
Doppelganger Loads: A Safe, Complexity-Effective Optimization
for Secure Speculation Schemes

Amund Bergland Kvalsvik, Pavlos Aimoniotis†, Stefanos Kaxiras†, and Magnus Själander
Amund.Kvalsvik@ntnu.no|Pavlos.Aimoniotis@it.uu.se|Stefanos.Kaxiras@it.uu.se|Magnus.Sjalander@ntnu.no

Norwegian University of Science and Technology, Trondheim, Norway
†Uppsala University, Uppsala, Sweden

ABSTRACT
Speculative side-channel attacks have forced computer architects
to rethink speculative execution. Effectively preventing microar-
chitectural state from leaking sensitive information will be a key
requirement in future processor design.

An important limitation of many secure speculation schemes is
a reduction in the available memory parallelism, as unsafe loads
(depending on the particular scheme) are blocked, as they might
potentially leak information. Our contribution is to show that it
is possible to recover some of this lost memory parallelism, by
safely predicting the addresses of these loads in a threat-model
transparent way, i.e., without worsening the security guarantees
of the underlying secure scheme. To demonstrate the generality
of the approach, we apply it to three different secure speculation
schemes: Non-speculative Data Access (NDA), Speculative Taint
Tracking (STT), and Delay-on-Miss (DoM).

An address predictor is trained on non-speculative data, and
can afterwards predict the addresses of unsafe slow-to-issue loads,
preloading the target registers with speculative values, that can
be released faster on correct predictions than starting the entire
load process. This new perspective on speculative execution encom-
passes all loads, and gives speedups, separately from prefetching.

We call the address-predicted counterparts of loadsDoppelganger
Loads. They give notable performance improvements for the three
secure speculation schemes we evaluate, NDA, STT, and DoM. The
Doppelganger Loads reduce the geometric mean slowdown by 42%,
48%, and 30% respectively, as compared to an unsafe baseline, for
a wide variety of SPEC2006 and SPEC2017 benchmarks. Further-
more, Doppelganger Loads can be efficiently implemented with
only minor core modifications, reusing existing resources such as a
stride prefetcher, and most importantly, requiring no changes to
the memory hierarchy outside the core.

CCS CONCEPTS
• Computer systems organization → Superscalar architec-
tures; • Security and privacy→Hardware-based security pro-
tocols.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA.
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0095-8/23/06.
https://doi.org/10.1145/3579371.3589088

ACM Reference Format:
Amund Bergland Kvalsvik, Pavlos Aimoniotis†, Stefanos Kaxiras†, and
Magnus Själander. 2023. Doppelganger Loads: A Safe, Complexity-Effective
Optimization for Secure Speculation Schemes. In Proceedings of the 50th
Annual International Symposium on Computer Architecture (ISCA ’23), June
17–21, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3579371.3589088

1 INTRODUCTION
With the disclosure of Spectre [26] many architectures, previously
considered secure, were shown to be unsafe because speculative
execution in large part disregarded security vulnerabilities. Since
their original introduction, many variations of the attacks have
been developed [2, 8, 10, 12, 35, 42, 51], and early mitigation strate-
gies [3, 4, 6, 7, 19, 22, 24, 25, 27, 29, 30, 38–41, 47, 49, 52–56] strive
to comprehensively eliminate speculative side-channel attacks at
acceptable overheads.

Speculative attacks exploit two key properties of modern com-
puter architectures: First, they rely on transient instructions, which
are instructions that are being executed due to an incorrect pre-
diction in the core or as part of delayed exception handling, and
that are bound to be squashed. Transient loads are used to access
secrets, albeit only for a limited period of time. Second, they rely
on side-channels, microarchitectural features that inadvertently
leak information, either by persistent microarchitectural state after
squashing or by transmitting information to an attacker during the
speculative phase. As shown by the example in Figure 1 (a), these
two properties enable successful attacks: A secret is first accessed by
a speculative load and subsequently leaked through a side-channel
by a following transmitting instruction. Some stricter threat mod-
els also consider secrets as potentially residing in registers, i.e., a
speculative load is not required to first access the secret [13, 40].

Early works, such as InvisiSpec [52] and Ghost Loads [39], pro-
vide solutions for mitigating the cache as a potential side-channel,
but do not eliminate many other side-channels [17, 23, 36]. Later
works, such as Speculative Taint Tracking (STT) [54], Non-specu-
lative Data Access (NDA) [49], Delay-on-Miss [40], DAWG [25],
and others, improve on previous work by either achieving better
performance, securing more side-channels, or both. Some of the
best performing works, such as GhostMinion [3] and speculative
data oblivious (SDO) execution [53], are able to comprehensively
mitigate Spectre at low performance overheads. However, they re-
quire significant overhauls of the core microarchitecture and, more
importantly, of the memory hierarchy, which complicates hardware
design and is often impractical. Modifications to the memory hierar-
chy quickly become complex, and hard to verify, as such solutions
have to consider the interaction between cores and the impact on
cache coherence and memory consistency.

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3579371.3589088
https://doi.org/10.1145/3579371.3589088
https://doi.org/10.1145/3579371.3589088
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579371.3589088&domain=pdf&date_stamp=2023-06-17

L L

Leak

L L L LI L L

Address Prediction

I

Contention

I I

88.7%

Contention

(a) Insecure Baseline (b) Non-speculative Data Access (d) Delay-on-Miss (e) Address Prediction

93.5% (+4.8)

100%

81.8%

95.1% (+4.6)

L Speculative Load L Transmitting LoadI General Dependent Instruction

(potential transmitter via contention)

L Secure Load

LLI

Contention

(c) Speculative Taint Tracking

90.5%

MissHit (L1)

87.3% (+5.5)

L

Figure 1: (a) Unsafe Baseline forwards speculatively loaded values, potentially transmitting secrets. (b) Non-speculative Data
Access (NDA) performs speculative loads but never forwards potential secrets. (c) Speculative Taint Tracking (STT) performs
speculative loads and forwards potential secrets to non-transmitting instructions, enabling ILP. (d) Delay-on-Miss (DoM) allows
memory accesses that hit in the L1 data cache to be performed, but delays memory access that miss in the L1 cache until the
load becomes non-speculative. (e) Doppelganger Loads address predict dependent loads enabling them to securely access the
memory hierarchy, turning transmitting loads into secure loads, while enabling MLP. The performance results (red and green
arrows), show that Doppelganger Loads improves the performance by between 4.6 to 5.5 percentage points over the secure
schemes, when using a simple strided address predictor.

Wemake the observation that previous secure speculation schemes
that limit the implementation complexity to within the core itself,
such as NDA and STT, inadvertently limits the available memory
level parallelism (MLP) that can be exploited. Non-speculative Data
Access (NDA) [49] offers several strategies for secure speculation.
The one we focus on, called permissive propagation (NDA-P), propa-
gates non-speculatively loaded values but delays the propagation of
a speculatively loaded value until the load is determined to be non-
speculative (Figure 1(b)). By not forwarding speculatively loaded
values at all, NDA is able to comprehensively eliminate any-and-all
speculative side-channel attacks that rely on speculatively acquired
secrets, such as for universal read gadgets. The main drawback of
NDA is that it delays all dependent instructions.

Speculative Taint Tracking (STT) [54] partially overcomes this
limitation by tainting speculatively loaded data and instead pre-
venting instructions that can be used as transmitters to be executed
while their operands are tainted. STT enables instruction level
parallelism (ILP), as dependent non-transmitting instructions are
allowed to execute. However, STT does not issue more dependent
loads than NDA, as loads transmit information (Figure 1(c)). Delay-
on-Miss takes an alternative approach, allowing unobservable loads
to complete as normal, even if they are dependent. If a load’s ac-
cess is a hit in the L1 cache, the load creates no observable timing
differences in the cache.1 DoM uses this insight to increase ILP,
while also protecting secrets residing in registers. However, DoM
is unable to achieve MLP, especially for the critical long-latency
loads, as any access to the L2 cache and onwards would potentially
leak the secret.

These techniques all provide different security guarantees, but
limit the available MLP to some extent. Another approach exem-
plified by speculative data-oblivious execution (SDO) [53] is able
to reclaim lost MLP by performing secret-independent prediction,
specifically as an optimization on STT. By predicting where in the
memory hierarchy a requested cache line resides, SDO makes the
timing behavior of the load independent of speculatively-loaded
values. However, more importantly, it does not do the same for

1replacement state in the L1 is updated retroactively.

the load’s address, which can still depend on speculatively loaded
values. Because of this, considerable effort must be expended to
change the memory hierarchy to ensure that the address never
leaks. In many situations, such changes may not be practical. In
contrast, our main contribution is to make the address of unsafe
loads independent of speculatively loaded values, which means that
we work with an unmodified cache hierarchy.

Instead of making loads timing-independent, we focus on as-
suring that the loads are secret-independent, by predicting their
addresses, and preloading registers with the values of the predicted-
address loads. We call these address-predicted loads, doppelgangers
of the actual loads. The security of prediction based on non-spe-
culative data has previously been demonstrated for data prefetch-
ing [39], value prediction [40], branch prediction [54], and execu-
tion latency prediction [53].

Predicting the address is safe as long as the predictor is trained
on committed addresses, but the data fetched by an address pre-
dicted load might still contain a secret. Address predicted loads
preload values into their target registers, and delay the propagation
of ready data until the underlying scheme declares it safe, and the
address has been verified. This ensures that potentially incorrect
data is never released into the core, which removes the need to
introduce squashing and rollback on mispredictions, such as for
DoM with value prediction [40]. On an address misprediction, the
actual load with the correct address is issued. Doppelganger Loads
can be applied on top of many different secure speculation schemes,
without affecting the threat model of the underlying scheme, i.e.,
Doppelganger Loads are threat-model transparent as we demon-
strate in Section 4. In Section 5 we show how Doppelganger Loads
can be efficiently implemented on the various secure speculation
schemes in a complexity-effective, low-cost manner. Our results
(methodology in Section 6 and evaluation in Section 7), summa-
rized in Figure 1, show the performance degradation of a model
implementation of NDA (NDA-P), DoM, and STT, as well as the
performance gains from improving these implementations with
address implementations.

2 BACKGROUND AND MOTIVATION
Speculative side-channel mitigations have only existed for a short
period of time, originating shortly after the initial publication of the
Spectre attacks [26]. The computer architecture field has rapidly
come up with novel strategies, such as invisible execution [52],
taint-tracking [54], and shadow tracking [39], that use greatly dif-
ferent approaches to handle speculative side-channel attacks. When
discussing prior work, however, it is important to keep in mind
that different schemes have addressed different threat models, with
different understandings of speculation and leaking secrets. We focus
our discussion on NDA (permissive propagation), STT, and DoM.
For the sake of brevity, we assume familiarity with speculative
execution attacks.

2.1 Non-Speculative Data Access
Weisse et al. propose Non-speculative Data Access (NDA) [49]
that aims to block speculative execution attacks at their source, by
preventing them at the earliest feasible stage. They identify that
in order to block attacks that acquire secrets from memory and
transmit a secret speculatively, it is enough to delay speculative
loads from propagating their results until they are non-speculative,
as they are then bound to become architecturally visible. NDA refers
to this strategy as permissive propagation, henceforth referred to
as NDA-P. In terms of universal read gadgets, or other attacks that
rely on speculatively acquiring a value from memory, this strategy
blocks the leakage of secrets in a complexity-effective manner: By
preventing the origin of secrets through a delayed propagation
mechanism, all potential leakage of that secret is prevented.

This strategy has the benefit that all forms of transmitters are
blocked without the need for evaluating what microarchitectural
effects that might be observable, which is a very difficult task:
Observability is partially microarchitecture dependent, and there
might exist novel methods of transmitting information through
previously thought unobservable units (see related work for more
details on other attacks). However, the limitation of parallelism
incurs heavy performance penalties, as all forms of dependent loads
are blocked, and instruction-level parallelism is also prevented.

2.2 Speculative Taint Tracking
Speculative Taint Tracking (STT) [54] is proposed with the intent of
mitigating with low overhead Spectre attacks as universal read gad-
gets. Based on its threat model, STT’s mitigation strategy is based
on preventing the transmission of speculatively accessed values. No-
tably, STT does not protect against secrets in registers. STT blocks
explicit channels and implicit channels [54] that otherwise could
transmit speculatively loaded values. To achieve this, STT taints
the output of all speculative load instructions, untainting them only
when they are no longer speculative, i.e., bound-to-commit, which
STT calls “reaching the visibility point.” Taints propagate via the
registers from input operands to the result.

Explicit channels are formed by instructions whose execution
is observable, i.e., can transmit a secret in a side channel. STT pre-
vents the transmission of secrets via explicit channels by selectively
delaying instructions. More specifically, instructions which do not
have tainted operands execute as normal, including transmitting

instructions. Instructions that depend on tainted values can exe-
cute as normal if they are not transmitting, i.e., their execution is
unobservable, or their observable execution is independent of the
tainted value. Transmitting instructions that receive tainted inputs
are delayed until they reach their visibility point.

Implicit channels are formed when speculatively loaded values
indirectly change the execution of one or more instructions, and
these changes are visible through a side channel. Implicit channels
can be branches whose predicates depend on speculatively loaded
values, or microarchitectural decisions that can be re-cast as implicit
branches, such as store-to-load forwarding when the address of a
store depends on a speculatively loaded value.

Because implicit channels may be combined with some form of
prediction, STT further discerns implicit channels into prediction-
based and resolution-based [54]. To prevent the transmission of
secrets via prediction-based implicit channels, STT prevents tainted
data from affecting the predictors. Respectively, for resolution-
based implicit channels, STT delays (explicit and implicit) branch
resolution until the branch’s predicate becomes untainted [54].

2.3 Delay-on-Miss
Delay-on-Miss (DoM) [40] instead aims to hide speculative ex-
ecution, rather than blocking potentially dangerous speculative
execution, separating it from NDA and STT. Under DoM, loads that
are speculative, which is tracked through the use of shadows [39],
are allowed to issue to the cache, but fail if they miss in the L1 cache,
and are reissued once they are non-speculative. Coupled with a
delayed replacement policy update, this makes loads that hit in the
L1 cache unobservable, while enabling both independent and de-
pendent memory accesses. Notably, as DoM does not discriminate
between data acquired speculatively and non-speculatively when
executing speculative instructions, it also protects secrets residing
in registers. As DoM only protects the memory hierarchy, it can
still leak secrets acquired both non-speculatively and speculatively
through other side-channels, such as timing differences.

DoM was the first to propose using a non-speculatively updated
prediction to speed up secure speculation. In particular, DoM used
value prediction (VP) but it was later shown that it was not so
successful in terms of accuracy and coverage, evenwith state-of-the-
art VTAGE value predictors [34], and because it had to be validated
in-order it did not yield significant improvement in MLP [41].

2.4 Motivation: Unlocking MLP
All the previously discussed schemes limit MLP in some way. For
NDA-P and STT, independent loads can safely be issued, which is
better than delaying all loads under speculation, but loads that base
their address on the value of other loads are delayed until the older
load is non-speculative. For DoM, any number of memory requests
can be issued, but are only serviced if they hit in the L1 cache. Longer
latency loads that reside in the lower levels of the cache hierarchy
cannot be serviced or parallelized unless they are non-speculative,
reducing the amount of available MLP. These schemes all introduce
a limitation on what is already the bottleneck of modern processor
performance: the memory wall [50]. Therefore, a logical solution to
improve the performance of these schemes, especially in the cases
where the schemes have a significant overhead, is to attempt to

improve MLP in a safe manner. Doppelganger Loads aim to increase
MLP, by allowing dependent loads, that would normally be delayed
in secure-speculation schemes, to issue using a predicted address
that is not a function of speculatively loaded values.

3 THREAT MODELS
In this section, we describe the threat models that the underlying
secure speculative execution schemes utilize. As there are some key
differences between them, we aim to illuminate what they consider
as part of the threatmodel, and the basicmotivation for their individ-
ual threat models. Crucially, our Doppelganger Loads optimization
can be applied to defenses that have different threat models.

What is common for the threat models we target, is that se-
crets are never transmitted as part of non-speculative execution,
or more specifically, non-speculative leakage is out of scope for
these schemes. There are many non-speculative attacks that are
able to observe parts of program execution using contention in the
memory hierarchy, but they are not part of these threat models.

3.1 Non-speculative Data Access and
Speculative Taint Tracking

NDA [49] provides a detailed exploration of various threat models,
and which actions are allowed without leaking potential secrets.
For the purposes of this work, we focus on the NDA-P model, which
aims to protect secrets in memory. This threat model is shared by
STT [54], which was motivated by preventing the universal read
gadget attacks that are feasible using Spectre.

The threat model assumes an adversary that can monitor all
microarchitectural covert channels and can induce speculation from
any part of the system, including simultaneous multithreading
(SMT) and cross-cores. The list of covert channels includes the
memory hierarchy, timing differences in execution, port contention,
and control flow. The adversary is attempting to acquire data in
memory it would not have access to non-speculatively, and then
exfiltrate this information through a covert channel before the data
access is squashed by the system. The authors of STT consider this
to be the most dangerous form of attack, since it is capable of being
used to form universal read gadgets, powerful attack tools that can
read arbitrary data, essentially exposing all mapped-in memory.

NDA-P and STT both do not block the transmission of secrets
that are already loaded in registers prior to speculation.

3.2 Delay-on-Miss
DoM [40], instead of focusing on all covert channels, assumes an
adversary is aiming to exfiltrate a secret through observing the
memory hierarchy. DoM’s threat model considers leakage through
observable, secret-dependent execution of instructions that alter the
memory hierarchy, but does not consider leakage through timing
differences in execution, port contention, or control flow. Unlike
NDA-P and STT, DoM’s threat model states that secrets might also
reside in general purpose registers, and might have been acquired
non-speculatively. DoM, STT, and NDA-P all consider speculatively
acquired data being transmitted through the memory hierarchy as
leakage, but DoM does not consider it as leakage if it is observable
through other channels.

4 DOPPELGANGER LOADS
Having explained the underlying schemes, we now illustrate how
they can be enhanced through the use of Doppelganger Loads, the
address-predicted counterparts of unsafe loads.

4.1 Overview
Let us, for the moment, consider only load transmitters and cache
side channels. Depending on which secure speculation scheme we
consider, we discuss how other explicit and implicit side channels
are treated, later on.

The key insight from NDA-P and STT is that a load is a potential
transmitter when it receives as input an address that is dependent
on speculatively loaded value(s). This is why, in both STT and NDA-
P, a dependent load is not allowed to issue: In STT, a dependent
load receives a tainted input for its address; in NDA-P, speculatively
loaded values are not even propagated to other instructions to form
addresses for dependent loads.

The key insight of our work is that if we can safely predict the
addresses for such dependent loads, we can then issue themwithout
leaking speculatively loaded values. By safely predicting addresses
we mean that both the predictions and when those predictions are
resolved, are completely independent of speculative data [54].

A Doppelganger Load stands in for a delayed dependent load by:
i) predicting the address of the dependent load,
ii) preloading the value into the load’s destination register, and
iii) propagating the preloaded value when the load becomes safe

(according to the underlying secure speculation model), if
the predicted address matches the load’s resolved address;
otherwise, issuing the load with its resolved address when it
is safe according to the underlying secure speculation model.

4.2 Doppelganger Loads for NDA-P and STT
Let us consider the security for Doppelganger Loads when used
in NDA-P and in STT. A doppelganger is supposed to stand in for
a delayed dependent load that is a potential transmitter. But how
do we know which loads are potential transmitters? The answer is
that we don’t. We try to opportunistically produce a doppelganger
for any load we can (details can be found in Section 5). If we fail to
produce a doppelganger for a load, that load falls under the normal
operation of the secure speculation scheme (NDA-P or STT).

Security is compromised if a dependent load is squashed as part
of mis-speculated execution: If the dependent load has made any
visible changes in the microarchitectural state, it may have leaked
information that encodes a speculatively loaded value (a secret).
Secure speculation models such as NDA-P and STT ensure that the
execution of a dependent load will be delayed, so it will not make
any microarchitectural changes before it gets squashed. However,
its doppelganger may have made changes in microarchitectural
state, i.e., its doppelganger might have missed in the cache.

To reason about the security of a doppelganger load we can view
it as a new implicit channel, Figure 2, one that is both prediction-
based and resolution-based, as defined by Yu et al. [54]. As a prediction-
based implicit channel, it is eliminated by preventing speculative
data from affecting the state of the predictor. As a resolution-based
implicit channel, it is eliminated by delaying the effects of the im-
plicit imp_if until the predicate (ap!=r1) becomes non-speculative

// Conventional load

PC1: load r2 , [r1]

// Load with its Doppelganger

PC1: {

ap = predict(PC1) // ap stored in LQ[PC1]

load r2, [ap] // Doppelganger issues

impl_if (ap != r1)
load r2, [r1] // Load re-issues

}

Figure 2: A doppelganger load as an implicit channel. “ap”
means address prediction and is stored in the LQ entry. Note
that the doppelganger load and the re-issued load are one and
the same instruction and use the same physical destination
register.

— in other words, the address of the original load, r1, becomes non-
speculative (untainted in STT or propagated in NDA-P).

The implicit channel created by the doppelganger is safe since
neither the address prediction nor its resolution are dependent
on speculative values. Thus, the doppelganger itself does not leak
any information.

Now let us consider if seeing only the doppelganger, i.e., the
conventional load gets squashed, or if seeing both a mispredicted
doppelganger and the load, i.e., the load commits and is on the
correct path of execution, can leak any information.

First, we consider the case where a dependent load is squashed,
but its doppelganger missed in the cache, i.e., made changes in
the microarchitectural state. In this case, we are safe because the
only information that has leaked is the predicted address, and that
cannot depend on speculative values. Note that it does not matter
if it is a “correct” or a “wrong” prediction (in the sense of matching
the address of the load) because there is no way to tell.

Second, if a dependent load eventually commits, we might ob-
serve in the microarchitectural state two misses instead of one, but
that does not constitute speculative information leakage. In order
to observe two misses, one for the dependent load and one for its
doppelganger, instead of just one, it is necessary for the dependent
load to commit (become non-speculative) in which case all older
instructions must have also committed (become non-speculative).
Thus, it is impossible to infer an illegally-accessed speculative value
just by seeing a dependent load and its doppelganger as two distinct
misses, because that can happen only in correct execution.

4.3 Doppelgangers in other explicit or implicit
channels

Changes affected by their doppelgangers (e.g., a cache miss with a
wrong prediction) are inconsequential, as the address prediction
cannot be dependent on speculatively loaded values. But can such
doppelganger changes be employed to leak information in other
explicit or implicit side-channels?

In STT, any prediction-based or resolution-based implicit chan-
nel (in which doppelgangers could be used as tracers) is secret-
independent. In NDA-P, the same is ensured because of its no-
propagation policy. In DoM, we discuss how we ensured it in
Section 4.6. For example, in all three schemes, STT, NDA-P, and

if (r1 < size) {

load r2, [r1]

store r3 , [r2]
PC3: load r5 , [r4]
}

(a) Store-to-load forwarding

if (r1 < size) {

load r2, [r1]

store r3 , [r2]
PC3:{ // Load behaviour

impl_if {r2 == r4)
r5 = r3

impl_else

load r5, [r4]
}

}

(b) Implicit channel

if (r1 < size) {

load r2, [r1]

store r3 , [r2]
PC3:{ // Behaviour of a single load instruction

ap = predict(PC3) // ap stored in LQ[PC3]

load r5, [ap] // Doppelganger issues

impl_if (r2 == ap) // Store -to -load forward

r5 = r3 // 1) Update preloaded value

impl_if (ap != r4) // Address misprediction

impl_if (r2 == r4)
r5 = r3 // 2) Update preloaded value

impl_else

load r5, [r4] // Load re-issues

}

}

(c) Doppelganger with store-to-load forwarding

Figure 3: Store-to-load forwarding with Doppelganger Loads.

DoM, we ensure that branches are taken and resolved in a secret-
independent way. Thus, using doppelgangers to reveal the execu-
tion path, actually reveals the branch prediction, not any specula-
tively-loaded secret.

4.4 Doppelganger Loads and Store-to-load
forwarding

Store-to-load forwarding (assuming memory dependence predic-
tion [14, 31]) is another implicit channel (both prediction-based and
resolution-based) as shown by Yu et al. [54], see Figure 3a and 3b.
The interaction of doppelganger loads with store-to-load forward-
ing must not leak any information. Information leakage can happen,
for example, if a store can make a doppelganger invisible by passing
it the store value instead of letting it go to memory. In such a case,
the attacker knows that the store address matches the predicted
address. Because doppelganger loads are not delayed by the se-
cure speculation mechanisms, preventing them from appearing can
expose information that normally should be protected. Thus, dop-
pelganger loads issue independently of store-to-load forwarding.
Store-to-load forwarding takes place transparently by replacing the
doppelganger preloaded value with the store value. This is similar
to the store-to-load forwarding optimization proposed by Yu et
al. [54], but for the doppelganger load. The combined store-to-load
forwarding implicit channel with the doppelganger implicit chan-
nel is shown in Figure 3c. For correct store-to-load forwarding, we
discern two cases:

(1) A store with a resolved address matches the predicted dop-
pelganger address: In this case the doppelganger is issued
but the value that is preloaded into the register is that of the
older resolved store, not the one that comes from memory.
This happens transparently and cannot be observed, since
the doppelganger does not propagate its results.

(2) A doppelganger bypasses older store(s) with unresolved ad-
dresses: In conventional store-to-load forwarding, a resolved
address of an older store squashes all issued younger loads
with the same address. This is not necessary for a doppel-
ganger where the predicted address matches the store ad-
dress, since the doppelganger does not propagate its results.
Instead, it is enough for the store forwarding to override the
doppelganger register preload.

In either case, the resulting behavior is that the doppelganger ap-
pears in memory but the resulting preloaded value is that of a
matching older store (if there is one), not the value that comes from
memory. The behavior of the actual load remains unaffected with
respect to both the doppelganger and the store-to-load forwarding
implicit channels.

Because a doppelganger does not propagate its preloaded (or
store-to-load forwarded) value before its load would propagate its
value under NDA-P or STT, the rest of the protectionmechanisms of
the underlying secure speculation scheme remain unaffected. Specif-
ically, for STT and NDA-P, both implicit channel protections and
explicit channel protections remain in full force and with full scope.

4.5 Doppelganger Loads and Memory
Consistency

In general, memory consistency is maintained by allowing spec-
ulative reordering of instructions and squashing in case such re-
ordering is observed by another core by invalidations that reach
the L1 or core [20]. Invalidations snoop a core’s load queue (LQ)
and squash matching loads that have executed out-of-order. This
consists of an implicit channel [54]. The predicted address of a
doppelganger load can be matched in the LQ by an invalidation,
but the doppelganger itself is not squashed. The invalidation is
noted and takes effect when the preloaded data is propagated, if
the doppelganger has executed out-of-order with respect to older
loads. If the address of the doppelganger was mispredicted, then the
invalidation is ignored. The load’s behavior, after the doppelganger
validation, remains the same with respect to invalidations, as in the
underlying secure speculation models.

4.6 Doppelganger Loads for DoM
In contrast to STT and NDA-P, DoM has no notion of dependent
loads, but instead follows an entirely different philosophy. DoM
prevents speculative load transmitters from leaking in the memory
hierarchy side-channel, by simply delaying all microarchitectural
change in the memory hierarchy (i.e., delaying L1 misses2) until it
is safe to do so. Furthermore, DoM does not distinguish between
speculatively loaded secrets and non-speculatively loaded secrets,
thereby providing register protection — STT and NDA-P do not.

2DoM also delays replacement update for hits until it is safe to do so.

if (mispredict) {

// hit -- DoM allows

load r1, [secret]

if (r1) {

// AP and Miss

load r2, [X]

} else {

// AP and Miss

load r3, [Y]

}

}

(a) Secret loaded speculatively
hitting in the L1D cache.

// Secret in register

load r1, [secret]

if (mispredict) {

if (r1) {

// AP and Miss

load r2, [X]

} else {

// AP and Miss

load r3, [Y]

}

}

(b) Secret loaded non-
speculatively into a register.

Figure 4: Examples of Doppelganger Loads in implicit chan-
nels.

Because of these differences, allowing a doppelganger (address-
predicted) load to miss in DoM is predicated upon conditions that
ensure that no leakage occurs, as per the DoM threat model.

Figure 4 demonstrates two examples of Doppelganger Loads
in implicit channels. In the first example (Figure 4a), a secret is
speculatively loaded into r1 (allowed by DoM), passed as a predicate
to the if (similarly to [1, 2]) and leaked by allowing one of the two
independent Doppelganger Loads to cause a miss on a distinct
prediction address. DoM normally does not allow leakage through
the memory hierarchy, so the same example would be protected.
The second example (Figure 4b) is similar, but now shows how a
non-speculative secret loaded in a register is leaked. Again, this
breaks DoM’s register protection.

It is clear from these examples that one can use the visibility
of doppelganger misses to leak DoM secrets via implicit channels.
Such implicit channels can be formed by explicit branches (e.g.,
the if(r1) branch in Figure 4), by implicit branches (e.g., store-
to-load forwarding as in Figure 3b), or the implicit channel of the
doppelganger itself (see Figure 2). DoM does not protect against
implicit channels by default, because it expects that all speculative
change in the memory hierarchy will be delayed. Our insight is that
DoMwith Doppelganger Loads is vulnerable to implicit channels, as
now there can be speculative change from the Doppelganger Loads.

In DoM, we must eliminate implicit channels while allowing
address-predicted doppelgangers to effect changes in the memory
hierarchy. We accomplish this as follows:

• The explicit branch channel is handled in the same way as
proposed by Yu et al. [54] by resolving branches in order, i.e.,
only once a branch becomes non-speculative.

• The implicit doppelganger side-channel is handled by only
resolving the impl_if(ap != r1) in Figure 2 and by only
propagating preloaded values that missed in the L1 cache
once the load becomes non-speculative. In other words: Dop-
pelgangers that miss in the L1 cache behave as DoM misses
by propagating only when the load is non-speculative; dop-
pelgangers that hit in the L1 cache behave as DoM hits,
propagating when the address is validated.

• Finally, the store-to-load forwarding side-channel is han-
dled by never propagating store-to-load forwarded values
until they would be visible by the underlying DoM scheme,

=

Regs Ready Regs Ready

Micro-Op Micro-OpDecode Rename Dispatch

Instruction Queue

Address Address

Load Queue

Data

Cache

Data

R
e
g
is

te
r

Register File

Data

R
e
g
is

te
r

Port

Port

Address

Predictor

Ctrl Shadow Ctrl Shadow

Data Shadow Data Shadow

Predicted Predicted

AGU

PC of

Loads

A B

D

F

C

E1

Lock

Lock

2

3

Figure 5: Doppelganger Loads for NDA-P: New structures required by the mechanism are highlighted in blue. Mechanisms
required by NDA-P are highlighted in red and green for lock/unlock respectively.

which is the natural behavior of doppelgangers in the first
place. In other words: Doppelgangers that hit in the L1 cache
propagate the store value once the address prediction is veri-
fied; and doppelgangers that miss in the cache propagate the
store value once the load becomes non-speculative, i.e., at
the same point in time as the original DoM accesses would
occur if they were not address predicted.

5 IMPLEMENTATION DETAILS
First, we detail how Doppelganger Loads works when used with
NDA-P. Implementations for STT and DoM differ slightly, and are
discussed later. The goal of this section is to demonstrate that Dop-
pelganger Loads can be implemented on top of secure speculation
schemes with complexity-effective modifications of the existing
apparatuses and negligible additional hardware cost.

Figure 5 shows an integrated address predictor employed on top
of a slightly modified NDA-P scheme. The green and red compo-
nents show the implementation of NDA-P, where if there exists
unresolved speculation at the time that a load instruction enters
rename, its destination registers are locked, as shown by 1 . This
prevents the register from being propagated, until the lock is freed.
Instead of using NDA’s speculative tracking within the ROB, we
use shadow tracking, first proposed for Ghost Loads [39] and subse-
quently used in DoM [40]. For our purposes we focus on tracking
speculation originating from unresolved control flow, and unre-
solved store addresses. When there are no such shadows for a given
load, its output would normally be unlocked, as shown by 2 , and
then propagated to dependent instructions, as shown by 3 .

The address predictor is integrated with the front-end and load
queue (Figure 5). Load instructions are known at the decode stage
of the processor. The address predictor is both indexed and tagged
with the load PCs, as shown by A . Full PC tags are used to prevent
aliasing. The address predictor B is capable of processing as many
PCs as there can be loads in the decode stage. The predicted ad-
dresses are sent to the load store unit (LSU), storing each prediction
as the address of the associated load instruction in the load queue
and setting the predicted bit, C . The address predictor may fail
to predict an address for a given PC, in which case no address is
stored for the instruction and the predicted bit is not set.

In a given cycle, if there are fewer issued memory requests than
the system is capable of issuing, available slots will be filled by
predicted addresses, as shown by D . Issued predicted addresses

will set their corresponding load-queue entries to executed. Non-
predicted addresses are always prioritized for execution, as, if we
are on the correct path of execution, they are likely to be on the
critical path.

When a load address is resolved (generated by an address gen-
eration unit) for a load with a doppelganger predicted address, a
comparison is performed between the generated and the predicted
address stored in the load queue, as shown by E . If the addresses
match, the prediction is correct and the predicted bit is unset. If the
addresses do not match, the load queue entry is updated with the
resolved address, and the executed and predicted bits are cleared.
The load is replayed. Any response to the memory request that
used the incorrect predicted address will be discarded.

If a response to a load using a predicted memory address comes
to the core before the prediction is verified, the loaded value is
written to the destination register of the load. However, the register
is not propagated as ready until both the address is verified (i.e.,
the predicted bit is cleared), and the load is non-speculative, with
speculation usually being the last to resolve F . Note that this adds
another check to the freeing mechanism of 2 . If an older store
instruction aliases with a doppelganger load, the store value is writ-
ten to the preloaded register (instead of the memory value) without
being propagated, ensuring correct store-to-load forwarding (see
Section 4.4). Key to the security of the whole approach is that the
address predictor is trained (updated) strictly by non-speculative
loads when they commit (not shown in Figure 5).

5.1 Implementation Cost
The advantage of this scheme is multifold:

• A load and its doppelganger share the same load queue (LQ)
entry, and by using the address slot in the LQ entry until the
actual address is resolved, we ensure that predicted addresses
use no additional space.

• The load and its doppelganger share the same physical des-
tination register, which means rename is not modified and
no additional registers are required. If the doppelganger is
mispredicted, the preloaded value is always discarded before
the load is re-issued, which results in requiring only one
physical destination register at any given time.

• When the address prediction is correct, no extra resources
are used, except those necessary for the address predictor.

• When the address prediction is incorrect, an extra address
translation and memory request is issued, but no extra stor-
age is necessary, and there is no need to squash any depen-
dent instructions. This ensures that the penalty of incorrect
address predictions remains small.

• The address predictor can be shared with a conventional
strided prefetcher, with the only difference that the current
address, instead of a future load address, being predicted.

• No modifications are needed to the memory hierarchy. A
doppelganger access behaves exactly as any other memory
access in the memory hierarchy.

The address predictor in this paper is deliberately chosen to de-
liver just the ground performance level that address prediction can
provide. We do this to clearly establish the validity of our approach
in relation to other approaches. There are many avenues worth
exploring to further improve the benefit that such a scheme can
provide, least of all by improving the coverage and accuracy of
the predictor itself. We use a simple PC-based stride predictor that
is unable to capture many address patterns that a more advanced
predictor, such as for example a “bouquet” of predictors [33], would
be able to find. However, it comes “for free” as it can be imple-
mented simply as modification of an ubiquitously present PC-based
stride prefetcher. More specifically, in “address predictionmode” the
prefetcher is tasked to predict the address of the current instance
of the load based on its history, while in “prefetching mode” it
predicts future instances of the load based on the current (resolved)
load address. Other changes may also be necessary for security,
e.g., using full PC tags to prevent aliasing in prefetcher/predictor
entries. Area saving optimizations such as the ones used in [45]
can be used to cut down cost.

5.2 Modifications for STT
STT does not delay propagation at the source, but instead taints
instruction output(s) and delays execution of transmitting instruc-
tions that depend on tainted data. The locking mechanism is still
in-place for address-predicted loads. When a predicted load is ver-
ified to have the right address, it can be propagated immediately,
but its data taints as it would normally under STT. If the predic-
tion is incorrect, a load is issued if its operands are untainted,
or whenever they become untainted. We investigate the perfor-
mance impact of delaying address-predicted loads until they are
non-speculative in Section 7.

5.3 Modifications for DoM
The original DoM does not delay the propagation of the output
of any instruction, but instead delays speculative loads that miss
in the L1 cache. The locking mechanism is in-place for only the
address-predicted part of the load queue. The duration for which
the lock remains locked depends on if the doppelganger hits in the
L1 cache or not. If it hits in the cache, then the lock is released
as soon as the predicted address is validated, i.e., corresponding
to the same behavior as a conventional DoM load that hits in the
L1 cache. If it misses in the cache, the lock is only released once
the corresponding load becomes non-speculative, i.e., at the same
time as a conventional load that missed in the L1 cache is re-issued
according to DoM.

Table 1: System Configuration

Processor
Decode width 5 instructions
Issue / Commit width 8 instructions
Instruction queue 160 entries
Reorder buffer 352 entries
Load queue 128 entries
Store queue/buffer 72 entries
Address predictor/prefetcher 1024 entries, 8-way, 13.5 KiB storage
Memory
L1 D cache 48KiB, 12 ways
Access latency 5 cycles roundtrip
Number MSHRs 16
Private L2 cache 2MiB, 8 ways
Access latency 15 cycles roundtrip cache
Shared L3 cache 16MiB, 16 ways
Access latency 40 cycles roundtrip cache
Memory access time 13.5ns

To protect DoM from implicit channels, all branches are resolved
in order and the second load of mispredicted doppelgangers are only
issued once the load is non-speculative. We achieve this without
introducing any taint tracking mechanisms, instead relying solely
on the existing DoM shadow trackingmechanism to: i) delay branch
resolution until a branch is no longer covered by a shadow; and
ii) delay the issuing of the load of a mispredicted doppelganger until
the load is no longer under a shadow. This mechanism is similar
to how DoM, delays non-predicted loads that miss in the L1 cache.
This protects DoMwith Doppelganger Loads from implicit channels
in the form of: i) explicit branches dependent on a secret; ii) implicit
store-to-load forwarding branches; and iii) implicit doppelganger
address-prediction branches.

6 METHODOLOGY
To compare our scheme to the current state-of-the-art, we imple-
ment NDA-P, STT, and DoM in a common simulation infrastruc-
ture using the gem5 [11] simulator, version 22. We use the SPEC
CPU2006 [15] and CPU2017 [16] benchmark suites, as a represen-
tative for single-threaded programs. We run all inputs for each
benchmark. We run detailed simulations using the out-of-order (o3)
CPU, in both cases using simulation points. The simulation points
were taken using simpoint profiling [44] of the first 100 billion in-
structions, with up to five simpoints per benchmark run, in which
simpoint intervals were 100 million instructions and a warm-up
period of one million instructions was present before execution.
SPEC CPU2006 was run using the syscall emulation mode, while
SPEC CPU2017 was run using the full system mode.

We configure the gem5 o3 CPU to resemble the hardware config-
uration of the IceLake CPU, including properties such as ROB size,
decode width, and load queue size. Additionally, we change some
other properties within the default configuration for gem5 to be in
line with current high performance processor, such as increasing
the amount of MSHRs for the L1 instruction and data caches from
four to sixteen (Table 1).

We evaluate the following schemes:

• Unsafe Baseline: A baseline out-of-order processor that is
not protected from speculative side-channel attacks. Secrets
can leak through explicit and implicit channels.

• Unsafe Baseline + Address Prediction: Same as baseline,
but with address prediction enabled, to show the perfor-
mance gain for non-secure speculative execution schemes.

• NDA-P: Independent speculative loads are allowed to issue
to memory as normal, and complete, but value propagation
is delayed until the load is non-speculative.

• NDA-P + Address Prediction: Same as NDA-P, but with
address prediction enabled. Loads cannot propagate before
address is verified and load is non-speculative.

• STT: Speculative Taint Tracking mechanism enables specu-
lative loads to complete, but taints the destination registers.
Taints propagate through instructions. Tainted registers can-
not be used for explicit or implicit channels.

• STT + Address Prediction: As STT, but with address pre-
diction enabled. An address predicted loaded value propa-
gates and taints as soon as the prediction is verified and gets
untainted once the input operand is untainted.

• DoM: Speculative loads are issued to memory as normal, but
are delayed if they miss in the L1 cache, and re-issued once
they are non-speculative.

• DoM + Address Prediction: As DoM, but with address pre-
diction enabled. Correctly predicted loads that hit in the L1
cache propagates as soon as the address is verified. Correctly
predicted loads that miss in the cache propagates when the
load becomes non-speculative.

In all evaluated schemes, speculation is tracked through the
use of control and data shadows [39, 40] and feature a PC-based
stride prefetcher with an 8-way associative, 1024-entry structure.
Designs with address prediction have both a prefetcher and address
predictor that share the same sized prefetcher structure, as described
in Section 5.1.

7 EVALUATION
Our main performance results are shown in Figure 6. The first
set of benchmarks belong to the SPEC CPU2006 suite, while the
second set of benchmarks, belong to the SPEC CPU2017 suite. Some
benchmarks belonging to these suites did not run on the unsafe
baseline processor due to various issues, and are therefore excluded
from the evaluation.

As shown by the geometric mean (GMEAN), address prediction
provides a noticeable speedup for all the surveyed secure schemes.
NDA-P achieves secure execution at 88.7% of baseline performance,
while address prediction improves performance to 93.5% of base-
line, reducing the average slowdown by 42.0%. STT, which has the
least slowdown of the three evaluated schemes at 90.5%, achieves
a similar speedup, improving performance to 95.1% with address
prediction, reducing the slowdown of the scheme by 48.2%. Note
that the simpler NDA-P with address prediction outpaces the more
complex STT. DoM, which has the lowest performance at 81.8% of
baseline, improves to 87.3% with address prediction, reducing the
total slowdown by 30.3%.

Unsafe Baseline + AP: We also evaluate enabling address pre-
diction for the unsafe baseline, but this achieves a geomean per-
formance improvement of 0.5% (thus, this case is omitted from the
graphs). Similar register prefetching, by Shukla et al., demonstrates
that address prediction [5] gives modest gains [45]. Address predic-
tion does not always enhance a conventional OoO core but, in our
case, it has the potential to recover MLP that is lost due to security.

Coverage and Accuracy: Figure 7 shows the address predictor
coverage and accuracy for DoM-AP as a representative for all the
schemes. The geomean coverage and accuracy are all within 1% of
each other between the evaluated schemes, as are the results for
individual benchmarks, which is expected as address prediction
is trained on the same non-speculative data (i.e., correct path ex-
ecution), and encounters the same instructions, with only minor
timing differences. For nearly all benchmarks, the accuracy of the
predictor remains very high, typically at or above 90%. For a few,
such as xalancbmk_s and exchange2_s, the accuracy is noticeably
lower, down to just under 60% and 80%, respectively.

A limitation of our naïve address predictor is its low coverage.
At most, benchmarks achieve a 49% coverage (hmmer), while the
majority of benchmarks are around the geomean of 35% coverage.
The low coverage is especially difficult in benchmarks such as mcf
(9%), in which the low coverage means that despite the relatively
high accuracy of the predictor, there is only a limited performance
improvement. Generally speaking, the higher coverage correlates
positively with the performance gain from address prediction, al-
though this varies. However, looking at the predictor performance
and the overall performance of address prediction, there is no clear
correlation, e.g., astar has more than 35% of all loads correctly
predicted, yet receives only a very minor performance gain.

We highlight two benchmarks, omnetpp_s and xalancbmk_s,
which experience a performance penalty with address prediction.
For omnetpp_s, the slowdown (0.4% for NDA, 1.2% for STT, and
1.5% for DoM) is due to the around 10% increase in L2 accesses,
which indicates that the predictor is negatively affecting the amount
of useful data in the L1 cache. For xalancbmk_s, the slowdown is
caused by the noteworthy increase in L1 traffic. For this benchmark,
the coverage remains decent, but the accuracy is very low, indi-
cating that the benchmark is not amenable to this form of address
prediction. The result is a large increase in the amount of traffic to
the L1 cache, which negatively impacts the performance of DoM
(-3.2%) while still improving the performance of NDA (+1.9%) and
STT (2.7%). Although coverage and accuracy are shared across the
three schemes, DoM is uniquely dependent on hitting in the L1
cache to achieve high performance, and the flooding of the cache
incurs a performance detriment.

Some benchmarks achieve only a minor speedup with address
prediction, such as sjeng, gromacs, and wrf, and a majority of the
CPU2017 suite. The lack of improvement to most of the SPEC2017
suite is largely because the default schemes already have a low
overhead on these benchmarks. For bzip2 and gcc, there is a con-
siderable speedup for all schemes, and a noticeable increase in the
L1 cache accesses. Importantly, there is no increase in the number
of accesses to the L2 cache, indicating that address-predicted loads
to the L2 cache and further down the memory hierarchy are gener-
ally correct. Unlike with xalancbmk_s for DoM+AP, this increase
is not enough to negatively affect the performance of the L1 cache.

Figure 6: Normalized IPC to baseline of the NDA-P, STT, and DoM schemes enhanced with Doppelganger Loads.

Figure 7: Coverage and Accuracy for address prediction under DoM (similar results observed for NDA-P, STT).

Figure 8: Normalized L1 and L2 accesses. (Upper graph: L1 cache, lower graph: L2 cache.)

For GemsFDTD there is a noticeable performance difference between
DoM and the other two schemes. As DoM is normally unable to ac-
cess L2, this indicates that address prediction is capable of providing
additional speculative MLP in limited forms for GemsFDTD.

The standout benchmark for address prediction is libquantum,
which recovers 77-88% of total baseline performance with simple
address prediction. As evidenced in the lack of increase in the
number of accesses to the L2 cache, and the very minor increase
in accesses to the L1 cache, this is because the address predictor is

able to accurately predict the addresses of critical loads, reflected
in its high coverage and quite high accuracy.

Overall, address prediction as employed in this work demon-
strates no significant benefits for the baseline but highlights its
usefulness for the secure speculation schemes. Normally, a core
should make available as much MLP as possible, but the constraints
imposed by secure speculation severely constrain it. Address pre-
diction recovers a sizable part of the MLP in a safe, threat-model
transparent, way.

8 RELATEDWORK
A closely related work is SDO [53], which introduces data-oblivious
execution in STT by using prediction (non-speculatively trained).
Specifically, SDO allows loads (oblivious loads) to speculatively
access a value from a predicted location in the cache hierarchy,
continuing execution with null-operators in the case of a mispredict,
and not squashing before the squashing is non-speculative.

Our approach differs in many ways:

• The SDO design paradigm requires changes to the memory
hierarchy — instead, we investigate how a prediction can
unlock more MLP with changes only to the core.

• Because, in SDO, the addresses of the predicted loads can be
secret value dependent, care must be taken so that predicted
accesses are not visible in the memory hierarchy under any
circumstances. This introduces significant complexity in the
memory hierarchy implementation details. In contrast, in our
approach, predicted addresses are secret value independent,
and we can safely release them out in the open, including
into the memory hierarchy.

• Oblivious loads require additional buffering — instead Dop-
pelganger Loads preload the target register of the load.

• SDO introduces a new kind of predictor (cache-level predic-
tion) — instead, we rely on existing predictors such as the
ubiquitous PC-based stride prefetcher.

• Even with correct prediction, oblivious loads may need vali-
dation with one additional access because of memory consis-
tency issues [53], similarly to the validation of invisible loads
in InvisiSpec [52], thus, introducing further complexity. In
contrast, address prediction for Doppelganger Loads does
not raise any consistency issues.

There exist other approaches to recover some lost performance,
both compiler-based [48, 56] and hardware-based [55].

InvarSpec [56] identifies instructions that are guaranteed to com-
mit regardless of the outcome of speculation and lifts the defenses
for these instructions. However, recent work [2] shows that it can
be vulnerable to speculative interference attacks [8]. Tran et al. [48]
use compile-time instruction re-ordering for early evaluation of
conditions and addresses to enable the hardware to remove the
control and exception shadows as early as possible. Compiler-based
approaches are beyond the scope of our work.

Other approaches aim to ameliorate mitigation costs associated
with speculative memory re-ordering (memory shadows). Pinned
Loads [55] resolves memory violations as early as possible so that
loads reach their visibility point earlier; Tran et al. [48] propose
using non-speculative load-load reordering [37] for the same reason.
These works are orthogonal to our approach and can be employed
on memory shadows as deemed necessary.

Proposals must also be validated against forms of attacks and
vulnerabilities, such as, store-to-load forwarding [54], Specula-
tive Interference [8], Reorder Buffer Contention [2], unXpec [28],
DOIN! [1], and DOLMA [30]. For Doppelganger Loads specifically,
two types as important: attacks that use a secret-dependent branch
for DoM [1, 2], that could inspire an attacker to leak a value by a
secret-dependent prediction, yet we answer how this can be mit-
igated in Section 4.6, and store-to-load forwarding where it can

make a doppelganger invisible by passing it the store value instead
of letting it go to memory, yet we also answer that in Section 4.4.

Address Prediction:Address prediction was examined as an ap-
proach to hide load-access latency in in-order pipelines [9, 18] and
to issue loads with unresolved addresses early [21]. More recently,
Alves et al. use early address prediction to detect potential load-load
reuse before the rename stage, thereby saving energy and time by
using the physical register file as an indirect L0 cache [5]. Such
research shows the value of knowing addresses early in the pipeline,
and expounds on the much more regular nature of addresses com-
pared to values [21]. The closest address prediction work to our
work is “Register File Prefetching” [45] which shares many of the
same characteristics (but ours yields lower performance for the
baseline, considering the methodology—simulator, configuration,
simpoints—and predictor configuration differences). To the best of
our knowledge, however, ours is the first work that uses address
prediction to enable safe execution of delayed loads in multiple
secure speculation schemes, by ensuring that their addresses are
independent of any speculatively-loaded secret.

Value Prediction: Unlike address prediction, value prediction
suffers from predicted values being propagated before validation,
incurring squashes on mispredicted values. Additionally, addresses
are easier to predict than values [32, 43].

9 CONCLUSION
In this work, we introduce the Doppelganger Loads architecture,
which enables dependent loads to be safely speculatively executed
by predicting their addresses, thereby improving memory level
parallelism (MLP) of secure speculation schemes that otherwise
limit the MLP. We show that Doppelganger Loads can be integrated
in existing secure schemes without changing the underlying threat
model, i.e., Doppelganger Loads are threat-model transparent. Fur-
thermore, we show how Doppelganger Loads can be implemented
at low cost and complexity, without requiring any modifications
to the memory hierarchy. Finally, our results show that a simple
strided prefetcher can be used for address prediction to improve
the performance of three secure speculation schemes, NDA-P, STT,
and DoM. The potential to further improve performance by using
a more advanced address predictor is left for future work.

ACKNOWLEDGMENTS
We thank Christos Sakalis for early contributions related to the idea
and guidance on gem5 development. Simulations were executed on
the NTNU EPIC compute cluster [46]. This work was supported
in part by Microsoft Research through its EMEA PhD Scholarship
Programme grant no. 2021-020, the Swedish Research Council (VR)
grants 2018-05254 and 2022-04959, the VINNOVA grant 2021-02422,
the SSF grant FUS21-0067, and Uppsala University funds for Cyber-
security.

REFERENCES
[1] Pavlos Aimoniotis, Amund Bergland Kvalsvik, Magnus Själander, and Stefanos

Kaxiras. 2022. Data-Out Instruction-In (DOIN!): Leveraging Inclusive Caches
to Attack Speculative Delay Schemes. In Proceedings of the IEEE International
Symposium on Secure and Private Execution Environment Design. 49–60. https:
//doi.org/10.1109/SEED55351.2022.00012

[2] Pavlos Aimoniotis, Christos Sakalis, Magnus Själander, and Stefanos Kaxiras.
2021. Reorder Buffer Contention: A Forward Speculative Interference Attack for

https://doi.org/10.1109/SEED55351.2022.00012
https://doi.org/10.1109/SEED55351.2022.00012

Speculation Invariant Instructions. IEEE Computer Architecture Letters 20 (July
2021), 162–165. Issue 2. https://doi.org/10.1109/LCA.2021.3123408

[3] Sam Ainsworth. 2021. GhostMinion: A Strictness-Ordered Cache System for
Spectre Mitigation. In Proceedings of the IEEE/ACM International Symposium
on Microarchitecture. Association for Computing Machinery, 592–606. https:
//doi.org/10.1145/3466752.3480074

[4] Sam Ainsworth and Timothy M. Jones. 2020. MuonTrap: Preventing Cross-
Domain Spectre-Like Attacks by Capturing Speculative State. In Proceedings of
the International Symposium on Computer Architecture. 132–144. https://doi.org/
10.1109/ISCA45697.2020.00022

[5] Ricardo Alves, Stefanos Kaxiras, and David Black-Schaffer. 2021. Early Address
Prediction: Efficient Pipeline Prefetch and Reuse. ACM Trans. Archit. Code Optim.
18 (June 2021), 39:1–39:22. Issue 3. https://doi.org/10.1145/3458883

[6] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodorescu. 2019.
Isolating Speculative Data to Prevent Transient Execution Attacks. IEEE Computer
Architecture Letters 18 (July 2019), 178–181. Issue 2. https://doi.org/10.1109/LCA.
2019.2916328

[7] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodorescu.
2019. SpecShield: Shielding Speculative Data from Microarchitectural Covert
Channels. In Proceedings of the International Conference on Parallel Architectural
and Compilation Techniques. IEEE Computer Society, 151–164. https://doi.org/
10.1109/PACT.2019.00020

[8] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Neil
Zhao, Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos Rozas, Adam
Morrison, Frank Mckeen, Fangfei Liu, Ron Gabor, Christopher W. Fletcher, Ab-
hishek Basak, and Alaa Alameldeen. 2021. Speculative interference attacks:
breaking invisible speculation schemes. In Proceedings of the Architectural Support
for Programming Languages and Operating Systems. Association for Computing
Machinery, 1046–1060. https://doi.org/10.1145/3445814.3446708

[9] Michael Bekerman, Stephan Jourdan, Ronny Ronen, Gilad Kirshenboim, Lihu
Rappoport, Adi Yoaz, and Uri Weiser. 1999. Correlated load-address predictors.
ACM SIGARCH Computer Architecture News 27 (May 1999), 54–63. Issue 2. https:
//doi.org/10.1145/307338.300984

[10] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTherSpec-
tre: Exploiting Speculative Execution through Port Contention. In Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security. Associa-
tion for ComputingMachinery, 785–800. https://doi.org/10.1145/3319535.3363194

[11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39 (May 2011), 1–7. Issue 2. https://doi.org/10.1145/2024716.
2024718

[12] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von
Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.
2019. A Systematic Evaluation of Transient Execution Attacks and Defenses. In
Proceedings of the USENIX Security Symposium. 249–266. https://www.usenix.
org/conference/usenixsecurity19/presentation/canella

[13] Rutvik Choudhary, Jiyong Yu, Christopher Fletcher, and Adam Morrison. 2021.
Speculative Privacy Tracking (SPT): Leaking Information From Speculative Execu-
tionWithout Compromising Privacy. In Proceedings of the IEEE/ACM International
Symposium on Microarchitecture. Association for Computing Machinery, 607–622.
https://doi.org/10.1145/3466752.3480068

[14] G.Z. Chrysos and J.S. Emer. 1998. Memory dependence prediction using store
sets. In Proceedings of the International Symposium on Computer Architecture.
142–153. https://doi.org/10.1109/ISCA.1998.694770

[15] Standard Performance Evaluation Corporation. 2006. SPEC CPU2006 Benchmark
Suite. http://www.specbench.org/cpu2006/

[16] Standard Performance Evaluation Corporation. 2017. SPEC CPU2017 Benchmark
Suite. http://www.specbench.org/cpu2017/

[17] Shuwen Deng, Bowen Huang, and Jakub Szefer. 2022. Leaky Frontends: Se-
curity Vulnerabilities in Processor Frontends. In Proceedings of the Interna-
tional Symposium High-Performance Computer Architecture. 53–66. https:
//doi.org/10.1109/HPCA53966.2022.00013

[18] R. J. Eickemeyer and S. Vassiliadis. 1993. A load-instruction unit for pipelined
processors. IBM Journal of Research and Development 37 (July 1993), 547–564.
Issue 4. https://doi.org/10.1147/rd.374.0547

[19] Jacob Fustos, Farzad Farshchi, and Heechul Yun. 2019. SpectreGuard: An Efficient
Data-centric Defense Mechanism against Spectre Attacks. In Proceedings of the
ACM/IEEE Design Automation Conference. Association for Computing Machinery,
1–6. https://doi.org/10.1145/3316781.3317914

[20] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. 1991. Two Techniques
to Enhance the Performance of Memory Consistency Models. Computer Systems
Laboratory, Stanford University.

[21] José González and Antonio González. 1997. Speculative Execution via Address
Prediction and Data Prefetching. In Proceedings of the ACM International Confer-
ence on Supercomputing. 9. https://doi.org/10.1145/263580.263631

[22] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2019. SafeSpec: Ban-
ishing the Spectre of a Meltdown with Leakage-Free Speculation. In Proceedings
of the ACM/IEEE Design Automation Conference. 1–6. https://doi.org/10.1145/
3316781.3317903

[23] Joonsung Kim, Hamin Jang, Hunjun Lee, Seungho Lee, and Jangwoo Kim. 2021.
UC-Check: Characterizing Micro-operation Caches in x86 Processors and Impli-
cations in Security and Performance. In Proceedings of the IEEE/ACM International
Symposium on Microarchitecture. Association for Computing Machinery, 550–564.
https://doi.org/10.1145/3466752.3480079

[24] Sungkeun Kim, Farabi Mahmud, Jiayi Huang, Pritam Majumder, Neophytos
Christou, Abdullah Muzahid, Chia-Che Tsai, and Eun Jung Kim. 2020. ReViCe:
Reusing Victim Cache to Prevent Speculative Cache Leakage. In Proceedings of
the IEEE Secure Development Conference. IEEE Computer Society, 96–107. https:
//doi.org/10.1109/SecDev45635.2020.00029

[25] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A Defense Against Cache Timing Attacks in Speculative
Execution Processors. In Proceedings of the IEEE/ACM International Symposium
on Microarchitecture. IEEE Computer Society, 974–987. https://doi.org/10.1109/
MICRO.2018.00083

[26] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
Proceedings of the IEEE Symposium on Security and Privacy. 1–19. https://doi.org/
10.1109/SP.2019.00002

[27] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N. Khasawneh,
Chengyu Song, and Nael Abu-Ghazaleh. 2020. SpecCFI: Mitigating Spectre
Attacks using CFI Informed Speculation. In Proceedings of the IEEE Symposium
on Security and Privacy. IEEE Computer Society, 39–53. https://doi.org/10.1109/
SP40000.2020.00033

[28] Mengming Li, Chenlu Miao, Yilong Yang, and Kai Bu. 2022. unXpec: Breaking
Undo-based Safe Speculation. In Proceedings of the International Symposium High-
Performance Computer Architecture. 98–112. https://doi.org/10.1109/HPCA53966.
2022.00016

[29] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. 2019. Conditional
Speculation: An Effective Approach to Safeguard Out-of-Order Execution Against
Spectre Attacks. In Proceedings of the International Symposium High-Performance
Computer Architecture. IEEE Computer Society, 264–276. https://doi.org/10.1109/
HPCA.2019.00043

[30] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. 2021. DOLMA: Securing Speculation with the
Principle of Transient Non-Observability. In Proceedings of the USENIX Security
Symposium. https://www.usenix.org/conference/usenixsecurity21/presentation/
loughlin

[31] Andreas Ioannis Moshovos. 1998. Memory Dependence Prediction. Ph. D. Disser-
tation. University of Wisconsin.

[32] Lois Orosa, Rodolfo Azevedo, and Onur Mutlu. 2018. AVPP: Address-first Value-
next Predictor with Value Prefetching for Improving the Efficiency of Load Value
Prediction. ACM Transactions on Architecture and Code Optimization 15 (Dec.
2018), 49:1–49:30. Issue 4. https://doi.org/10.1145/3239567

[33] Samuel Pakalapati and Biswabandan Panda. 2020. Bouquet of Instruction Pointers:
Instruction Pointer Classifier-based Spatial Hardware Prefetching. In Proceedings
of the International Symposium on Computer Architecture. 118–131. https://doi.
org/10.1109/ISCA45697.2020.00021

[34] Arthur Perais and André Seznec. 2014. Practical data value speculation for
future high-end processors. In Proceedings of the International Symposium High-
Performance Computer Architecture. 428–439. https://doi.org/10.1109/HPCA.2014.
6835952

[35] Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan. 2022. PACMAN:
attacking ARM pointer authentication with speculative execution. In Proceed-
ings of the International Symposium on Computer Architecture. Association for
Computing Machinery, 685–698. https://doi.org/10.1145/3470496.3527429

[36] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan, Dean M
Tullsen, and Ashish Venkat. 2021. I See Dead µops: Leaking Secrets via Intel/AMD
Micro-Op Caches. In Proceedings of the International Symposium on Computer
Architecture. 14. https://doi.org/10.1109/ISCA52012.2021.00036

[37] Alberto Ros, Trevor E. Carlson, Mehdi Alipour, and Stefanos Kaxiras. 2017. Non-
Speculative Load-Load Reordering in TSO. In ACM SIGARCH Computer Architec-
ture News, Vol. 45. 187–200. https://doi.org/10.1145/3140659.3080220

[38] Gururaj Saileshwar and Moinuddin K. Qureshi. 2019. CleanupSpec: An "Undo"
Approach to Safe Speculation. In Proceedings of the IEEE/ACM International
Symposium on Microarchitecture. Association for Computing Machinery, 73–86.
https://doi.org/10.1145/3352460.3358314

[39] Christos Sakalis, Mehdi Alipour, Alberto Ros, Alexandra Jimborean, Stefanos
Kaxiras, and Magnus Själander. 2019. Ghost loads: What is the cost of invisible
speculation?. In Proceedings of the ACM International Conference on Computing
Frontiers. Association for Computing Machinery, 153–163. https://doi.org/10.
1145/3310273.3321558

https://doi.org/10.1109/LCA.2021.3123408
https://doi.org/10.1145/3466752.3480074
https://doi.org/10.1145/3466752.3480074
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1145/3458883
https://doi.org/10.1109/LCA.2019.2916328
https://doi.org/10.1109/LCA.2019.2916328
https://doi.org/10.1109/PACT.2019.00020
https://doi.org/10.1109/PACT.2019.00020
https://doi.org/10.1145/3445814.3446708
https://doi.org/10.1145/307338.300984
https://doi.org/10.1145/307338.300984
https://doi.org/10.1145/3319535.3363194
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://doi.org/10.1145/3466752.3480068
https://doi.org/10.1109/ISCA.1998.694770
http://www.specbench.org/cpu2006/
http://www.specbench.org/cpu2017/
https://doi.org/10.1109/HPCA53966.2022.00013
https://doi.org/10.1109/HPCA53966.2022.00013
https://doi.org/10.1147/rd.374.0547
https://doi.org/10.1145/3316781.3317914
https://doi.org/10.1145/263580.263631
https://doi.org/10.1145/3316781.3317903
https://doi.org/10.1145/3316781.3317903
https://doi.org/10.1145/3466752.3480079
https://doi.org/10.1109/SecDev45635.2020.00029
https://doi.org/10.1109/SecDev45635.2020.00029
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP40000.2020.00033
https://doi.org/10.1109/SP40000.2020.00033
https://doi.org/10.1109/HPCA53966.2022.00016
https://doi.org/10.1109/HPCA53966.2022.00016
https://doi.org/10.1109/HPCA.2019.00043
https://doi.org/10.1109/HPCA.2019.00043
https://www.usenix.org/conference/usenixsecurity21/presentation/loughlin
https://www.usenix.org/conference/usenixsecurity21/presentation/loughlin
https://doi.org/10.1145/3239567
https://doi.org/10.1109/ISCA45697.2020.00021
https://doi.org/10.1109/ISCA45697.2020.00021
https://doi.org/10.1109/HPCA.2014.6835952
https://doi.org/10.1109/HPCA.2014.6835952
https://doi.org/10.1145/3470496.3527429
https://doi.org/10.1109/ISCA52012.2021.00036
https://doi.org/10.1145/3140659.3080220
https://doi.org/10.1145/3352460.3358314
https://doi.org/10.1145/3310273.3321558
https://doi.org/10.1145/3310273.3321558

[40] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-
nus Själander. 2019. Efficient Invisible Speculative Execution through Selective
Delay and Value Prediction. In Proceedings of the International Symposium on
Computer Architecture. 723–735. https://doi.org/10.1145/3307650.3322216

[41] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-
nus Själander. 2020. Understanding Selective Delay as a Method for Efficient
Secure Speculative Execution. IEEE Trans. Comput. 69 (Nov. 2020), 1584–1595.
Issue 11. https://doi.org/10.1109/TC.2020.3014456

[42] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security. Association for Computing Machinery,
753–768. https://doi.org/10.1145/3319535.3354252

[43] Rami Sheikh, Harold W. Cain, and Raguram Damodaran. 2017. Load Value
Prediction via Path-based Address Prediction: Avoiding Mispredictions due to
Conflicting Stores. In Proceedings of the IEEE/ACM International Symposium on
Microarchitecture. 423–435.

[44] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Au-
tomatically characterizing large scale program behavior. In Proceedings of the
Architectural Support for Programming Languages and Operating Systems. Associ-
ation for Computing Machinery, 45–57. https://doi.org/10.1145/605397.605403

[45] Sudhanshu Shukla, Sumeet Bandishte, Jayesh Gaur, and Sreenivas Subramoney.
2022. Register file prefetching. In Proceedings of the International Symposium on
Computer Architecture. Association for Computing Machinery, 410–423. https:
//doi.org/10.1145/3470496.3527398

[46] Magnus Själander, Magnus Jahre, Gunnar Tufte, and Nico Reissmann. 2022. EPIC:
An Energy-Efficient, High-Performance GPGPU Computing Research Infrastruc-
ture. (Feb. 2022). https://doi.org/10.48550/arXiv.1912.05848 arXiv:1912.05848

[47] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2019. Context-
Sensitive Fencing: Securing Speculative Execution via Microcode Customiza-
tion. In Proceedings of the Architectural Support for Programming Languages
and Operating Systems. Association for Computing Machinery, 395–410. https:
//doi.org/10.1145/3297858.3304060

[48] Kim-Anh Tran, Christos Sakalis, Magnus Själander, Alberto Ros, Stefanos Kaxi-
ras, and Alexandra Jimborean. 2020. Clearing the Shadows: Recovering Lost
Performance for Invisible Speculative Execution through HW/SW Co-Design.
In Proceedings of the ACM International Conference on Parallel Architectures

and Compilation Techniques. Association for Computing Machinery, 241–254.
https://doi.org/10.1145/3410463.3414640

[49] OfirWeisse, Ian Neal, Kevin Loughlin, Thomas F.Wenisch, and Baris Kasikci. 2019.
NDA: Preventing Speculative Execution Attacks at Their Source. In Proceedings
of the IEEE/ACM International Symposium on Microarchitecture. Association for
Computing Machinery, 572–586. https://doi.org/10.1145/3352460.3358306

[50] Wm A. Wulf and Sally A. McKee. 1995. Hitting the memory wall: Implications of
the obvious. ACM SIGARCH Computer Architecture News 23 (1995), 20–24. Issue
1. https://doi.org/10.1145/216585.216588

[51] Wenjie Xiong and Jakub Szefer. 2021. Survey of Transient Execution Attacks
and Their Mitigations. Comput. Surveys 54 (May 2021), 54:1–54:36. Issue 3.
https://doi.org/10.1145/3442479

[52] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher
Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution In-
visible in the Cache Hierarchy. In Proceedings of the IEEE/ACM International Sym-
posium on Microarchitecture. 428–441. https://doi.org/10.1109/MICRO.2018.00042

[53] Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison, and Christopher W.
Fletcher. 2020. Speculative Data-Oblivious Execution: Mobilizing Safe Predic-
tion For Safe and Efficient Speculative Execution. In Proceedings of the Interna-
tional Symposium on Computer Architecture. 707–720. https://doi.org/10.1109/
ISCA45697.2020.00064

[54] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W. Fletcher. 2019. Speculative Taint Tracking (STT): A Comprehen-
sive Protection for Speculatively Accessed Data. In Proceedings of the IEEE/ACM
International Symposium on Microarchitecture. Association for Computing Ma-
chinery, 954–968. https://doi.org/10.1145/3352460.3358274

[55] Zirui Neil Zhao, Houxiang Ji, AdamMorrison, DarkoMarinov, and Josep Torrellas.
2022. Pinned loads: taming speculative loads in secure processors. In Proceedings
of the Architectural Support for Programming Languages and Operating Systems.
Association for Computing Machinery, 314–328. https://doi.org/10.1145/3503222.
3507724

[56] Zirui Neil Zhao, Houxiang Ji, Mengjia Yan, Jiyong Yu, Christopher W. Fletcher,
AdamMorrison, DarkoMarinov, and Josep Torrellas. 2020. Speculation Invariance
(InvarSpec): Faster Safe Execution Through Program Analysis. In Proceedings
of the IEEE/ACM International Symposium on Microarchitecture. IEEE Computer
Society, 1138–1152. https://doi.org/10.1109/MICRO50266.2020.00094

https://doi.org/10.1145/3307650.3322216
https://doi.org/10.1109/TC.2020.3014456
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/605397.605403
https://doi.org/10.1145/3470496.3527398
https://doi.org/10.1145/3470496.3527398
https://doi.org/10.48550/arXiv.1912.05848
https://arxiv.org/abs/1912.05848
https://doi.org/10.1145/3297858.3304060
https://doi.org/10.1145/3297858.3304060
https://doi.org/10.1145/3410463.3414640
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/3442479
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1109/ISCA45697.2020.00064
https://doi.org/10.1109/ISCA45697.2020.00064
https://doi.org/10.1145/3352460.3358274
https://doi.org/10.1145/3503222.3507724
https://doi.org/10.1145/3503222.3507724
https://doi.org/10.1109/MICRO50266.2020.00094

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Non-Speculative Data Access
	2.2 Speculative Taint Tracking
	2.3 Delay-on-Miss
	2.4 Motivation: Unlocking MLP

	3 Threat Models
	3.1 Non-speculative Data Access and Speculative Taint Tracking
	3.2 Delay-on-Miss

	4 Doppelganger Loads
	4.1 Overview
	4.2 Doppelganger Loads for NDA-P and STT
	4.3 Doppelgangers in other explicit or implicit channels
	4.4 Doppelganger Loads and Store-to-load forwarding
	4.5 Doppelganger Loads and Memory Consistency
	4.6 Doppelganger Loads for DoM

	5 Implementation Details
	5.1 Implementation Cost
	5.2 Modifications for STT
	5.3 Modifications for DoM

	6 Methodology
	7 Evaluation
	8 Related Work
	9 Conclusion
	References

