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1 Introduction

10D super-Yang-Mills and 11D supergravity at linearized level have been shown to be el-
egantly described in a manifestly super-Poincaré covariant manner by the quantization
of the 10D and 11D superparticles, respectively, using pure spinor variables [1–3]. These
objects were introduced for the first time in the context of the superstring in [4], and then
generalized to the study of supermembranes in [5]. The full descriptions of maximally
supersymmetric gauge theories, including the aforementioned theories, on pure spinor su-
perspace were later discovered by Cederwall in a series of papers [6–10, 35], by making use
of the pure spinor superfield formalism. In this framework, the pure spinor actions take
strikingly simple polynomial forms in a fundamental pure spinor superfield Ψ, and contain
all the Batalin-Vilkovisky fields of the theories in study.

The kinetic term of the pure spinor field theories presents the standard form “ΨQΨ”,
where Q is the ordinary non-minimal pure spinor BRST operator [29]. Consequently,
the propagator of these theories is proportional to the so-called b-ghost, a negative ghost
number composite operator satisfying the property {Q, b} = P 2

2 . This operator was first
constructed in the pure spinor superstring, and shown to play a crucial role for computing
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several multiloop scattering amplitudes [11–13, 29]. Likewise, their properties have been
shown to be substantial to design a covariant map between the pure spinor formalism and
the conventional RNS setting [14, 15].

In a recent work [16], it has been shown that the pure spinor master action of 10D super-
Yang-Mills in the gauge bΨ = QΩ, for some Ω, referred to as the generalized Siegel gauge,
reproduces the same scattering amplitudes as those obtained from the open pure spinor
superstring in the field-theory limit [17]. More interestingly, the kinematic numerators at
any multiplicity were found to be proportional to nested b-ghost expressions, and to match
the multiparticle superfields constructed in [18] up to generalized gauge transformations
and BRST-exact terms. These computations were possible to be methodically carried out
due to the existence of simpler alternative expressions for the 10D b-ghost [19–21]. Such
expressions make use of negative ghost number operators, referred to as physical operators,
satisfying a set of defining relations resembling the 10D super-Yang-Mills equations of
motion at linearized order. Remarkably, these very same operators were ingeniously used
to show that the Siegel gauge condition bΨ = 0, implies a Poisson algebra structure for
kinematic numerators, elegantly thus realizing the kinematic algebra of the Bern-Carrasco-
Johansson (BCJ) duality [22] from an action principle viewpoint.1

In this work, we introduce the 11D analogues of the physical operators above men-
tioned, and provide a novel compact formula for the 11D b-ghost, introduced for the first
time in [25], which will make computations involving the b-ghost more tractable and effi-
cient. To illustrate this, we show that {Q, b} = P 2

2 and {b, b} = QΩ, in a straightforward
and elegant way, as a consequence of the simple properties satisfied by the physical opera-
tors. In addition, we use our new formula to construct a ghost number two vertex operator
via a standard descent relation involving the ghost number three vertex operator. Up to
BRST-exact terms, the operator thus obtained is shown to match that introduced in [26]
using the Y-formalism [27] in 11D. Furthermore, we find that the ghost number three op-
erator satisfies the generalized Siegel gauge condition after letting the b-ghost act on it as
a second-order differential operator. Finally, we apply the perturbiner method [28] to the
pure spinor description of 11D supergravity, and by making use of our new formula for the
b-ghost, we readily solve the two-particle superfield equation of motion.

This paper is organized as follows. In section 2, we review the non-minimal pure
spinor construction of the 11D superparticle, and discuss the formulae found for the b-
ghost in [25] and [30]. In section 3, we introduce the 11D physical operators, and compute
their actions on the ghost number three vertex operator. We then write down a compact
formula for the 11D b-ghost in terms of the physical operators and, after full expansion, it is
shown to coincide with the original proposal in [25]. In section 4, we give some applications
showing how our new formula for the b-ghost considerably simplifies computations relevant
to scattering processes in 11D supergravity. We close with discussions and future directions
in section 5. Appendix A is devoted to a short review of the superspace equations of motion

1As discussed in [16], this statement is sensitive to the actual ability of computing pure spinor correlators
in a certain regularization scheme. Hence, higher-loop generalizations of this kinematic algebra might be
subtle due to the highly non-local behavior of pure spinor kinematic numerators.
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of linearized 11D supergravity, and appendix B spells out the 11D pure spinor projector
used in this work.

2 11D Non-minimal pure spinor superparticle

The 11D pure spinor superparticle action in flat space is defined by [3, 5]

S =
∫
dτ [P a∂τXa + pα∂τθ

α + wα∂τλ
α − 1

2P
2] (2.1)

We will use letters from the beginning of the Greek/Latin alphabet to denote spinor/vector
SO(1, 10) indices. The variables (Xa, θα) are the usual 11D superspace coordinates, and
(Pa, pα) are their respective conjugate momenta. The bosonic spinor λα satisfies the 11D
pure spinor constraint, i.e. λγaλ = 0. Its respective conjugate momentum wα is thus only
defined up to the gauge transformation δwα = (γaλ)ασa, for any vector σa. Due to their
wrong statistics, they will be called ghosts and assigned to carry ghost numbers 1 and -1,
respectively. The 11D gamma matrices will be represented by (γa)αβ , (γa)αβ , and they
satisfy the Clifford algebra: (γa)αβ(γb)βδ + (γb)αβ(γa)βδ = 2ηabδδα. We will raise and lower
spinor indices by using the antisymmetric charge conjugation matrix Cαβ and its inverse
Cαβ , which obey the relation CαβCβδ = δδα, so that (γa)αβ = CαεCβδ(γa)εδ, etc.

The Hilbert space is described by the BRST-cohomology of the operator Q0 = λαdα,
where dα is the Brink-Schwarz fermionic constraint [31] defined as

dα = pα −
1
2(γaθ)αPa (2.2)

Such a cohomology can be shown to be non-trivial up to ghost number 7, describing the 11D
supergravity states in its Batalin-Vilkovisky formulation. Concretely, the ghost number
0, 1, 2 and 3 sectors respectively host the gauge symmetry ghost-for-ghost-for-ghost; the
gauge symmetry ghost-for-ghost; the supersymmetry, diffeomorphism and gauge symmetry
ghosts; and the 11D supergravity physical fields. The higher ghost number sectors form a
mirror cohomology of those above described, and reproduce the 11D supergravity antifields.
In order to illustrate this, let us analyze the cohomology at ghost number three, U (3) =
Ψ = λαλβλδAαβδ. The physical state conditions then imply that

Q0Ψ = 0→ D(αAβδε) = (γa)(αβAaδε) (2.3)
δΨ = Q0Λ→ δAαβδ = D(αΛβδ) (2.4)

where Λ = λαλβΛαβ , and Λαβ is any superfield. These equations match the linearized
equations of motion of 11D supergravity in superspace [32], we thus identify Aαβδ = Cαβδ,
where Cαβδ is the linearized version of the lowest-dimensional component of the 11D su-
pergravity super-3-form. In a particular gauge, one can show that Ψ has the following
θ-expansion:

Ψ = (λγaθ)(λγbθ)(λγcθ)Cabc + (λγabθ)(λγbθ)(λγcθ)hac + (λγaθ)(λγbθ)(λγcθ)(θγbcψa)
− (λγaθ)(λγbcθ)(λγbθ)(θγcψa) +O(θ5)

(2.5)
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with Cabc, hab, ψaα being respectively the 3-form, graviton and gravitino of 11D supergravity.
Indeed, they can be shown to satify the linearized equations of motion

∂d∂[dCabc] = 0 , �hbc − 2∂a∂(bhc)a + ∂b∂c(ηadhad) = 0 , (γabc)αβ∂bψβc = 0 (2.6)

and gauge transformations

δCabc = ∂aBbc , δhab = ∂(atb) , δψαa = ∂aκ
β (2.7)

where Bab, tb and κβ are arbitrary gauge parameters.
In order to define negative ghost number pure spinor operators, one needs to introduce

the so-called non-minimal pure spinor variables [29]. These ones consist of two pairs of
conjugate variables (λ̄α, w̄β), (rα, sβ), where λ̄α is a ghost number -1 pure spinor variable
satisfying λ̄γaλ̄ = 0, and rα is a ghost number 0 fermionic spinor constrained via λ̄γar = 0.
The 11D non-minimal pure spinor superparticle is then defined by the action [30]

S =
∫
dτ [P a∂τXa + pα∂τθ

α + wα∂τλ
α + w̄α∂τ λ̄α + sα∂τrα −

1
2P

2] (2.8)

together with the BRST operator
Q = Q0 + s (2.9)

where s = rαw̄
α. Using the quartet mechanism [33], one can show that the cohomology of

Q will be independent of the non-minimal variables, therefore matching that of Q0.

2.1 The b-ghost

As in 10D, it is possible to construct the so-called b-ghost, a ghost number -1 operator,
obeying {Q, b} = 1

2P
2. This object was originally constructed in [25], and shown to take

the complicated form

b = 1
2η (λ̄γabλ̄)(λγabγcd)Pc + 2

η2L
(1)
ab,cd

[
(λγad)(λγbcdd) + 2(λγabcefλ)Nd

ePf (2.10)

+ 2
3(δbeδdf − ηbdηef )(λγaecghλ)NghP

f
]
− 4

3η3L
(2)
ab,cd,ef

[
(λγabcghλ)(λγdefd)Ngh (2.11)

− 12[(λγabcegλ)ηfh − 2
3η

f [a(λγbce]ghλ)](λγdd)Ngh

]
(2.12)

+ 8
3η4L

(3)
ab,cd,ef,gh(λγabcijλ)

[
(λγdefgkλ)ηhl − 8

3η
h[d(λγefgk]lλ)

]
{Nij , Nkl} (2.13)

where η = (λ̄γabλ̄)(λγabλ), Nab = 1
2(λγabw) is the usual ghost Lorentz current, and

L
(n)
a0b0,a1b1,...,a1b1

= (λ̄γ[[a0b0 λ̄)(λ̄γa1b1r) . . . (λ̄γanbn]]r), with [[ ]] denoting antisymmetriza-
tion between each pair of indices. Remarkably, this operator was simplified in [30] to the
simpler expression

b = P aΣ̄a −
4
η

(λ̄γabr)(λγacλ)Σ̄cΣ̄b −
2
η

(λ̄r)(λγabλ)Σ̄aΣ̄b (2.14)

– 4 –



J
H
E
P
0
3
(
2
0
2
3
)
1
3
5

where the fermionic vector Σ̄i, defined by

Σ̄i = 1
2η (λ̄γabλ̄)(λγabγid) + 4

η2L
(1)
ab,cd(λγ

abceiλ)Nd
e + 4

3η2L
(1)
ab,c

i(λγabcdeλ)Nde

− 4
3η2L

(1)
ad,c

d(λγaicdeλ)Nde

(2.15)

obeys (λ̄γabλ̄)Σ̄b = 0, and

{Q, Σ̄a} = P a

2 + 1
η

[(λ̄γcbλ̄)(λγbaλ)− (λ̄γabλ̄)(λγbcλ)]P c − 2
η

(λ̄γbar)(λγbcλ)Σ̄c

− 4
η

(λ̄γbcr)(λγbaλ)Σ̄c + 2
η

(λ̄r)(λγabλ)Σ̄b −
2
η2 (λ̄γcdr)(λγcdλ)(λ̄γabλ̄)(λγbeλ)Σ̄e

(2.16)

Using the identity (2.16), it was shown in [30], the simplified expression (2.14) indeed
satisfies the property {Q, b} = 1

2P
2, and it is nilpotent up to BRST-exact terms.

3 11D Physical operators

In this section we introduce the 11D analogues of the operators studied in [10] in the 10D
case. These will be proven to be essential for a new formulation of the b-ghost exhibiting
its close relation to 11D supergravity.

3.1 Physical operators

The 11D physical operators will be defined as follows

[Q,Cα] = −1
3dα − (γaλ)αCa (3.1)

{Q,Ca} = 1
3Pa + (λγabλ)Φb (3.2)

[Q,Φa] = (λγaΦ) (3.3)

[Q,Φα] = 1
4(λγab)αΩab (3.4)

...

These relations follow immediately from the linearized 11D supergravity equations of mo-
tion (see appendix A for a short review). The elipsis below (3.4) represent additional
equations which will not be relevant for our purposes. The system of equations above
displayed is solved by

Cα = 1
3Kα

βwβ (3.5)

Ca = 1
η

(λγabc)α(λ̄γbcλ̄)
[1

3dα + [Q,Cα]
]

(3.6)

Φa = 2
η

(λ̄γabλ̄)
[1

3Pb − {Q,Cb}
]

(3.7)

Φα = −2
η

(γabcλ)α(λ̄γbcr)Φa (3.8)
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where Kα
β is an 11D pure spinor projector defined as

Kα
β = − 1

6η (λγab)β(λ̄γcdλ̄)(λγabcd)α −
4
3η (λγab)β(λγbd)α(λ̄γadλ̄)− 2

3η (λγcd)βλα(λ̄γcdλ̄)

+ 1
3ηλ

β(λγcd)α(λ̄γcdλ̄)

(3.9)
and the operators are constrained to satisfy

ξαaCα = 0, (λ̄γabλ̄)Ca = 0, (λ̄γa)αΦa = 0, Rα
βΦα = 0 (3.10)

with ξβa and Rαβ taking the explicit forms

ξβa = 1
2(γabc)βδλδ(λ̄γbcλ̄) (3.11)

Rα
β =

[
− 1

2(λγb)α(λγc)β − 1
4(λγbkλ)(γcγk)αβ + 1

2(λγbk)α(λγck)β − 1
2(λγbc)αλβ

]
(λ̄γbcλ̄)

(3.12)
These objects were previously defined in [26] where they were shown to play an important
role in the construction of a ghost number -2 operator mapping the cohomology of the
ghost number three vertex operator into that of the ghost number one vertex operator.
They obey the useful relation (λγa)αξβa = 1

2δ
β
αη +Rα

β .
The projector of eq. (3.9) satisfies the desired properties

λαKα
β = λβ , (λγab)αKα

β = (λγab)β ,(λγa)βKα
β = 0, Kα

βKβ
δ = Kα

δ (3.13)

and its trace can be shown to match the dimension of the 11D pure spinor space, that is
Kα

α = 23. This statement can easily be proven by rewriting Kα
β in the more compact

form
Kα

β = δβα + 1
η

(λγabc)β(λ̄γbcλ̄)(λγa)α (3.14)

A demonstration of the equivalence between eqs. (3.9) and (3.14) is provided in appendix B.
Explicitly, the physical operators read

Cα =wα
3 + 1

3η (λγabcw)(λ̄γbcλ̄)(λγa)α (3.15)

Ca = 1
3η (λ̄γbcλ̄)(λγabcd)− 2

3η (λ̄γbcr)(λγabcw)+ 2
3η2φ(λ̄γbcλ̄)(λγabcw)

+ 4
3η2 (λγacλ)(λ̄γbcλ̄)(λ̄γder)(λγbdew)

(3.16)

Φa =2
3

[1
η

(λ̄γabλ̄)Pb−
2
η2 (λ̄γabλ̄)(λ̄γcdr)(λγbcdd)+{s, 2

η2 (λ̄γabλ̄)(λ̄γcdr)}(λγbcdw)

− 8
η3 (λγaξb)(λ̄γcbr)(λ̄γder)(λγcdew)

] (3.17)

Φα =8
3ξ

α
a

[ 1
η2 (λ̄γabr)Pb−

4
η4 (λ̄γabr)(λγcbλ)(λ̄γcdλ̄)(λ̄γefr)(λγdefd)

−
( 8
η4 (λ̄γabr)(λγcbλ)(λ̄γcdr)(λ̄γefr)− 16

η5 (λ̄γabr)φ(λγcbλ)(λ̄γcdλ̄)(λ̄γefr)
)

(λγdefw)
]

(3.18)
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where φ = (λγabλ)(λ̄γabr). These relations can be rewritten in a manifestly gauge invariant
form, as follows

Cα =− 1
9ηN

ab(λ̄γcdλ̄)(λγabcd)α−
8
9ηN

ab(λγbd)α(λ̄γadλ̄)− 4
9ηN

cdλα(λ̄γcdλ̄)

+ 2
9ηJ(λγcd)α(λ̄γcdλ̄)

(3.19)

Ca = 1
3η (λγabcd)(λ̄γbcλ̄)+ 8

3η2 (λ̄γbcλ̄)(λ̄γder)(λγbcdfaλ)Ne
f+ 8

9η2 (λ̄γbcλ̄)(λ̄r)(λγabcdeλ)Nde

+ 4
9η2 (λ̄γbcλ̄)(λ̄γdar)(λγbcdefλ)Nef

(3.20)

Φa = 2
3

[1
η

(λ̄γabλ̄)Pb−
2
η2 (λ̄γabλ̄)(λ̄γcdr)(λγbcdd)− 16

η3 (λ̄γabλ̄)(λ̄γcdr)(λ̄γefr)(λγbcdegλ)Nf
g

− 8
η3 (λ̄γabλ̄)(λ̄γcdr)(λ̄r)(λγbcdefλ)N ef

]
(3.21)

Φα = 8
3ξ

α
a

[ 1
η2 (λ̄γabr)Pb−

2
η3 (λ̄γabr)(λ̄γcdr)(λγbcdd)− 8

η4 (λ̄γabr)(λ̄γcdr)(λ̄r)(λγbcdefλ)N ef

− 16
η4 (λ̄γabr)(λ̄γcdr)(λ̄γefr)(λγbcdegλ)Nf

g
]

where J = λαwα.
Now it is easy to calculate the action of the 11D physical operators on Ψ. Let us start

with Cα. The formula (3.14) immediately implies that

CαΨ = Cα + (λγa)αρa (3.22)

where Cα = λβλδCαβδ, and ρa = 1
η (λγabc)αCα(λ̄γbcλ̄). Using eq. (3.22), one can compute

the action of Ca on Ψ. Indeed, one finds that

CaΨ = Ca + (λγacλ)sc −Qρa (3.23)

where Ca = λβλδCaβδ, and sb = − 2
η (λ̄γbcλ̄)(Cc − Qρc). Similarly, the use of eq. (3.23)

allows one to show that
ΦaΨ = Φa + (λγaκ) +Qsa (3.24)

where Φa = λαhα
a, and κα = −2ξαa (Φa +Qsa). Finally, eq. (3.24) implies that the action

of Φα on Ψ is given by

ΦαΨ = Φα + (λγab)αfab + λαf +Qκβ (3.25)

where Φα = λβhβ
α, fab = 2

3η (λ̄γabλ̄)λδτ δ + 4
3η (λ̄γk[aλ̄)(λγkb])ατα + 1

6η (λ̄γcdλ̄)(λγcdab)ατα,
f = − 1

3η (λ̄γabλ̄)(λγab)δτ δ, τα = Φα +Qκα, and we used the alternative expression for Rαβ

Rα
β =

[ 1
12(λγabcd)α(λγab)β + 2

3(λγkd)α(λγck)β + 1
3λα(λγcd)β − 1

6(λγcd)αλβ
]
(λ̄γcdλ̄)

(3.26)
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3.2 A simple expression for the b-ghost

The physical operators recently studied allow us to write the following alternative expres-
sion for the 11D b-ghost:

b = 3
2P

aCa + 3
2(λγad)Φa −

3
2(λγaw)(λγaΦ) (3.27)

or in a gauge invariant form

b = 3
2P

aCa + 3
2(λγad)Φa −

1
2N

ab(λγabΦ) (3.28)

It is easy to show that {Q, b} = P 2

2 . Indeed, the use of the defining properties (3.1)–(3.4)
imply that

{Q, b} = 1
2P

2 + 3
2(λγabλ)PaΦb + 3

2(λγabλ)PbΦa −
3
2(λγad)(λγaΦ) + 3

2(λγad)(λγaΦ)

= 1
2P

2 (3.29)

One can also check that b is nilpotent up to BRST-exact terms. To see this, it is enough
to show that {b, b} does not contain any term independent of rα [30]. This easily follows
from the explicit relations (3.15)–(3.18), and the convenient rewriting

b = −1
η

(λ̄γabλ̄)Pa(λγbd) + 1
2η (λ̄γbcλ̄)P a(λγabcd) +O(r)

= 1
2η (λ̄γbcλ̄)(λγbcγad)Pa +O(r)

(3.30)

The constraint algebra {dα, dβ} = −(γa)αβPa, then shows our claim.
Finally, after expanding eq. (3.28), and do some algebraic manipulations, one finds

that

b= 1
2η (λ̄γbcλ̄)(λγbcγad)Pa+ 4

η2L
(1)
bc,de(λγ

bcdfaλ)PaN e
f+ 4

3η2L
(1)
bf,cf (λγabcdeλ)PaNde

+ 4
3η2L

(1)
bc,da(λγ

bcdefλ)P aNef+ 2
η2L

(1)
ab,cd(λγ

ad)(λγbcdd)− 16
η3L

(2)
ab,cd,ef (λγbcdegλ)Nf

g(λγad)

− 8
η3L

(2)
ag,cd,bg(λγ

bcdefλ)Nef (λγad)− 4
3η3L

(2)
ij,ab,cd(λγ

aijklλ)(λγbcdd)Nkl

− 16
3η4L

(3)
ig,ab,cd,jg(λγ

bcdefλ)(λγaijklλ)NklNef−
32
3η4L

(3)
ij,ab,cd,ef (λγaijklλ)(λγbcdegλ)NklN

f
g

(3.31)

which, by simple inspection, coincides with the original expression displayed in (2.10).
Next we use the new form for the b-ghost, eq. (3.27), to calculate different quantities

relevant to the computation of scattering amplitudes in pure spinor worldline and field
theory.
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4 Some applications

4.1 The ghost number two vertex operator

In [26], a ghost number two vertex operator was defined by letting a non-Lorentz covariant
b-ghost act on the ghost number three vertex operator Ψ. The result was remarkably
shown to be independent of non-minimal variables up to BRST-exact terms. Here, we
define the ghost number two vertex operator following the same prescription of [26]

U (2) = {b,Ψ} (4.1)

Notice that this computation would be pretty complicated to carry out by using the original
or simplified expressions for the b-ghost, eqs. (2.10) and (2.14). However, the use of the
physical operators discussed in previous section provides a simple and efficient treatment
to the problem. Concretely, eqs. (3.23), (3.24), (3.25) yield

U (2) = 3
2P

aCa+ 3
2(λγad)Φa−

1
2N

ab(λγabΦ)+Q
[
− 3

2P
aρa−

3
2(λγad)sa−

3
2(λγaw)(λγaκ)

]
+ 3

2Ca∂aΨ+ 3
2Φa(λγaD)Ψ+ 9

2(λγaC)(λγaΦ) (4.2)

On the other hand, the use of the 11D supergravity equations of motion allows us to show
the following identity

3
2Ca∂aΨ+ 3

2Φa(λγaD)Ψ+ 9
2(λγaC)(λγaΦ) = 3

2P
aCa+ 3

2(λγad)Φa−
3
2(λγaw)(λγaΦ)

+Q
[
− 9

2CaCa−
9
2Φa(λγaC)+ 9

2(λγaC)Φa

]
(4.3)

In this manner, one learns that

U (2) =3P aCa+3(λγad)Φa−3(λγaw)(λγaΦ)+Q
[
− 3

2P
aρa−

3
2(λγad)sa−

3
2(λγaw)(λγaκ)

− 9
2CaCa−

9
2Φa(λγaC)+ 9

2(λγaC)Φa

]
(4.4)

The vertex (4.4) is manifestly Lorentz covariant and invariant under the pure spinor con-
straint, and its non-BRST-exact piece is remarkably independent of non-minimal variables.
Such a sector matches the vertex found in [26] using the Y-formalism in 11D.

4.2 Generalized Siegel gauge

The maximally supersymmetric theories admitting pure spinor field theory descriptions
exhibit a notable symmetry between fields and antifields in a single pure spinor superfield,
and thus cannot be quantized by using conventional gauge-fixing techniques. Indeed, it
was suggested in [35] that, in analogy with string field theory, the Siegel gauge bΨ = 0 may
be used as a consistent gauge-fixing condition in pure spinor master actions. A slightly
modified version, referred to as the generalized Siegel gauge, bΨ = QΩ for some Ω, was
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used in [16] in the context of 10D super-Yang-Mills to show that the scattering amplitudes
obtained from the field theory action, match those obtained from CFT techniques in the
open superstring [17].

The new expression for the 11D b-ghost (3.27) will now be used to show that the ghost
number three vertex operator Ψ satisfies the generalized Siegel gauge. This easily follows
from our results (3.23), (3.24), (3.25):

bΨ = 3
2∂

aCa + 3
2(λγaD)Φa + 3

2(λγaD)(λγaκ)− 3
2(λγa∂λ)(λγaΦ)− 3

2(λγa∂λ)(λγaQκ)

+Q

[
− 3

2∂
aρa −

3
2(λγaD)sa

]
(4.5)

Using the transversality of Caαβ , and the linearized 11D supergravity equations of motion
(see appendix A), one then concludes that

bΨ = Q

[
− 3

2(λγaha)−
3
2∂

aρa −
3
2(λγaD)sa −

3
2(λγa∂λ)(λγaκ)

]
(4.6)

as stated.

4.3 The two-particle superfield

The pure spinor description of 11D supergravity was introduced by Cederwall in [9]. The
action is quartic in the pure spinor superfield Ψ, and produces the following equation of
motion

QΨ + κ

2 (λγabλ)ΦaΨΦbΨ + κ

2 Ψ{Q,T}Ψ− κ2(λγabλ)TΨΦaΨΦbΨ = 0 (4.7)

where Φa is a physical operator introduced in section 3, and T is defined as

T = 32
9η3 (λ̄γabλ̄)(λ̄r)(rr)Nab (4.8)

The use of the perturbiner method allows one to solve eq. (4.7) in terms of multiparticle
superfields. Concretely, the expansion

Ψ =
∑
P

ΨPeikP ·X (4.9)

where P denotes non-empty words p1p2 . . . pm, with p1 < p2 < . . . < pm, and kP =
kp1 + kp2 + . . .+ kpm , yields the following set of relations:

QΨp1 = 0 (4.10)

QΨp1p2 = −κ(λγabλ)ΦaΨp1ΦbΨp2 −
κ

2 Ψp1{Q,T}Ψp2 −
κ

2 Ψp2{Q,T}Ψp1 (4.11)

QΨp1p2p3 = −
∑

P=QUR
κ

[
(λγabλ)ΦaΨQΦbΨR + 1

2ΨQ{Q,T}ΨR
]

+
∑

P=QURUS
κ2(λγabλ)TΨQΦaΨRΦbΨS (4.12)

...
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where P = Q1UQ2U . . . UQs, indicates a distribution of the words P into the non-empty
ordered words Q1, Q2, . . ., Qs. The first equation is nothing but the linearized equation of
motion of 11D supergravity obtained from the 11D pure spinor superparticle cohomology.
The other equations define the multiparticle superfields of 11D supergravity after removing
all BRST-exact terms, as explained in [34]. To illustrate this, let us study the two-particle
superfield. Eqs. (3.24), (4.10) imply that

QΨ̃p1p2 = −κ(λγabλ)Φa
p1Φb

p2 (4.13)

where

Ψ̃p1p2 = Ψp1p2 + κ(λγabλ)sap1Φb
p2 − κ(λγabλ)Φa

p1s
b
p2

+ κ(λγabλ)sap1Qs
b
p2 −

κ

2 Ψp1TΨp2 −
κ

2 Ψp2TΨp1

(4.14)

Using that {Q, b} = P 2

2 , one finds that

Ψ̃p1p2 = − 2κ
k2
p1p2

b

[
(λγabλ)Φa

p1Φb
p2

]
(4.15)

It is not hard to check that the physical operators studied in section 3.1, shape the solution
of (4.15) as

b[(λγabλ)Φa
p1Φb

p2 ] = C̃p1p2 +QΛp1p2 (4.16)

where Λp1p2 = − 2
k2

p1p2
b(C̃p1p2), up to BRST-exact terms, and

C̃p1p2 =1
2

[
(λγbcλ)hp1,abk

a
p2Φp2,c + Ωp1,abk

a
p2C

b
p2 − (λγb)δλαTp1,αa

δCabp2

+ (λγbcλ)hp2,abk
a
p1Φp1,c + Ωp2,abk

a
p1C

b
p1 − (λγb)δλαTp2,αa

δCabp1

] (4.17)

with Tαa
δ = 1

36

[
(γbcd)αδHabcd + 1

8(γabcde)αδHbcde

]
(see [40, 41] for details). An easy way

of checking this is through the use of the equations of motion listed in appendix A. For
instance, eqs. (A.6), (A.9), (A.14) lead to

QC̃p1p2 = 1
2

[
(λγbcλ)(kp1 · kp2)Φp1,bΦp2,c − (λγb)δλαTp1,αa

δk[a
p2C

b]
p2

+Q

[
− (λγb)δλαTp1,αa

δCabp2

]
+ (1↔ 2)

] (4.18)

Eq. (A.15) then requires that

QC̃p1p2 = 1
2

[
(λγbcλ)(kp1 · kp2)Φp1,bΦp2,c + (λγb)δλαTp1,αa

δQCabp2

+ (λγb)δλαTp1,αa
δ[(λγ[bcλ)ha]

c,p2 − (λγab)βΦβ
p2 ]

+Q

[
− (λγb)δλαTp1,αa

δCabp2

]
+ (1↔ 2)

]
= 1

2

[
(λγbcλ)(kp1 · kp2)Φp1,bΦp2,c − (λγb)δλαTp1,αa

δ(λγab)βΦβ
p2 + (1↔ 2)

]
(4.19)
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where we used that (λγb)δTαaδλα = 1
12

[
(λγdeλ)Habde + 1

24(λγabcdefλ)Hcdef

]
. The Fierz

identity (λγab)α(λγabcdefλ) = −24(λγ[cd)α(λγef ]λ), then states that

QC̃p1p2 = (λγbcλ)(kp1 · kp2)Φp1,bΦp2,c (4.20)

5 Discussions

The main result of this paper is the introduction and construction of the 11D physical
operators, and the finding of an alternative formula for the 11D b-ghost, which significantly
simplifies algebraic computations in pure spinor superspace. As an exemplification of this
statement, we were able to show the defining properties: {Q, b} = P 2

2 , {b, b} = QΩ, in a
systematic and quite simple way. Besides, we provided a few useful applications which will
be relevant for studying 11D supergravity interactions from the pure spinor perspective.
For instance, the two-particle superfield displayed in eq. (4.17) will be substantial for
calculating the 4-point amplitude in pure spinor superspace from the perturbiner method
applied to the pure spinor 11D supergravity field theory, see eq. (4.12). Higher-order
interactions will require a solid understanding of the different properties associated to
the physical operators, e.g. (anti)commutation relations, algebraic identities, and so forth.
Likewise, this knowledge might potentially be used for studying consistent deformations
of 11D supergravity, in analogy with the maximally supersymmetric Born-Infeld action
deduced as the only possible deformation of 10D super-Yang-Mills, satisfying the pure
spinor master action [10]. We plan to tackle these open questions in the near future.

It is exciting to see that the simplification of the 10D b-ghost gave rise to the un-
ravelling of a kinematic algebra which automatically realizes the color-kinematics duality
when external states are described by Siegel gauge operators. It would be interesting to
use the formulae presented in this work, and to investigate which kind of underlying al-
gebraic structure rules the 11D scattering amplitudes when vertex operators satisfy the
Siegel gauge condition. Furthermore, the fundamental role of the 10D b-ghost in loop-level
superstring scattering amplitudes suggests that multi-loop 11D pure spinor correlators will
require the use and efficient manipulation of this operator, task which might effectively be
carried out with the ideas developed in this paper.

It is also worthy pointing out that the simplified version of the 10D b-ghost has been
found to be related to a twistorial formulation of 10D super-Yang-Mills using pure spinor
variables [36–38]. This framework was showed to be equivalent to the supertwistor descrip-
tion of ambitwistor strings presented in [39]. It is tempting to use the formulae introduced
in this work for the 11D b-ghost, and propose a new twistor description of 11D supergravity
using pure spinors, with possible stringy realizations. We leave these problems and related
issues for future work.
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A Linearized 11D supergravity

This appendix briefly reviews the geometrical construction in superspace which directly
reproduces the 11D supergravity equations of motion at linearized order.

A.1 Equations of motion

Let us first set some notation. We will use capital letters from the beginning/middle of
the Latin alphabet to represent tangent/curved superspace indices, and lowercase letters
from the beginning (middle) of the Latin/Greek alphabet to denote tangent (curved) space
vector/spinor indices. The 11D supergeometry is then defined by the 1-form superfields
EA and ΩB

C , referred to as the vielbein and spin-connection, respectively, and the super-
Bianchi identities

DTA = EBRB
A, DRAB = 0 (A.1)

where TA = DEA is the super-torsion, RAB = DΩA
B is the super-curvature, and D =

EA∇A is the super-covariant derivative defined to act on the arbitrary tensor FA1...Am
B1...Bn

as

DFA1...Am
B1...Bn = dFA1...Am

B1...Bn−ΩA1
CFCA2...Am

B1...Bn + . . .+FA1...Am
C...BnΩC

B1 + . . .
(A.2)

and d is the ordinary exterior derivative. Eqs. (A.1) imply the familiar relations

[∇A,∇B} = −TABC∇C − 2Ω[AB}
C∇C , (A.3)

RAB,C
D = 2∇[AΩB}C

D + TAB
FΩFC

D + Ω[AB}
FΩFC

D (A.4)

where [ , } means graded commutator. The spectrum of 11D supergravity contains a 3-form
gauge field which can be promoted to the 3-form superfield F = ECEBEAFABC , satisfying
the gauge transformation δF = dL, for any 2-form superfield L. Its field strength takes the
form G = dF , and it satisfies the Bianchi identity dG = 0. In order to describe linearized
11D supergravity, one first writes the covariant derivative ∇A = EA

M∂M at linear order as

∇A = DA − hABDB (A.5)

where DA = ÊA
M∂M , hAB = ÊA

ME
(1)B
M = −E(1)M

A ÊM
B, (ÊAM , ÊMB) are the back-

ground values of the vielbeins, and (E(1)M
A , E(1)A

M ) are their corresponding first order
perturbations. Additionally, one imposes the conventional constraints Tαβδ = Taα

c =
Tab

c = Gαβδε = Gaαβδ = Gabcα = 0, and the dynamical contraints Tαβa = (γa)αβ ,
Gαβab = (γab)αβ . After plugging (A.5) into eq. (A.3), one obtains the following set of
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equations of motion [40, 41]

2D(αhβ)
a − 2h(α

δ(γa)β)δ + hb
a(γb)αβ = 0 (A.6)

2D(αhβ)
δ − 2Ω(αβ)

δ + (γa)αβhaδ = 0 (A.7)
∂ahα

β −Dαha
β − Taαβ − Ωaα

β = 0 (A.8)
∂ahα

b −Dαha
b − haβ(γb)βα + Ωαa

b = 0 (A.9)
∂ahb

α − ∂bhaα − Tabα = 0 (A.10)
∂ahb

c − ∂bhac − 2Ωab
c = 0 (A.11)

The equations of motion associated to the components of the linearized version of the 3-
form superfield F , can directly be deduced from a 4-form superfield H defined from the
field strength G as

HABCD = Ê[D
QÊC

P ÊB
N ÊA}

MGMNPQ (A.12)
which can equivalently be written as HABCD = 4D[ACBCD} + 6T̂[AB

ECECD}, where
CABC = Ê[C

P ÊB
N ÊA}

MFMNP , and T̂A is the flat space-valued torsion. The expansion
of (A.12) then yields

4D(αCβδε) + 6(γa)(αβCaδε) = 0 (A.13)
∂aCαβδ − 3D(αCaβδ) + 3(γb)(αβCbaδ) = 3(γab)(αβhδ)

b (A.14)
2∂[aCb]αβ + 2D(αCβ)ab + (γc)αβCcab = 2(γ[b

c)αβha]c + 2(γab)(αδhβ)
δ (A.15)

3∂[aCbc]α −DαCabc = 3(γ[ab)αβhc]β (A.16)

The defining relations for the physical operators studied in section 3.1 can then be easily
found from these equations. For instance, after multiplying by λαλβλδ, eq. (A.13) implies
that

3QCε +DεΨ = −3(λγa)εCa (A.17)
where Cε = λαλβCαβε, Ca = λαλβCaαβ . Assuming that there exist the linear operators Cε,
Ca such that their action on the ghost number three vertex operator Ψ are described by
the relations: CεΨ = Cε+ . . ., CaΨ = Ca+ . . ., where . . . denote shift symmetry terms [10],
then eq. (A.17) can be written in the operator form

[Q,Cε] = −1
3dε − (λγa)εCa (A.18)

which is exactly the relation displayed in (3.1). Similar arguments follow for the other
operators.

B 11D Pure spinor projector

The 11D pure spinor projector Mα
β was originally introduced in [25], and shown to be

given by

Mα
β = δβα −

1
4α(λ̄γc)β(λγc)α −

1
2ηα(λ̄γa)β(λγabλ)(λ̄γcbλ̄)(λγc)α + 1

8α(λ̄γcd)β(λγcd)α

+ 1
8ηα(λ̄γab)β(λ̄γcdλ̄)(λγabλ)(λγcd)α −

1
2ηα(λ̄γac)β(λ̄γbdλ̄)(λγabλ)(λγcd)α

(B.1)
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where α = λλ̄. This expression can be rewritten in the more convenient way

Mα
β = δβα −

1
4α(λ̄γc)β(λγc)α −

1
2ηα(λ̄γa)β(λγabλ)(λ̄γcbλ̄)(λγc)α

+ 1
8ηα(λ̄γab)β(λ̄γcdλ̄)(λγabcdeλ)(λγe)α

(B.2)

where we used the Fierz identity (γ[ab)(δε(γcd])µ)α=−1
6(γk)(δε(γabcdk)µ)α−1

6(γabcdk)(δε(γk)µ)α.
The application of the familiar 11D identity (γab)(αβ(γb)δε) = 0, and [26]

(γab)αβ(γab)δε = 2(γa)αβ(γa)δε+4(γa)αε(γa)δβ+4(γa)αδ(γa)εβ−4δεαδ
β
δ +4CαδCεβ (B.3)

imply the following useful relations
1

8ηα(λ̄γabw)(λγabcdeλ)(λ̄γcdλ̄)(λγe)α

= 1
8ηα(λγabw)(λ̄γabγcdeλ)(λ̄γcdλ̄)(λγe)α + 1

4α(λ̄γaw)(λγa)α

− 1
η

(λγaw)(λ̄γacλ̄)(λγc)α −
1
η

(wγcdeλ)(λ̄γcdλ̄)(λγe)α

− 1
2ηα(λ̄γaw)(λγabλ)(λ̄γcbλ̄)(λγc)α

= 1
ηα

(λγaλ̄)(λγabw)(λ̄γcbλ̄)(λγc)α + 1
η

(λγaw)(λ̄γacλ̄)(λγc)α (B.4)

Therefore, eq. (B.2) takes the equivalent form

Mα
β = δβα + 1

η
(λγcde)β(λ̄γcdλ̄)(λγe)α + 1

ηα
(λγaλ̄)(λγab)β(λ̄γcbλ̄)(λγc)α

+ 1
8ηα(λγab)β(λ̄γabγcdeλ)(λ̄γcdλ̄)(λγe)α

(B.5)

This equation differs from the 11D projector used in this paper Kα
β , eq. (3.9), in the

presence of the last two terms. However, these extra terms trivially satisfy the defining
properties of a generic projector, and their traces can readily be shown to vanish, meaning
they do not contribute to the dimension of pure spinor space. Indeed, if one defines
M1,α

β = 1
ηα(λγaλ̄)(λγab)β(λ̄γcbλ̄)(λγc)α, M2,α

β = 1
8ηα(λγab)β(λ̄γabγcdeλ)(λ̄γcdλ̄)(λγe)α, it

is not hard to convince oneself that

(λγa)βM1,α
β = 0, (λγa)βM2,α

β = 0
M1,α

α = 0, M2,α
α = 0 (B.6)

Thus, the only meaningful information is carried by the first two terms of Mα
β , namely

Kα
β , which satisfies the properties of an actual projector, as discussed in (3.13).

B.1 Equivalence of eqs. (3.9) and (3.14)

Now we will show that eq. (3.14) is identical to (3.9). Indeed, the use of the Fierz identity
(γa)(εα(γabc)δ)ρ = −(γ[b)(εα(γc])δ)ρ + (γ[b

k)(εα(γc]k)δ)ρ + (γbc)(εαCδ)ρ, allows one to state

(λγa)α(λγabc)ρ = − (λγ[b)α(λγc])ρ −
1
2(λγ[b

kλ)(γc]k)αρ + (λγ[b
k)α(λγc]k)ρ

− 1
2(λγbcλ)Cαρ − (λγbc)αλρ

(B.7)
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This can be rewritten in the convenient form

(λγa)α(λγabc)β = − δβα(λγbcλ) + (λγa)β(λγaγbc)α − (λγ[b
k)α(λγc]k)β

− (λγkγ[c)α(λγb]k)β + (λγbc)αλβ
(B.8)

Therefore, the projector Kα
β in eq. (3.14), can be cast as

Kα
β = 1

η

[
(λγa)β(λγaγbc)α − λα(λγbc)β + (λγbc)αλβ − 2(λγ[b

k)α(λγc]k)β
]
(λ̄γbcλ̄) (B.9)

Using that (λγk)β(λγk)ε = −1
6(λγab)β(λγab)ε − 2

3λελ
β , one arrives at

Kα
β = − 1

6η (λγab)β(λ̄γcdλ̄)(λγabcd)α −
4
3η (λγck)α(λγkd)β(λ̄γcdλ̄)− 2

3η (λγcd)βλα(λ̄γcdλ̄)

+ 1
3ηλ

β(λγcd)α(λ̄γcdλ̄)

(B.10)

which coincides with eq. (3.9).
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