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Abstract: The idea of a partial information decomposition (PID) gained significant attention for
attributing the components of mutual information from multiple variables about a target to being
unique, redundant/shared or synergetic. Since the original measure for this analysis was criticized,
several alternatives have been proposed but have failed to satisfy the desired axioms, an inclusion–
exclusion principle or have resulted in negative partial information components. For constructing
a measure, we interpret the achievable type I/II error pairs for predicting each state of a target
variable (reachable decision regions) as notions of pointwise uncertainty. For this representation
of uncertainty, we construct a distributive lattice with mutual information as consistent valuation
and obtain an algebra for the constructed measure. The resulting definition satisfies the original
axioms, an inclusion–exclusion principle and provides a non-negative decomposition for an arbitrary
number of variables. We demonstrate practical applications of this approach by tracing the flow of
information through Markov chains. This can be used to model and analyze the flow of information
in communication networks or data processing systems.

Keywords: partial information decomposition; redundancy; synergy; information flow analysis

1. Introduction

A Partial Information Decomposition (PID) aims to attribute the provided infor-
mation about a discrete target variable T from a set of predictor or viewable variables
V = {V1, . . . , Vn} to each individual variable Vi. The partial contributions to the in-
formation about T may be provided by all variables (redundant or shared), by a spe-
cific variable (unique) or only be available through a combination of variables (syner-
getic/complementing) [1]. This decomposition is particularly applicable when studying
complex systems. For example, it can be used to study logical circuits, neural networks [2]
or the propagation of information over multiple paths through a network. The concept of
synergy has been applied to develop data privacy techniques [3,4], and we think that the
concept of redundancy may be suitable to study a notion of robustness in data process-
ing systems.

Unfortunately and to the best of our knowledge, there does not exist a non-negative
decomposition of mutual information for an arbitrary number of variables that satisfies
the commutativity, monotonicity and self-redundancy axioms except the original measure
of Williams and Beer [5]. However, this measure has been criticized for not distinguishing
“the same information and the same amount of information” [6–9].

Here, we propose an alternative non-negative partial information decomposition that
satisfies Williams and Beer’s axioms [5] for an arbitrary number of variables. It provides
an intuitive operational interpretation and results in an algebra like probability theory.
To demonstrate that the approach distinguishes the same information from the same
amount of information, we highlight its application in tracing the flow of information
through a Markov chain, as visualized in Figure 1.
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T V = (V1, V2) Q = (Q1, Q2) R = (R1, R2) T̂

H(T) I(T; V) I(T; Q) I(T; R) I(T; T̂)≥ ≥ ≥≥

Shared Unique 1 Unique 2 Synergetic

Figure 1. Visualization of a partial information decomposition with information flow analysis
of a Markov chain as Sankey diagram. A partial information decomposition enables attribut-
ing the provided information about T to being shared (orange), unique (blue/green) or syner-
getic/complementing (pink). While this already offers practical insights for studying complex
systems, the ability to trace the flow of partial information may create a valuable tool to model and
analyze many applications.

This work is structured in three parts: Section 2 provides an overview of the related
work and background information. Section 3 presents a representation of pointwise un-
certainty, constructs a distributive lattice and demonstrates that mutual information is the
expected value of its consistent valuation. Section 4 discusses applications of the resulting
measure to PIDs and the tracing of information through Markov chains. We provide an
overview of the used notation at the end of the paper.

2. Related Work

We briefly summarize partial orders and the four main publications which led to
our proposed decomposition approach. This includes the PID by Williams and Beer [5],
the quantification of unique information by Bertschinger et al. [10] and Griffith and
Koch [11], the Blackwell order based on Bertschinger and Rauh [12], the evaluation of
binary decision problems using Receiver Operating Characteristics and consistent lattice
valuations by Knuth [13].

2.1. Partial Orders and Lattices

This section provides a brief overview of the relevant definitions on partial orders and
lattices for the context of this work based on [9,13]. A binary ordering relation 4 on a set
L is called a preorder if it is reflexive and transitive. If the ordering relation additionally
satisfies an antisymmetry, then (L,4) is called a partially ordered set (poset). For α, β, γ ∈ L:

α 4 α (reflexivity)
if α 4 β and β 4 γ then α 4 γ (transitivity)
if α 4 β and β 4 α then α = β (antisymmetry)

Two elements satisfy α 4 β, β 4 α or may be incomparable, meaning α 64 β and β 64 α.
A partially ordered set has a bottom element ⊥ ∈ L if ⊥ 4 α for all α ∈ L and a top element
> ∈ L if α 4 > for all α ∈ L. For each element α, it can be defined a down-set (↓α) and
up-set (↑α) as well as a strict down-set (↓̇α) and strict up-set (↑̇α) as shown below:

↓α = {β ∈ L | β 4 α} (down-set)

↓̇α = {β ∈ L | β 4 α and α 64 β} (strict down-set)

↑α = {β ∈ L | α 4 β} (up-set)

↑̇α = {β ∈ L | α 4 β and β 64 α} (strict up-set)

A lattice is a partially ordered set (L,4) for which every pair of elements {α, b} ⊆ L
has a unique least upper bound αg β = sup{α, β}, referred to as joint, and a unique greatest
lower bound α f β = inf{α, β}, referred to as meet. This creates an algebra (L,f,g) with
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the binary operators f and g that satisfies indempotency, commutativity, associativity
and absorption. The consistency relates the ordering relation and algebra with each other.
A distributive lattice additionally satisfies distributivity.

α g α = α α f α = α (indempotency)
α g β = β g α α f β = β f α (commutativity)

α g (β g γ) = (α g β)g γ α f (β f γ) = (α f β)f γ (associativity)
α g (α f β) = α α f (α g β) = α (absorption)

α 4 β⇒ α g β = β α 4 β⇒ α f β = α (consistency)

α g (β f γ) = (α g β)f (α g γ) α f (β g γ) = (α f β)g (α f γ) (distributivity)

2.2. Partial Information Decomposition

This section summarizes Williams and Beer’s general approach to partial information
decompositions [5]. A more detailed discussion of the literature and required background
can be found in [9] (p. 6–20).

Williams and Beer [5] define sources Si ∈ P1(V) as all combinations of viewable vari-
ables (P1(V) referring to the power set of V without the empty set) and use Equation (1a)
to construct all distinct interactions between them α ∈ A(V), which are referred to as partial
information atoms. Equation (1b) provides a partial order of atoms to construct a redundancy
lattice (A(V),4). As a convention, we indicate the visible variables contained in a source
by its index, such as S12 = {V1, V2}. The example of the redundancy lattice for two and
three visible variables is shown in Figure 2.

A(V) = {α ∈ P1(P1(V)) | ∀Si, Sj ∈ α, Si 6⊂ Sj}, (1a)

∀α, β ∈ A(V), (α 4 β⇔ ∀Sj ∈ β, ∃Si ∈ α | Si ⊆ Sj). (1b)

{S12}

{S1} {S2}

{S1, S2}

(a)

{S123}

{S12} {S13} {S23}

{S12, S13} {S12, S23} {S13, S23}

{S1} {S2} {S3} {S12, S13, S23}

{S1, S23} {S2, S13} {S3, S12}

{S1, S2} {S1, S3} {S2, S3}

{S1, S2, S3}

(b)
Figure 2. The redundancy lattices for two (a) and three (b) visible variables. The redundancy lattice
specifies the expected inclusion relation between atoms. The following function I∩ shall measure
the shared information for a sets of variables such that the element {S1, S2} represents the shared
information between S1 and S2 about the target variable T.

A measure of redundant information I∩ shall be defined for this lattice as “[. . .] cumula-
tive information function which in effect integrates the contribution from each node as one
moves up through the nodes of the lattice” [9] (p. 15). Williams and Beer [5] then use the
Möbius inverse (Equation (2)) to identify the partial information Iδ(α; T) as the contribution
of atom α ∈ A(V) and therefore the desired unique/redundant/synergetic component.



Entropy 2023, 25, 1014 4 of 27

A PID is said to be non-negative if the resulting partial contributions are guaranteed to be
non-negative.

Iδ(α; T) = I∩(α; T)− ∑
β∈↓̇α

Iδ(β; T). (2)

Williams and Beer [5] highlight three axioms that a measure of redundancy should satisfy.

Axiom 1 (Commutativity). Invariant to the order of sources (σ permuting the order of indices):

I∩(S1, . . . , Si; T) = I∩(Sσ(1), . . . , Sσ(i); T)

Axiom 2 (Monotonicity). Additional sources can only decrease redundant information:

I∩(S1, . . . , Si−1; T) ≥ I∩(S1, . . . , Si; T)

Axiom 3 (Self-redundancy). For a single source, redundancy equals mutual information:

I∩(Si; T) = I(Si; T)

Finally, Williams and Beer [5] proposed Imin (Equation (3)) as a measure of redundancy
and demonstrated that it satisfies the required axioms.

I(Si; T = t) = ∑
s∈Si

p(s | t)
[

log
1

p(t)
− log

1
p(t | s)

]
(3a)

Imin(S1, . . . , Sk; T) = ∑
t∈T

p(t) min
i∈1..k

I(Si; T = t). (3b)

However, the measure has been criticized for not distinguishing “the same information
and the same amount of information” [6–9] due to its use of a pointwise minimum (for each
t ∈ T ) over the sources.

2.3. Quantifying Unique Information

A non-negative decomposition for the case of two viewable variables V = {V1, V2}
was proposed by Bertschinger et al. [10] (defining unique information) as well as an equiv-
alent decomposition by Griffith and Koch [11] (defining union information) as shown in
Equation (4) (modified notation). The function ϑ(V1, V2; T) acts as an information measure
of the union for V1 and V2 (the minimal information that any two variables with the same
marginal distributions can achieve), which is then used to compute the partial contributions
using an inclusion–exclusion principle. Bertschinger et al. [10] motivated the decomposition
from the operational interpretation that if a variable provides unique information, there
must be a way to utilize this information in a decision problem for some reward function.
Additionally, they argue that unique information should only depend on the marginal
distributions P(T,V1)

and P(T,V2)
.

ϑ(V1, V2; T) =min I(F; G1, G2) s.t. P(F,G1)
= P(T,V1)

and P(F;G2)
= P(T,V2)

S(V1, V2; T) = I(V1; T) + I(V2; T)− ϑ(V1, V2; T) (Shared)

U(V1; T) = ϑ(V1, V2; T)− I(V1; T) (Unique)

C(V1, V2; T) = I(T; V1, V2)− ϑ(V1, V2; T) (Complementing)

(4)

We highlight this decomposition since our approach can be interpreted as its pointwise
extension (see Section 4.1).

2.4. Blackwell Order

A channel κ can be represented as a (row) stochastic matrix wherein each element
is non-negative and all rows sum to one (see Figure 3). In this work, we consider the
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sources to be the indirect observation of the target variable through a channel T
κi−→ Si

while taking the joint distribution of the visible variables within Si. As a result, κi is
obtained from the conditional probability distribution κi = T → Si = P(Si |T). As for
sources, we list the contained visible variables as an index such that i = 12 corresponds to
κ12 = P(S12|T) = P(V1,V2|T).

The Blackwell order κ1 v κ2 is a preorder of channels, as shown in Equation (5) [14].
It highlights that a channel equivalent to κ1 can be obtained by garbling the output of κ2 (a
chaining of channels as seen in Equation (5)). Therefore, there exists a decision strategy based
on κ2 for any reward function that performs at least as well as all strategies based on κ1 [12].

κ1 v κ2 ⇐⇒ κ1 = κ2 · λ for some channel λ (5)

Bertschinger and Rauh [12] showed that the Blackwell order does not define a lattice
in general since it does not provide a unique meet and joint element beyond binary inputs.
However, binary input channels provide a special case for which the Blackwell order is
equivalent to the zonotope order and defines a lattice. We use the notation κt to indicate that
a channel has a binary input (|T | = 2) or corresponds to the one-vs-rest encoding for one
state t if |T | > 2. In this case, the row stochastic matrix representing a channel contains
a set of vectors ~vs as shown in Equation (6). A zonotope Zκt (Equation (6b)) corresponds
to “the image of the unit cube [. . .] under the linear map corresponding to [κt]” [12] (p. 2),
and the resulting zonotope order κt

1 v κt
2 ⇔ Zκt

1
⊆ Zκt

2
is a preorder that is identical to the

Blackwell order in the special case of binary input channels [12] as visualized in Figure 3.
In the resulting lattice, the joint of two channels can be obtained as the convex hull Zκt

1tκt
2

of
the zonotopes Zκt

1
and Zκt

2
, and the meet element Zκt

1uκt
2

corresponds to their intersection.

κt
i =

[
p(Si = s1 | T = t) p(Si = s2 | T = t) . . . p(Si = sn | T = t)
p(Si = s1 | T 6= t) p(Si = s2 | T 6= t) . . . p(Si = sn | T 6= t)

]
(6a)

Zκt
i
=

{
∑

s∈Si

xs ·~vs | 0 ≤ xs ≤ 1

}
where ~vs =

(
p(Si = s | T = t)
p(Si = s | T 6= t)

)
(6b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κt
2

κt
1

x

y

κt
2 =

[
0.10 0.20 0.30 0.40
0.50 0.30 0.15 0.05

]

κt
1 =

[
0.20 0.40 0.40
0.50 0.35 0.15

]

Figure 3. Visualization of the zonotope order for binary input channels. The channel κt
1 is Blackwell

inferior to κt
2 (κt

1 v κt
2) since the corresponding zonotope Zκt

1
(green) is a subset of Zκt

2
(purple). As a

result, the meet and joint elements of this example are: κt
1 u κt

2 = κt
1 and κt

1 t κt
2 = κt

2.

2.5. Receiver Operating Characteristic Curves

While any classification system can be represented as channel, this section focuses
on binary decision problems or the one-vs-rest encoding of others (Tt = t ⇔ T = t).
The binary label t ∈ T t is used to obtain a sample s ∈ Si, which is processed by a
classification system C to its output o ∈ O with o = C(s), and applying a decision strategy
d shall result in an approximation of the label t̂ ∈ T t with t̂ = d(o). This forms the Markov
chain: Tt → Si → O→ T̂t. A common method of analyzing binary decision/classification
systems is the Receiver Operating Characteristic (ROC). A ROC plot typically represents a



Entropy 2023, 25, 1014 6 of 27

classifier C with a continuous, discrete or categorical output range (by assigning distinct
arbitrary values to each category) for a binary decision problem by a curve in a True-Positive
Rate (TPR)/False-Positive Rate (FPR) diagram for varying decision thresholds τx with the
decision rule for a sample s being C(s) ≤ τx ⇔ False [15]. The resulting points are typically
connected using a step function, as shown in red in Figure 4a. As a result of using a single
decision threshold, the points of the ROC curve monotonically increase from (0, 0) to (1, 1);
however, they are in general neither concave nor convex [16].
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0
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0.4
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(a)
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(b)
Figure 4. Relating zonotopes and their convex hull to achievable decision regions. (a) A ROC curve
(red) can be used to estimate the parameters of a channel, and the randomized combination of
thresholds (Equation (7)) corresponds to an interpolation in the visualization (gray). The reachable
decision region when utilizing all thresholds can be constructed using a likelihood ratio test, which
corresponds to reordering the vectors by decreasing slope (in this case, swapping the first two steps)
and taking the convex hull of reachable points. This reachable decision region is the zonotope of the
channel. (b) The convex hull of any set of zonotopes is reachable by their randomized combination.
Given two classifiers C1 (blue) and C2 (green), there always exists a randomized combination that
can reach any position in their convex hull (purple).

We want to highlight the distinction between a ROC curve and the achievable perfor-
mance pairs (TPR, FPR) based on the classifier. Any performance pair within the convex
hull of the obtained points for constructing the ROC curve can be achieved since the de-
cision strategy of Equation (7) results in an interpolation of the points corresponding to
τ1 ≤ τ2 with the parameter 0 ≤ h ≤ 1 in the TPR/FPR diagram. Therefore, while a ROC
curve is not convex in general, the achievable performance region is convex in general.

C(s) ≤ τ1 ⇒ False,

τ1 < C(s) ≤ τ2 ⇒ Bernoulli(h),

τ2 < C(s)⇒ True.

(7)

When utilizing the set of all available thresholds on the classification output, we can identify
the reachable decision regions within the TPR/FPR diagram using the likelihood ratio
test, which is well known to be optimal for binary decision problems: Neyman–Pearson
theory [17] states that the likelihood ratio test (Equation (8)) provides the minimal type II
error (minimal β, maximal TPR= β = 1− β) for a bounded type I error (FPR, α).

P(Si = s|T = t)
P(Si = s|T 6= t)

< τ ⇒ False,

P(Si = s|T = t)
P(Si = s|T 6= t)

= τ ⇒ Bernoulli(h),

P(Si = s|T = t)
P(Si = s|T 6= t)

> τ ⇒ True.

(8)

Notice that the decision criterion is determined by the slope of each vector in the row
stochastic matrix that represents the binary input channel (Equation (6a)). This effective
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reordering of vectors based on their slope when varying the parameters τ and h results
in the upper half of the zonotope discussed in Section 2.4 and as visualized in Figure 4a.
The lower half of the zonotope is obtained from negating the outcome of the likelihood
ratio test. Therefore, the zonotope representation of a channel corresponds to the achievable
performance region in a TPR/FPR diagram of a classifier at binary decision problems. When
reconsidering Figure 3, the channels κt

1 = Tt → O1 and κt
2 = Tt → O2 may correspond

to two classifiers C1 and C2 whose channel parameters have been estimated from a ROC
curve, and the achievable performance regions correspond to the zonotopes in a TPR/FPR
diagram. Since the likelihood ratio test is optimal for binary decision problems, there
cannot exist a decision strategy that would achieve a performance outside the zonotope. At
the same time, the likelihood ratio test can be randomized to reach any desired position
within the zonotope.

Finally, notice that the convex hull of any two classification systems is reachable by
their randomized combination. We can view each classifier as an observation from a
channel κt

1/κt
2 about Tt and know that there always exists a garbling λ of the joint channel

κt
12 to obtain their convex hull κt

1 t κt
2 = κt

12λ. Using a likelihood ratio test on κt
1 t κt

2, any
position within the convex hull is reachable as a randomized combination of both classifiers.
This has been visualized in Figure 4b. Due to this reason, we will say in Section 3.1 that the
convex hull should be fully attributed to the marginal channels κt

1 and κt
2.

2.6. Lattice Valuations

This section summarizes the properties of consistent lattice valuations based on Knuth [13].
The quantification of a lattice (L,4) or (L,f,g) with α f β = α⇔ α 4 β for elements of the
set α, β ∈ L is a function q : L→ R, which assigns reals to each element. A quantification
is called a valuation if any two elements maintain an ordering relation: α 4 β implies
that q(α) ≤ q(β). A quantification q is consistent if it satisfies a sum rule (inclusion–
exclusion principle): q(α g β) = q(α) + q(β)− q(a f β). If the bottom element of the lattice
(⊥) is evaluated to zero q(⊥) = 0, then the valuation of the Cartesian product of two
lattices q((α; β)) = q(α) · q(β) remains consistent with the individual lattices. Finally, a
bi-quantification can be defined as b(α, β) = q(α f β)/q(β). Similar to Knuth [13], we will
use the notation q([α; β]) ≡ b(α, β) which can be thought of as quantifying a degree of
inclusion for α within β. The distributive lattice then creates an algebra like probability
theory for the consistent valuation, as summarized in Equation (9) [13].

q(α g β) = q(α) + q(β)− q(α f β) (Sum rule)

q([α g β; γ]) = q([α; γ]) + q([β; γ])− q([α f β; γ]) (Sum rule)

q((α; β)) = q(α) · q(β) (Direct product rule)

q(([α; β]; [τ; υ])) = q([α; τ]) · q([β; υ]) (Direct product rule)

q([β f γ; α]) = q([γ; α f β]) · q([β; α]) (Product rule)

q([γ; α f β]) =
q([β; α f γ]) · q([γ; α])

q([β; α])
(Bayes’ Theorem)

(9)

3. Quantifying Reachable Decision Regions

We start by studying the decomposition of binary decision problems from an interpre-
tational perspective (Section 3.1). This provides the basis for constructing a distributive
lattice in Section 3.2 and demonstrating the structure of a consistent valuation function.
Section 3.3 highlights that mutual information is such a consistent valuation and extends
the concept from binary decision problems to target variables with an arbitrary finite num-
ber of states. The resulting definition of shared information for the PID will be discussed as
an application in Section 4.1 together with the tracing of information flows in Section 4.2.

We define an equivalence relation (∼) for binary input channels κt, which allows for
the removal of zero vectors, the permutation of columns (P representing a permutation
matrix) and the splitting/merging of columns with identical likelihood ratios (vectors of
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identical slope, ` ∈ R), as shown in Equation (10). These operations are invertible using
garblings and do not affect the underlying zonotope.

κt ∼
[
κt [ 0

0 ]
]
; (10a)

κt ∼ κtP; (10b)[
(1 + `)~v1 ~v2 . . .

]
∼
[
~v1 `~v1 ~v2 . . .

]
. (10c)

Based on this definition, block matrices cancel at an inverted sign (` = −1) if we allow
negative columns, as shown in Equation (11), where M1 and M2 are some 2× n matrix.

M1 ∼
[
M1 M2 −M2

]
(11)

3.1. Motivation and Operational Interpretation

The aim of this section is to provide a first intuition based on a visual example for
the methodology that will be used in Section 3.2 to construct a distributive lattice of the
reachable decision regions and its consistent valuation. We only consider binary variables
T t = {t, t} or the one-vs-rest encoding of others (Tt = t⇔ T = t).

In the used example, the desired variable can be observed indirectly using the two
variables V1 and V2. The visible variables are considered to be the output of the channels

Tt κt
1−→ V1, Tt κt

2−→ V2 and Tt κt
12−→ (V1, V2) and correspond to the zonotopes shown in Figure 5.

We consider each reachable decision point (a pair of TPR and FPR) to represent a different
notion of uncertainty about the state of the target variable. We want to attribute the
reachable decision regions to each channel for constructing a lattice, as shown in Figure 6,
with the following operational interpretation:

• Synergy: Corresponds to the partial contribution of κt
12 = Tt → (V1, V2) and rep-

resents the decision region which is only accessible due to the (in-)dependence of
both variables.

• Joint: The joint element κt
1 ∨ κt

2 = (Tt → V1) ∨ (Tt → V2) corresponds to the joint un-
der the Blackwell order and represents the decision region which is always accessible
if the marginal distributions (V1, Tt) and (V2, Tt) can be obtained. Therefore, we say
that its information shall be fully attributed to V1 and V2 such that is has no partial
contribution. For binary target variables, this definition is equivalent to the notion of
union information by Bertschinger et al. [10] and Griffith and Koch [11]. However,
we extend the analysis beyond binary target variables with a different approach in
Section 3.3.

• Unique: Corresponds to the partial contribution of κt
1 = Tt → V1 or κt

2 = Tt → V2 and
represents the decision region that is lost when losing the variable. It only depends on
their marginal distributions (V1, Tt) and (V2, Tt).

• Shared: Corresponds to the cumulative contribution of κt
1 ∧ κt

2 = (Tt → V1)
∧ (Tt → V2) and represents the decision region which is lost when losing either
V1 or V2. Since it only depends on the marginal distributions, we interpret it as being
part of both variables. The shared decision region can be split in two components: the
decision region that is part of both individual variables and the component that is part
of the convex hull but neither individual one. The latter component only exists if both
variables provide unique information.

• Redundant: The largest decision region κt
1 u κt

2 = (Tt → V1) u (Tt → V2) which can be
accessed from both V1 and V2. It corresponds to the meet under the Blackwell order
and the part of shared information that can be represented by some random variable
(pointwise extractable component of shared information). The redundant and shared
regions are equal unless both variables provide some unique information.
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Figure 5. Relating the zonotope representations to TPR/FPR plots. The zonotopes correspond to
the regions of a TPR/FPR plot that are reachable by some decision strategy. Regions outside of
the zonotopes are known to be unreachable since the likelihood ratio test is optimal for binary
decision problems. The convex hull of both zonotopes κt

1 ∨ κt
2 is the (unique) lower bound of any

joint distribution under the Blackwell order.

Due to the invariance of re-ordering columns under the defined equivalence relation,
κt represents a set of likelihood vectors. All cumulative and partial decision regions of
Figure 6 can be constructed using a convex hull operator (joint) and matrix concatenations
under the defined equivalence relation (∼). For example, the shared decision region
(meet) can be expressed through an inclusion–exclusion principle with the joint operator
κt

1 ∧ κt
2 ∼ [ κt

1 κt
2 −κt

1∨κt
2 ]. This operator is not closed on channels since it introduces

negative likelihood vectors. Therefore, we distinguish the notation between channels (κt)
and atoms (αt). These matrices αt sum to one similar to channels but may contain negative
columns. Their partial contributions αδt sum to zero.

• The unique contribution of V2: αδt ∼ [ (κt
1∨κt

2) −κt
1 ]

• The shared cumulative region of V1 and V2: βt ∼ [ κt
1 κt

2 −(κt
1∨κt

2) ] ∼ κt
1 ∧ κt

2
• The shared partial contribution: βδt ∼ [ βt −(κt

1uκt
2) ]

• Each cumulative region corresponds to the combination of partial contributions in its
down-set. Notice that the partial contribution of the shared region is canceled by a
section of each unique contribution due to an opposing sign:

κt
1 ∼ [ αδt βδt (κt

1uκt
2) ]

In Section 3.3, we demonstrate a valuation function f that can quantify all cumulative and
partial atoms of this lattice while ensuring their non-negativity and consistency with the
defined equivalence relation (∼). We will refer to a more detailed example on the valuation
of partial decision regions in Appendix C in the context of the following section.

Why does the decomposition of reachable decision regions as shown in Figure 6 pro-
vide a meaningful operational interpretation? Because combining the partial contributions
of the up-set for a variable results in the decision region that becomes inaccessible when
the variable is lost, while combining the partial contributions of the down-set results in
the decision region that is accessible through the variable. For example, losing access to
variable V2 results in losing access to the decision regions provided uniquely by V2 and
its synergy with V1 (the up-set on the lattice). Additionally, the cumulative component
corresponds to the combination of all partial contributions in its down-set since opposing
vectors cancel under the defined equivalence relation (∼) such as the shared and unique
contributions. Therefore, we define a consistent valuation of this lattice in Section 3.2
by quantifying decision regions based on their spanning vectors and highlight that the
expected value for each t ∈ T corresponds to the definition of mutual information.

Sections 3.2 and 3.3 focus only on defining the meet and joint operators (∧/∨) with
their consistent valuation. To obtain the pointwise redundant and synergetic components
for a PID, we can later add the corresponding channels when constructing the pointwise
lattices V = {V1, V2, (V1, V2), V1 u V2} with the ordering of Figure 6 from the meet and
joint operators.
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(Tt → V1) ∨ (Tt → V2)

Tt → V1 Tt → V2

(Tt → V1) ∧ (Tt → V2)

(Tt → V1) u (Tt → V2)

Tt → ⊥

partial κt
12

= Pointwise Synergy
= Pointwise Complementing

partial κt
n

= Pointwise Unique

cumulative κt
1 ∧ κt

2
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α

β




α

β

α

β




α

β

α

β




α

β ∅

α

β




α

β

α

β




α

β

α

β




α

β

α

β




α

β

∗

∗ = ∩ inverted intersection of unique regions

cumulative (αt) (partial, αδt)

Figure 6. Decomposing the achievable decision regions for binary decision problems from an
operational perspective. Each node is visualized by its cumulative and partial decision region.
The partial decision region is shown within round brackets. The cumulative region corresponds to
the matrix concatenation of the partial regions in its down-set under the defined equivalence relation.
Three key elements are highlighted using a grey background.
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3.2. Decomposition Lattice and Its Valuation

This section first defines the meet and joint operators (∧, ∨) and then constructs a
consistent valuation for the resulting distributive lattice. For constructing a pointwise
channel lattice based on the redundancy lattice, we notate the map of functions as shown
in Equation (12) and consider the function kt(Si) = Tt → Si = κt

i to obtain the pointwise
channel κt

i of a source Si. f 〈P〉 = { f (x) | x ∈ P},
f 〈〈P〉〉 = { f 〈x〉 | x ∈ P},

f 〈〈〈P〉〉〉 = { f 〈〈x〉〉 | x ∈ P}.
(12)

The intersections shall correspond to some meet operation and the union to some joint
operation on the pointwise channels, as shown in Equation (13), while maintaining the
ordering relation of Williams and Beer [5]. This section aims to define suitable meet
and joint operations together with a function for their consistent valuation. Each atom
αt, βt ∈ Bt(V) now represents an expression of channels κt with the operators ∨/∧, as
shown in Appendix A. For example, the element {S12, S3} is converted to the expression
(κt

1 ∨ κt
2) ∧ κt

3.
Bt(V) =

∧
〈
∨
〈〈 kt〈〈〈A(V)〉〉〉 〉〉 〉. (13)

As seen in Section 3.1, we want to define the joint for a set of channels to be equivalent to
their convex hull, matching the Blackwell order. This also ensures that the joint operation
is closed on channels.

κt
1 ∨ κt

2 ≡ κt
1 t κt

2 (joint is closed on channels) (14)

Since opposing vectors cancel under the defined equivalence relation, we can use a notion
of the Möbius inverse to define the set of vectors spanning a partial decision region αδt for
an atom αt ∈ Bt(V), as shown in Equation (15), written as a recursive block matrix and
using the strict down-set of the ordering based on the underlying redundancy lattice.

αδt ≡
[
αt −

[
βδt | βt ∈ ↓̇αt]] (15)

The definition of the meet operator (∧) and the extension of the joint operator (∨) from
channels to atoms is now obtained from the constraint that the partial contribution for the
joint of two incomparable atoms (αt, βt ∈ Bt(V), αt ∨ βt 6∼ αt and αt ∨ βt 6∼ βt) shall be
zero, as shown in Equation (16).

αt ∨ βt 6∼ αt and αt ∨ βt 6∼ βt ⇒ (αt ∨ βt)δt ≡
[

0
0

]
(16)

This creates the desired inclusion–exclusion principle and results in the equivalences of the
meet for two and three atoms, as shown in Equation (17). Their resulting partial channels
(αδt) correspond to the set of vectors spanning the desired unique and shared decision
regions of Figure 6.

αt ∧ βt ∼
[
αt βt −αt ∨ βt] (17a)

αt ∧ (βt ∧ γt) ∼
[
αt βt γt −αt ∨ βt −αt ∨ γt −βt ∨ γt αt ∨ βt ∨ γt] (17b)

From their construction, the meet and joint operators provide a distributive lattice for a set
of channels under the defined equivalence relation as shown in Appendix B by satisfying
idempotency, commutativity, associativity, absorption and distributivity. This can be used
to define a corresponding ordering relation (Equation (18)).

αt � βt ≡ αt ∧ βt ∼ αt ⇔ αt ∨ βt ∼ βt (18)
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To obtain a consistent valuation of this lattice, we consider a function f (αt), as shown in
Equation (19). First, this function has to be invariant under the defined equivalence relation,
and second, it has to match the ordering of the constructed lattice.

f (αt) = ∑
~v∈αt

r(~v) where r is convex and satisfies r(`~v) = `r(~v) and r
([

`
`

])
= 0 (19)

The function f shall apply a (convex) function r(~v) to each vector of the matrix of an atom
~v ∈ αt. The function is invariant under the equivalence relation (∼, Equation (10)):

• Zero vectors do not affect the quantification: r([ 0
0 ]) = 0

• The structure of f ensures invariance under reordering columns: f (κt) = f (κtP)
• The property r(`~v) = `r(~v) with ` ∈ R ensures invariance under splitting/merging

columns of identical likelihood ratios:
f ([(1 + `)~v1]) = (1 + `)r(~v1) = r(~v1) + `r(~v1) = f ([~v1 `~v1])

The function f is a consistent valuation of the ordering relation (�, Equation (18)) from the
constructed lattice:

• The convexity of r ensures that the quantification f (αt) is a valuation as shown in
Appendix C: βt � αt ⇒ f (βt) ≤ f (αt)

• The function f provides a sum-rule: f (αt ∧ βt) = f ([ αt βt −αt∨βt ]) = f (αt) + f (βt)−
f (αt ∨ βt)

• The function f quantifies the bottom element correctly: f (⊥) = r
([

`
`

])
= 0

A parameterized function that forms a consistent lattice valuation with 0 ≤ p ≤ 1 and
that will be used in Section 3.3 is shown in Equation (20) (the convexity of rp is shown in
Appendix D).

fp(α
t) = ∑

~v∈αt

rp(~v) (20a)

rp(~v) = rp
([ x

y
])

= x log
(

x
px + (1− p)y

)
(20b)

This section demonstrated the construction of a distributive lattice and its consistent
valuation, resulting in an algebra as shown in Equation (9).

3.3. Decomposing Mutual Information

This section demonstrates that mutual information is the expected value of a consistent
valuation for the constructed pointwise lattices and discusses the resulting algebra. To
show this, we define the parameter p and pointwise channel κt

i for the consistent valuation
(Equation (20)) using a one-vs-rest encoding (Equation (21)).

p = P(T=t) (parameter)

κt
i =

[
P(Si |T=t)
P(Si |T 6=t)

]
=

[
x1 x2 ... xm
y1 y2 ... ym

]
(binary input channel)

(21)

The expected value of the resulting valuation in Equation (20) is equivalent to the definition
of mutual information, as shown in Equation (22). Therefore, we can interpret mutual
information as being the expected value of quantifying the reachable decision regions for
each state of the target variable that represent a concept of pointwise uncertainty.
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I(T; Si) = ∑
s∈Si

∑
t∈T

P(Si ,T)(s, t) log(
P(Si ,T)(s, t)
PSi (s)PT(t)

) (22a)

= ET

∑
s∈Si

P(Si |T=t)(s)︸ ︷︷ ︸
xj

log


xj︷ ︸︸ ︷

P(Si |T=t)(s)
P(T=t)︸ ︷︷ ︸

p

P(Si |T=t)(s)︸ ︷︷ ︸
xj

+ (1− P(T=t))︸ ︷︷ ︸
1−p

P(Si |T 6=t)(s)︸ ︷︷ ︸
yj


 (22b)

The expected value for a set of consistent lattice valuations corresponds to a weighted
sum such that the resulting lattice remains consistent. Therefore, we can combine the
pointwise lattices to extend the definition of mutual information for meet and joint elements,
which we will think of as intersections and unions. Let α represent an expression of sources
with the operators ∨ and ∧. Then, we can obtain its valuation from the pointwise lattices
using the function ÎT , as shown in Equation (23). Notice that we do not define the operators
for random variables but only use the notation for selecting the corresponding element on
the underlying pointwise lattices. For example, we write α = (S12 ∧ S3) ∨ S4 to refer to the
pointwise atom αt = (κt

12 ∧ κt
3) ∨ κt

4 on each pointwise lattice.
The special case of atoms that consist of a single source corresponds by construction

to the definition of mutual information. However, we propose normalizing the measure,
as shown in Equation (23), to capture a degree of inclusion between zero and one. This is
possible for discrete variables and will lead to an easier intuition for the later definition of
bi-valuations and product spaces by ensuring the same output range for these measures.
As a possible interpretation for the special role of the target variable, we like to think of T
as the considered origin of information within the system, which then propagates through
channels to other variables.

ÎT(α) ≡
ET

[
fPT(t)

(
αt)]

ET

[
fPT(t)(>)

] =
ET

[
fPT(t)

(
αt)]

H(T)

ÎT(T) = 1 =
H(T)
H(T)

ÎT(Si) = ÎT(T ∧ Si) =
I(T; Si)

H(T)

(23)

We obtain the following algebra with the bi-valuation ÎT([α; β]) that quantifies a degree of
inclusion from α within the context of β. We can think of ÎT([α; β]) as asking how much of
the information from β about T is shared with α.

ÎT(α ∨ β) = ÎT(α) + ÎT(β)− ÎT(α ∧ β) (Sum rule) (24a)

ÎT([α; β]) ≡ ÎT(α ∧ β)

ÎT(β)
(Bi-Valuation) (24b)

ÎT([α ∨ β; γ]) = ÎT([α; γ]) + ÎT([β; γ])− ÎT([α ∧ β; γ]) (Conditioned sum rule) (24c)

ÎT([β ∧ γ; α]) = ÎT([γ; α ∧ β]) · ÎT([β; α]) (Product rule) (24d)

ÎT([β; α ∧ γ]) =
ÎT([γ; α ∧ β]) · ÎT([β; α])

ÎT([γ; α])
(Bayes’ Theorem) (24e)



Entropy 2023, 25, 1014 14 of 27

Since the definitions satisfy an inclusion–exclusion principle, we obtain the interpretation
of classical measures as proposed by Williams and Beer [5]: conditional mutual informa-
tion I(T; V1 | V2) measures the unique contribution of V1 plus its synergy with V2, and
interaction information I(T; V1; V2) measures the difference between synergy and shared
information, which explains its possible negativity.

As highlighted by Knuth [13], the lattice product (the Cartesian product with ordering
(α; β) � (τ; υ) ⇔ α � τ and β � υ) can be valuated using a product rule to maintain
consistency with the ordering of the individual lattices. This creates an opportunity to
define information product spaces for multiple reference variables. Since we normalized
the measures, the valuation of the product space will also be normalized to the range
from zero to one. The subscript notation T1 × T2 shall indicate the product of the lattice
constructed for T1 with the product of the lattice constructed for T2.

Î(T1×T2)
((α; β)) = ÎT1(α) · ÎT2(β) (Valuation Product rule) (25a)

Î(T1×T2)
(([α; τ]; [β; υ])) = ÎT1([α; β]) · ÎT2([τ; υ]) (Bi-Valuation Product rule) (25b)

The lattice product is distributive over the joint for disjoint elements [13], which leads to
the equivalence in Equation (26). Unfortunately, it appears that only the bottom element is
disjoint with other atoms in the constructed lattice.

∀t : αt ∧ βt ∼ ⊥ ⇒ Î(T1×T2)
((α ∨ β; τ)) = Î(T1×T2)

((α; τ) ∨ (β; τ)) (26)

Finally, we would like to provide an intuition for this approach based on possible
operational scenarios:

1. Consider having characterized four radio links and obtained the conditional distri-
butions PV1|T , P(V2,V3)|T and PV4|T . We are interested in their joint channel capacity;
however, lack the required joint distribution. In this case, we can use their joint
supPT(t) ÎT(S1 ∨ S23 ∨ S4) to obtain a (pointwise) lower bound on their joint chan-
nel capacity.

2. Consider having two datasets {T1, V1, V2, V3} and {T2, V2, V3, V4} that provide differ-
ent types of labels (Tx) and associated features (Vy), where some events were recorded
in both datasets. In such cases, one may choose to study the cases T1 → (V1, V2, V3),
T2 → (V2, V3, V4) and (T1, T2)→ (V1, V2, V3, V4) for events appearing in both datasets,
which could then be combined into a product lattice Î(T1×T2×(T1,T2))

.

4. Applications

This section focuses on applications of the obtained measure from Section 3.3. We first
apply the meet operator to the redundancy lattice for constructing a PID. Since an atom
of the redundancy lattice α ∈ A(V) corresponds to a set of sources for which the shared
information shall be measured, we use the notation

∧
α to obtain an expression for the

function ÎT . Section 4.2 additionally utilizes the properties of a Markov chain to demonstrate
how the flow of partial information can be traced through system models.

4.1. Partial Information Decomposition

Based on Section 3.3, we can define a measure of shared information Î(α; T) for the
elements of the redundancy lattice α ∈ A(V) in the framework of Williams and Beer [5], as
shown in Equation (27). The measure satisfies the three axioms of Williams and Beer [5]
(commutativity from the equivalence relation and structure of fp, monotonicity from
being a lattice valuation and self-redundancy from removing the normalization), and the
decomposition is non-negative since the joint channel κt

12 is superior to the joint of two
channels κt

1 ∨ κt
2 for all t ∈ T . The partial contribution Îδ(α; T) corresponds to the expected

value of the quantified partial decision regions αδt.
This provides the interpretation of Section 3.1, where combining the partial contribu-

tions of the up-set corresponds to the expected value of quantifying the decision regions that
are lost when losing the variable, while combining the partial contributions of the down-set
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corresponds to the expected value of quantifying the accessible decision region from this
variable. Additionally, we obtain a pointwise version of the property by Bertschinger
et al. [10]: if a variable provides unique information, then there is a way to utilize this
information for a reward function to some target variable state. Finally, it can be seen that
taking the minimal quantification of the different decision regions as done by Williams and
Beer [5] leads to a lack in distinguishing distinct reachable decision regions or, as phrased
in the literature: a lack of distinguishing “the same information and the same amount of
information” [6–9].

∀α ∈ A(V), Î(α; T) = ÎT

(∧
α
)
· H(T), (27a)

Îδ(α; T) = Î(α; T)− ∑
β∈↓̇α

Îδ(β; T) = ET

[
fPT(t)

(
αδt
)]

(27b)

An identical definition of Î(α; T) can be obtained only based on the Blackwell order, as
shown in Equation (28). Let α ∈ A(V) be a set of sources and let Tt represent a binary
target variable (T t = {t, t}) such that Tt = t ⇔ T = t. We can expand the meet operator
used in Equation (27a) using the sum-rule and utilize the distributivity for arriving at
the joint of two channels, which matches the Blackwell order (Equation (28b)). We write
Si tTt Sj to refer to the joint of Si and Sj under the Blackwell order with respect to variable
Tt. This results in the recursive definition of i

(
α; Tt) that corresponds to the definition of

mutual information for a single source (Equation (28a)). This expansion of Equation (27a) is
particularly helpful since it eliminates the operators ∧/∨ for a simplified implementation.

i
(
{Si}; Tt) = ∑

s∈Si

P(Si |Tt=t)(s) log

(
P(Si |Tt=t)(s)

P(Tt=t)P(Si |Tt=t)(s) + (1− P(Tt=t))P(Si |Tt 6=t)(s)

)
(28a)

i
(
{Si} ∪ β; Tt) = i

(
{Si}; Tt)+ i

(
β; Tt)− i

(
{Si tTt Sj | Sj ∈ β}; Tt) (28b)

Î(α; T) = ET
[
i
(
α, Tt)] (28c)

Our decomposition is equivalent to the measures of Bertschinger et al. [10], Griffith and
Koch [11] and Williams and Beer [5] in two special cases:

• For a binary target variable T = {t, t} with two observable variables V1 and V2,
our approach is identical to Bertschinger et al. [10] and Griffith and Koch [11] since
κ1 t κ2 ∼ κt

1 ∨ κt
2 ∼ κt

1 ∨ κt
2. Beyond binary target variables, the resulting definitions

differ due to the pointwise construction (see Appendix E).

• If from a pointwise perspective (Tt), some variable is Blackwell superior to the other
(not necessarily the same each time), then our method is identical to Williams and
Beer [5] since the defined meet operation will equal their minimum κt

1 t κt
2 ∼ κt

2 ⇒
fp(κt

1) ≤ fp(κt
2) ⇒ min( fp(κt

1), fp(κt
2)) = fp(κt

1 ∧ κt
2) = fp(κt

1) and equivalently for
the function i(α, Tt).

A decomposition of typical examples can be found in Appendix E. We also provide an
implementation of the PID based on our approach [18].

4.2. Information Flow Analysis

Due to the achieved inclusion–exclusion principle, the data processing inequality of
mutual information and the achieved non-negativity of partial information for an arbitrary
number of variables, it is possible to trace the flow of information through Markov chains.
The measure ÎT appears suitable for this analysis due to the chaining properties of the
underlying pointwise channels that are quantified. The analysis can be applied among
others for analyzing communication networks or designing data processing systems.

The flow of information in Markov chains has been studied by Niu and Quinn [19],
who considered chaining individual variables X1 → X2 → . . . → Xn and performed a
decomposition on V = {X1, X2, . . . , Xn}. In contrast to this, we consider Markov chains



Entropy 2023, 25, 1014 16 of 27

that map sets of random variables from one step to the next. In this case, it is possible to
perform an information decomposition at each step of the Markov chain and identify how
the partial information components propagate from one set of variables to the next.

Let T → V→ Q be a Markov chain with the atoms α ∈ A(V) and β ∈ A(Q), through
which we trace the flow of partial information from α to β about T. We can measure the
shared information between both atoms α and β, as shown in Equation (29a), to obtain
how much information their cumulative components share Ĵ∩→∩(α → β; T). Similar to
the PID, we remove the normalization for the self-redundancy axiom. To identify how
much of the cumulative information of β is obtained from the partial information of α, we
subtract the strict down-set of α on the lattice (A(V),4) as shown in Equation (29b) to
obtain Ĵδ→∩(α → β; T). To compute how much of the partial information of α is shared
with the partial contribution of β, we similarly remove the flow from the partial information
of α into the strict down-set of β on the lattice (A(Q),4), as shown in Equation (29c), to
obtain Ĵδ→δ(α → β; T). This can be used to trace the origin of information for each atom
β ∈ A(Q) to the previous elements α ∈ A(V).

The approach is not limited to one step and can be extended for tracing the flow
through Markov chains of arbitrary length Ĵδ→δ→δ ...(α → β → γ . . . ; T). However, we
only trace one step in this demonstration for simplicity.

Ĵ∩→∩(α→ β; T) = ÎT(
∧

α ∧
∧

β) · H(T) (29a)

Ĵδ→∩(α→ β; T) = Ĵ∩→∩(α→ β; T)− ∑
γ∈↓̇α

Ĵδ→∩(γ→ β; T) (29b)

Ĵδ→δ(α→ β; T) = Ĵδ→∩(α→ β; T)− ∑
γ∈↓̇β

Ĵδ→δ
T (α→ γ; T) (29c)

We demonstrate the Information Flow Analysis using a full-adder as a small logic circuit
with the input variables V = {A, B, Cin} and the output T = {S, Cout} as shown in
Equation (30). Any ideal implementation of this computation results in the same channel
from V to T. Therefore, they create an identical flow of the partial information from V to
the partial information of T. However, the specific implementation will determine how
(over which intermediate representations and paths) the partial information is transported.

S = A⊕ B⊕ Cin

Cout = A · B + A · Cin + B · Cin

= (A · B) + Cin · (A⊕ B)) (typical implementation)

T = (S, Cout)

(30)

To make the example more interesting, we consider the implementation of a noisy full-adder,
as shown in Figure 7, which allows for bit-flips on wires. We indicate the probability of a
bit-flip below each line and imagine this value correlates to the wire length and proximity
to others. Now, changing the implementation or even the layout of the same circuit would
have an impact on the overall channel.

To perform the analysis, we first have to define the target variable: What it is that we
want to measure information about? In this case, we select the joint distribution of the
desired computation output T as the target variable and define the noisy computation result
to be T̂ = {Ŝ, Ĉout}, as shown in Figure 7. We obtain both variables from their definition by
assuming that the input variables V are independently and uniformly distributed and that
bit-flips occurred independently. However, it is worth noting that noise dependencies can
be modeled in the joint distribution. This fully characterizes the Markov chain shown in
Equation (31).

T = (S, Cout)→ T = {S, Cout} → V = {A, B, Cin} → Q = {Q1, Q2, Q3} → R = {R1, R2, R3} → T̂ = {Ŝ, Ĉout} (31)
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Figure 7. Noisy full-adder example for the Information Flow Analysis demonstration. The probability
of a bit-flip is indicated below the wires. If a wire has two labels, the first label corresponds to the
wire input and the second label to its output.

We group two variables at each stage to reduce the number of interactions in the
visualization. The resulting information flow of the full-adder is shown as a Sankey diagram
in Figure 8. Each bar corresponds to the mutual information of a stage in the Markov chain
with the input T. The bars’ colors indicate the partial information decomposition of
Equation (27). The information flow over one step using Equation (29) is indicated by
the width of a line between the partial contributions of two stages. To follow the flow
of a particular component over more than one step—for example, to see how the shared
information of T propagates to the shared information of T̂—the analysis can be performed
by tracing multiple steps after extending Equation (29).

T = (S, Cout) T = { S︸︷︷︸
1

, Cout︸︷︷︸
2

} V = {(A, B)︸ ︷︷ ︸
1

, Cin︸︷︷︸
2

} Q = {(Q1, Q2)︸ ︷︷ ︸
1

, Q3︸︷︷︸
2

} R = { R1︸︷︷︸
1

, (R2, R3)︸ ︷︷ ︸
2

} T̂ = { Ŝ︸︷︷︸
1

, Ĉout︸︷︷︸
2

}

H(T) I(T, T) I(T; V) I(T; Q) I(T; R) I(T; T̂)≥ ≥ ≥ ≥=

Shared Unique 1 Unique 2 Synergetic

Figure 8. Sankey diagram of the Information Flow Analysis for the noisy full-adder in Figure 7.
Each bar corresponds to one stage in the Markov chain, and its height corresponds to this stage’s
mutual information with the target T. Each bar is decomposed into the information that the considered
variables provide shared (orange), unique (blue/green) or synergetic (pink) about the target. If a
stage is represented by a single variable or joint distribution, no further decomposition is performed
(gray). We trace the information between variables over one step using the sub-chains T → T → T,
T → T → V, T → V → Q, T → Q → R and T → R → T̂ using Equation (29). The resulting flows
between each bar visualize how the partial information propagates for one step in the Markov chain.
For following the flow of a particular partial component over more than one step in the Sankey
diagram, Equation (29) can be extended.

The results (Figure 8) show that the decomposition does not attribute unique infor-
mation to S or Cout about their own joint distribution. The reason for this is shown in
Equation (32): both variables provide an equivalent channel for each state of their joint
distribution and, thus, an equivalent uncertainty about each state of T. Phrased differ-
ently, both variables provide access to the identical decision regions for each state of their
joint distribution and can therefore not provide unique information (no advantage for
any reward function to any t ∈ T ). If this result feels counter-intuitive, we would also
recommend the discussion of the two-bit-copy problem and identity axiom by Finn [9]
(p. 16ff.) and Finn and Lizier [20]. The same effect can also be seen when viewing each
variable in V individually (not shown in Figure 8), which causes neither of them to provide
unique information on their own about the joint target distribution T.
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(T(0,0) → Cout) ∼ (T(0,0) → S) ∼
[

1 0
3/7 4/7

]
∼ (T(1,1) → Cout) ∼ (T(1,1) → S)

(T(0,1) → Cout) ∼ (T(0,1) → S) ∼
[

1 0
1/5 4/5

]
∼ (T(1,0) → Cout) ∼ (T(1,0) → S)

(32)

The Information Flow Analysis is particularly useful in practice since it can be per-
formed on an arbitrary resolution of the system model to handle its complexity. For
example, a small full-adder can be analyzed on the level of gates and wires represented by
channels. However, the full-adder is itself a channel that can be used to analyze an n-bit
adder on the level of full-adders.

Further applications of the Information Flow Analysis could include the identification
of which inputs are most critical for the computational result and where information is
being lost. It can also be explored if a notion of robustness in data processing systems could
be meaningfully defined based on how much pointwise redundant or shared information
of the input V can be traced to its output T̂. This might indicate a notion of robustness
based on whether or not it is possible to compensate for the unavailability of input sources
through a system modification.

Finally, the target variable does not have to be the desired computational outcome as
has been done in the demonstration. When thinking about secure multi-party computations,
it might be of interest to identify the flow of information from the perspective of some
sensitive or private variable (T) to understand the impact of disclosing the final computation
result. The possible applications of such an analysis are as diverse as those of information
theory.

5. Discussion

We propose the interpretation that the reachable decision regions correspond to differ-
ent notions of uncertainty about each state of the target variable and that mutual informa-
tion corresponds to the expected value of quantifying these decision regions. This allows
partial information to represent the expected value of quantifying partial decision regions
(Equations (27) and (28)), which can be used to attribute mutual information to the vis-
ible variables and their interactions (pointwise redundant/shared/unique/synergetic).
Since the proposed quantification results in the consistent valuation of a distributive lat-
tice, it creates a novel algebra for mutual information with possible practical applications
(Equations (24) and (25)). Finally, the approach allows for tracing information components
through Markov chains (Equation (29)), which can be used to model and study a wide
range of scenarios. The presented method is directly applicable to discrete and categorical
source variables due to their equivalent construction for the reachable decision regions
(zonotopes). However, we recommend that the target variable should be categorical since
the measure does not consider a notion of distance between target states (achievable estima-
tion proximity). This would be an interesting direction for future work due to its practical
application for introducing semantic meaning to sets of variables. An intuitive example is
a target variable with 256 states that is used to represent an 8-bit unsigned integer as the
computation result. For this reason, we wonder if it is possible to introduce a notion of
distance to the analysis such that the classical definition of mutual information becomes
the special case for encoding categorical targets.

A recent work by Kolchinsky [21] removes the assumption that an inclusion–exclusion
principle relates the intersection and union of information and demands their extractability.
This has the disadvantage that a similar algebra or tracing of information would no longer
be possible. We tried to address this point by distinguishing the pointwise redundant
from the pointwise shared element and also obtain no inclusion–exclusion principle for the
pointwise redundancy. We focus in this work on the pointwise shared element due to
the resulting properties and operational interpretation from the accessibility and losses
of reachable decision regions. Moreover, the relation between the used meet and joint
operators provides consistent results from performing the decomposition using the meet
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operator on a redundancy lattice, as done in this work, or a decomposition using the joint
operator on a synergy or loss lattice [22].

Further notions of redundancy and synergy can be studied within this framework if
they are extractable, meaning they can be represented by some random variable. Depending
on the desired interpretation, the representing variable can be constructed for T and added
to the set of visible variables or can be constructed for each pointwise variable Tt and added
to the pointwise lattices. We showed an example of the latter in Section 3.1 by adding the
pointwise redundant element to the lattice, which we interpret as pointwise extractable
components of shared information to quantify the decision regions that can be obtained
from each source.

Since our approach satisfies the original axioms of Williams and Beer [5] and results in
non-negative partial contributions for an arbitrary number of variables, it cannot satisfy the
proposed identity axiom of Harder et al. [8]. This can also be seen by the decomposition
examples in Appendix E (Table A2 and Figure A3). We do not consider this a limitation
since all four axioms cannot be satisfied without obtaining negative partial information [23],
which creates difficulties for interpreting results.

Finally, our approach does not appear to satisfy a target/left chain rule as proposed
by Bertschinger et al. [7]. While our approach provides an algebra that can be used to
handle multiple target variables, we think that further work on understanding the relations
when decomposing with multiple target variables is needed. In particular, it would be
helpful for the analysis of complex systems if the flow of already analyzed sub-chains could
be reused and their interactions could be predicted.

6. Conclusions

We use the approach of Bertschinger et al. [10] and Griffith and Koch [11] to con-
struct a pointwise partial information decomposition that provides non-negative results
for an arbitrary number of variables and target states. The measure obtains an algebra
from the resulting lattice structure and enables the analysis of complex multivariate sys-
tems in practice. To our knowledge, this is the first alternative to the original measure
of Williams and Beer [5] that satisfies their three proposed axioms and results in a non-
negative decomposition for an arbitrary number of variables.
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PID Partial Information Decomposition
ROC Receiver Operating Characteristic
TPR True-Positive Rate (β)
FPR False-Positive Rate (α)
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We use the following notation conventions:
T, T , t, Tt T (upper case) represents the target variable with an event t (lower case) of its event

space (calligraphic), t ∈ T . Tt represents a pointwise (binary) target variable which
takes state one if T = t and state two if T 6= t (Tt represents the one-vs-rest encoding
of state t);

V, Vi, Vi, v V represents a set of visible/observable/predictor variables Vi with v ∈ Vi;
Si,Si sources represent a set of visible variables, where the index i lists the contained

visible variables, such as S12 = {V1, V2}. The event s ∈ Si corresponds to an event
of the corresponding joint variable, e.g., (V1, V2).

We represent channels (κ, λ) as row stochastic matrices with the following indexing:
P represents a permutation matrix;
κi represents a channel from the target to a source T

κi−→ Si using the joint distribution
of the variables within the source, such as T κ12−→ (V1, V2);

κt
i represents a pointwise channel from the target to a source Tt κt

i−→ Si, such as Tt κt
12−→

(V1, V2);
Zκt

i
binary input channels κt

i can be represented as (row) stochastic matrix, which

contain a likelihood vector ~vs =
(

p(Si=s|T=t)
p(Si=s|T 6=t)

)
for each state s ∈ Si. Zκt

i
represents

the zonotope for this set of vectors;
κt

1 ∨ κt
2 represents the binary input channel corresponding to the convex hull

of Zκt
1

and Zκt
2

(Blackwell order joint of binary input channels κt
1 ∨ κt

2
≡ κt

1 t κt
2);

κt
1 ∧ κt

2 represents the meet element for constructing a distributive lattice with the joint
operator κt

1 ∨ κt
2;

κt
1 u κt

2 represents the binary input channel corresponding to the intersection of Zκt
1

and Zκt
2

(Blackwell order meet of binary input channels);
α, β atoms represent an expression of random variables with the operators (∨/∧). In Sec-

tions 2.2 and 4, they represent sets of sources;
αt, βt represent an expression of pointwise channels with the operators (∨/∧);
αδt, βδt represent a partial pointwise channel corresponding to αt.
We use the following convention for operations, functions and brackets:
P1(·) represents the power set without the empty set;
{V1, V2} curly brackets with comma separation represent a set;
[ M1 M2 ] square brackets without comma separation represent a matrix, and the listing of

matrices in this manner represents their concatenation;
q([α; β]) square brackets with semicolon separation are used to refer to the bi-valuation

b(α, β) of a consistent lattice valuation q(α). In a similar manner to Knuth [13], we
use the notation q([α; β]) ≡ b(α, β);

(α; β) round brackets with semicolon separation represent an element of a Cartesian
product L1 × L2, where α ∈ L1 and β ∈ L2;

f 〈L〉 angled brackets indicate that a function f shall be mapped to each element of the set
L. We may nest this notation, such as f 〈〈L〉〉, to indicate a map to each element of
the sets within L;

α False-Positive Rate, type I error;
β True-Positive Rate, 1− type II error.
We distinguish between a joint channel T κ12−→ (V1, V2) and the joint of two channels κ1 ∨ κ2. To avoid
confusion, we write the first case as “joint channel (κ)” and the latter case as “joint of channels
(κi ∨ κj)” throughout this work.

Appendix A

The considered lattice relates the meet and joint elements (∧/∨) through an inclusion–
exclusion principle. Here, the partial contribution for the joint of any two incomparable
elements (αt, βt ∈ Bt(V), αt ∨ βt 6∼ αt and αt ∨ βt 6∼ βt) shall be zero, which is indicated
using a gray font in Figure A1.
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κt
1 ∨ κt

2 ∨ κt
3
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1 ∨ κt

3 κt
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(κt
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2) ∧ (κt
1 ∨ κt

3) (κt
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2) ∧ (κt
2 ∨ κt

3) (κt
1 ∨ κt

3) ∧ (κt
2 ∨ κt

3)

κt
1 κt

2 κt
3 (κt

1 ∨ κt
2) ∧ (κt

1 ∨ κt
3) ∧ (κt

2 ∨ κt
3)

κt
1 ∧ (κt

2 ∨ κt
3) κt

2 ∧ (κt
1 ∨ κt

3) κt
3 ∧ (κt

1 ∨ κt
2)

κt
1 ∧ κt

2 κt
1 ∧ κt

3 κt
2 ∧ κt

3

κt
1 ∧ κt

2 ∧ κt
3

Figure A1. The considered lattice relating the meet and joint operators. The joint of any two incom-
parable elements (αt, βt ∈ Bt(V), αt ∨ βt 6∼ αt and αt ∨ βt 6∼ βt) shall have no partial contribution to
create an inclusion–exclusion principle between the operators and is highlighted using a gray font.

Appendix B

This section demonstrates that the defined meet and joint operators of Section 3.2
provide a distributive lattice under the defined equivalence relation (∼, Equation (10)).

Lemma A1. The meet and joint operators (∧, ∨) define a distributive lattice for a set of channels
under the defined equivalence relation (∼).

Proof. The definitions of the meet and joint satisfy associativity, commutativity, idempo-
tency, absorption and distributivity on channels under the defined equivalence relation:

1. Idempotency: κt
1 ∨ κt

1 ∼ κt
1 and κt

1 ∧ κt
1 ∼ κt

1.

κt
1 ∨ κt

1 ∼ κt
1 t κt

1 ∼ κt
1;

κt
1 ∧ κt

1 ∼
[
κt

1 κt
1 −κt

1 ∨ κt
1
]
∼
[
κt

1 κt
1 −κt

1
]
∼ κt

1.

2. Commutativity: κt
1 ∨ κt

2 ∼ κt
2 ∨ κt

1 and κt
1 ∧ κt

2 ∼ κt
2 ∧ κt

1.

κt
1 ∨ κt

2 ∼ κt
1 t κt

2 ∼ κt
2 t κt

1 ∼ κt
2 ∨ κt

1;

κt
1 ∧ κt

2 ∼
[
κt

1 κt
2 −κt

1 ∨ κt
2
]
∼
[
κt

2 κt
1 −κt

2 ∨ κt
1
]
∼ κt

2 ∧ κt
1.

3. Associativity: κt
1 ∨ (κt

2 ∨ κt
3) ∼ (κt

1 ∨ κt
2) ∨ κt

3 and κt
1 ∧ (κt

2 ∧ κt
3) ∼ (κt

1 ∧ κt
2) ∧ κt

3.

κt
1 ∨ (κt

2 ∨ κt
3) ∼ κt

1 t (κt
2 t κt

3) ∼ (κt
1 t κt

2) t κt
3 ∼ (κt

1 ∨ κt
2) ∨ κt

3;

κt
1 ∧ (κt

2 ∧ κt
3) ∼

[
κt

1 κt
2 κt

3 −κt
1 ∨ κt

2 −κt
1 ∨ κt

3 −κt
2 ∨ κt

3 κt
1 ∨ κt

2 ∨ κt
3
]

∼
[
κt

3 κt
2 κt

1 −κt
3 ∨ κt

2 −κt
3 ∨ κt

1 −κt
2 ∨ κt

1 κt
3 ∨ κt

2 ∨ κt
1
]

∼ κt
3 ∧ (κt

2 ∧ κt
1) ∼ (κt

1 ∧ κt
2) ∧ κt

3.

4. Absorption: κt
1 ∧ (κt

1 ∨ κt
2) ∼ κt

1 and κt
1 ∨ (κt

1 ∧ κt
2) ∼ κt

1.

κt
1 ∧ (κt

1 ∨ κt
2) ∼

[
κt

1 κt
1 ∨ κt

2 −κt
1 ∨ κt

1 ∨ κt
2
]

∼
[
κt

1 κt
1 ∨ κt

2 −κt
1 ∨ κt

2
]
∼ κt

1;

κt
1 ∨ (κt

1 ∧ κt
2) ∼

[
κt

1 κt
1 ∧ κt

2 −κt
1 ∧ κt

1 ∧ κt
2
]

∼
[
κt

1 κt
1 ∧ κt

2 −κt
1 ∧ κt

2
]
∼ κt

1.
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5. Distributivity: κt
1 ∨ (κt

2 ∧ κt
3) ∼ (κt

1 ∨ κt
2) ∧ (κt

1 ∨ κt
3) and κt

1 ∧ (κt
2 ∨ κt

3) ∼ (κt
1 ∧ κt

2) ∨
(κt

1 ∧ κt
3).

κt
1 ∨ (κt

2 ∧ κt
3) ∼

[
κt

2 ∧ κt
3 κt

1 −κt
1 ∧ (κt

2 ∧ κt
3)
]

∼
[
κt

2 ∧ κt
3 −κt

2 −κt
3 κt

1 ∨ κt
2 κt

1 ∨ κt
3 κt

2 ∨ κt
3 −κt

1 ∨ κt
2 ∨ κt

3
]

∼
[
−κt

2 ∨ κt
3 κt

1 ∨ κt
2 κt

1 ∨ κt
3 κt

2 ∨ κt
3 −κt

1 ∨ κt
2 ∨ κt

3
]

∼
[
κt

1 ∨ κt
2 κt

1 ∨ κt
3 −κt

1 ∨ κt
2 ∨ κt

3
]

∼
[
κt

1 ∨ κt
2 κt

1 ∨ κt
3 −(κt

1 ∨ κt
2) ∨ (κt

1 ∨ κt
3)
]

∼ (κt
1 ∨ κt

2) ∧ (κt
1 ∨ κt

3);

κt
1 ∧ (κt

2 ∨ κt
3) ∼

[
κt

2 ∨ κt
3 κt

1 −κt
1 ∨ (κt

2 ∨ κt
3)
]

∼
[
κt

2 ∨ κt
3 −κt

2 −κt
3 κt

1 ∧ κt
2 κt

1 ∧ κt
3 κt

2 ∧ κt
3 −κt

1 ∧ κt
2 ∧ κt

3
]

∼
[
−κt

2 ∧ κt
3 κt

1 ∧ κt
2 κt

1 ∧ κt
3 κt

2 ∧ κt
3 −κt

1 ∧ κt
2 ∧ κt

3
]

∼
[
κt

1 ∧ κt
2 κt

1 ∧ κt
3 −(κt

1 ∧ κt
2) ∧ (κt

1 ∧ κt
3)
]

∼ (κt
1 ∧ κt

2) ∨ (κt
1 ∧ κt

3).

Appendix C

This section demonstrates the quantification of a small example and proves that the
function f of Equation (19) creates a consistent valuation αt ∧ βt ∼ βt ⇒ f (βt) ≤ f (αt) for
the pointwise lattice (Bt(V),∧,∨).

The convexity of the function r(~v) results, in combination with the property that
r(`~v) = `r(~v) with ` ∈ R, in a triangle inequality, as shown in Equation (A1). This ensures
that Blackwell superior channels obtain a larger quantification result and thus the non-
negativity of channels: f (κt t λt) ≥ f (κt) ≥ f (

[
1
1

]
) = 0.

r(t~v1 + (1− t)~v2) ≤ tr(~v1) + (1− t)r(~v2) (convexity, 0 ≤ t ≤ 1)

r(~v1 +~v2) ≤ r(~v1) + r(~v2) (using t = 0.5 and r(`~v) = `r(~v))
(A1)

To provide an intuition for the meet operator with a minimal example and highlight its
relation to the intersection of zonotopes (redundant region), consider the two channels κt

1
and κt

2 of Equation (A2) and as visualized in Figure A2. To simplify the notation, we use the
property [ ((1+`)~v1) ] ∼ [ (~v1) (`~v1) ] to differentiate the vectors~a2 and~a3 as well as~b1 and~b2.

κt
1 ∼

[
(~a1) (~a2) (~a3)

]
κt

2 ∼
[
(~b1) (~b2) (~b3)

]
κt

1 ∨ κt
2 ∼

[
(~a1) (~a2 +~b2) (~b3)

] (A2)

The resulting shared and redundant element is shown in Equation (A3). Due to the
construction of the meet element through an inclusion–exclusion principle with the joint,
the meet element always contains the vectors which span the redundant decision region as
the first component.

κt
1 ∧ κt

2 ∼
[
(~b1) (~a3) (~b2) (~a2) −(~a2 +~b2)

]
κt

1 u κt
2 ∼

[
(~b1) (~a3)

] (A3)

The second component of the meet element corresponds to the decision region of the joint,
which is not part of either individual channel. This component is non-negative due to the
triangle inequality.

0 ≤ f (κt
1 ∧ κt

2) − f (κt
1 u κt

2) = r(~a2) + r(~b2)− r(~a2 +~b2) (A4)
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The same argument applies to the meet for an arbitrary number of channels since the
inclusion–exclusion principle with the joint elements ensures that the vectors spanning the
redundant region are contained in the meet element, and the triangle inequality ensures
non-negativity for the additional components.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

~a1 ~b1

~b2

~b3

~a2

~a3
~a 2
+
~b 2

α / FPR

β
/

T
PR

Figure A2. A minimal example to discuss the relation between the shared (κt
1 ∧ κt

2) and redundant
(κt

1 u κt
2) decision regions. The channel κt

1 consists of the vectors~ax, and the channel κt
2 consists of the

vectors~bx.

Lemma A2. The function f (αt) is a (consistent) valuation αt ∧ βt ∼ βt ⇒ f (βt) ≤ f (αt) on the
pointwise lattice corresponding to (Bt(V),∧,∨), as visualized in Appendix A.

Proof. Let St = {κt
1, . . . , κt

a} represent a set of pointwise channels. The meet element
(
∧

λt∈St λt) is constructed through an inclusion–exclusion principle with the joint (convex
hull). This ensures that the set of vectors spanning the zonotope intersection (uλt∈St λt) is
contained within the meet element. Additionally, the meet contains a second component
that is ensured to be positive from the triangle inequality of r: f (

∧
λt∈St λt)

≥ f (uλt∈St λt). Since the joint operator is closed on channels and is distributive, we
can introduce a channel to enforce a minimal redundant decision region between the chan-
nels: f (κt

0) ≤ f (uλt∈St κt
0 t λt) ≤ f (

∧
λt∈St κt

0 ∨ λt) = f (κt
0 ∨

∧
λt∈St λt). Applying the

sum-rule shows that f (κt
0 ∧

∧
λt∈St λt) ≤ f (

∧
λt∈St λt).

We again make use of the distributive property, which allows writing any expression
αt into a conjunctive normal form. Since the joint operator is closed for channels, any
expression αt can be represented as meet for a set of channels αt ∼ ∧

λt∈{κt
p1 ,...,κt

pi }
λt.

This demonstrates that the obtained inequality of the meet operator on channels also
applies to atoms f (αt ∧ βt) ≤ f (αt), such that αt ∧ βt ∼ βt ⇒ f (βt) ≤ f (αt).

Appendix D

The considered function fp(κt) of Section 3.2 takes the sum of a convex function.

The Hessian matrix Hr of the function rp(x, y) = x logb

(
x

px+(1−p)y

)
is positive-semide-

finite in the required domain (symmetric and its eigenvalues e1 and e2 are greater than or
equal to zero for x > 0 and b > 1).

Hr =
1

log(b)

 (p−1)2y2

x(px+(1−p)y)2 − (p−1)2y
(px+(1−p)y)2

− (p−1)2y
(px+(1−p)y)2

(p−1)2x
(px+(1−p)y)2


e1 = 0

e2 =
(p− 1)2(x2 + y2)

x log(b)(px + (1− p)y)2

(A5)
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Appendix E

We use the examples of Finn and Lizier [20] since they provided an extensive
discussion of their motivation. We compare our decomposition results to Imin of
Williams and Beer [5] and I± of Finn and Lizier [20]. Examples with two sources are
additionally compared to IBROJA of Bertschinger et al. [10] and Griffith and Koch [11].
We notate the results for shared information S(V1, V2; T), unique information U(Vx; T) and
synergetic/complementing information C(V1, V2; T). We use the implementation of Imin,
IBROJA and I± provided by the dit Python package for discrete information theory [24].

Notice that our approach is identical to Williams and Beer [5] if one of the variables
is pointwise (for each Tt, not necessarily the same one each time) Blackwell superior to
another, and that our approach is equal to Bertschinger et al. [10] and Griffith and Koch [11]
for two visible variables at a binary target variable.

We would like to highlight Table A1 for the difference in our approach to Williams
and Beer [5]. This is an arbitrary example, where the variables V1 and V2 are not Blackwell
superior to each other from the perspective of Tt, as visualized in Figure 6. For highlighting
the difference in our approach to Bertschinger et al. [10] and Griffith and Koch [11], we
require an example where the target variable is not binary, such as the two-bit copy example
in Table A2.

It can be seen that our approach does not satisfy the identity axiom of Harder et al. [8].
This axiom demands the decomposition of the two-bit-copy example (Table A2) to both
variables providing one bit unique information and demands negative partial contributions
in the three-bit even-parity example (Figure A3) [8,20].

Table A1. Two incomparable channels (visualized in Section 3.1). The table highlights the difference
in our approach to Williams and Beer [5] while being identical to Bertschinger et al. [10] since the
target variable is binary.

(a) Distribution (b) Results

V1 V2 T Pr Method S(V1, V2; T) U(V1; T) U(V2; T) C(V1, V2; T)

0 0 0 0.0625 ÎT · H(T) 0.1196 0.0272 0.0716 0.1205
0 0 1 0.3 Imin [5] 0.1468 0 0.0444 0.1477
1 0 0 0.0375 I± [20] 0.3214 −0.1746 −0.1302 0.3223
1 0 1 0.05 IBROJA [10,11] 0.1196 0.0272 0.0716 0.1205
0 1 0 0.1875
0 1 1 0.15
1 1 0 0.2125

Table A2. Two-bit-copy (TBC) example. The results of our approach differ from
Bertschinger et al. [10] and Griffith and Koch [11] since the target variable is not binary.

(a) Distribution (b) Results

V1 V2 T Pr Method S(V1, V2; T) U(V1; T) U(V2; T) C(V1, V2; T)

0 0 0 1/4 ÎT · H(T) 1 0 0 1
0 1 1 1/4 Imin [5] 1 0 0 1
1 0 2 1/4 I± [20] 1 0 0 1
1 1 3 1/4 IBROJA [10,11] 0 1 1 0
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V1 V2 V3 T Pr
0 0 0 0 1/4
0 1 1 1 1/4
1 0 1 2 1/4
1 1 0 3 1/4

(a)

S123

S12 S13 S23

S12 ∧ S13 S12 ∧ S23 S13 ∧ S23

S1 S2 S3 S12 ∧ S13 ∧ S23

S1 ∧ S23 S2 ∧ S13 S3 ∧ S12

S1 ∧ S2 S1 ∧ S3 S2 ∧ S3

S1 ∧ S2 ∧ S3

(b)

2 (0)

2 (0) 2 (0) 2 (0)

2 (0) 2 (0) 2 (0)

1 (0) 1 (0) 1 (0) 2 (1)

1 (0) 1 (0) 1 (0)

1 (0) 1 (0) 1 (0)

1 (1)

(c)

Figure A3. Three-bit even-parity (Tbep) example. The results for ÎT · H(T), Imin and I± are identical.
(a) Distribution. (b) Decomposition lattice. (c) Cumulative results (partial).

Table A3. XOR-gate (Xor) example. All compared measures provide the same results.

(a) Distribution (b) Results

V1 V2 T Pr Method S(V1, V2; T) U(V1; T) U(V2; T) C(V1, V2; T)

0 0 0 1/4 ÎT · H(T) 0 0 0 1
0 1 1 1/4 Imin [5] 0 0 0 1
1 0 1 1/4 I± [20] 0 0 0 1
1 1 0 1/4 IBROJA [10,11] 0 0 0 1

Table A4. Pointwise unique (PwUnq) example. Our approach provides the same results as Williams
and Beer [5] and Bertschinger et al. [10].

(a) Distribution (b) Results

V1 V2 T Pr Method S(V1, V2; T) U(V1; T) U(V2; T) C(V1, V2; T)

0 1 0 1/4 ÎT · H(T) 0.5 0 0 0.5
1 0 0 1/4 Imin [5] 0.5 0 0 0.5
0 2 1 1/4 I± [20] 0 0.5 0.5 0
2 0 1 1/4 IBROJA [10,11] 0.5 0 0 0.5

Table A5. Redundant Error (RdnErr) example. Our approach provides the same results as Williams
and Beer [5] and Bertschinger et al. [10].

(a) Distribution (b) Results

V1 V2 T Pr Method S(V1, V2; T) U(V1; T) U(V2; T) C(V1, V2; T)

0 0 0 3/8 ÎT · H(T) 0.189 0.811 0 0
1 1 1 3/8 Imin [5] 0.189 0.811 0 0
0 1 0 1/8 I± [20] 1 0 −0.811 0.811
1 0 1 1/8 IBROJA [10,11] 0.189 0.811 0 0
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Table A6. Unique (Unq) example. Our approach provides the same results as Williams and Beer [5]
and Bertschinger et al. [10].

(a) Distribution (b) Results

V1 V2 T Pr Method S(V1, V2; T) U(V1; T) U(V2; T) C(V1, V2; T)

0 0 0 1/4 ÎT · H(T) 0 1 0 0
0 1 0 1/4 Imin [5] 0 1 0 0
1 0 1 1/4 I± [20] 1 0 −1 1
1 1 1 1/4 IBROJA [10,11] 0 1 0 0

Table A7. And-gate (And) example. Our approach provides the same results as Williams and Beer [5]
and Bertschinger et al. [10].

(a) Distribution (b) Results

V1 V2 T Pr Method S(V1, V2; T) U(V1; T) U(V2; T) C(V1, V2; T)

0 0 0 1/4 ÎT · H(T) 0.311 0 0 0.5
0 1 0 1/4 Imin [5] 0.311 0 0 0.5
1 0 0 1/4 I± [20] 0.561 −0.25 −0.25 0.75
1 1 1 1/4 IBROJA [10,11] 0.311 0 0 0.5
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