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Abstract 

Banks and other financial institutions are to a certain extent obligated to ensure that their 

services are not utilized for any type of financial crime. This thesis investigates the possibility of 

analyzing bank customers' transactional behaviour with machine learning to detect if they are 

involved in financial crime. The purpose of this is to see if a new approach to processing and 

analyzing transaction data could make financial crime detection more accurate and efficient. 

Transactions of a customer over a time period are processed to form multivariate time series. 

These time series are then used as input to different machine learning models for time series 

classification. The best method involves a transform called Random Convolutional Kernel 

Transform that extracts features from the time series. These features are then used as input to 

a logistic regression model that generates probabilities of the different class labels. This method 

achieves a ROC AUC-score of 0.856 when classifying customers as being involved in financial 

crime or not. The results indicate that the time series models detect patterns in transaction data 

that connect customers to financial crime which previously investigated methods have not been 

able to find. 
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Populärvetenskaplig sammanfattning

Banker och andra finansiella institutioner har ett ansvar att se till att deras tjänster inte utnytt-
jas för finansiell brottslighet. Några exempel på olika typer av finansiella brott är penningtvätt,
mutbrott och förskingring. För banker som hanterar flera miljoner transaktioner per dag kan det
vara ett omfattande arbete att upptäcka kunder som är involverade i finansiell brottslighet. Den
konventionella metoden för att göra detta är att använda regler som är kopplade till faktorer som
ofta är förknippade med finansiell brottslighet. När en regel bryts så skapas ett larm och en utred-
ning påbörjas för den berörda kunden. Om utredningen visar att kunden är inblandad i finansiell
brottslighet, överlämnas ärendet till myndigheter.

För att göra processen för att upptäcka finansiell brottslighet mer effektiv har under de senaste
åren olika implementeringar som utnyttjar maskininlärning undersökts. Resultat från studier på
området indikerar att de bästa maskininlärningsmodellerna för att detektera finansiell brottslighet
är så kallade trädbaserade modeller. En nackdel med dessa modeller är att mycket information
om transaktionsdata går förlorad på grund av formatet som de tar emot indata. Denna uppsats
undersöker därför ett nytt sätt att formattera och analysera data från transaktioner som utförts
av kunder för att prediktera finansiell brottslighet. Transaktioner av en specifik kund under en
tidsperiod behandlas så att de utgör en tidsserie, där varje parameter motsvarar en viss typ av
transaktion. Maskininlärningsmodeller för tidsserieklassificering används sedan för att prediktera
vilka kunder som är involverade i finansiell brottslighet.

Detta projekt har genomförts i samarbete med banken Nordea, och en av deras kunddatabaser som
innehåller personer som har utretts för finansiell brottslighet har använts för att träna och testa olika
modeller. Denna databas innehåller dels information om transaktioner som kunder har utfört, men
även annan övrig information såsom saldon för olika konton, ålder etc. Förmågan av olika metoder
att skilja mellan kunder som är involverade i finansiellt brottslighet bedöms framförallt utifrån ett
mått som kallas ROC AUC-värde. Den metod som generellt sett presterade bäst för tidsserieklassi-
ficering involverade användningen av en transform kallad Random Convolutional Kernel Transform.
Denna transform extraherar parametrar från tidsserien som sedan används i en Logistic Regression-
modell. ROC AUC-värdet för denna metod uppmättes till 0.856. För att jämföra metoderna som
involverade tidsserieklassificering med trädbaserade modeller så implementeras även en trädbaserad
modell som kallas Extreme Gradient Boosting. Denna modell uppnådde ett ROC AUC-värde på
0.878. Den trädbaserade modellen presterar alltså bättre än metoderna som involverar tidsserieklas-
sificering. Men två av modellerna för tidsserieklassificering presterar fortfarande förhållandevis bra
då de bara utnyttjar transaktionsdata, i jämförelse med den trädbaserade modellen som utnyttjar
all tillgänglig data. Resultaten indikerar även att de två olika typerna av metoder hittar olika mön-
ster som kopplar kunder till finansiell brottslighet. En slutsats är att tidsseriemodellerna presterar
bra i att prediktera finansiell brottslighet utifrån transaktionsdata, men en metod behövs för att
kombinera dessa modeller med en annan modell som utnyttjar all den tillgängliga datan.
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1 Introduction

Banks and other financial institutions are due to the nature of their services vulnerable to being
exploited by criminal ventures. For this reason, they are obligated by law to take certain measures
to prevent their products from being utilized for different types of financial crime. For banks
carrying out millions of transactions per day, the process of finding and investigating customers
who are potentially involved in some type of financial crime can be a challenging task. To make
the process of detecting customers involved in illicit activities more effective and accurate, different
implementations using machine learning have been investigated. This thesis explores the possibility
of analyzing customers’ transactional behavior with machine learning to detect if they are involved
in financial crime. The project is made in collaboration with the Nordic bank Nordea. To investigate
the performance of different machine learning models, data from Swedish customers of Nordea is
used.

1.1 Background

The term financial crime encompasses many types of illicit activities including money laundering,
tax evasion, bribery, and terrorist financing [1]. Financial crime does not pose a direct danger
to individuals but can have far-reaching consequences on societies and organizations in the long
term. Money laundering in particular, which means the process of disguising an illegal source
of money and replacing it with a legitimate one, enables the profitability of other violent crimes.
When profits have been made from crimes such as illegal arms sales, drug trafficking, or prostitution,
these earnings need to somehow be introduced into the financial system to be legitimized [2]. United
Nations Office on Drugs and Crime estimated that the amount of money being laundered through
the financial system in 2009 was equal to 1.6 trillion US dollars or 2.7 % of global GDP [3].

Banks and other financial institutions are to a certain extent obligated to ensure that their services
are not used in any criminal activity. If banks do not make enough efforts to ensure that their services
are not utilized for financial crimes, they can receive regulatory fines or even lose their banking
license. Additionally, banks being involved in a financial crime can also lead to negative publicity
causing reputational damage and customer loss [1]. In 2020 the Swedish Financial Supervisory
Authority decided that Swedbank would have to pay 4 billion Swedish crowns in sanction fees
for not following regulations regarding measures against money laundering [4]. Clifford Chance’s
report of investigation Swedbank shows that between 2015 and 2019 there had been an inflow of 75.4
billion Euros to accounts belonging to Anti Money Laundering (AML) Risk Identified Customers in
subsidiary banks to Swedbank in the Baltic states [5]. There was also a consideration for removing
the banking permit of Swedbank, but the bank was due to its efforts of improving its work against
money laundering, in the end, let off with a warning [4].

Clearly, it’s in the interest of banks to oversee the activity of their clients to ensure that their
services are not being exploited by criminal ventures. The conventional method of finding clients
who are involved in financial crime is to have a set of rules, which if broken, sends an alert indicating
that the client should be investigated [6]. A rule could, for example, be that if a client withdraws
a certain amount of cash during a time period, an alert should be generated. When a rule has

8



been broken and an alarm has been raised, an investigation is initiated regarding the concerned
client. If the client is found to be involved in criminal activity, the case is then handed over to
authorities for further review and possible incarceration. Figure 1 shows a flowchart demonstrating
the typical process of detecting financial crime in banks or other financial institutions. In recent
times, approaches involving machine learning have been investigated to either improve the process
of finding customers who should be investigated or to facilitate the investigation of customers found
by the rule-based method.

Machine learning is the process of using a model to gain insight into the patterns of data and then
use this information to make predictions for new, unseen data points. The data points that the
model utilizes for learning the patterns of a dataset are often referred to as the training set. In
supervised machine learning each data point has both an input and an output. The goal of the
machine learning model is then to find the patterns in the input that defines the output. The
output can either be a continuous numerical value or a set of discrete values. When the output is a
continuous numerical value, the problem can be referred to as a regression problem. If the possible
range of outputs is a set of discrete labels, the problem can be referred to as a classification problem.
The goal of this project is to classify data examples into two different classes is thus a classification
problem. To evaluate a model’s ability to capture the patterns in the data a test set is used. This
is a set of data points that are excluded from the training set. The input of the test set is fed to
the model and the output of the model is then compared to the true labels of the test set [7].

The type of input that will be primarily used as input to the machine learning models in this project
is time series. A time series refers to a sequence of data points collected or recorded over successive

Figure 1: A flowchart demonstrating the typical process of detecting financial crime in banks or
other financial institutions.
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time intervals. From a mathematical perspective, a time series can be seen as a stochastic process
observed at discrete time points [8]. There are two different types of time series, univariate and
multivariate. A univariate time series consists of a single value associated with each time step,
whereas in a multivariate time series, multiple values correspond to each time step. All of the time
series used in this project are multivariate. Since this project’s objective is to classify different time
series, a type of machine learning model called the time series classification (TSC) model will be
utilized.

TSC models find relevance in a broad array of applications, for example in healthcare, where it helps
in interpreting various types of medical data that are recorded over time, such as heart rate and
brain wave patterns. It is also used in finance for detecting market trends, in environmental science
for climate pattern recognition, and in many other fields [9]. Several different types of TSC models
have been presented, including distance-based, kernel methods, and dictionary-based methods [10].
Recently, deep learning methodologies have shown promising results, offering advanced techniques
for feature learning and sequence modeling. Despite the advances, the TSC field still facilitates an
ongoing exploration of innovative methods and strategies to improve prediction performance across
a wide range of application domains [9].

1.2 Related work

When examining the literature on the subject one finds that there have been several studies on
implementing machine learning algorithms for detecting financial crime. Since the datasets needed
for conducting such research contains sensitive information, the amount of public datasets is very
limited, and different studies use different sources of information. Different countries also have
different laws and procedures regarding financial crime, which also has implications for the meth-
ods for detecting them. For this reason, it’s hard to compare the results of different studies and
determine which ones have found the best methods. However when reading about different studies
one gets an overview of what methods seems to perform the best in general and what performances
have been achieved.

One study on the subject is done by Raiter (2021), who due to the lack of available data, utilizes
a synthetic dataset of transactions. He uses this to compare different machine learning algorithms
for detecting money laundering. The best-performing algorithm is found to be the Random Forest
model which has an accuracy of 0.99 and an F1-score of 0.36 [11]. In the last few years, the
use of Bitcoin and other cryptocurrencies has created new challenges in the field of AML. The
anonymity and the new technologies involved in cryptocurrency trading have made traditional
methods of detecting financial crime ineffective. Alotibi et. al (2022) investigates the possibility
of using machine learning and deep learning to detect money laundering activities using data of
cryptocurrency transactions [12]. Random Forest is once again found to have the best performance.

Another method for detecting clients involved in money laundering is proposed by Tertychnyi et. al
(2020) who investigates a two-layered approach utilizing two different machine learning models. The
aim of their implementation is to find clients involved in money laundering from a bank’s database.
A logistic regression model is first used to remove clearly non-illicit clients and then an extreme
gradient boosting (XGBoost) model is used on the remaining samples to find customers with the
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highest risk. The purpose of the first layer is to reduce the size of the dataset while removing as
few true positives as possible. This facilitates more complex methods in the second layer as well as
reducing the issue of class imbalance [13].

Ingemann Tuffveson Jensen and Iosifidis (2023) investigate an implementation using deep learning
to raise and qualify anti-money laundering alarms at the Danish bank Spar Nord Bank. The input
data to the model consists of transactions in the form of a multivariate time series and client data in
a tabular arrangement. The architecture of the models involves an embedding that maps categorical
features to a latent representation in the form of vectors. Three different types of processing blocks,
long short-term memory cells (LSTM), gated recurrent units (GRU), and Transformer encoder
layers, are used to create a latent vector representation from the transaction sequences. This vector
is then processed together with the client features in two feedforward layers and a sigmoid activation
function to generate the output value. From alarms made by the rule-based system, the model was
able to reduce the number of false positives by 33.3 % while retaining 98.8 % of true positives.
The best-performing model was a two-layer bidirectional GRU with self-attention. All of the deep
learning models utilizing time series data had better performance in terms of Receiver Operating
Characteristics (ROC) Area Under the Curve (AUC) score than the baseline models, which included
four different tree-based models [14].

1.3 Purpose

One of the drawbacks of the previously mentioned rule-based method is that it leads to a large
proportion of false positives, meaning alerts that incorrectly classify a client as being involved in
financial crime. The rate of false positives has been reported to be as high as 98 % in some cases.
This leads to investigators spending much of their time reviewing clients who are not criminals.
Not only is this an inefficient use of resources, but it can also have the effect of diverting attention
from high-risk clients [6]. Furthermore, some criminal activities can involve a series of transactions
over a longer period of time and be too complex for a rule-based method to detect it. Criminals
continually update their strategies to remain undetected and the methods for finding them hence
always need to improve to be effective [1]. To detect clients who exhibit more complex irregular
behaviours different types of implementations using machine learning have been explored.

Machine learning could be used in multiple different ways to make the process of detecting financial
crime. Firstly they could be used to create alerts instead of the rule-based method. This problem
would include an unlabeled dataset since the investigations that decide if a client is involved in
financial crime are only carried through for clients who have been alerted by the rule-based method.
Since no labels would be provided for clients involved in financial crime in the dataset, this problem
would require a solution involving an unsupervised machine learning implementation. This project
will instead focus on a supervised machine learning problem. If one considers a dataset only
including alerts generated by the rule-based method, it would be a suitable dataset for a supervised
machine learning problem since all of the data examples are labeled. The goal of the machine
learning model is then to qualify each alert, meaning to classify the concerned client of an alert
as being involved in financial crime or not. If the performance of the machine learning model is
good enough, one could consider the possibility of replacing investigators with the machine learning
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model. If the performance is not good enough, only alerts that are given the lowest score by the
model could be disqualified. The rest would then be reviewed by investigators. This would lessen
the work burden of investigators and save resources for the bank. A model trained on alerts could
also be used to classify customers not detected by the rule-based method. However, due to limited
resources, no new investigations will be made based on the findings of the models evaluated in
this project. Therefore it will not be possible to know if the models would find clients involved in
criminal activity who were not found by the rule-based method.

In general, the literature seems to suggest that tree-based models are the best for detecting financial
crime. However, in tree-based models, each input is in the form of a one-dimensional array where
each entry represents a feature. This means that they are not able to utilize time series data in
an effective way to make predictions. A potential approach to consider would be implementing a
one-hot encoding based on transaction type and day or time period, however, this would result
in a very sparse representation and the model would likely not be able to capture any meaningful
temporal patterns. Thus, tree-based methods are limited to using aggregate statistics related to
transactions. To be able to utilize more granular transaction data, other types of models which
are designed to use time series data as an input needs to be used. Currently, the only study which
investigates models utilizing transaction data in a more granular arrangement is done by Ingemann
Tuffveson Jensen and Iosifidis [14]. Their findings suggest that these models outperform tree-based
models [14]. Clearly, this seems like an approach worth further investigation. Thus, the aim of this
project will be to explore how time series models perform in classifying transaction data from alerts
and how this can be used to improve financial crime detection.

1.4 Research questions

• How do machine learning models using time series data perform compared to tree-based
models in detecting financial crime?

• What performance can be achieved with a machine learning model using time series data
based on cases reported by rule-based methods and then identified by experts?

• Do tree-based models and time series models find different patterns in the data which connect
customers to financial crime?

• Are deep learning algorithms suitable for classifying the time series data from transactions or
do less complex machine learning models perform better?

2 Problem formulation

Two different types of models will be used in this project, TSC models and tree-based models. One
difference between these two types of models is the format of the input data. Each input sample
to the tree-based model is in the format of an array which can be written as xc ∈ Rd where d is
the number of features. In this project, xc contains both nominal and ratio data. The input to the
TSC models is a multivariate time series. A time series can be seen as a stochastic process that is
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observed at discrete times t during a time interval (0, T ). Each observation of the time series can
be written as xt

(τ) ∈ Rq where q is the number of features of the time series and τ is a point in
time. The time series used in this project has a fixed sampling frequency, meaning that the time
between each observation is constant. The multivariate time series can be represented by a matrix
Xt ∈ Rq×l where l is the number of observations or the length of the time series. The features in
the considered time series only contain ratio data.

The following concepts will apply to both the TSC models and the tree-based model. The goal
of the machine learning models in this project is to classify if the concerned client of an alert is
involved in financial crime or not. This means learning a binary classification model given a training
set T = {xi, yi}

n
i=1, where xi can represent a multivariate time series or an array depending on

the type of model. The class label yi which is being predicted can be seen as a random variable
conditioned on the input variable xi. In other words, the classifier should as accurately as possible,
model the probability p(y = Y |xi) where Y = {−1, 1}, indicating the two different class labels.
The two different classes labels represent the two outcomes of the classification problem as

Y =

{
1 : The concerned client of the alert is involved in financial crime
−1 : The concerned client of the alert does not exhibit any illicit behaviour.

(1)

The two probabilities being modeled are p(y = 1|xi) indicating that a client is involved in financial
crime and p(y = −1|xi) indicating that the client does not exhibit any illicit behaviour. If the
probability p(y = 1|xi) is modelled by the function g(xi) the probability of the other label, p(y =
−1|xi), is modelled by 1 − g(xi) [7]. This can be deduced since the probabilities of the two class
labels have to add up to one. However, so far only the probabilities of the different class labels have
been derived. To actually classify data examples to one of the two labels, a decision needs to be
made based on these probabilities. To classify a data example to one of the two classes one has to
decide on a classification threshold r. The classification is then made according to

ŷ(xi) =

{
1 if g(xi) > r

−1 if g(xi) ≤ r
(2)

where ŷ(xi) is the predicted class label of a data example xi. The choice of the classification
threshold depends on the circumstances of the problem at hand. If the goal is to achieve the
highest possible accuracy, a classification threshold of r = 0.5 will generally achieve the best result
[7]. However, in some problems, one class can be more important to correctly classify than the
other. This can be referred to as an asymmetric problem. The problem can also be imbalanced,
which means that there is a disparity between how often the different classes occur in a dataset. In
the case of an asymmetric or imbalanced problem, the classification threshold r can be adjusted so
that the results better reflect the aim of the model.

In this project, both parametric and non-parametric machine learning models will be used to classify
data points. The method for finding the function g differs between these two different types of
models. Contrary to what the name might suggest, non-parametric modeling does not mean that
no parameters are learned from the data. A machine learning model being non-parametric instead
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means that the number of parameters for a model is not fixed, but depends on the training data
set. This means that the same model can learn a varying number of parameters depending on
which training set is used. This allows for great flexibility and enables non-parametric models to
capture complex patterns in the data. This high flexibility aspect of non-parametric models means
that this type of model is a good choice for problems where little is known about the input-output
relationship of the data. In non-parametric models the function g which models the probability
of a class label is unknown. This lack of insight into the relationship between the output and the
input variables of the model leads to a generally low interpretability of results from non-parametric
models [15].

The very flexible aspect of non-parametric models makes it hard to make any general outline of
how a model is composed. Parametric models follow a more general framework which will be
presented in the following paragraphs. In parametric modeling, the goal is to find a function fθ
which describes the input-output relationship of the problem as accurately as possible. To map this
nonlinear function fθ to a probability between 0 and 1 a Sigmoid function is used in the following
way

g(xi) =
efθ(xi)

1 + efθ(xi)
. (3)

The function fθ can be constructed in many different ways and also contains hyperparameters that
also need to be tuned in order to obtain the best results. Throughout this project, different functions
fθ will be tested and evaluated on their performance in classifying customers as being involved in
financial crime or not. But in order to make a good classifier, the parameters θ in fθ also need to
be determined. So the objective is to find both the best type of function for fθ as well as the best
parameters θ for that function. In other words, for each model which is investigated for describing
the input-output relationship, there is a parametric family of functions,

{fθ(xi) : θ ∈ Θ}, (4)

where Θ is the space of all possible values of the parameters [7]. These parameters are to be learned
from the training set. More specifically, the parameters are learned from solving a minimization
problem. The minimization problem can be stated as

θ̂ = arg min
θ

J(θ). (5)

where the objective function, J(θ), is called a cost function. To measure the performance of the
function fθ in approximating the output, the cost functions contain a loss function. The loss
function means a formula that quantifies the similarity of the model’s predictions compared to the
true output. The best loss function for a specific problem depends on several different factors. This
could depend on which parametric family is used, if it’s a regression or classification problem, or if
regularisation should be used or not. During this project, the choice of loss function is considered
separately for each implemented model. The cost function can be defined as
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J(θ) =
1

n

n−1∑
n=0

L(yi, fθ(xi)) (6)

where yi is the true output label and L is the loss function. Most often there is no analytical solution
to the minimization problem, so the problem is instead solved numerically for an approximate
solution. There are many different algorithms to use for solving the minimization problem and
which one of them is most appropriate to use depends on the specific problem. Therefore a loss
function will also be chosen specifically for each implementation. However, the real goal of a model
is not to be able to classify the training data, but to predict labels of new, unseen data. Therefore, to
evaluate the performance of the model on unseen data, parts of the available data are not included
in the training set. These data points are instead included in a test set. The problem of finding the
best parameters with regard to the test set can be stated as

θ̂ = arg min
θ

Enew(θ). (7)

Here Enew represents some evaluation metric that describes the model’s performance in predicting
the labels of the data points included in the test set [7]. But as previously stated, the test set is not
available during training when the parameters θ̂ are determined. Thus, even though the objective
presented in 7 is what is ultimately being solved, it can’t be optimized explicitly. Instead, the
training objective in 5 is minimized, generating a solution that is expected to also generalize well
to the unseen data in the test set.

The fact that it is not possible to explicitly minimize the error in (7) and the data which the model,
in the end, should classify is unknown during training has several implications on the problem. If
one builds a very complex model which is able to predict the training data extremely accurately or
even without any errors, there is a risk that the model is overfitted to the training data. One could
describe this phenomenon as the model learning to classify the specific data points in the training
set rather than the trends or patterns in the data. The consequence of overfitting is the model
performs significantly worse on the test set compared to the training set [7]. One method to reduce
overfitting is to apply some type of regularisation when solving the minimization problem in (6).

One method of regularisation is to modify the cost function in (6) by adding a regularisation term.
The desired effect of this addition is to penalize large parameter values. This method is called
explicit regularisation and the general formula can be defined as

θ̂ = arg min
θ

J(θ) + λ R(θ) (8)

where R(θ) represents the regularisation term [7]. λ is a parameter that determines the weight of
the regularisation term compared to the cost function. However, there are also several techniques
of regularisation that don’t involve any change to the loss function. These methods are referred
to as implicit regularisation. One such technique is called early stopping, which is applicable to
any method which involves iterative numerical optimization. As the name suggests, the technique
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means that the training stops before a minimum of the cost function is reached [7]. Since different
types of regularisation are appropriate to use for different loss functions, the choice of regularisation
will be made separately for each model that is implemented.

After training a parametric machine learning model, both the structure of the function fθ and the
parameters θ are known. Thus, the mathematical reasoning of how the model classifies data points
is entirely available to the researcher. This leads to a much higher level of interpretability of the
model compared to non-parametric models. Since the structure of parametric models are generally
more rigid means that they are often less computationally demanding than non-parametric models.
The more rigid nature of parametric models also leads to a lower risk of overfitting data compared
to non-parametric models that are generally more flexible [15].

3 Method

The following section describes the methodology of the project and an insight into why different
choices were made regarding the approach to the problem. The aim of the project is both to explore
the amount of information that can be extracted from the transaction data in regard to financial
crime as well as if this can be used to improve the performance of a model using all the available
data. Different time series models will be investigated on their ability to classify customers based
on their transaction data. The best-performing model will then be combined with another model
utilizing the rest of the customer data. One tree model will be used as a benchmark, which utilizes
all of the customer data and the sums of different transaction types over the time period. The
scoring of different customers by the time series models will then be added as input to the tree-
based model. The performance change when adding this variable will give an indication regarding if
the use of machine learning models utilizing time series data can provide a meaningful improvement
in financial crime detection. The lists of the highest-scored customers from the baseline tree model
and the best-performing time series models will also be compared. If they are similar it indicates
that the time series models were not able to find any meaningful patterns which the tree-based model
was not able to capture. A large deviance in the customers which are scored the highest by the two
models indicates that the models are finding different patterns which characterize financial crime.
The dataset used in this project is from the Nordic bank Nordea. All details about the dataset and
its features are not disclosed in this report due to the sensitive nature of the information.

3.1 Dataset

The dataset for this project contains alerts from Swedish customers from Nordea’s database. The
exact number of alerts is not disclosed due to confidentiality reasons, but it can be considered a
relatively large dataset. These alerts from the rule-based method have been triggered at different
time points during a 3.5-year period. If there have been several alerts involving the same customer
these will show up several times in the dataset. This data is split up into two different datasets
representing different types of information linked to the alerts. Firstly, there is a dataset that
contains information about the customer associated with each alert. When a customer opens an
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account at a bank they need to fill in certain information about themselves. Banks are legally
obliged to collect this information in order to prevent financial crime and it is often referred to as
"Know Your Client" (KYC) - data. Examples of entries for KYC data are the types of transactions
that the customer expects to utilize, if they are somehow associated with any other countries than
Sweden, and other general information about the customers, such as age. Some information about
the customer is also obtained at the time of the alert. This information includes for example the
number of accounts and account balances at the time of the alert. This dataset also contains the
class label of each alert, meaning if the customer related to the alert was involved in financial crime
or not. Class labels have been set by domain experts who investigate clients who have been found
to exhibit potentially illicit behaviour by the rule-based method. In total, the dataset contains 45
features which are nominal and ratio variables. A demonstration of the structure of this dataset
can be seen in Figure 1

Alert ID Expected
cash usage

Associated
with country Age Number of

accounts Class label ...

1 True Norway 35 5 1
2 False Null 40 10 -1
3 True Germany 21 2 -1
...

130 False Null 66 4 1

Table 1: The data structure of the customer information related to each alert. All of the data
entries in the table are examples and are not taken from a real alert. This table only serves as a

demonstration of the structure of alert data and does not display all of the features.

The other category of data associated with the alerts is transaction data. This is found in a
separate dataset which contains information about each transaction that has been performed by
each customer related to an alert. The transaction dataset contains information about transactions
associated with each alert from 90 days before the alert was triggered until the alert date. Each
row in the dataset represents a transaction and has a unique transaction ID. It also has a column
with alert IDs representing which alert each transaction is connected to. The temporal information
of each transaction is limited to date and does not contain any more granular data about the time
of day. The first column represents the transaction amount. The rest of the columns represent
different types of transactions that have been found to be risk factors for financial crime. When
a particular transaction reflects one or more of these types, these will also contain the transaction
amount or otherwise be zero. The transaction data set contains 28 different types of transactions.
A demonstration of the structure of the transaction dataset can be seen in Table 2.
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Transaction
ID Alert ID Date Total transaction

amount Gambling Crypto ATM
deposit ...

1 1 05-10-2021 465.2 0 0 0
2 1 06-10-2021 1200.5 0 1200.5 0
3 2 10-10-2021 15040.2 0 0 0
...

1520 130 23-07-2022 16.0 0 0 16.0

Table 2: The arrangement of the transaction data before any preprocessing.

3.2 Preprocessing the data

To classify each alert based on transaction data, first all of the transactions from Table 2 have to
be sorted by which alert they are related to. The transaction data related to each alert then need
to be arranged in a way that is appropriate to use as input to a TSC model. Most TSC models
are only able to use input where all of the time series in the training and testing sets are of equal
length. However, in the original transaction dataset, different customers have varying numbers of
transactions, and these transactions are unevenly distributed over time. In order to expand the
range of applicable models, the transaction data is rearranged into a structure where each time
series has equal length. The chosen method to do this is to divide the total time period T into
shorter time periods Ωn. Every transaction executed during a time period is then summed. This
means that each row in Table 2 which corresponds to the same Alert ID and the same time period
is summed. The transactions associated with an alert can be represented as an irregularly sampled
time series {zm}Mm=1, where the corresponding sample times are denoted by tm ∈ (0, T ) and M is
the number total number of transactions performed during the time period (0, T ). This original
time series is resampled into a new time series {xn}Nn=1 with a fixed sample period as follows

xn =
∑
m∈Ωn

zm n = 1, . . . , N. (9)

Here Ωn = {∀tk s.t.(n−1)Ts ≤ tk < nTs} and Ts denotes the sampling period of the new time series.
The result of this process is that the transaction data of each alert is sorted into an individual table
where each column represents a transaction type and each row corresponds to a time period. Each
table represents a multivariate time series where each column represents a feature and each row
represents a time step. The length N of the new time series found by

N =
T

Ts

. (10)

The arrangement of the transaction data for an example alert is demonstrated in Table 3, where
the new sampling period is one day. In this project, the time period T which transaction data is
collected for each alert is 90 days. When this is plugged into (10) together with sampling period Ts

from the example, we obtain a maximum time index of 90 which can be seen in Table 3.
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Time index Total transaction amount Gambling Crypto ATM withdrawal or deposit ...
1 10200.4 0 6500.1 3700.3
2 750.1 750.1 0 0
3 0 0 0 0
...
90 50.0 25.2 0 0

Table 3: The arrangement of the transaction data that is used as input to the time series models.

When transactions are summed over time periods information is lost about the number of transac-
tions that were executed, when they were executed, and the amounts of the individual transactions.
The more transactions that are summed over a time period, the more information is lost. A higher
frequency of transactions leads to more transactions being summed over the same period which in
turn leads to more information loss. This process resembles that of low-pass filtering, where the
information from signals of higher frequencies is reduced more compared to the lower frequencies.

Using a longer sampling period Ts when creating the new time series zn increases the effect of
the low pass filtering. This means that more information about the temporal patterns in the
transaction data is lost, primarily in the parts of the time series where the frequency of transaction
are higher. When larger values of Ts are plugged into (10) one observes that the time series length
N becomes shorter. This can be a desirable effect since longer time series cause higher memory
usage when processing them in TSC models. The time complexity of many TSC models is also
influenced by the length of the time series. This means that as the length of the time series grows,
the computational requirements of many TSC models also increase, potentially resulting in longer
processing times. Compressing the time series therefore also widens the scope of models which can
process the transaction data set within a feasible computing time.

Longer sampling periods also lead to the number of transactions executed during each period
becoming higher on average. From (10) it can be deduced that this also leads to more transactions
being summed in each time step of the new time series zn. The original time series xm contains a
large proportion of zeros since each transaction only matches one or a few of the transaction types.
Most customers also don’t utilize every type of transaction and might not perform any transactions
at all during time periods. This leads to the time series representation of most alerts becoming
relatively sparse. However, as longer sampling periods are used and more transactions are summed
this effect is reduced. Jiang et al. explain that sparsity in data causes deep learning algorithms
to become inaccurate [16]. It, therefore, seems worthwhile to evaluate how the length of sampling
periods affects the performance of different time series models. These sampling periods were chosen
to be 1, 2, and 3 days, which results in time series lengths of 90, 45, and 30 respectively.

As mentioned previously, some transaction types do not occur frequently in the dataset. When
features are too sparse they are not meaningful to use in time series analysis. More features lead
to more extensive memory usage and often longer computing times when they are used as input
to TSC models. For this reason, some of the features from the original transaction data set are
removed. Some transaction types in the original dataset are also split up into debit and credit.
To further decrease the size of the dataset, these features are added together into one. The final
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representation of the transaction data contained 18 features in total.

The features which contain transaction amounts span multiple magnitudes. To be able to capture
the pattern in these variables effectively a log transformation is used. Since many of the transaction
sums are zero, one is also added before the log transformation. The formula of the transformation
is given by

T̃ = log(T̂ + 1) (11)

where T̂ and T̃ , represent the transaction sum before and after the transformation respectively.
Finally, to ensure that there is no bias and that all variables contribute equally to the model fitting
a min-max scaling is also performed before being used in a model. The formula for min-max is
given by

T =
T̃ − T̃min

T̃max − T̃min

(12)

where T̃min and T̃max represent the smallest and biggest value in the set of that feature.

The structure of the input data that was used for the tree-based model is presented in Table 4. Not
much preprocessing was made to the data due to the chosen model being very flexible in handling
data of different scales and of different types. Transaction features were created by summing all
of the transactions related to an alert over the entire time span where information was available.
The purpose of this model is to be used as a baseline to compare with the performance of the time
series models.

Alert ID Expected
cash usage

Number of
accounts Age

Sum of crypto
debit transactions in

the last 90 days

Sum of gambling
debit transactions in

the last 90 days
...

1 False 5 35 7800.5 0
2 True 9 21 0 250.7
3 False 1 60 0 0
4 True 11 27 1090.5 5689.2

Table 4: The arrangement of the data was used as input to the tree-based models.

The ROC AUC-score of the different time series models with different sampling periods is then
evaluated. The models are in this case evaluated in the ROC AUC-score metric since it is a good
measurement of how accurate a model is in distinguishing data points between two different classes,
even though the data set is unbalanced [7]. The best method for time series classification in terms
ROC AUC-score is chosen. The output from this method is added as a feature to the input data
used in the baseline tree-based model. This new feature can be referred to as a "Transaction risk
score". The resulting data structure of the input to this model is presented in Table 5. After this
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new feature has been added to the input the performance of the tree-based model is then evaluated
again. The purpose of this experiment is to evaluate if a time series model can be used together
with a tree-based model to improve performance.

Alert
ID

Expected
cash usage

Number of
accounts Age

Sum of crypto
debit transactions in

the last 90 days

Sum of gambling
debit transactions in

the last 90 days

Transaction
risk score ...

1 False 5 35 7800.5 0 0.231
2 True 9 21 0 250.7 0.567
3 False 1 60 0 0 0.122
4 True 11 27 1090.5 5689.2 0.912

Table 5: The arrangement of the data was used as input to the tree-based models.

3.3 Choice of algorithms

The first step in choosing models to evaluate was to thoroughly research the field of TSC. Sub-
sequently, the task at hand is to determine which algorithms are worth exploring for their ability
to classify the time series data in this project. The choice of algorithms to evaluate will be made
based on two criteria. Firstly, there should be research that acknowledges the performance of the
algorithm in classifying time series data. Secondly, domain knowledge also plays a certain part in
choosing algorithms. Knowledge about what kind of transactional behaviour is generally connected
with financial crime gives some insight into which types of algorithms could be effective in making
such predictions.

In general, the most common starting point when comparing TSC algorithms is the One Nearest
Neighbour (1-NN) algorithm with Euclidean distance. However, this has been proven to be a very
low benchmark. Bagnall et. al (2017) instead suggest that 1-NN with Dynamic Time Warping is
a more competitive and useful benchmark [17]. Therefore, this is chosen as the first algorithm to
implement and serves as a benchmark for comparing the other algorithms. Another linear classifier
that seems worthwhile investigating is the Random Convolutional Kernel Transform (ROCKET).
Dempster, Petitjean, and Webb (2020) show that the ROCKET together with a ridge regression
classifier outperforms several state-of-the-art algorithms for TSC using an archive of 85 different
datasets [18].

MLSTM-FCN is a deep learning model for time series classification proposed by Karim et al [19].
The model employs the ability to capture relationships between the different variables. This can be
an important property since there most likely are inter-dimensional dependencies in the transaction
dataset. Financial crime most often involves a series of different types of transactions over a period
of time. Detecting these kinds of patterns could give an edge to this model compared to the linear
classifiers. Karim et al. show that the MLSTM-FCN classifier reaches state-of-the-art performance
on 28 out of the 35 evaluated datasets [19].

To evaluate the customer data and the aggregated transaction statistics the XGBoost algorithm was
chosen. Out of the available tree methods, XGBoost was chosen due to its efficiency when working
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with large datasets. The XGBoost algorithm employs a certain block structure when storing data,
which enables the algorithm to work more efficiently in a parallel environment and utilize multiple
CPUs. It is also able to process the categorical features which are present in the customer dataset
[20].

3.4 Evaluation metrics

The majority of customers in the dataset are not involved in financial crime, meaning that the
dataset is imbalanced between the two different classes. An implication of this is that accuracy
alone fails to provide a comprehensive view of the performance of a model. This is because a
model that simply predicts the most common label can still attain a favorable score. Hence, two
additional metrics will be employed to assess the models’ performance, specifically chosen to address
the challenges posed by imbalanced datasets.

One way of measuring a model’s ability to distinguish between two different classes is to use a ROC
curve. In the ROC curve, the rate of true positives is plotted against the rate of false positives for
different values of the classification threshold between 0 and 1. A demonstration of a ROC curve
can be seen in Figure 2. It can be seen that the ROC curve of a perfect classifier goes along the top
left border of the plot, while a curve of a classifier making random guesses, goes on a diagonal line
across the plot. This means that the AUC of the ROC curve of a perfect classifier and a classifier
making random guesses will be 1 and 0.5 respectively. A typical model will have a ROC AUC
somewhere between 0.5 and 1. Models with better performance will always lead to a larger value of
the ROC AUC. This means that the ROC AUC becomes a good metric for summarizing the result
of a ROC curve. This can be referred to as a ROC AUC-score.

The ROC AUC-score is a good performance measure when the output of the model for a data point
is a probability between 0 and 1 since it considers different thresholds for classification. However, if
the output of a model is only a score of 0 or 1 instead of a probability, the ROC AUC-score is not

Figure 2: A ROC curve. r refers to the classification threshold [7].
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relevant. Since all of the results for different thresholds between 0 and 1 which are computed in the
ROC AUC, will generate the same result. A better measurement for methods that only has a binary
output while also having an imbalanced dataset is the F1-score. The F1-score can be described as
a balanced measurement between the precision and recall of a classifier. The precision of a model
means calculating the accuracy only among the samples that were classified with a positive label.
The formula for the precision metric is given by

precision =
TP

TP + FP
(13)

where TP is the number of true positives and FP is the number of false positives made by the
classifier on a dataset. If you instead calculate the accuracy among only the samples that were true
positives, you obtain the recall metric. The formula for the recall metric is given by

recall =
TP

TP + FN
(14)

where FN is the number of false negatives made by the classifier on a dataset. The formula of the
F1-score is then given by

F1 =
2 ∗ precision ∗ recall
precision+ recall

. (15)

Thus, three different performance measures will be used to evaluate models: accuracy, ROC AUC-
score, and F1-score. For the F1-score, the classification threshold is set to the default value of
0.5.

3.5 Walk-forward validation

The objective of this project is to train a model during a certain time span and then be able to
make accurate predictions about future alerts. To test each model’s ability to do this, the models
will be trained on data from alerts triggered between two different dates. The trained model will
then be tested on alerts triggered in a time period directly after the training data was retrieved.
This method for testing and evaluating a model is often referred to as walk-forward validation. The
walk-forward validation method is chosen for testing the models since it most accurately reflects
how the model would perform in production. The dataset is divided into seven distinct training
and test periods. Each time period from when the training set is collected is 1 year and each time
period from when the test sets are collected is 3 months long. There is a 9-month overlap between
consecutive time periods where training data is collected. Figure 3 demonstrates how the different
training and test periods are ordered on a timeline. In total, there are 7 training periods and 7
respective test periods. This means that there are in total 7 training sets and 7 respective test sets.
Each model’s performance is then computed by taking the average of the seven scores obtained on
the respective test sets.
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3.6 Limitations

The models in this project are only trained on data from alerted customers. This is only a subset of
the entire set of customers. The rule-based method which generates alerts is not perfect and does
not detect every case of financial crime in the bank. However, the focus when creating these rules
is to have a small proportion of false negatives rather than a small proportion of false positives.
A small proportion of false negatives means that the rules can detect a large proportion of the
financial crime that is performed by customers of the bank. However, the high number of false
positives means that after investigation most of the alerts are disqualified as false alarms, meaning
that the customer associated with the alert is found to be innocent. Nevertheless, the dataset of
alerts will contain most of the true cases of financial crime committed by customers of the bank
which is important for training accurate machine learning models in detecting financial crime. But
the fact that the models are trained on a subset of the entire set of customers still creates a bias
in the models. However, as long as the rules don’t change, this will not worsen the performance of
the models in classifying alerts. Nonetheless, it would reduce the performance if the model would
be tasked with classifying customer which had not been alerted.

3.7 System specifications

The tests are run on a system with an IntelCore i7 3.00 GHz processor with 32 GB of random-access
memory (RAM). All of the models are implemented in Python version 3.10.9.

Figure 3: A timeline demonstrating how different training and test sets are ordered in
walk-forward validation. The number of splits in the figure is only to make the illustration clearer.

7 different training- and respective test sets are used in this project.
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4 Implementation

The following sections will describe the different implementations which were used to predict cus-
tomers’ involvement in financial crime. The first three sections describe the different time series
models which are used to make predictions only based on transaction data. These models will be
evaluated on their performance to determine which type of model is the best for predicting financial
crime from transaction data. In the fourth and last section, the XGBoost model is described, which
makes predictions based on both transaction- and customer data.

4.1 One nearest neighbour with dynamic time warping

The 1-NN model is a non-parametric machine learning model. An intuitive explanation of how
the model classifies a new data point is by finding the most similar data point in the training set
and then setting the label to the same as that point [7]. One of the simplest ways of measuring
the similarity between two time series is to calculate the Euclidean distance. This would mean
computing the distance between each data point with the same index in the two time series and
then aggregating these distances for the entire time series. To account for displacement on the
time axis the dynamic time warping (DTW) similarity measurement can be used instead. The
DTW algorithm achieves this by computing a matrix of distances between each point in the two
time series and then finding the optimal path through this matrix [21]. Consider the two vectors
a = (a1, a2, ..., am) and b = (b1, b2, ..., bm) of the same the length m. Let M represent a matrix that
represents the absolute difference between every value of the two vectors. This matrix M containing
distances between points can be referred to as a local cost matrix. The local cost matrix is thus
computed by calculating each entry as Mi,j = (ai − bj). The DTW algorithm equates to finding a
path through the local cost matrix which minimizes the sum of all matrix entries or distances in
the path. This optimal path can be referred to as the "warping path". A path through the local
cost matrix M is given by

P = (w1, w2, ..., wN) (16)

where w represents pairs of indices from the matrix M and m ≤ N ≤ 2m − 2. Thus, the nth
element of P is given by wn = (i, j). Let dn represent the distance found at the coordinate wn of
the local cost matrix M. The total distance of a path P is found by computing the sum

DP =
N∑

n=0

dn. (17)

To find the warping path P̂ one solves the minimization problem

P̂ = arg min
P∈P

DP (18)
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where P represents the space of all possible paths. The warping path must adhere to two different
conditions. Firstly, the path must begin at w1 = (1, 1) and end at wN = (m,m). The path can also
only move to adjacent cells (including diagonally) in a positive semi-definite direction with regard
to both indices. In other words, if wk = (i, j) and wk−1 = (i′, j′), a valid path must abide according
to 0 ≤ i − i′ ≤ 1 and 0 ≤ j − j′ ≤ 1. The computed sum over the warping path DP̂ is the DTW
distance of the two vectors [21]. When computing the DTW distance between two multivariate time
series, the DTW distance is computed for all the different features and then summed. Algorithm 1
shows the different steps classifying instances of a test set with the 1-NN DTW model.

The time complexity of the DTW algorithm, when used on a multivariate time series, is O(k ∗m2),
where k is the number of features and m is the length of the time series [10]. This quadratic scaling
with regard to the time series length may restrict the range of time series lengths suitable for the
algorithm’s usage. When classifying a new data point with the 1-NN model, a comparison needs
to be made with every time series in the training data set. This means that the time complexity
of the 1-NN model becomes O(l), where l is the number of data points in the training set. When
running the 1-NN model, both the training- and test sets need to be stored in RAM to be able to be
directly accessible by the processor to make computations. When using large training or test sets
along with long time series that have a high number of features, the model demands a significant
amount of RAM. The implementation of 1-NN with DTW in this project is implemented in this
project with the KNeighborsTimeSeriesClassifier class from the Sktime library with version 0.18.0
[22] [23].

4.2 ROCKET

Another method for classifying time series is called the Random Convolutional Kernel Transform
(ROCKET). This method uses convolutional kernels to capture relevant features in the time series.
This can be seen as a feature extraction stage where the structure of the input data is transformed
from a time series to a more typical format for machine learning models. The extracted features
are then used as input to a machine learning model, which was chosen to be logistic regression in
this implementation. A flowchart explaining how the ROCKET was used together with logistic

Algorithm 1 One nearest neighbour with dynamic time warping algorithm
1: for every time series in the test set do
2: Let a represent the time series from the training set of the current iteration.
3: for every time series in the training set do
4: Let b represent the time series from the training set of the current iteration.
5: for every feature i in time series do
6: Find the warping path P̂ i with DTW distance DP̂,i of the current feature i between

a and b.
7: Sum the DTW distance DP̂,i of every feature to obtain the total DTW distance DP̂ of

the two time current series.
8: Choose the time series from the training set which resulted in the smallest DTW distance

DP̂ and check the label of that instance. Classify a as that label.
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regression is shown in Figure 4.

The most common use of convolutional kernels is in convolutional neural networks where the weights
in the kernels are learned through backpropagation. However, this process can be computationally
demanding and might not always prove effective in learning patterns in the data. In the ROCKET
method, the weight, length, bias, dilation, and padding of each kernel are instead set at random. k
number of random kernels are then applied to the time series. Applying a one-dimensional kernel
to a time series means computing a sliding dot product between the kernel and the time series. If
X represents a part of a time series, the process of applying a kernel ω to this part of the time
series can be described as

X ∗ ω =

lkernel−1∑
j=0

X i+(j×d) × ωj. (19)

Here i represents the starting index of X. d denotes the dilation of the kernel, lkernel represents
the kernel length and ω represents the weights of the kernel. The kernel is moved along the time
series so that a dot product is computed for each index of the time series. When a kernel has been
applied to the entire time series a new vector has been obtained with the resulting dot products.
Two values are extracted from this vector. Firstly, the maximum value from the vector is extracted.
Secondly, the proportion of positive values (PPV) in the result vector is measured. The purpose
of the maximum value is to capture the strongest match in the time series to the pattern in the
kernel and the PPV represents how frequently the pattern appears in the time series. When every
kernel has been applied to the time series, 2k features have been extracted. In the implementation
in this project, k was lowered from 10000, which is proposed by Dempster, Petitjean, and Webb, to
3000 to reduce computation time. The ROCKET is applied with the Rocket class from the Sktime
library with version 0.18.0 [22] [24].

The extracted features can then be used to train a classifier. Dempster, Petitjean, and Webb propose
to use logistic regression as a classifier when the number of features is larger than the number of
instances in the training set. Since the number of data points in the smallest training set is larger
than 2k, logistic regression was chosen for classification. In logistic regression, the function fθ in
(3) is given by

fθ(x) = θ0 + θ1x1 + θ2x2 + ...+ θpxp = θ⊤x. (20)

Figure 4: A flowchart showing the different steps of classifying a time series with the ROCKET
method.
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The most common loss function to use in logistic regression is binary cross entropy which was there-
fore chosen to be used in this implementation. Thus, the loss function in (6) for this implementation
is given by

L(y, fθ(x)) = ln(1 + e−yθ⊤x). (21)

Since the ROCKET model applies random kernels to the time series, some kernels will be useful
since the pattern doesn’t appear anywhere in the data set. This means some of the extracted
features will not be useful for predicting the labels and adds noise to the model. For this reason,
the L1 or LASSO regularisation was chosen. L1 regularisation works as a feature selector where it
shrinks the less useful features of the input to zero [7]. Thus, the regularisation term from (8) is
given by the formula for L1 regularisation which is

R(θ) = ||θ||1. (22)

To solve the minimization problem, the ’Saga’ solver from the Scikit-learn library of version 1.2.2
is used [25]. The choice of the solver was due to its fast convergence when applied to problems
involving large training sets [26].

4.3 MLSTM-FCN

Karim et al. propose a method for TSC involving both an LSTM- and a fully convolutional neural
(FCN) network [19]. The following section will provide a summary of the model’s architecture and
explain the choices made for the implementation in this project. In this model, the multivariate
time series is used as input to both an LSTM- and an FCN network. The FCN network works as
a feature extractor that captures temporal patterns which are related to the output. The following
passage provides an explanation of the general framework of an FCN network. The values of the
nodes before the first layer in the FCN network will be given by the input time series x as

h(0) = x. (23)

These values are then propagated forward through a series of convolutional layers and activation
functions. The result obtained by applying a convolutional layer can be expressed as

a(l+1) = (h(l))⊺W (l) (24)

Here W (l) represents the weights and biases of the lth layer, and a(l+1) represents the output of
the lth layer. The output is then passed to an activation function. The process of applying an
activation function to the output is given by

h(l+1) = σ(a(l+1)) (25)

28



Here the symbol σ denotes a given activation function. If the network contains L layers, the
computations outlined in equations 24 and 25 are repeated for each respective layer until the final
output h(L) is obtained. The function mapping the input-output relationship of the model is given
by the final nodes of the network as

fθ(x) = h(L) (26)

where θ represents the weights and biases found in W .

An LSTM network is a type of recurrent neural network (RNN). RNNs are a type of neural network
algorithm designed to capture patterns in sequential data. These networks are characterized by their
ability to maintain information from previous time steps, which is made possible by the presence
of feedback loops within the network [27]. The RNN has a hidden state for each time step of the
input time series. The general framework of an RNN network is similar to that of the FCN network
but contains a few differences. In the case of an RNN, the values of initial nodes h(0) presented in
23 only represent data from the first time step of the time series, instead of the whole time series
which is the case for the FCN network. Thus, the initial nodes of the RNN are given by

h(0) = x(0) (27)

where x(0) denotes the first value from the time series. The next step of the network can then be
represented as

a(t) = b+Wh(t) + Ux(t−1) (28)

where b is a bias, W and U are trainable weights and h(t) represents the memory from previous
states in the tth iteration. During the first iteration of the network when t is equal to 0, the variable
x(t−1) is set to zero. To create the memory input for the next hidden state, at is then processed by
an activation function as presented in 25 for the FCN network. The computations presented in 28
and 25 are then repeated recursively for each time step of the time series. Thus, if T represents
the length of the time series, the computations are repeated T times. The function fθ mapping the
input-output relationship of the model is just as for the FCN model given by the nodes following
the last layer of the network. It is thus given by

fθ(x) = h(T ) (29)

where θ is given by the weights W and U and bias b.

But as the feedback loops become longer to capture more long-term dependencies RNNs become
less and less effective. To be able to capture dependencies over longer sequences LSTM networks
have been developed. To choose the number of cells in the LSTM model, Karim et al. propose to
do a grid search for three different values, 8, 64, or 128. Due to time constraints for this project
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and a large dataset resulting in long training times, the number of LSTM cells was chosen to the
intermediate value of 64. To prevent the LSTM network from becoming overfit to the training data,
a dropout layer is also added. This means that for each iteration of the network, random entries of
the output vector from the LSTM are set to zero which works as a form of regularisation [28].

Each time series is also processed by a convolutional block containing three temporal convolutional
blocks. All three temporal convolutional blocks include a convolutional layer which is followed
by a batch normalization layer and a rectified linear unit activation function. As proposed by
Karim et al., the convolutional layers inside the three temporal convolutional blocks contain 128,
256, and 128 filters, ordered from the input to the output of the convolutional block. Each of the
two first temporal convolution blocks is followed by squeeze and excite blocks. The purpose of the
squeeze and excite block is essentially to amplify useful feature mappings and reduce the impact of
features from channels that aren’t proving effective in classifying the output. The first step of the
squeeze and excite block involves performing a global average pooling operation on each channel of
the input. This operation is followed by two fully connected layers where the first one reduces the
dimensionality of the input and the second one restores it to its original format. The dimensionality
reduction of the bottleneck layer is set by a reduction ratio parameter, which in this project will be
set to 16 as proposed by Karim et al. and Hu, Shen, and Sun [19] [29]. The purpose of these dense
layers is to model the interdependencies between different channels in the network by generating a
set of weights indicating which channels contain the most useful filter kernels. These weights are
then multiplied with the original input to the squeeze and excite block. These recalibrated kernel
weights from the squeeze and excite block are then passed to the next layer of the network [19].
The third and last temporal convolutional block is instead of a squeeze and excite block, followed
by a global average pooling layer. The output from this layer is then concatenated with the parallel
LSTM- block and then passed to a softmax activation function. Two probabilities are returned
from the softmax function indicating the probabilities of the different labels [19]. In Figure 5 one
can see an overview of the models’ architecture.

Binary cross entropy was chosen as the loss function for the implementation. No regularisation term
was added to the loss function. Most of the variables of the network and training were set to the
values proposed by Karim et al. with a few exemptions. When choosing an algorithm to solve the
minimization problem posed by the network the stochastic gradient descent algorithm was chosen.
This choice was made due to the limited computing resources assigned to this project compared to
the relatively large size of the network. The model has over 320 000 trainable parameters and the
training time with the computing resources allotted to the project is considerable. Regarding the
training times of neural networks, Bottou writes "Use stochastic gradient descent when training time
is the bottleneck." [30]. For this reason, stochastic gradient descent was chosen as the optimization
algorithm for the implementation. When running the model on the dataset it was noticed that
there were large oscillations of the loss over different epochs. This led to a large variance in the
accuracy of the results of the model, which is undesirable from a model in any realistic scenario.
Therefore the learning rate was decreased to 5e-5 from 1e-3, which was proposed by Karim et al.
To compensate for the lower learning rate, momentum was added to the stochastic gradient descent
algorithm to speed up convergence [31]. Karim et al. propose to train the network for 250 epochs. It
was noticed that when training the network for that number of epochs, the model’s performance in
classifying the validation set was deteriorating towards the end of the training. This means that the
model was becoming overfit to the training data. To combat this effect of overfitting, the number
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of epochs was reduced to 180, which is a form of implicit regularisation. The MLSTM-FCN model
is implemented using the Tensorflow library of version 2.12.0 [32].

4.4 XGBoost

Boosting is a type of algorithm where a set of weak learners are used together to create a strong
model [7]. XGBoost is a type of boosting algorithm created by Chen and Guestrin (2016) [20]. The
following section provides a summary of the XGBoost algorithm. In XGBoost the weak learners
are generally smaller decision trees that are added to the algorithm in an iterative manner. The
first step of the algorithm is to make an initial prediction of the output.

ŷ
(0)
i = 0 (30)

Figure 5: Overview of the building blocks of the MLSTM-FCN model architecture.
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Here ŷ
(k)
i is the algorithm’s prediction at the tth iteration of the label of a datapoint xi from the

training set. In each iteration of the training, a new decision tree model is added.

ŷ
(1)
i = f1(xi) = ŷ

(0)
i + f1(xi) (31)

ŷ
(2)
i = f1(xi) + f2(xi) = ŷ

(1)
i + f2(xi) (32)

Here fk(xi) represents the decision tree generated in the kth iteration of the training. New decision
trees are added until the maximum iteration K is reached.

ŷ
(K)
i =

K∑
k=1

fk(xi) = ŷ
(K−1)
i + fK(xi) (33)

Each new decision tree is created by generating a set of splits in the data. One such split could
for example be if a customer has more or less 10 000 Swedish crowns in their bank account. The
training set is then split up into two new nodes based on if they fulfill that criterion or not. When
all the splits have been generated all of the training data has been split up into a set of leaf nodes.
Each leaf is associated with a weight w, which is the value that should be added to the prediction
of all instances of the data which are classified to that node. So, to create a new decision tree ft
at an iteration t a tree structure needs to be formed and weights need to be assigned to each leaf
node. Finding the best ft means solving the minimization problem

L(t) =
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (34)

where l represents a loss function and Ω represents a function that measures the complexity of the
tree structure in ft. A requirement for a loss function l to be able to be used in the XGBoost
algorithm is that it needs to be second-order differentiable. The chosen loss function for the imple-
mentation in this project was binary cross-entropy, which is the default option for the XGBClassifier
class in the XGBoost library [33]. We denote the first-order derivative of the loss function with
regard to the predicted label as

gi = ∂ŷ(t−1)l(yi, ŷ
(t−1)) (35)

and the second order as

hi = ∂2
ŷ(t−1)l(yi, ŷ

(t−1)). (36)

A second-order Taylor expansion can then be applied to the loss function l in 34 and we obtain
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L(t) ≃
n∑

i=1

(l(yi, ŷ
(t−1)
i ) + gift(xi)) +

1

2
hif

2
t (xi) + Ω(ft). (37)

The constant terms can be removed since they are not relevant to the minimization problem and
the following is obtained

L(t) ≃
n∑

i=1

gift(xi)) +
1

2
hif

2
t (xi) + Ω(ft). (38)

The set of all instances of training set which fulfills all of the criteria for leaf node j can be denoted
as

Ij = {i|q(xi) = j} (39)

where q is the function that maps each instance in the training set to a leaf node. If the T represents
the set of all the leaf nodes in a tree, the function Ω(ft) can then be written as

Ω(ft) = γT +
1

2
λ

T∑
j=1

w2
j (40)

where γ and λ are two different regularisation parameters. The parameter γ makes the algorithm
more conservative by penalizing more complex tree structures with more leaf nodes. To limit the
impact of an individual tree on the prediction of the entire model, the parameter λ penalizes higher
values of leaf weights wi. The objective function of the minimization problem from 38 can then be
rewritten as

L(t) =
n∑

i=1

(gift(xi))+
1

2
hif

2
t (xi))+ γT +

1

2
λ

T∑
j=1

w2
j =

T∑
j=1

((
∑
i∈IL

gi)wj +
1

2
(
∑
i∈Ij

hi+λ)w2
j )+ γT (41)

The optimal value for a weight for a leaf j can then be computed by

w∗
j = −

∑
i∈IJ gi∑

i∈IJ hi + λ
. (42)

and all of the optimal weights for a fixed tree structure q can be calculated by
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L(t)(q) = −1

2

T∑
j=1

(
∑

i∈IJ gi)
2∑

i∈IJ hi + λ
+ γT. (43)

So to learn the weight parameters in the XGBoost method the minimization problem can be solved
analytically, instead of numerically as described in Section 2. But 43 can only be used to calculate
optimal leaf weights of an already set tree structure. In every iteration of the XGBoost algorithm, a
tree structure needs to be generated before the leaf weights can be calculated. However, the number
of possible tree structures is often too high to be feasible to calculate. For this reason, XGBoost
employs a greedy algorithm to generate tree structures where each split is considered individually.
To decide each split when generating a tree, every possible split of every variable in the training
set is considered. The split that generates the highest gain out of all possible splits is then chosen.
The formula for the gain of a split is given by

gain =
1

2
(
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ
)− γ (44)

where I represents the set of all instances in the current node and IL and IR are the instances in
the left and right node after the split. Splits are generated until a split doesn’t generate enough
gain or a set maximum tree depth has been reached [20]. The function mapping the input-output
relationship of the algorithm is given by

fθ(x) = f1(x) + f2(x) + ...+ fK(x). (45)

Here the parameter θ contains the weights w and the parameters from the function q representing
the splits of the different trees. Algorithm 2 shows the different steps of training the XGBoost
algorithm.

The relatively large training set available in this project generally decreases the risk of overfitting.
Therefore the regularization parameters λ and γ were set to the relatively low values of 1 and
0 respectively. The extensive training set also enables more complex models without the risk of
overfitting. Therefore the maximum tree depth M was set to the relatively high value of 6. The
total number of trees K generated was set to the default value of 100. The implementation of
XGBoost in this project is made with the XGBClassifier class in the XGBoost library of version
1.7.5. All of the parameters not mentioned previously in this paragraph were set to their default
values [33].

5 Results

In Table 6 one can see the performance of the different time series models presented in Sections
4.1 to 4.3 in terms of the ROC AUC-score metric. It also displays how the performance varied for
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Algorithm 2 Training process of the XGBoost algorithm
1: for k = 1; k ≤ K; k ++ do
2: Let k represent the current iteration of the training and K denotes the total number of trees

generated by algorithm.
3: m← 0
4: while m < M do
5: Let m represent the current tree depth and M the maximum tree depth.
6: for Each leaf node of the current decision tree do
7: for Each feature of the dataset do
8: for Each possible split of the current variable do
9: Compute the gain generated by the split with the formula given by 44.

10: Select the split which generated the highest gain.
11: if gain > 0 then
12: Generate the selected split.
13: m++
14: Compute the weights of the generated decision tree with the formula given by 43.

sampling periods of different lengths. Table 7 displays the performance in terms of accuracy for
the different time series models with different sampling periods. Table 8 displays the performance
in terms of F1-score for the different time series models with different sampling periods. Table 9
displays the combined time it took to train each time series model on all of the 7 training sets. It
also shows how the training times varied over different time series lengths.

The computation time for the 1-NN DTW model used on any time series longer than 30 time steps
was too long to be completed within the timeframe of the project. Therefore these results are absent
in the tables below. 3 of the training sets also contained too much data to be used in the 1-NN
DTW model on the system which was used for testing. When these sets were used as input to the
1-NN DTW model, the algorithm required more allocated memory than was available for use. The
different training and test sets contain a varying number of data points. This is possible since the
data from alerts is collected from different time periods for each set. The number of alerts triggered
varies over time, which leads to a different number of alerts ending up in each set. For this reason,
the 1-NN DTW model was only tested on 4 out of the 7 test sets.

1-NN DTW ROCKET MLSTM-FCN
1 day sampling period - 0.856 0.813
2 days sampling period - 0.841 0.822
3 days sampling period 0.572* 0.832 0.817

Table 6: Average ROC AUC-scores on the test sets. The 1-NN DTW model’s performance was
only evaluated on four out of the seven test sets.
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1-NN DTW ROCKET MLSTM-FCN
1 day sampling period - 0.854 0.760
2 days sampling period - 0.843 0.776
3 days sampling period 0.814* 0.841 0.779

Table 7: Average accuracy on the test sets. The 1-NN DTW model’s performance was only
evaluated on four out of the seven test sets.

1-NN DTW ROCKET MLSTM-FCN
1 day sampling period - 0.418 0.421
2 days sampling period - 0.405 0.414
3 days sampling period 0.252* 0.402 0.443

Table 8: Average F1-scores on the test sets. The 1-NN DTW model’s performance was only
evaluated on four out of the seven test sets.

1-NN DTW ROCKET MLSTM-FCN
1 day aggregated - 9.5 39.3
2 days aggregated - 9.3 25.6
3 days aggregated 65.3* 9.0 15.3

Table 9: Total training times in hours for all the models on the different sets. The 1-NN DTW
model’s performance was only evaluated on four out of the seven test sets.

Figure 6 presents the ROC curves of the ROCKET and MLSTM-FCN models with different sam-
pling periods. Since the 1-NN model outputs labels rather than probabilities, the ROC curve is not
a relevant metric for evaluating this model. Thus, no ROC curves are displayed for the methods
involving the 1-NN model.
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Figure 6: ROC curve for the different time series models.

In Table 10 the accuracy, ROC AUC-score, and training times of the two different methods in-
volving the XGBoost algorithm presented in Section 4.4 are shown. The first method, which can
be referred to as "XGBoost baseline", employs the XGBoost algorithm with input data with the
structure described in Table 4. The second method, which can be referred to as "XGBoost with
ROCKET transaction risk score", uses the same XGBoost algorithm but incorporates an additional
element—the output from the ROCKET model with a one-day sampling period. The output from
this particular method was chosen because it had the best ROC AUC-score out of all the time series
models and sampling periods. The structure of the input data used in this second method, XG-
Boost with ROCKET transaction risk score, can be seen in Table 5. The XGBoost algorithms are
not evaluated in the F1-score metric because the ROC AUC-score is judged to be a more relevant
metric for comparing methods that output probabilities of labels rather than just the labels.

XGBoost baseline XGBoost with ROCKET
transaction risk score

Accuracy 0.891 0.896
ROC AUC-score 0.878 0.885

Training time (minutes) 31.1 30.8

Table 10: Performance of the baseline XGBoost method and the same XGBoost method with the
added risk score variable from the best performing time series model.

The ROC curves for both the XGBoost baseline method and the XGBoost with ROCKET trans-
action risk score method are displayed in Figures 7a and 7b, respectively.
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Out of the 100 alerts in each test data set that were given the highest risk scores by the XGBoost
baseline method, on average 96.3 of them were of the positive class and thus correctly classified.
When the same measurement was done with the best-performing ROCKET method, 89.9 alerts
were of the positive label. When comparing alerts that were in the 100 highest scored by each of
the two models, on average 25.6 of the customers appeared in both sets.

6 Discussion

The ROCKET model was the fastest out of the three algorithms and got only marginally slower
with longer time series. In the implementation used in this project, only 3000 kernels were used to
limit the computation time. More kernels would likely lead to better performance, but also longer
computation times. The MLSTM-FCN approach demonstrated longer computing times, with a
noticeable increase in processing time for longer time series. However, the model was implemented
using Tensorflow, which is a framework that is possible to run on GPU. Utilizing GPU to run the
model would lead to significantly shorter computation times. Even on the shortest time series, the
1-NN DTW model had the longest computation time out of all the tests. As mentioned in the
description of the model, the time complexity of the 1-NN model has quadratic scaling in regard to
the time series length. This means that none of the longer time series would be possible to run in
a feasible time frame. Furthermore, the memory requirements of the algorithm were too extensive
to run three of the test sets on the system which was available for testing the models.

Overall, it can be seen that out of the time series models, the ROCKET model had the best
performance. It outperformed both of the other time series models in every time series length for
every metric but the F1-score, where the MLSTM-FCN model was slightly better. On the time

(a) ROC curve for the XGBoost
baseline method.

(b) ROC curve for the XGBoost
with ROCKET transaction risk score

method.

Figure 7: ROC curves of the two methods involving the XGBoost algorithm.
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series length in which 1-NN DTW was able to be used, it outperformed MLSTM-FCN in terms of
accuracy. However, it performs significantly worse in the F1-score metric. The 1-NN DTW has
a remarkably low F1-score compared to accuracy. This indicates that the model performs well in
classifying the majority class, which is the negative label, but worse on the minority class, which
is the positive label. The most important aspect of a model in this application is to accurately
predict customers who are involved in financial crime. The low F1-score of the 1-NN DTW model
therefore strongly indicates that the model is not well suited for the problem. In general, all of
the time series models performed poorly in the F1-score metric compared to the ROC AUC-score
and accuracy. One reason for this could be that the classification threshold was set to 0.5 for the
MLSTM-FCN and ROCKET models, which might not be an appropriate value. The relatively
high ROC AUC-scores indicate that the models are able to accurately distinguish between positive
and negative instances, which should also lead to a high F1-score with an appropriate classification
threshold. So if another threshold was used, the F1-score likely be higher for the MLSTM-FCN
model and the ROCKET model.

It can be seen in the results that the ROCKET model performs best on the time series aggregated
over fewer days and the MLSTM-FCN model performs better on the more aggregated time series.
When the time series is aggregated over fewer days, the time series retains more information, which
the ROCKET model seems to be able to utilize. In terms of ROC AUC-score, the MLSTM-FCN
model performs the best on the time series which were aggregated over 2 days. It is hard to draw any
certain conclusions about the reason for the MLSTM-FCN model performing better on the shorter
time series, even though it contains less information than the one which was only aggregated over
1 day. Jiang et al. argue that sparse data representations deteriorate the performance of deep
learning methods [16]. The results of this project also indicate that deep learning methods seem to
struggle with sparse input data.

In all of the ROC curves for the different methods, a relatively large deviation can be seen be-
tween the ROC curves of the different test sets. The most likely reason for this is that there was
a considerable size difference between the different training sets. The training sets with higher
numbering, containing alerts from later time periods, generally contained more data points. It can
be seen in the ROC curves that the performance seems to be generally better on these sets. The
biggest training set was double the size of the smallest, which should likely lead to a significant
performance difference. The size difference between the different training sets can be considered one
of the downsides of walk-forward validation. When there is a large performance difference between
different test sets, it becomes hard to judge what performance can be expected from a method in
a realistic setting. However, it also highlights a real problem with using machine learning to detect
financial crime. Significant changes in the number of alerts reported over different time periods
could lead to variance in the performance of machine learning models detecting financial crime,
which would be an undesired effect.

The best overall performance out of all the methods was the ones using the XGBoost method,
which had both higher accuracy and ROC AUC-score than the best time series method. When
evaluating the 100 alerts that had the highest risks of being involved in financial crime according
to the methods, the XGBoost was also more accurate than the time series model. However, the
ROCKET model that was trained on the longest time series, which was the best time series method,
was still fairly accurate when considering the customers with the highest risk scores. The resulting
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two lists of the 100 alerts with the highest risk scores from the two models were also relatively
different, only containing 25.6 matches on average between the different test sets. This indicates
that the two models are able to find relatively different patterns in the data to make classifications.
The XGBoost with ROCKET transaction risk score method also performed slightly better than the
XGBoost baseline method. This means there is information in the transaction risk score variable
that the XGBoost uses to make better predictions. This indicates that the ROCKET model is able
to detect useful patterns which the XGBoost is not able to detect.

One possible addition to the features of the dataset for the time series methods could be the
number of transactions performed by a customer during each sampling period. So for example, if
the sampling period is 1 day, the new feature would represent the number of transactions performed
by the concerned customer during each day. This would decrease the amount of information being
lost in the sampling process that creates the time series. A high frequency of transactions can be
an indicator of some types of financial crime, so this feature could provide valuable information.
For further studies on the subject, this could be an interesting addition to evaluate.

One thing that makes predicting financial crime with machine learning difficult is the ever-changing
circumstances on the subject. The guidelines around what qualifies as financial crime are always
changing. This has implications for the rules which trigger alarms and thus end up in the dataset
which has been used in this project. It also affects how investigators qualify alarms, meaning that
an alert can be classified differently depending on when the alarm was triggered. Behaviours of
customers also change over time which affects the dataset. For example, the Covid-19 pandemic
certainly changed the transaction patterns of many individuals, which could deteriorate the perfor-
mance of machine learning models. If a bank or another financial institution is reliant on machine
learning for financial crime detection these types of effects need to be taken into account. Con-
sidering the large fines and other detrimental consequences that may arise from negligence toward
financial crime, it is crucial to carefully evaluate these risks. Since walk-forward validation was
used in this project, these effects are accounted for and the result should still give an accurate
representation of how the models would perform in production.

7 Conclusion

The results indicate that out of the three time series models, the ROCKET model is the best for
classifying financial crime. The ROCKET model was relatively close to the XGBoost model when
comparing their performance in ROC AUC-score while only using transaction data. Furthermore,
more kernels can be added to the ROCKET model which would likely enhance performance. The
MLSTM-FCN method performed slightly worse, but in the deep learning model, there is a great
number of hyperparameters to tune, which could not all be considered when testing the model in
this project. More hyperparameter tuning would likely improve the performance of this model.
The 1-NN DTW did not have good results, too long computation times, and too much memory
requirement to be feasible to use on any similar dataset. In summary, the ROCKET and the
MLSTM-FCN model are worth investigating further in their ability to detect financial crime and
the 1-NN DTW model is not.
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Adding the "transactions risk score"-variable from the ROCKET method to the input of the XG-
Boost model leads to a small performance improvement. The relatively high ROC AUC-scores
indicate that the ROCKET and MLSTM-FCN models are able to rather accurately distinguish
instances between the two classes. It seems worthwhile to further explore methods of combining
these models with other models which can utilize the customer dataset. The ROCKET model was
relatively accurate when considering alerts that were scored with the highest risk of being involved
in financial crime. The resulting customers are also somewhat different than the ones found by
the XGBoost model. In a scenario where models would be used to find new customers who are
involved in financial crime, the ROCKET could be useful since it seems to find other patterns than
the XGBoost model.

Machine learning models can be used for multiple different purposes in financial crime detection.
In this project, the models were evaluated on their performance of doing the same job as an
investigator, i.e. to qualify alarms created from a rule-based method. However, this might not
be the most realistic use case. An accuracy of around 90 % is likely not good enough to make
any financial institution consider replacing their financial crime investigators. A more realistic use
case could be to disqualify alarms that are lowest scored by the machine learning model. This
would lessen the burden of investigators and reduce costs for the bank. The models could also be
used to find customers in a database that has not been alerted by the rule-based method. Since
the machine learning models look for much more complex patterns, they are likely to find other
customers than the rule-based methods. The models in this project were not evaluated on their
potential performance in the two latter use cases, but the results still give a picture of how effective
the models are at detecting the kind of patterns that characterizes financial crime. A model which
performs well on the datasets in this study would likely also be useful in the other scenarios.
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8 Appendix

The ROC curves for the methods involving the MLSTM-FCN model, corresponding to three sam-
pling periods, 1 day, 2 days, and 3 days, are presented in Figures 8, 9, and 10, respectively. The
ROC curves of the methods involving the ROCKET model can be seen in Figures 11, 12 and 13 for
the three respective sampling periods of 1,2 and 3 days.

Figure 8: ROC curve for the MLSTM-FCN model with a 1-day sampling period.

Figure 9: ROC curve for the MLSTM-FCN model with a 2-day sampling period.
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Figure 10: ROC curve for the MLSTM-FCN model with a 3-day sampling period.

Figure 11: ROC curve for the ROCKET model with a 1-day sampling period.

Figure 12: ROC curve for the ROCKET model with a 2-day sampling period.
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Figure 13: ROC curve for the ROCKET model with a 3-day sampling period.
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