambros 2004; Wightman, Ha, and 
Ruvkun 1993). The second miRNA, let-7, also an important regulator of de-
velopmental timing in Caenorhabditis elegans, was identified in 2000, seven 
years after the discovery of lin-4 (Reinhart et al. 2000). Let-7 miRNA is a 21 
nucleotide-long miRNA, which regulates lin-41 mRNA expression post-tran-
scriptionally through binding to its 3’UTR (Reinhart et al. 2000). Since then, 
the studies on miRNAs showed a booming development trend. 
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3.1.1 MiRNA biogenesis and mode of action 
In the canonical miRNA biogenesis pathway (Figure 4), genes encoding miR-
NAs are transcribed by RNA polymerase II or (more rarely) by polymerase 
III in the cell nucleus as long primary miRNAs (pri-miRNAs, typically over 1 
kb) which are 5’ capped and 3’ polyadenylated and contain one or more hair-
pin loop structures (Ha and Kim 2014; Winter et al. 2009). Pri-miRNAs are 
further processed by nuclear ribonuclease III–like endonuclease Drosha and 
its essential cofactor DGCR8 into a shorter hairpin loop structure (~65 nt), 
named precursor miRNAs (pre-miRNAs) (Ha and Kim 2014; Y. Lee et al. 
2003). Pre-miRNAs are subsequently exported by exportin 5 to cytoplasm 
where they are cleaved by cytoplasmic ribonuclease III–like endonuclease 
Dicer to mature miRNAs duplex (Ha and Kim 2014; Lund et al. 2004). Mature 
miRNAs arising from the 5′ arm and 3’ arm of the hairpin are labelled with -
5p and -3p suffixes, respectively (Griffiths-Jones 2004). One strand (guide 
strand) of the mature miRNAs is anchored to Argonaute (AGO) family pro-
teins (AGO1-4) and form a miRNA-induced silencing complex (miRISC), 
while the other strand (sometimes called “passenger” strand) will be released 
and degraded (Ha and Kim 2014). However, it has been reported that passen-
ger strand miRNAs can also be functional (J.-S. Yang et al. 2011).  MiRNAs 
guide AGO proteins to target transcripts through Watson–Crick pairing be-
tween miRNA “seed” region (nucleotides 2–7 of the 5’ end of the miRNA) 
and miRNA recognition elements that are usually within the 3’UTR of 
mRNAs (Bartel 2018). The length of base pairing between miRNA and target 
mRNA can be as little as 6 nucleotides (6mer site), and extended to the 8th 
nucleotide of miRNAs (7mer-m8) or start from the first miRNAs nucleotide-
A (7mer-A1), or both (8mer) (Bartel 2018). Eventually, miRISCs lead to dead-
enylation-induced mRNA decay or translational repression (Bartel 2018). 
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(Adapted Winter, Julia, et al. Nature cell biology 11.3 (2009): 228-234.) 

Figure 4. Schematic model of canonical miRNA biogenesis. Pri-miRNA is tran-
scribed by RNA polymerase II or III and processed to pre-miRNA by the micropro-
cessor complex Drosha–DGCR8 in the nucleus. Pre-miRNA is exported to cytoplasm 
by exportin 5 and cleaved to mature length by RNase Dicer. The guide strand of the 
mature microRNA binding with Ago proteins forms miRISC, whereas the passenger 
strand is degraded. miRISCs regulate target transcripts expression through inducing 
mRNA decay or translational repression. miRNA: microRNA, pri-miRNA: primary 
miRNA, pre-miRNA: precursor miRNA, Ago: Argonaute, miRICS, miRNA-induced 
silencing complex. 

3.1.2 MiRNAs in cancers 
Many miRNAs are conserved among species and highly conserved miRNAs 
have very many conserved targets (exceeds 400 conserved targets per miRNA 
family) (Bartel 2009). As more than half of human protein-coding genes are 
conserved targets of miRNAs, miRNAs are involved in almost all cellular pro-
cesses, highlighting their significant biological importance (Friedman et al. 
2009). The regulation of miRNAs in biological pathways relies on precise 
temporal and spatial control of miRNA biogenesis pathways in normal phys-
iology. However, the dysregulation of miRNAs expression (usually downreg-
ulation) driven by genetic, epigenetic or transcriptional mechanisms is closely 
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linked to diseases, especially tumorigenesis (Jansson and Lund 2012; Lu et al. 
2005). In 2002, Calin, George Adrian, et al. (George Adrian Calin et al. 2002) 
reported that the deletion of two miRNA genes (miR-15 and miR-16) at 13q14 
widespread in the majority of chronic lymphocytic leukemia. This is the first 
time that miRNAs were associated with cancer. Two years later, they further 
proposed that miRNA genes are nonrandomly distributed in the human ge-
nome but frequently located at cancer-associated genomic regions or in fragile 
sites (G. A. Calin et al. 2004). These studies suggest the extensive involvement 
of miRNA in cancer rather than a random event. As of 2023, there have been 
over 76,000 scientific publications on miRNAs in cancer (PubMed).  

The expression and functions of diverse miRNAs have been investigated 
and reviewed in different kinds of cancers where they function as either onco-
genes or tumor suppressors (Jansson and Lund 2012; George A. Calin and 
Croce 2006; Garzon et al. 2006). Oncogenic miRNAs usually target and de-
crease the expression of genes suppressing tumorigenesis, for example, the 
tumor suppressor gene PTEN is one of the validated targets of miR‑17‑92 
cluster (Takakura et al. 2008; Mu et al. 2009; Olive et al. 2009). The 
miR‑17‑92 cluster, encoded within an 800 bp region on human chromosome 
13, is a group of sequence highly conserved miRNAs with cooperative func-
tions, including miR‑17, miR‑18a, miR‑19a, miR‑19b, miR‑20a and miR‑92a 
(Ota et al. 2004). The miR‑17‑92 cluster is one of the most extensively studied 
oncogenic miRNAs, which participates in the formation and development of 
multiple cancers through promoting cell proliferation, inhibiting cell apoptosis 
and inducing angiogenesis (Takakura et al. 2008; Chen et al. 2011; Mu et al. 
2009).  

Target genes of tumor suppressor miRNAs usually exert oncogenic roles. 
MiR-34a is a well-characterized tumor suppressor miRNA that is ubiquitously 
expressed in normal cells and downregulated in cancers (Tazawa et al. 2007; 
Qiao et al. 2015; Xi Wang et al. 2015). Similar to other conserved miRNAs, 
many target genes have been validated for miR-34a. MiR-34a regulates the 
migration, invasion, and metastasis of prostate cancer stem cells by directly 
targeting and regulating CD44 expression (Liu et al. 2011). In breast cancer, 
MiR-34a regulates therapy resistance by directly targeting and regulating the 
expression levels of HDAC1 and HDAC7 (Wu et al. 2014). Additionally, 
MiR-34a plays a role in immune response regulation in acute myeloid leuke-
mia by directly targeting and regulating the expression level of the immune 
evasion mediator PD-L1 (Xi Wang et al. 2015). Therefore, it is not uncommon 
for a single miRNA to target multiple genes, and miRNAs regulate biological 
processes by influencing a network of target genes. 

3.1.3 MiRNAs in cutaneous squamous cell carcinoma 
Analysis of miRNA expression in cSCC by our group and other groups 
demonstrated that miRNA-expression is altered in cSCC (N. Xu et al. 2012; 
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Lohcharoenkal et al. 2021; 2016; A. Wang et al. 2014; Fleming et al. 2013; 
Lefort et al. 2013; Yamane et al. 2013; Dziunycz et al. 2010; Darido et al. 
2011; X. Li, Huang, and Yu 2014). Upregulated oncogenic miRNAs promote 
cSCC through inhibiting the expression of their target genes. For instance, our 
group identified miR-31 as an upregulated miRNA in cSCC, which promotes 
cell motility and colony formation ability of cSCC cells (A. Wang et al. 2014). 
MiR-21, a well-known oncogenic miRNA overexpressed in several types of 
carcinomas, also contributes to cSCC via regulating GRHL3-PTEN axis 
(Darido et al. 2011) and TIMP3/PI3K/AKT axis (Yin and Lin 2021). Elevated 
level of miR-365 promotes cSCC through targeting and suppressing the ex-
pression of the tumor suppressor gene HOXA9 (L. Zhou et al. 2018) and NFIB 
(M. Zhou et al. 2014). Down-regulated tumor suppressor miRNAs (more com-
mon in cSCC according to our and other groups’ data) increase the expression 
of their target genes and promote cSCC. Our group found that decreased miR-
125b results in enhanced expression of MMP13, MMP7 and MAP2K7 (N. Xu 
et al. 2012). Another study from our group reported that the expression of 
miR-203 is downregulated in cSCC and inversely correlates with differentia-
tion grade (Lohcharoenkal et al. 2016). MiR-203 functions as a tumor sup-
pressor in cSCC through directly targeting c-MYC (Lohcharoenkal et al. 
2016). Moreover, decreased miR-34a results in enhanced expression of 
HMGB1 (S. Li et al. 2021) and SIRT6 (Lefort et al. 2013). Decreased miR-
199a results in enhanced expression of CD44 (S.-H. Wang et al. 2014), 
BCAM, FZD6 and DDR1 (B.-K. Kim, Kim, and Yoon 2015). The important 
roles of miRNAs in cSCC have been revealed by these intensive studies, how-
ever, there are still quite a lot of miRNAs whose function remain to be char-
acterized in cSCC, and only a fraction of miRNAs whose expression is altered 
in cSCC has been investigated in mechanistic studies. 

3.2 Long non-coding RNAs 
Long non-coding RNAs (lncRNAs) are defined as a group of RNA molecules 
with a length greater than 200 nucleotides and an apparent lack of protein-
coding function (Guttman et al. 2009; Mattick and Rinn 2015). H19 is the first 
lncRNA discovered in 1990 (Brannan et al. 1990), followed by X-inactivate-
specific transcript (XIST) as the second discovered lncRNA in 1991 (C. J. 
Brown et al. 1991). LncRNAs represent the major fraction of noncoding tran-
scripts in humans. The current GENCODE Release (version 39) comprises 
18,811 lncRNA genes encoding 53,009 lncRNA transcripts (GENCODE - 
Human Release Statistics, https://www.gencodegenes.org/human/stats.html). 
While lncRNAs were discovered around the same time as miRNAs and con-
stitute a larger proportion of the human genome, our understanding of 
lncRNAs remains limited due to their structural and functional heterogeneity, 
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as well as the fact that most investigations have primarily focused on protein-
coding genes. 

3.2.1 Characteristics and genomic location of lncRNAs 
LncRNAs are transcribed by RNA polymerase II so they share some similarity 
with mRNAs on post-transcriptional modification, such as 5' capping, splicing 
and 3' polyadenylation (Djebali et al. 2012; Derrien et al. 2012; Melé et al. 
2017). However, lncRNAs are more preferentially localized in nucleus while 
mRNAs are transported to the cytoplasm for translation (Zuckerman and 
Ulitsky 2019). LncRNAs residing in the cell nucleus are largely inefficiently 
polyadenylated and spliced (Melé et al. 2017; Cabili et al. 2011; C.-J. Guo et 
al. 2020; Schlackow et al. 2017). For instance, MALAT1 and MEN β are two 
lncRNAs localized on nuclear speckles and paraspeckles (Hutchinson et al. 
2007; Sunwoo et al. 2009). They lack poly (A)-tails, instead, they are cleaved 
by RNase P and form triple helical structures which protect them from 3'–5' 
exonucleases and enhance their stabilization (Wilusz et al. 2012; J. A. Brown 
et al. 2012; Quinn and Chang 2016). In contrast to protein-coding RNAs, 
whose sequence is evolutionarily conserved and closely associated with the 
function of the encoded protein, the low sequence conservation and the uncer-
tain relationship between the lncRNA sequence and its function largely slow 
down the annotation of the functions of lncRNAs. Furthermore, lncRNAs, in 
general, have lower level of expression, and show cell type–specific expres-
sion patterns (Djebali et al. 2012; Derrien et al. 2012; Sarropoulos et al. 2019). 
These characteristics make the research for lncRNA-functions more challeng-
ing than that for protein-coding genes and make the functional importance of 
some of the lncRNAs debatable.  

LncRNAs are a class of heterogeneous transcripts. The widely used classi-
fication for lncRNAs is based on their genomic localization relative to anno-
tated protein-coding genes or DNA elements (Figure 5), and they are defined 
as: (i) long intergenic RNAs (lincRNAs): transcribed from regions between 
two coding genes; (ii) intronic lncRNAs: transcribed from the introns of cod-
ing genes; (iii) natural antisense transcripts (NATs): overlapped with mRNAs 
originating from their complementary strands; (iv) bidirectional RNAs: tran-
scribed in the opposite direction with respect to the protein coding gene, but 
are located within 1 kb from its promoter region; and (v) enhancer RNAs (eR-
NAs): transcribed from enhancer regions and have enhancer like-function 
(Fernandes et al. 2019; Kopp and Mendell 2018). 
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(Adapted Fernandes, Juliane CR, et al. Non-coding RNA 5.1 (2019): 17.) 

Figure 5. Schematic model of long noncoding RNAs (lncRNAs) classification ac-
cording to genomic localization: i) long intergenic RNAs (lincRNAs), ii) intronic 
lncRNAs, iii) natural antisense transcripts (NATs), iv) bidirectional lncRNAs and (v) 
enhancer RNAs (eRNAs).   

3.2.2 Subcellular localization and modes of action of lncRNAs 
LncRNAs were historically ignored or considered as transcriptional noise. 
However, with the development of high-throughput genomic platforms, a 
growing number of lncRNAs have been identified as gene expression regula-
tors and play significant regulatory roles in almost every biological process, 
as well as pathological processes (Ponjavic, Ponting, and Lunter 2007; Ulitsky 
and Bartel 2013; Perry and Ulitsky 2016; Jandura and Krause 2017). Today, 
we know that lncRNAs can regulate gene expression at epigenetic, transcrip-
tional, or post-transcriptional levels through interacting with proteins, DNA, 
and RNA (K. C. Wang and Chang 2011; Mattick et al. 2023). The molecular 
mechanisms of function largely depend on their subcellular localization (Fig-
ure 6): 

In nucleus: LncRNAs resident in nucleus play a crucial role in the regula-
tion of gene transcription in cis or in trans (Long et al. 2017). (A) Enhancer 
RNAs are transcribed from active enhancer regions and they exert functional 
impact on transcriptional regulation through contributing to enhancer activity. 
(B) LncRNAs can function as scaffolds and recruit protein complex to the 
gene locus or the entire chromosome. Xist, one of the most intensively inves-
tigated lncRNAs, is a critical regulator of X-chromosome inactivation in 
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female embryonic development (Furlan and Rougeulle 2016; Jégu, Aeby, and 
Lee 2017; da Rocha and Heard 2017; Sahakyan, Yang, and Plath 2018; Brock-
dorff, Bowness, and Wei 2020; Markaki et al. 2021). Strikingly, a total 50 
pairs of Xist lncRNAs (100 Xist molecules per cell), located at 50 spots along 
the X chromosome, silence all genes across the entire X-chromosome through 
recruiting a wide spectrum of chromatin architecture regulators, silencing and 
accessory proteins (Markaki et al. 2021). (C) LncRNAs can block the binding 
of transcription factors by acting as “decoys”. For example, nuclear lncRNA 
GAS5 functions as decoy of transcription factor CEBPB and abolishes the 
transcription-promoting effect of CEBPB on growth differentiation factor 15 
(GDF15) (L. Guo and Wang 2019). (D) LncRNAs may also regulate gene 
transcription through modifying the spatial conformation of chromosomes. 
(E) LncRNAs could modulate pre-mRNA alternative splicing through inter-
acting with splicing factors. 

In cytoplasm: (F) LncRNAs localized in cytoplasm can regulate mRNA 
stability through recruiting RNA binding proteins (RBPs) that promote 
mRNA decay. For example, 1/2-sbsRNAs are a group of lncRNAs who bind 
with Alu elements in the 3′UTR region of targeted mRNAs by imperfect base-
pairing and recruits RBP STAU1 to induce STAU1-mediated mRNA decay 
(Gong and Maquat 2011). (G) LncRNAs can also recruit translation suppres-
sive or promoting RBPs to regulate mRNA translation. Cytoplasmic lncRNA 
GAS5 directly binds with eukaryotic translation initiation factor-4E (eIF4E) 
and inhibits the initiation of translation on c-MYC mRNA (Hu, Lou, and 
Gupta 2014). (H) LncRNAs, especially circular RNAs, may work as compet-
ing endogenous RNAs (ceRNAs) to completely bind with miRNAs and stabi-
lize mRNA. Circular RNA_LARP4 suppresses malignant behaviors of gastric 
cancer cells by sponging miR-434 and stabilize LATS1 mRNA (J. Zhang et 
al. 2017). In breast cancer, lncRNA-PNUTS localized in cytoplasm acts as a 
competitive sponge for miR-205 to stabilize ZEB mRNA and further promote 
epithelial–mesenchymal transition (EMT) (Grelet et al. 2017). (I) Although 
not common, some of lncRNAs have the ability to encode functional polypep-
tides, challenging the clear separation of coding and non-coding RNAs. 
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(Adapted Morlando, et al. Frontiers in medicine 2 (2015): 23.) 

Figure 6. The modes of lncRNA function are associated with their subcellular local-
ization. LncRNAs accumulated in nucleus execute transcription regulatory functions 
through acting as enhancer RNAs (eRNAs) (A); recruiting chromatin modifiers (B) 
or transcription factors (C) and modifying the spatial conformation of chromosomes 
(D) or influencing pre-mRNA splicing (E). LncRNAs localized in cytoplasm regulate 
mRNA expression through influencing mRNA stability (F) or mRNA translation (G); 
completely binding with miRNAs and stabilize mRNA (H). Moreover, there is a small 
proportion of lncRNAs encode polypeptides (I). lncRNAs: long noncoding RNAs 

3.2.3 LncRNA in cutaneous squamous cell carcinoma 
RNA-sequencing of cSCC and healthy skin samples performed by our group 
identified 908 annotated lncRNAs differentially expressed in cSCC (Das Ma-
hapatra et al. 2020). Among differentially expressed lncRNAs in cSCC, 319 
were upregulated including oncogenic lncRNAs SNHG12, CASC9, LUCAT1 
and PVT1, while 589 were downregulated including tumor suppressor 
lncRNA TINCR (Das Mahapatra et al. 2020). LncRNA TINCR-terminal dif-
ferentiation-induced ncRNA, is a key regulator for human epidermal differen-
tiation which post-transcriptionally regulates the abundance of a bunch of dif-
ferentiation genes such as FLG, LOR, KRT1 and KRT10 (Kretz et al. 2013). 
Deficiency of lncRNA TINCR results in abnormal epidermal differentiation 
and lack of intact keratohyalin granules and lamellar bodies (Kretz et al. 
2013). Consistently, the expression level of lncRNA TINCR decreases in 
cSCC (Kretz et al. 2013) and lncRNA TINCR promotes apoptosis and 
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autophagy via the ERK1/2-SP3 axis in cSCC cells (W. Zhou et al. 2019). An-
other tumor suppressor lncRNA show decreased expression in cSCC is GAS5 
(T.-H. Wang et al. 2017). Overexpression of lncRNA GAS5 inhibits cell pro-
liferation and promotes apoptosis in cSCC cells (T.-H. Wang et al. 2017). 
Conversely, oncogenic lncRNAs show upregulated expression in cSCC. 
LncRNA MALAT1 (Gutschner et al. 2013; J. Kim et al. 2018) and HOTAIR 
(K. Kim et al. 2013; Gupta et al. 2010) are two well-known oncogenic 
lncRNAs involved in multiple cancers. Enhanced expression of lncRNA MA-
LAT1 (Y. Zhang et al. 2019) and HOTAIR (Yu et al. 2019) is also observed 
in cSCC and contributes to activated cell proliferation, migration, invasion 
and EMT process. Despite this, our knowledge about the role of most 
lncRNAs with altered expression in SCC is only rudimentary and more inves-
tigate is needed to understand their roles. 

3.3 RNA-targeting therapeutics 
RNA-targeting therapeutics, compared to traditional protein targeting drug, is 
an emerging class of technologies which target to specific RNA molecules and 
modulate the activity of endogenous RNAs. RNA-targeting therapeutics can 
work through different strategies. The two main categories of RNA-based 
therapeutics are antisense oligonucleotides (ASOs) and small interfering 
RNAs (siRNAs) (Winkle et al. 2021). Additional therapeutics include miRNA 
mimics, anti-miRNA oligonucleotides (AMOs), miRNA sponges and 
CRISPR–Cas9-mediated genome editing (Roberts and Wood 2013; Winkle et 
al. 2021). Both protein-coding RNA and non-coding RNA can serve as target 
molecules. With the advent of preclinical research on non-coding RNAs, es-
pecially miRNAs and lncRNAs, they are emerging as key players in both 
physiological and pathological processes. Abnormal expression of miRNAs 
and lncRNAs has been implicated in a variety of cancer pathogenesis, as well 
as numerous other diseases, making therapeutic targeting of non-coding 
RNAs a promising approach for the treatment of these diseases.  Over the past 
decade, a great deal of effort has been devoted to translation of RNA thera-
peutics and multiple RNA-based therapies have entered clinical trials (Table 
1). However, so far, this is still a strategy that presents both opportunities and 
challenges. 

3.3.1 MiRNA-based therapeutics 
The fact that different targets of one miRNA can function in a single or mul-
tiple cancer-related signaling pathways makes miRNAs particularly attractive 
cancer therapeutic targets. There are two strategies proposed for miRNA-
based therapy: increase of too low miRNA-activity using miRNA mimics and 
suppression of unwanted miRNA-activity by AMOs or miRNA sponges 
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(Roberts and Wood 2013; Rupaimoole and Slack 2017). MiRNA mimics are 
exogenous double-stranded RNA molecules designed to mimic the function 
of endogenous tumor suppressors miRNAs. In contrast, the function of endog-
enous oncogenic miRNAs can be neutralized by AMOs or miRNA sponges. 
The former function through sequestering or degrading mature miRNAs, 
while the later stabilize target transcripts by competitively binding miRNAs. 
There are several miRNA-based drugs on clinical trials. For instance, INT-
1B3, a lipid nanoparticle formulated miR-193a-3p mimic, is under phase I/Ib 
study for the treatment of advanced solid tumors (Kotecki et al. 2021). Targo-
miRs are EnGeneIC Dream Vectors (EDVs, nanoparticles) which are loaded 
with miR-16-based miRNA mimic and target to EGFR-expressing cancer 
cells (Van Zandwijk et al. 2017). Phase I clinical trial of TargomiRs for the 
treatment of malignant pleural mesothelioma has completed with acceptable 
safety and early indications of activity (Van Zandwijk et al. 2017).  

3.3.2 LncRNA‑based therapeutics 
There are several ongoing observational clinical trials which evaluate the po-
tential of lncRNA as cancer biomarkers, such as the diagnosis and prognostic 
value of plasma lncRNA MFI2-AS1 in localized clear cell kidney cancers 
(NCT04946266); the diagnosis value of lncRNA WRAP53 and UCA-1 in 
hepatocellular carcinoma (NCT05088811); the diagnosis and prognosis value 
urine lncRNA in prostate cancer (NCT05141383); the diagnosis and prognos-
tic value of plasma circRNA in pancreaticobiliary cancers (NCT04584996). 
However, currently, there have been no interventional clinical trials conducted 
related to lncRNA‑based therapeutics. Considering lncRNAs have been 
proved to get involved in various kinds of cancers, they are promising targets 
for cancer therapy. 

There is another lncRNA-related but no lncRNA-targeting cancer thera-
peutics which utilized lncRNA H19 promoter to express diphtheria toxin gene 
for the treatment of solid cancers. LncRNA H19 functions as oncogenic 
lncRNA and show increased expression level in several types of cancer (H. Li 
et al. 2014; F. Yang et al. 2012; M. Luo et al. 2013; Lottin 2002). H19-DTA 
(BC-819) is a plasmid that constructed to express diphtheria toxin gene under 
the regulation of the H19 promoter (Ohana et al. 2002). Clinical phase I/II 
trials were conducted with BC-819 in different lncRNA H19 highly expressed 
solid tumors. In the phase I/II clinical trials upon bladder cancer, BC-819 treat-
ment achieved complete ablation of the tumor in 22%-33% of patients (Sidi et 
al. 2008; Gofrit et al. 2014). In a phase I/IIa clinical study on advanced unre-
sectable pancreatic cancer, BC819 resulted in tumor shrinkage and may im-
prove survival (Hanna et al. 2012). In a phase I/IIa study on ovarian cancer, 4 
patients (31%) showed stable disease at 6 weeks after the treatment. There 
were no complete or partial responses (Lavie et al. 2017).  
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3.3.3 Challenges for RNA-targeting therapeutics 
The clinical use of RNA-based therapeutics is challenged by several issues, 
including (1) specificity: how to improve the on-target effects of therapeutic 
RNA molecules in specific organ and cell types, as well as how to reduce the 
unwanted on-target effects and off-target effects; (2) delivery efficiency: how 
to deliver the RNA molecules specifically to the cell type of interest without 
degradation; (3) tolerability: how to avoid the adverse immune response in-
duced by therapeutic RNA molecules. So far, RNA synthesis technology has 
undergone three generations of improvement through appropriate chemical 
modifications (Winkle et al. 2021). In the first-generation of chemical modi-
fications, phosphodiester is replaced by phosphothiorate (PT) backbone link-
ages to enhance stability. In the second-generation, 2’-ribose modifications 
are used to enhance stability, target specificity, as well as reduced immune 
stimulation and toxicity. In the third-generation, chemical modifications on 
furanose ring are used to create locked nucleic acids (LNAs), peptide nucleic 
acids (PNAs) and phosphoramidate morpholino oligomers (PMOs) to further 
increase specificity and reduce immunogenicity. Several delivery approaches 
have been established to improve the efficacy RNA therapeutics, such as lipid 
nanoparticles (LNPs), polymers, RNA conjugations, metal-based nanoparti-
cles and virus-based delivery systems (Winkle et al. 2021). Although gratify-
ing progress has been made in the field of RNA-targeting therapeutics, unre-
solved challenges still exist, and numerous clinical trials have been halted due 
to low efficacy or unexpected side effects. For instance, the clinical trial of 
MRX34, a liposomal mimic of miRNA-34a designed for the treatment of ad-
vanced solid tumors, was halted because of immune related serious adverse 
events (Hong et al. 2020). To promote the clinical application of RNA-target-
ing therapeutics, there is still much to be explored. Some promising ideas have 
been proposed, such as apply extracellular vesicles or bacteriophage or bacte-
rial minicell as vehicles to increase delivery efficacy; use CRISPR–Cas9-me-
diated genome editing for ex vivo manipulations to improve target specificity 
and utilize metronomic miRNA therapy to reduce immunogenicity (Winkle et 
al. 2021). 

Table 1. RNA therapeutics in phase II or III clinical development (Winkle et al. 2021) 

Type Disease Target gene and 
pathway 

Phase Identifier 

Pri-miR-
451 back-
bone 

Huntington dis-
ease 

Huntingtin (HTT) 
mRNA 

I/II NCT04120493 

Anti-miR-
103/107 

Type II diabetes, 
nonalcoholic 
fatty liver dis-
ease 

miR-103/107 I/II NCT02612662, 
NCT02826525 
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miR-29 
mimic 

Keloid (patho-
logical fibrosis) 

miR-29 targetome II NCT02603224, 
NCT03601052 

Anti-miR-
122 

Hepatitis C virus 
infection 

miR-122 II NCT01646489, 
NCT01727934, 
NCT01872936, 
NCT01200420 

ASO Acute/ chronic 
myeloid leukae-
mia 

GRB2 mRNA II NCT01159028; 
NCT04196257; 
NCT02781883 

ASO Dyslipidaemias, 
hyperlipidae-
mias, hyperlipo-
proteinaemias 

Angiopoietinlike 
3 (ANGPTL3) 
mRNA 

II NCT04459767, 
NCT03371355, 
NCT04516291 

ASO Hereditary an-
gio-oedema, 
COVID-19 

Prekallikrein 
(PKK) mRNA 

II NCT03263507, 
NCT04030598, 
NCT04307381, 
NCT04549922 

ASO Metastatic 
NSCLC, resec-
table early-stage 
NSCLC, pancre-
atic cancer, mis-
match repair-de-
ficient colorectal 
cancer 

STAT3 mRNA II NCT03819465, 
NCT03794544, 
NCT02983578 

ASO Squamous cell 
lung cancer, 
non-squamous 
NSCLC, urolog-
ical neoplasms, 
metastatic blad-
der cancer, uri-
nary tract neo-
plasms, castra-
tion-resistant 
prostate cancer 

HSP27 mRNA II NCT01120470, 
NCT01454089, 
NCT01829113, 
NCT02423590 

ASO Leber congenital 
amaurosis type 
10 (LCA10), 
blindness, LCA, 
vision disorders, 
sensation disor-
ders, neurologi-
cal manifesta-
tions, eye dis-
eases, hereditary 
or congenital 
eye diseases 

c.2991+1655A> 
G-mutated 
CEP290, pre-
mRNA splicing 

II/III NCT03140969, 
NCT03913143, 
NCT03913130 

ASO Crohn’s disease ICAM1 mRNA III NCT03473626, 
NCT00063830, 
NCT00063414, 
NCT00048113, 
NCT02525523 
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ASO Hereditary 
transthyretinme-
diated amyloid 
polyneuropathy 

Transthyretin 
(TTR) mRNA 

III NCT04302064; 
NCT03728634; 
NCT04136184; 
NCT04136171 

ASO (al-
lelenonse-
lective) 

Huntington dis-
ease 

HTT mRNA III NCT02519036, 
NCT04000594, 
NCT03342053, 
NCT03761849, 
NCT03842969 

siRNA Advanced pan-
creatic cancer 

G12D-mutated 
KRAS mRNA 

II NCT01188785; 
NCT01676259 

siRNA Cardiovascular 
disease 

Apolipoprotein A 
(LPA) mRNA 

II NCT03626662, 
NCT04270760 

siRNA Ocular hyper-
tension, glau-
coma 

β-Adrenergic re-
ceptor 2 (ADRB2) 
mRNA 

II NCT00990743, 
NCT01227291, 
NCT01739244, 
NCT02250612 

 Paroxysmal noc-
turnal haemo-
globinuria, IgA 
nephropathy, 
Berger disease, 
glomerulone-
phritis 

Complement 5 
mRNA 

II NCT04601844, 
NCT02352493, 
NCT03841448, 
NCT03999840 

siRNA Dry eye disease Transient receptor 
potential cation 
channel subfamily 
V member 1 
(TRPV1) 

III NCT01438281, 
NCT01776658, 
NCT02455999, 
NCT03108664 

siRNA Hyperlipopro-
teinaemia 

Apolipoprotein A 
mRNA 

III NCT03070782, 
NCT03070782, 
NCT04023552 

siRNA Primary hy-
peroxaluria type 
1 and primary 
hyperoxaluria 
type 2, kidney 
diseases, urolog-
ical diseases 

Lactate dehydro-
genase A enzyme 
(LDHA) mRNA 

III NCT03392896, 
NCT04555486, 
NCT04580420, 
NCT03847909, 
NCT04042402 

ASO, antisense oligonucleotide; NSCLC, non-small cell lung cancer; siRNA, small 
interfering RNA. 
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4 mRNA export and the TREX complex 

In eukaryotes, protein-coding gene expression begins in the cell nucleus, 
where DNA is transcribed into RNA. Then RNA undergoes a series of pro-
cessing steps before being exported to the cytoplasm, where it is translated 
into protein.  The sequential events involved in the process of gene expression 
are tightly integrated from transcription, 5'-capping, splicing, 3'-polyadenyla-
tion to nuclear exportation (Cole 2001; Lei, Krebber, and Silver 2001). Any 
defect of these interdependent events impairs the progression of the other steps 
and results in the failure of gene expression. The TRanscription and EXport 
(TREX) complex plays a central role in coupling the multiple steps during 
gene expression both physically and functionally (Katja Strässer et al. 2002; 
Heath, Viphakone, and Wilson 2016).  

4.1 Conservation and construction of the TREX 
complex 

The TREX complex is evolutionarily conserved among yeast, plants, insects 
to mammalian (Katja Strässer et al. 2002; Reed and Hurt 2002; Khan et al. 
2020; Rehwinkel et al. 2004). The importance of the TREX complex in cou-
pling mRNA biogenesis from transcription to export was first discovered in 
Saccharomyces cerevisiae (Katja Strässer et al. 2002; Piruat 1998; Chávez and 
Aguilera 1997). In yeast, the TREX is composed by the THO-subunits (Tho2, 
Hpr1, Mft1, Thp2 and Tex1) and mRNA export factors Sub2 and Yra1 
(Chavez 2000; Fischer 2002; Xie et al. 2021). In metazoans, the TREX com-
plex is comprised of a hexameric THO core complex containing THOC1 
(Hpr1 in yeast), THOC2 (Tho2 in yeast), THOC3 (Tex1 in yeast), 
fSAP79/THOC5, fSAP35/THOC6 and fSAP24/THOC7 and DECD-box 
RNA helicase UAP56 (Sub2 in yeast), the mRNA export adaptor protein 
Aly/THOC4 (Yra1 in yeast) (Masuda et al. 2005). The conservation of the 
TREX complex in a wide range of organisms indicates it crucial physiological 
importance, for example, THOC1 and THOC5 are essential for murine early 
embryonic development and loss of THOC1 or THOC5 cause embryonic le-
thality (Xiaoling Wang et al. 2006; Mancini et al. 2010).  
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4.2 The role of TREX complex in gene expression 
After initiation of transcription, newly synthesized mRNAs bind with a di-
verse array of proteins and form messenger ribonucleoproteins (mRNPs). 
These mRNPs are essential for mRNA maturation and export. The function of 
the TREX complex is to recruit and coordinate the assembly of mRNPs. 

TREX complex is recruited co-transcriptionally. In yeast, the TREX com-
plex plays critical roles during gene expression including contributing to tran-
scription elongation, genome stability, mRNA processing and export (Piruat 
1998; Chavez 2000; Chávez and Aguilera 1997). Mutations on any subunit of 
the THO complex result in DNA repeat recombination, impaired transcrip-
tional elongation and mRNA export (Katja Strässer et al. 2002; Chávez and 
Aguilera 1997; Chavez 2000). Unlike the yeast TREX complex which func-
tions in transcription, the human TREX complex is recruited independently of 
transcription but during splicing and colocalized with splicing factors in nu-
clear speckle domains (Masuda et al. 2005).  

During splicing, DEAD-box helicase UAP56 is recruited to the pre-mRNA 
through interacting with splicing factor U2AF65, in turn, UAP56 promotes 
the assembly of spliceosome (Fleckner et al. 1997; M. Zhang and Green 2001; 
Libri et al. 2001; Kistler 2001). Additionally, UAP56 binds with mRNA ex-
port adaptor protein Aly and recruits it to the spliced mRNP (M.-J. Luo et al. 
2001). Therefore, UAP56 coupled the splicing machinery to export machin-
ery. Notably, excess UAP56 exert an inhibitory effect on regulating mRNA 
export through blocking the recruitment of Aly to spliced mRNP (M.-J. Luo 
et al. 2001). Once THO subunits and Aly bind to the mRNA export receptor 
NXF1, RNA-binding domain of NXF1 is exposed (K. Strässer and Hurt 2000; 
Hautbergue et al. 2008; Viphakone et al. 2012; Hung et al. 2010; Katahira et 
al. 2009). This allows NXF1 to take over the binding RNAs of Aly and 
transport them into the cytoplasm through the nuclear pore complex. 
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5 Extracellular Vesicles 

5.1 Classification and biogenesis of extracellular vesicles 
Extracellular vesicles (EVs) are a group of highly heterogeneous membrane-
bound vesicles of different cellular origin, biogenesis, content and function (Théry 
2011; Mathieu et al. 2019). Initially, EVs were considered as “waste carrier” for 
eliminating redundant cell-components. With the technological advancements, 
such as improved EV isolation and characterization methods, innovative imaging 
techniques and advanced high-throughput omics techniques, the significant roles 
of EVs have been well accepted especially for their functions in mediating inter-
cellular communication in various physiological and pathological processes. EVs 
are secreted by virtually all cell types and are distributed in various bodily fluids 
and tissues. The extensive distribution of EVs in the human body allow them to 
transmit signals between cells with their enclosing biomolecular cargoes (pro-
teins, lipids and nucleic acids) (van Niel, D’Angelo, and Raposo 2018). 

Based on their biogenesis, EVs are classified into two major subpopula-
tions: exosomes and microvesicles (MVs) (Mathieu et al. 2019; EL Andal-
oussi et al. 2013; Wiklander et al. 2019). In addition, apoptotic bodies are ves-
icles released by apoptotic cells through extensive plasma membrane blebbing 
(Mathieu et al. 2019). A new member of EVs family is exomeres, a population 
of non-membranous nanoparticles with a size ≤50 nm (Anand, Samuel, and 
Mathivanan 2021). Despite the classification and terminology of EVs, it is 
difficult to assign EVs isolated with distinct methods to a unique biogenesis 
pathway due to their similar morphology, overlapping size range as well as 
the absence of truly specific markers for EV-subtypes. Therefore, the Interna-
tional Society for EVs (ISEV) recommends to use the collective term "EVs" 
instead of exosome and MVs (Théry et al. 2018). 

Exosomes (~30–150 nm) are generated through the endocytic pathway in 
a stepwise manner (Figure 7) (Mathieu et al. 2019; van Niel, D’Angelo, and 
Raposo 2018; H. Zhang et al. 2018; Teng and Fussenegger 2021): firstly, early 
endosomes are formed by internalization of the plasma membrane (Step 1a1), 
or in some instances from the trans-Golgi network (TGN) (Step 1a2) and ma-
ture into late endosomes (Step 1b). Then late endosomes develop into mul-
tivesicular bodies (MVBs) and generate intraluminal vesicles (ILVs) by in-
ward invagination of the endosome membrane (Step 2). Exosomes are even-
tually released into the extracellular environment when MVBs fuse with the 
plasma membrane (Step 3a1, 2). Alternatively, MVBs fuse with lysosomes or 
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autophagosomes for degradation (Step 3b1, 2). MVs (~100–1000 nm) are 
formed through outward budding of the plasma membrane (Figure 7) 
(Mathieu et al. 2019; Teng and Fussenegger 2021).  

 
(Adapted Teng F, Fussenegger M. Advanced Science, 2021, 8(1): 2003505.) 

Figure 7. Schematic model of EV biogenesis and release. EVs are categorized into 
exosomes and MVs based on biogenesis. Exosomes are formed in MVB through en-
docytic pathway by inward budding of endosomal membranes. MVs are formed 
through inward budding of plasma membrane. EVs: Extracellular Vesicles; MVs: mi-
crovesicles; MVB: multivesicular bodies.  

5.2 EV cargo sorting 
EV cargo sorting is finely tuned by particular sorting machineries through the en-
dosome sorting complexes required for transport (ESCRT) pathway or the 
ESCRT-independent pathway (van Niel, D’Angelo, and Raposo 2018; Teng and 
Fussenegger 2021). ESCRT, consisting four cytosolic protein complexes 
ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III, is crucial for the formation of 
MVBs and EVs cargo sorting, particularly for ubiquitinated cargoes (Henne, 
Buchkovich, and Emr 2011; Vietri, Radulovic, and Stenmark 2020). All ESCRT-
0, ESCRT-I and ESCRT-II have ubiquitin binding ability which is essential for 
cargo sorting. In the canonical ESCRT dependent pathway (Figure 8), ESCRT-0 
is responsible for recognizing and binding with ubiquitinated cargoes and then be 
recruited to the endosomal membrane (Henne, Buchkovich, and Emr 2011; 



 

 40 

Raiborg and Stenmark 2009). Subsequently, ESCRT-I and ESCRT-II are re-
cruited by ESCRT-0 and mediate endosomal membrane invagination (Wollert 
and Hurley 2010). ESCRT-III components are recruited by ESCRT-II and re-
sponsible for recruiting deubiquitinating machinery and cleaving IVLs into the 
MVBs lumen (Henne, Buchkovich, and Emr 2011; Wollert and Hurley 2010). In 
the non-canonical ESCRT dependent pathway, scission of IVLs is mediated by 
ESCRT-III, while membrane budding and cargo clustering can occur independent 
of ESCRT components, for example, ALIX can function as ubiquitin receptor 
instead of ESCRT-0 (Pashkova et al. 2013). In the ESCRT-independent pathway, 
ceramide and CD63 play an important role for ILV biogenesis. Besides ubiquiti-
nation, other post-translational modifications of protein can also control protein 
cargo sorting, such as phosphorylation, SUMOylation, NEDDylation and ISGyla-
tion (Anand et al. 2019). The mechanism of the biogenesis of MVs is yet to be 
revealed. 

 
(Adapted Henne W M, Buchkovich N J, Emr S D. Developmental cell, 2011, 21(1): 

77-91.) 

Figure 8. The canonical ESCRT dependent pathway. ESCRT-0 initiates the pathway 
by recognizing ubiquitinated cargoes (i). ESCRT-0 hands over ubiquitinated cargoes 
to ESCRT-I and ESCRT-II which mediate membrane budding and cargo clustering 
(ii). ESCRT-III is recruited by ESCRT-II and assembles deubiquitinating machinery 
(iii). ESCRT-III constricts and cleave endosomal membrane and finally packages 
sorted cargoes into IVLs (iv and v). ESCRT: endosome sorting complexes required 
for transport; IVLs: intraluminal vesicles. 

5.3 Uptake of EVs 
Once released by parental cells and entering into the extracellular space, EVs 
can be recognized and taken up by recipient cells (Figure 9) (Christianson et 
al. 2013; Feng et al. 2010; Franzen et al. 2014; Tian et al. 2013; Mulcahy, 
Pink, and Carter 2014). Due to the diversity of EVs, the cellular and molecular 
mechanisms of EVs binding and uptake by recipient cells are not fully unrav-
eled (H. Zhang et al. 2018). The general modes for EV-uptake could be cate-
gorized into two major types: (i) membrane fusion and (ii) endocytosis (Pa-
rolini et al. 2009). EV-uptake through the fusion of EVs and plasma membrane 
allows EVs releasing contents to recipient cells without entry (Figure 9) (Mathieu 
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et al. 2019; H. Zhang et al. 2018; van Dongen et al. 2016). EV-uptake via endo-
cytosis can be both specific and unspecific (Parolini et al. 2009). Specific endo-
cytosis is mediated by the interaction between membrane-exposed ligands (pro-
teins, sugars or lipids) of EVs and receptors on recipient cells plasma membrane, 
which could further initiate intracellular signaling pathways (Figure 9) (Svensson 
et al. 2013; Tian et al. 2014; Escrevente et al. 2011). Impairment of EV-uptake 
caused by proteinase K-treatments emphasized the necessity of protein-protein 
interaction between EVs and recipient cells (R. Xu et al. 2018). Moreover, unspe-
cific EV-internalization can be achieved through endocytosis such as phagocyto-
sis or micropinocytosis/ micropinocytosis (Figure 9) (Franzen et al. 2014). De-
pending on the composition of EVs and recipient cell type, internalized EVs can 
be recycled and secreted into extracellular space, or degraded by the lysosome 
and EVs contents will be recycled and metabolized by the recipient cells (Mathieu 
et al. 2019; H. Zhang et al. 2018). 

 
(Adapted Wiklander, Oscar PB, et al. Science translational medicine 11.492 

(2019).) 

Figure 9. Schematic model of EV uptake. Uptake of EVs by recipient cells are 
through membrane fusion or endocytosis. Endocytosis includes EVs surface exposed 
ligands-cell receptors interaction, phagocytosis and micropinocytosis. EVs: extracel-
lular vesicles; MVs: microvesicles; MVB: multivesicular bodies.  
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5.4 EVs in cancers 
Substantial evidence suggests that EVs can participate tumorigenesis through 
carrying and transmitting oncogenic proteins and nucleic acids (Le et al. 2014; 
Fuentes et al. 2020; Takasugi et al. 2017). The tumor microenvironment 
(TME) is made up of stromal cells (fibroblasts, immune cells, neuroendocrine 
cells and adipose cells) and extracellular matrix (ECM) surrounding cancers 
cells which has profound effect on cancer cells behaviors (Spill et al. 2016; 
Balkwill, Capasso, and Hagemann 2012). EV-mediated bidirectional commu-
nication between cancer cells and stromal cells in TME plays a promoting role 
in cancer initiation, progression, and metastasis (R. Xu et al. 2018; Martins, 
Dias, and Hainaut 2013). EVs released by cancer cells can drive the transfor-
mation of surrounding non-malignant cells (Pang et al. 2015; Webber et al. 
2009; Vu et al. 2019), induce endothelial cells angiogenesis (Al-Nedawi et al. 
2009; Hsu et al. 2017), promote pre-metastatic niche formation (Peinado et al. 
2012; Fong et al. 2015) and suppress immune response (Clayton et al. 2007; 
Haderk et al. 2017). The other way around, stromal EVs are able to target 
cancer cells and enhance cancer cell malignant phenotypes. Fibroblast- (Nabet 
et al. 2017; Boelens et al. 2014), macrophage- (M. Yang et al. 2011) derived 
EVs are uptake by cancer cells and promote therapy resistance, invasion and 
metastasis. It has been reported that SCC-derived EVs can regulate TME for-
mation and result in aggressive cancer. Highly expressed C-terminal fragment 
of desmoglein 2 (Dsg2) in SCC cells enhances EVs secretion which is able to 
modulate TME and promote tumor growth through carrying cytokines and 
miRNAs (Overmiller et al. 2017; Flemming et al. 2020). However, further 
investigation is needed to identify the cargo of EVs and their role in tumor-
igenesis and development of cSCC. 
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6 Present investigations 

6.1 Paper I. MiR-130a acts as a tumor suppressor 
microRNA in cutaneous squamous cell carcinoma 
and regulates the activity of the BMP/SMAD 
pathway by suppressing ACVR1. 

In Paper I, our aim was to investigate the function of miR-130a-3p, generally 
referred to as miR-130a hereafter, in cSCC. We reported that miR-130a ex-
pression was decreased in invasive cSCCs compared to healthy skin and pre-
cancerous skin lesion - actinic keratosis (AK). This suggests that the decreased 
expression level of miR-130a is associated with the malignant phenotypes of 
cSCC. The expression level of miR-130a in cSCC was regulated by the 
MAPK pathway, where activation of the HRAS-MEK-ERK1/2 pathway re-
sulted in suppressed miR-130a expression at the transcriptional level.  

To investigate the function of miR-130a in modulating cSCC tumor 
growth, we established xenograft models by subcutaneously injecting miR-
130a overexpressing cSCC cells and control cSCC cells into immunocompro-
mised mice. By monitoring tumor size and weight, we observed that elevated 
expression levels of miR-130a exerted a suppressive role on cSCC tumor 
growth in vivo. Consistently, our in vitro experiments showed that cSCC cells 
with ectopic overexpression of miR-130a demonstrated diminished abilities 
in colonization, cell motility, and invasiveness. In contrast, inhibiting endog-
enous miR-130a enhanced the malignant behaviors of cSCC cells. Therefore, 
our in vivo and in vitro experiments have demonstrated a cancer-suppressive 
role of miR-130a in cSCC.  

Mechanistically, we identified activin receptor type I (ACVR1/ALK2) as a 
direct target of miR-130a and showed that miR-130a regulates the 
BMP/SMAD pathway by directly targeting ACVR1. Taken together, our 
study recognizes miR-130a as a tumor suppressor in cSCC under the regula-
tion of the HRAS-MEK-ERK1/2 pathway. Our results identify a potential 
cross-talk between the MAPK pathway and BMP/SMAD1/5 pathway via 
miR-130a-mediated regulation of ACVR1 in cSCC.  
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6.2 Paper II. Long non-coding RNA PVT1 is 
overexpressed in cutaneous squamous cell 
carcinoma and exon 2 is critical for its 
oncogenicity. 

In Paper II, our aim was to investigate the function and the underlying mo-
lecular mechanism of lncRNA Plasmacytoma Variant Translocation 1 (PVT1) 
in cSCC. Our attention was drawn to PVT1 because it was identified as one 
of the top upregulated lncRNAs in cSCC through our previous RNA-seq anal-
ysis conducted on normal skin and cSCCs. To validate the observed difference 
in PVT1 expression and determine the stage of the cSCC spectrum at which 
PVT1 expression is altered, we conducted qRT-PCR on a cohort of tissue 
samples including normal skin, precancerous skin lesion AK and cSCCs. The 
qRT-PCR data indicated that PVT1 was highly expressed in cSCC compared 
to healthy skin and AK. To further validate the expression pattern of PVT1 
and analyze its clinical relevance, we employed single molecule in situ hy-
bridization (RNAScope) on a large cohort samples, encompassing normal skin 
(n= 59), benign papillomatous proliferation seborrheic keratosis (SK, n=12), 
AK (n=60), cSCC in situ (cSCCIS, n=57), invasive non-metastatic cSCC 
(cSCC, n=31), metastatic cSCC (n=41) and cSCC metastases (n=7). Quanti-
fication of visible PVT1 molecules revealed that PVT1 was expressed at a low 
level in normal skin, SK and AK; however, its expression was increased in 
cSCCIS and invasive cSCC. Taken together, our data indicates that PVT1 is 
associated with keratinocyte transformation and cSCC-development. We 
identify MYC as an upstream regulator of PVT1 expression and demonstrate 
that MYC modulates the expression level of PVT1 in both normal keratino-
cytes and cSCC cells.  

The aberrant expression of PVT1 in cSCC indicates that it may be associ-
ated with malignant behaviors of cSCC cells. Next, we investigated the func-
tion of PVT1 in cSCC. CRISPR-Cas9-mediated deletion of the entire PVT1 
gene locus (around 300 kb) demonstrated that the PVT1 locus had an onco-
genic role in cSCC, as PVT1 deletion lead to impaired malignant behaviors 
(proliferation, colonization and tumor spheroid formation) of cSCC cells. 
LNA GapmeR-mediated knockdown of PVT1-transcripts showed similar tu-
mor suppressive effects as PVT1 gene locus deletion, suggesting that PVT1 is 
an oncogenic lncRNA in cSCC independent of the PVT1 gene locus. As one 
of the most complicated gene loci, the PVT1 gene locus encodes more than 35 
isoforms which makes the research on PVT1 challenging. We were curious to 
determine which isoforms of PVT1 are responsible for exerting the oncogenic 
role in cSCC. We initially focused on PVT1 transcripts containing exon 2 be-
cause exon 2 is the most prevalent exon in PVT1 and we found it to be highly 
expressed in cSCC. Through CRISPR-Cas9-mediated deletion of PVT1 exon 
2, we identified exon 2 as a crucial element for PVT1's oncogenic effect in 
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cSCC. Deletion of PVT1 exon 2 inhibited cSCC tumor growth both in vivo 
and in vitro. To determine the effect of PVT1 on the transcriptome and signal-
ing pathways in cSCC cells, we conducted RNA-seq-analysis on PVT1 exon 
2 knockout cSCC cells and wildtype cSCC cells. Bioinformatic analysis on 
the RNA-seq data suggested that cellular senescence-associated genes were 
differentially expressed in PVT1 exon 2 knockout cSCC cells. Therefore, we 
uncovered the molecular mechanism for the oncogenic role of PVT1 in cSCC 
that lncRNA PVT1 was localized in the cell nucleus and suppressed cellular 
senescence by inhibiting CDKN1A/p21 expression and preventing cell cycle 
arrest. Taken together, our data identify lncRNA PVT1 as a potential target 
molecule for the management of cSCC and a novel biomarker for cSCC pro-
gression. 

6.3 Paper III. PVT1 regulates the nuclear export of 
polyadenylated RNAs through interacting with 
TREX complex. 

In Paper III, we further explored the underlying mechanism behind the on-
cogenic role of PVT1 in cSCC. The modes of action of lncRNA are largely 
depend on their cellular localization. Both single molecule in situ hybridiza-
tion (RNAScope) and cellular fractionation conducted on cSCC cells revealed 
a predominantly nuclear localization for PVT1 which is consistent with the 
results obtained in human tissue samples of benign, precancerous and cancer-
ous lesions. We hypothesized that the necessity of exon 2 for the oncogenic 
role of PVT1 arises from exon 2's role in mediating the nuclear localization of 
PVT1. Interestingly, we observed that the specific deletion of exon 2 resulted 
in a diffuse cytoplasmic distribution of PVT1 transcripts in cSCC cells. 

RNA-seq performed on wildtype cSCC cells and PVT1 exon 2 knockout 
cSCC cells identified a set of differentially expression genes associated with 
RNA processing, such as mRNA-splicing, capped intron-containing pre-
mRNA processing, transport of mature mRNA derived from intron less tran-
scripts and mRNA export from nucleus. To further investigate how PVT1 is 
involved in the process of RNA processing, we conducted comprehensive 
identification of RNA-binding proteins by mass spectrometry (ChIRP-ms) to 
identify the interacting proteins of PVT1. Among proteins specifically binding 
to PVT1, UAP56/DDX39B (DExD-Box Helicase 39B), URH49/DDX39A 
(DExD-Box Helicase 39A) and THOC4/ALYREF (Aly/REF Export Factor) 
were identified which are components of the transcription-export (TREX) 
complex. The TREX complex is a conserved protein complex which inte-
grates RNA biogenesis from transcription to RNA processing and nuclear ex-
port. To investigate whether PVT1 is involved in the process of TREX com-
plex-mediated nuclear RNA export, we determined the distribution of poly 
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(A)+ RNA in PVT1 exon 2 knockout cSCC cells. Strikingly, we observed the 
accumulation of poly (A)+ RNAs in the cell nuclei of PVT1 and PVT1 exon 2 
knockout cSCC cells. This result indicated that PVT1 is an indispensable mol-
ecule for poly (A)+ RNA transport from cell nucleus to cytoplasm. Addition-
ally, we found that Lamin B1 mRNA was retained in nucleus in PVT1 and 
PVT1 exon 2 knockout cSCC cells. Lamin B1 has been implicated in cellular 
senescence whose expression level is decreased during senescence. Therefore, 
PVT1 and PVT1 exon 2 knockout caused nuclear accumulation of Lamin B1 
mRNA could at least partially explain why cSCC cells undergone cellular se-
nescence upon the deletion of PVT1 and PVT1 exon 2. 

Collectively, we have identified a segment of the PVT1 transcript respon-
sible for its nuclear localization. Moreover, our findings indicate that PVT1 
serves as a key regulator for RNA export from the cell nucleus, unveiling a 
novel mechanism that explains both the oncogenic role of PVT1 and its in-
volvement in modulating RNA export. Further investigations are currently un-
derway to precisely define PVT1's role in the functioning of the TREX com-
plex and mRNA export. 

6.4 Paper IV. Cutaneous squamous cell carcinoma-
derived extracellular vesicles exert an oncogenic 
role by activating cancer-associated fibroblasts. 

In Paper IV, we conducted a comprehensive analysis of extracellular vesicles 
(EVs) produced by normal skin cells and skin cancer cell lines, including two 
primary cSCC cell lines (UT-SCC-111 and A431) and one metastatic cSCC 
cell line (UT-SCC-7). Our investigation focused on understanding the regula-
tory effects of cSCC cell-derived EVs on stromal cells within the tumor mi-
croenvironment (TME).  

EVs were isolated from conditioned medium using size-exclusion chroma-
tography. To characterize isolated EVs, transmission electron microscopy and 
cryogenic electron microscopy were used to visualize these double-layered 
phospholipid membrane vesicles. EV markers Alix, CD9 and TSG101 were 
detected by immunoblotting. Nanoparticle tracking analysis (NTA) was used 
to determine the size and concentration of collected EVs. Through normaliz-
ing NTA-results to cell counts, we found that cSCC cell lines secreted more 
EVs than normal skin cells. A multiplex bead-based flow cytometry assay was 
conducted to determine the surface composition of EVs. A total of 37 EV sur-
face protein were detected and a substantial heterogeneity in terms of their 
EV-surface proteins were identified between metastatic cSCC cells and pri-
mary cSCC cells. 

To investigate the effect of cSCC cell-derived EVs on cSCC tumor growth, 
xenograft models were established using cSCC cells possessing normal EVs 
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secretion ability (control cells) and cSCC cells with impaired EV secretion 
ability (RAB27A knockdown cells). It was revealed that normal EV secretion 
ability is essential for cSCC tumor growth in vivo. To understand how cSCC 
cell-derived EVs regulate cSCC tumor growth, we conducted RNA-seq on 
xenograft tissues, which allowed us to identify differentially expressed genes 
in both human (representing cSCC cells) and mouse (majorly representing tu-
mor-infiltrating stromal cells) transcriptome. Interestingly, differentially ex-
pressed genes in stromal cells in the RAB27A-knockdown-group were signif-
icantly enriched in pathways associated with extracellular matrix (ECM) or-
ganization, which suggested that cSCC cell-derived EVs may have a regula-
tory effect on fibroblasts in TME who are responsible for ECM organization. 
To test this hypothesis, we co-cultured human dermal fibroblasts with either 
normal skin cells or cSCC cells and found that cSCC cell drove the onset of 
cancer-associated fibroblast phenotype. Through administrating cSCC-de-
rived EVs to fibroblasts, we found that metastatic UT-SCC-7 cell-derived EVs 
were able to educate fibroblasts to cancer-associated fibroblasts but not pri-
mary cSCC cell-derived EVs, which may be explained by the specific protein 
cargoes carried by metastatic UT-SCC-7 cells as determined by mass-spec-
trometry (MS) based proteomics analysis. Additionally, we uncovered that 
metastatic UT-SCC-7 cell-derived EVs were able to activate the TGFβ signal-
ing pathway, an epithelial-mesenchymal transition (EMT) inducer, in fibro-
blasts. In conclusion, our study reveals that cSCC cell-derived EVs play an 
essential role in promoting cSCC tumor growth by mediating cancer-stroma 
communication through specific protein cargoes. 
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7 Future perspectives 

7.1 Paper I. MiR-130a acts as a tumor suppressor 
microRNA in cutaneous squamous cell carcinoma 
and regulates the activity of the BMP/SMAD 
pathway by suppressing ACVR1. 

Considering the decreased expression level of miR-130a in cSCC compared 
to healthy skin and the precancerous skin lesion AK, miR130a is a promising 
diagnostic biomarker for cSCC. Additionally, our study reported that miR-
130a exerts a tumor suppressor role in the context of cSCC by modulating 
cSCC cell growth, migration and invasion. This suggests that miR-130a is a 
potential biomarker associated with the prognosis of patients with cSCC. It 
would be beneficial to assess the potential of miR-130a as a diagnostic or 
prognostic biomarker for cSCC through recruiting a large cohort of patients 
with cSCC at various stages, as well as healthy controls and patients with pre-
cancerous skin lesions. 

The high mutation burdens caused by chronic excess exposure to UVR 
make it challenging to identify the driver genes for the progression of AK and 
cSCC. Our results revealed that the expression level of miR-130a was de-
creased not only compared to healthy skin, but also in comparison to precan-
cerous skin lesion AK. This suggests that miR-130a is involved in modulating 
the transformation of AK and the progression of cSCC. Therefore, miR-130a 
may serve as a molecular target to impede the conversion of AK to cSCC and 
hinder the progression of cSCC. Additionally, we found that the expression of 
miR-130a was regulated by the MAPK pathway in cSCC. Considering that 
EGFR inhibitors are being tested for the treatment of cSCC, it is plausible to 
hypothesize that a combination therapy of miR-130a and EGFR inhibitors 
might provide a new option for cSCC management. 
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7.2 Paper II. Long non-coding RNA PVT1 is 
overexpressed in cutaneous squamous cell 
carcinoma and exon 2 is critical for its 
oncogenicity. 

As suggested by our qRT-PCR and single molecule in situ hybridization 
(RNAScope) data, the expression level of PVT1 was increased in cSCCIS and 
invasive cSCC in comparison to normal skin, benign skin lesions SKs and 
precancerous lesions AKs. Therefore, PVT1 may be used as a biomarker for 
diagnosis of cSCC. Additionally, the value of PVT1 as a prognostic biomarker 
for cSCC can be assessed by analyzing the relationship between its expression 
level and patient prognosis. In our study, we have discovered that PVT1 tran-
scripts exert an oncogenic role in cSCC, and depletion of PVT1 results in 
cSCC cell senescence. This finding has illuminated the potential of PVT1 as 
a therapeutic target for cSCC, through which malignant proliferation of cancer 
cells will be inhibited by inducing cellular senescence. 

Our mechanistic study revealed that the exon 2 is a key element for PVT1 
to promote the malignant behaviors of cSCC cells which provide a more pre-
cise site for the potential PVT1-based targeted therapy. However, the under-
lying mechanism for exon 2 acting as an oncogenic element remains to be 
explored. In addition, although we have discovered the oncogenic role of those 
exon 2-containing PVT1 transcripts, due to the complexity of the PVT1 gene 
locus, we have tried but not yet managed to determine the sequence and ex-
pression pattern of various PVT1 isoforms. Advanced RNA-seq techniques 
may help elucidate how many and which PVT1 isoforms are encoded by the 
PVT1 gene locus in cSCC and determine their exact sequence and expression 
levels. In this case, functional studies will be more precise down to each indi-
vidual PVT1 isoform, many of which may have different functions. 

7.3 Paper III. PVT1 regulates the nuclear export of 
polyadenylated RNAs through interacting with 
TREX complex. 

Our research has discovered a novel mechanism for the oncogenic role of 
PVT1 in the context of cSCC: PVT1 is crucial for TREX complex-mediated 
export of poly (A)+ RNA from cell nucleus to cytoplasm. However, some 
questions still remain to be explored. It has been reported that the two closely 
related RNA helicases, UAP56 and URH49, regulate nuclear export of distinct 
mRNAs (Yamazaki et al. 2010). We would like to determine whether PVT1 
modulates the export of poly (A)+ RNA in general or specifically regulates 
the export of a certain group of poly (A)+ RNAs. We have found that exon 2 
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of PVT1 is essential for its oncogenic role and nuclear localization in cSCC. 
We are wondering whether it is exon 2 that mediates the interaction between 
PVT1 and the TREX complex, and whether this interaction is direct or indirect, 
and how does it affect the function of TREX. This is the first time that a lncRNA 
has been found to be involved in the regulation of the function of TREX and 
nuclear RNA export. We are currently investigating whether the regulatory ef-
fect of PVT1 on mRNA-export is specific to cSCCs or if it is a general mecha-
nism present in other normal and malignant cells as well. 

7.4 Paper IV. Cutaneous squamous cell carcinoma-
derived extracellular vesicles exert an oncogenic 
role by activating cancer-associated fibroblasts. 

Our study has revealed the cargoes of various cSCC cell line derived EVs and 
emphasized the function of cSCC cell-derived EVs on mediating cancer-
stroma communication and promoting cSCC tumor growth. Our results sug-
gest the specific effect of metastatic UT-SCC-7 cell-derived EVs, but not pri-
mary cSCC cell-derived EVs, on driving the onset of the cancer-associated 
fibroblast phenotype. However, future research will be needed with an even 
larger number of cell lines and possible patient-derived samples. It will be 
interesting to investigate the effect of UT-SCC-7 cell-derived EVs on the in-
vasive and metastatic capabilities of cSCC using experimental models that test 
metastatic spread. We could hypothesize that metastatic UT-SCC-7 cell-de-
rived EVs could shape a permissive TME for metastasis through educating 
stroma cells within TME. To test this, metastasis can be analyzed in xenograft 
models. In addition, the changes on fibroblast phenotypes triggered by meta-
static cSCC cell-derived EVs can be evaluated. A collagen gel contraction as-
say can be used to assess the contractile ability of fibroblasts, which is im-
portant for the remodeling of the ECM. ECM components such as collagen 
and fibronectin can be detected by immunofluorescence staining to evaluate 
the ability of fibroblasts to organize the ECM. Nevertheless, the results re-
garding the enormous heterogeneity of cSCC-derived EVs and their cargo is 
in line with the genetic and phenotypic heterogeneity of cSCC tumors on pa-
tients. 
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