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Abstract: Second-order intensity correlations from incoherent emitters can reveal the Fourier
transform modulus of their spatial distribution, but retrieving the phase to enable completely
general Fourier inversion to real space remains challenging. Phase retrieval via the third-order
intensity correlations has relied on special emitter configurations which simplified an unaddressed
sign problem in the computation. Without a complete treatment of this sign problem, the general
case of retrieving the Fourier phase from a truly arbitrary configuration of emitters is not possible.
In this paper, a general method for ab initio phase retrieval via the intensity triple correlations is
described. Simulations demonstrate accurate phase retrieval for clusters of incoherent emitters
which could be applied to imaging stars or fluorescent atoms and molecules. With this work, it is
now finally tractable to perform Fourier inversion directly and reconstruct images of arbitrary
arrays of independent emitters via far-field intensity correlations alone.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Coherent diffractive imaging uses the stationary far-field interference of elastically-scattered light
to infer the geometry of a scattering potential via Fourier analysis. Since most photodetectors
perform an intensity measurement, information about the relative phases ϕ(m⃗) of the scattered
waves at pixels m⃗ is lost and Fourier inversion to real space is incomplete [1]. This “phase
problem” is shared across a variety of imaging modalities, including x-ray crystallography and
optical microscopy, and research in each field has arrived at a variety of techniques to obtain the
phase information.

Non-stationary or incoherent scattering processes are known to provide more information, as
much as twice the information cut-off in an optical microscope utilising incoherent illumination
or fluorescence as compared with plane-wave illumination [2]. The far-field intensity distribution
of such a process is featureless, but the measurement of intensity-intensity correlations can
nevertheless be used to extract the Fourier amplitude of the object’s structure as first demonstrated
by Hanbury Brown and Twiss on the radio emission of bright stars [3]. This approach is attractive
in situations where lenses of high enough angular or spatial resolution do not exist. This is
certainly the case in the X-ray regime where recent work has examined the possibility of using
photon pair correlations to retrieve the Fourier spectrum of x-ray fluorescence emission [4–9].
One is still left with the phase problem, which can be solved using iterative phase retrieval [9]
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when the correlations are adequately and extensively sampled by detectors with large numbers
of pixels. However, it has been known since the 1960s that intensity triple correlations can
reveal partial phase information directly in the form of the so-called closure phase [10,11]. This
has been heavily investigated in the field of radio astronomy [12–16] with the aim to develop
the means to reconstruct an image of an arbitrary arrangement of emitters without the use of
additional constraints.

Retrieval of the Fourier phase, ϕ(m⃗), begins by first computing the absolute value of the
closure phase,

|︁|︁Φ(m⃗, n⃗)
|︁|︁ = |︁|︁ϕ(m⃗ + n⃗) − ϕ(m⃗) − ϕ(n⃗)

|︁|︁, from the triple correlations. Unfortunately,
we need the signed value of Φ to recover completely ϕ(m⃗) for the following reason: At the start
of phase extraction, an estimate value is chosen for the first pixel. But for the next pixel, the sign
ambiguity of |Φ| returns two possible values of ϕ(m⃗ + 1) and an additional two possible values
for every subsequent pixel (except for special arrays where sgn(Φ) may be assumed constant).
To avoid this exponential expansion of the solution space, we show how redundant information
contained in |Φ| may be used to constrain the possible values of sgn(Φ). Multiple publications
have described the concept but, to the best of our knowledge, no one has yet provided complete or
useful details on calculating sgn(Φ(m⃗, n⃗)) [17–30]. Ab-initio phase retrieval from the third-order
intensity correlations has thus remained incomplete for decades. With our method, it is now
possible to solve for the phase of an arbitrary array of incoherent emitters from the third-order
intensity correlations alone. Combined with the second-order intensity correlations, we have a
completely general method for reconstructing images of arrays of incoherent emitters.

In this paper, we describe our solution to the sign problem of the closure phase, with the help of
a simple 1D example using round numbers in section 3.1.1, and show a numerical implementation
of our method with simulated data from classical independent light sources. This same method
may be used to reconstruct images of star clusters or, with some corrections to account for the
use of a quantum light source, arrays of fluorescent molecules or atoms.

2. Theory

The diagram in Fig. 1 depicts and contrasts structure determination via coherent scattering to
that obtained from incoherent emission. When illuminated with a plane wave with a wave-vector
K⃗, the elastically scattered field has stationary intensity given by

I(q⃗) =

|︁|︁|︁|︁|︁ ν∑︂
i

fieiq⃗·r⃗i

|︁|︁|︁|︁|︁2 =∑︂
ij

fif ∗j eiq⃗·(r⃗i−r⃗j) (1)

for a number ν of point scatterers with scattering factors fi and positions r⃗i relative to an arbitrary
real-space origin. The photon momentum transfer q⃗ is equal to the difference k⃗− K⃗. The phase of
each scattered wave, q⃗ · r⃗i, is derived from the difference in the optical path along the directions of
the incoming and outgoing waves as compared to a scatterer at the origin. The intensity pattern
is thus proportional to the square modulus of the Fourier transform F(q⃗) of the distribution of
scatterers in terms of spatial frequencies equated with q⃗. The origin of the pattern, q⃗ = 0, is
located in the direction of the incident beam. In this forward direction all scattered waves are in
phase and there is strong constructive interference, with intensity generally falling with scattering
angle. The pattern consists of speckles whose width is inversely proportional to the extent of
the object. The recovery of the object’s scattering potential is obtained by an inverse Fourier
transform of F(q⃗), but only after the corresponding phases are obtained.

If, instead, the object consists of a collection of incoherent point emitters, then there is no
dependence on any incident beam and the phase of the emission, relative to that of an emitter at
an arbitrary real-space origin, is k⃗ · r⃗i + ϕi. We assume that the emission phases ϕi are random
and uncorrelated on timescales greater than the relevant system coherence time, τc, due to
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Fig. 1. Schematic of coherent diffraction in the forward detection plane, intersecting with
the incident beam K⃗. Fluorescence speckle is emitted by the atoms isotropically and the
position of the second detector is not dependent on the incident beam. Coherent diffraction
data is collected as a function of the scattering vector q⃗ = k⃗ − K⃗. Correlations between
triples of fluorescence photons (intensities) at pixels separated by q⃗1, q⃗2, and q⃗3 reveal the
spatial phase information lost in the coherent diffraction experiment.

independent, spontaneous emission at random times. The total light field in this scenario is often
referred to as pseudo-thermal or chaotic and has intensity

I(k⃗) =

|︁|︁|︁|︁|︁ ν∑︂
i

siei(k⃗ ·r⃗i+φi(t>τc))

|︁|︁|︁|︁|︁2 =∑︂
ij

sis∗j e
i(φi(t>τc)−φj(t>τc))eik⃗ ·(r⃗i−r⃗j) (2)

with si the amplitude of electric field emission of the ith emitter. The intensity pattern depends
on the orientation of the object, and, given the complete independence of emission, at an instant
of time this pattern has a uniform intensity modulated by speckles of the same size as the
case for coherent scattering. When rapid exposures are measured with a photodetector, we
can consider the phases ϕi are reset shot-to-shot, changing the instantaneous speckle pattern.
From the right-hand side of Eqn. (2), we observe that the structure (sum of r⃗i for all i) would be
difficult to discern by averaging intensities over many shots—the random phase resets would
drive the interference speckle visibility to zero. However, it remains possible to obtain structural
information via intensity correlations [4].

In the following, we use the word atom to refer to any member of a collection of point
fluorescent (atoms and molecules) or thermal (stars) light sources. We assume these atoms to
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undergo spontaneous emission independently, i.e., that each atom emits a field with a phase or
time delay that is uncorrelated to the fields emitted by the other atoms.

2.1. Intensity correlations

We consider photon emission vectors in reciprocal space, k⃗1, k⃗2, and k⃗3, and their vector
differences

q⃗1 = k⃗1 − k⃗2 (3)

q⃗2 = k⃗2 − k⃗3 (4)

q⃗3 = k⃗3 − k⃗1 = −q⃗1 − q⃗2 (5)

as depicted in Fig. 1. The ensemble average of third-order intensity correlations of the light field,
Eqn. (2), over all shots {︂

g(3)(k⃗1, k⃗2, k⃗3)
}︂
=

{︄
⟨I(k⃗1)I(k⃗2)I(k⃗3)⟩

⟨I(k⃗1)⟩⟨I(k⃗2)⟩⟨I(k⃗3)⟩

}︄
(6)

can be expressed as{︂
g(3)(q⃗1, q⃗2)

}︂
≈

(︃
1 −

3
ν
+

4
ν2

)︃
+

(︃
1 −

2
ν

)︃ (︂
|g(1)(q⃗1)|

2 + |g(1)(q⃗2)|
2 + |g(1)(−q⃗1 − q⃗2)|

2
)︂

(7a)

+2Re
(︂
g(1)(q⃗1) g(1)(q⃗2) g(1)(−q⃗1 − q⃗2)

)︂
(7b)

and is called the bispectrum. Similarly, the mean second-order intensity correlation function{︂
g(2)(k⃗1, k⃗2)

}︂
=

{︄
⟨I(k⃗1)I(k⃗2)⟩

⟨I(k⃗1)⟩⟨I(k⃗2)⟩

}︄
(8)

may be written as {︂
g(2)(q⃗1)

}︂
≈ 1 −

1
ν
+

|︁|︁|︁g(1)(q⃗1)
|︁|︁|︁2 (9)

where ν is the visibility. This equation is often referred to as the Siegert Relation in quantum
optics [31]. For a full derivation of Eqs. (7) and (9) please review Supplement 1.

In Eq. (7), we have an expression for g(3) in terms of constants, the square modulus of g(1),
and the real part of a product of complex-valued g(1). Since

|︁|︁g(1)|︁|︁ may be acquired from g(2) in
Eq. (9), it is possible to extract the last term (7b) alone. This term is referred to as the closure in
the astronomy literature. We can rewrite the closure as

2Re
(︂
g(1)(q⃗1) g(1)(q⃗2) g(1)(−q⃗1 − q⃗2)

)︂
=

2
|︁|︁|︁g(1)(q⃗1)

|︁|︁|︁ |︁|︁|︁g(1)(q⃗2)
|︁|︁|︁ |︁|︁|︁g(1)(−q⃗1 − q⃗2)

|︁|︁|︁ cos
(︂
ϕ(q⃗1) + ϕ(q⃗2) + ϕ(−q⃗1 − q⃗2)

)︂ (10)

where we have expressed g(1) in polar coordinates in the complex plane. As the radial component
(
|︁|︁g(1)|︁|︁) is easily obtained from g(2), the phase information, ϕ(q⃗), can be isolated as follows.

https://doi.org/10.6084/m9.figshare.23617140
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Suppose we set q⃗1 = m⃗ and q⃗2 = n⃗ where m⃗, n⃗ map to discrete pixels on a detector. The
symmetry of

|︁|︁g(1)(q⃗)|︁|︁ and anti-symmetry of ϕ(q⃗) allow us to rearrange the closure into

cos
(︂
ϕ(m⃗ + n⃗) − ϕ(m⃗) − ϕ(n⃗)

)︂
≈

g(3)(m⃗, n⃗) − (1 − 3
ν +

4
ν2 ) − (1 − 2

ν )(|g
(1)(m⃗)|2 + |g(1)(n⃗)|2 + |g(1)(m⃗ + n⃗)|2)

2
|︁|︁g(1)(m⃗)

|︁|︁ |︁|︁g(1)(n⃗)|︁|︁ |︁|︁g(1)(m⃗ + n⃗)
|︁|︁ (11)

The inverse cosine of this expression is known as the closure phase, which we represent via the
symbol

Φ(m⃗, n⃗) = ±
[︁
ϕ(m⃗ + n⃗) − ϕ(m⃗) − ϕ(n⃗)

]︁
(12)

Just as in the Siegert Relation, the third-order correlation function encodes the phase ϕ(q⃗) at
pixels in k⃗-space beyond the physical spatial extent of the detector (

|︁|︁q⃗max
|︁|︁ = 2

|︁|︁|︁k⃗max

|︁|︁|︁) as depicted
in Fig. 1. Together, the double and triple correlations allow retrieval of the equivalent of a
coherent diffraction pattern and its phase across an area of k⃗-space four times larger than the area
of detector coverage [4,6].

3. Phase Retrieval

Equation (12) for the closure phase Φ(m⃗, n⃗) is a difference equation which can be used like
a discrete derivative to estimate the slope of ϕ(m⃗) between pixels separated by n⃗. The anti-
symmetry of the phase pins ϕ(q⃗ = 0⃗) = 0. Since overall translation in real-space results in phase
ramps in reciprocal space, we can estimate the value of the phase at a nearest-neighbor pixel of

Fig. 2. Phase retrieved for a 1D detector assuming Φ(m⃗, n⃗) =
|︁|︁Φ(m⃗, n⃗)

|︁|︁. The correct contour
is recovered with the wrong slope in the sections highlighted in red. The blue highlight
section has both the correct shape and slope, but is offset due to incorporation of incorrect ϕ
early in the solution.
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ϕ(q⃗ = 0⃗) = 0 without loss of generality. This estimate can be refined later by seeking to minimize
the total error (see Section 3.2) of all pixels and treating the initial value as a parameter. The
difference equation and calculated Φ(m⃗, n⃗) from experimental data reveals the value of the phase
at the next-nearest-neighbor pixels and so forth until the phase on the entire pixel array has been
calculated.

Once the second pixel of ϕ (next-nearest neighbor) in any direction is calculated, the interval
of the difference equation (n⃗) may be increased to find the slope between every other (instead of
every) pixel in the same direction. Essentially, the phase values calculated for pixels near the
origin constrain the possible phase values of pixels far from the origin.

3.1. Determining the sign of the closure phase sgn(Φ)

Due to the sign ambiguity of the inverse cosine, every datum from Φ(m⃗, n⃗) points to two possible
values of the phase ϕ(m⃗ + n⃗)

ϕ(m⃗ + n⃗) = +Φ(m⃗, n⃗) + ϕ(m⃗) + ϕ(n⃗) ≡ θ+ (13)

or
ϕ(m⃗ + n⃗) = −Φ(m⃗, n⃗) + ϕ(m⃗) + ϕ(n⃗) ≡ θ− (14)

for any m⃗ and n⃗. Assuming a global sign often leads to an incorrect slope for ϕ, as shown in
Fig. 2. The fact that multiple values of Φ(m⃗, n⃗) relate to the value of the phase at a single pixel
allows us to determine the proper sign of Φ(m⃗, n⃗) for each m⃗ and n⃗.

Suppose for a given pixel at u⃗ there exist N sets (m⃗, n⃗) in Φ(m⃗, n⃗) for which m⃗ + n⃗ = u⃗. Each
set offers a pair of possible values for ϕ(u⃗), giving 2N possible values for ϕ(u⃗) altogether. We
know that each and every one of the N pairs contains the correct value, so comparing the N pairs
should reveal it. Ideally, the correct value is included N times between the N pairs and is found
simply by taking the intersection of all pairs. Next, we show a simple 1D example to illustrate
the principle.

3.1.1. Phase retrieval 1D example

Suppose we have a ϕ(m) = (0, 1,−3,−1, 4, 2, 7) for m = [0, 6]. We can calculate a matching
Φ(m, n) to which we add a sign ambiguity. (We will render our Φ(m, n) matrix with mn-axes
such that the origin is in the bottom left corner, i.e., so that Φ(1, 1) = 5).

|Φ| =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0 4

0 3 6

0 4 6 9

0 1 10 6 6

0 5 1 4 3 4

0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

The upper right corner has no m + n ≤ 6 and here the difference Eq. (12) is undefined.
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For purposes of this demonstration, let us assume we have correctly estimated ϕ(1) = 1. Then,
we can try to determine ϕ(2) via

Φ(1, 1) = |ϕ(2) − 2ϕ(1)| = 5 (16)

which gives the following options

ϕ(2) = 5 + 2ϕ(1) = 7 (17)

or
ϕ(2) = −5 + 2ϕ(1) = −3 (18)

Since this is a 1D example, there is no other point (m, n) such that we can deduce the correct value
using Φ(m, n). The same is true for the calculation of ϕ(3) since we only have the information
Φ(1, 2) = 1 available to us. In a 2D phase retrieval we would have more values of Φ available to
us to solve these pixels close to the origin, but for this 1D example, we will follow the branch we
know to be correct with ϕ(2) = −3 and ϕ(3) = −1.

Now the core principle of our algorithm will be demonstrated. We want to find ϕ(4) using
ϕ(1), ϕ(2), ϕ(3), Φ(2, 2), and Φ(1, 3). This is the first pixel for which we have two constraints on
ϕ(4) via Φ(2, 2) and Φ(1, 3)

ϕ(4) = ±Φ(2, 2) + 2ϕ(2) = ±10 + −6 (19)

ϕ(4) = ±Φ(1, 3) + ϕ(1) + ϕ(3) = ±4 + 0 (20)

which gives us four possible values of ϕ(3) in two pairs labeled by the points on the Φ matrix
that are associated with (Φ(2, 2) → {4,−16} and Φ(1, 3) → {4,−4}). If we assume that our
calculation of ϕ up to ϕ(3) is accurate, then we should expect that the correct value of ϕ(n = 4) is
contained in both pairs. Examining the intersection of (4,−4) and (4,−16), we may infer that
ϕ(4) = 4.

Similarly, we may determine the correct value and sign of ϕ(5) via two constraints from |Φ|.

ϕ(5) = ±Φ(2, 3) + ϕ(2) + ϕ(3) = ±6 + −4 → {2,−10} (21)

ϕ(5) = ±Φ(1, 4) + ϕ(1) + ϕ(4) = ±3 + 5 → {8, 2} (22)

Again, the intersection of the pairs of possible solutions gives the correct answer ϕ(5) = 2.
The last entry requires finding the intersection among three pairs since there are three

non-redundant pieces of data in |Φ| we may use.

ϕ(6) = ±Φ(3, 3) + ϕ(3) + ϕ(3) = ±9 − 2 → {7,−11} (23)

ϕ(6) = ±Φ(2, 4) + ϕ(2) + ϕ(4) = ±6 + 1 → {7,−5} (24)

ϕ(6) = ±Φ(1, 5) + ϕ(1) + ϕ(2) = ±4 + 3 → {7,−1} (25)

The intersection of the three pairs leads us to conclude that ϕ(6) = 7.

3.2. Numerical algorithm

In practice, the intersection of solution pairs is never exact and a numerical estimation subject to
input noise is required. We devised an algorithm to accurately find the intersection of all pairs of
possible solutions. For each u⃗ = m⃗ + n⃗ there are, in general, multiple sets of (m⃗, n⃗) positions with
previously calculated phases. Each of these sets generates a pair of solutions for the two signs of
Φ(m⃗, n⃗), say θ+,i and θ−,i. As seen in the example above, for every i, one of these two values is
approximately the same (mod 2π).
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Fig. 3. Successful minimization of an example error function log E(ϕ) in (B) finds the
correct intersection of the set of θ± in figure (A). Points in green are the ordered pairs
(cos θ+, sin θ−) while points in purple are the ordered pairs (cos θ−, sin θ+), as described in
the main text.

A visually instructive way to determine this common value is to plot each of these pairs as
points in a two-dimensional plane, both as (θ+, θ−) and (θ−, θ+). Thus, either the horizontal and
vertical components of each point are common with all the others. Graphically, this means that
the points (approximately) form a vertical and horizontal line intersecting at the true solution
(ϕ(u⃗), ϕ(u⃗)). In order to stay in a bounded domain, it is simpler to consider ordered pairs
(cos(θ+), sin(θ−)) and (cos(θ−), sin(θ+)) to constrain the search to ϕ ∈ [−π, π] and remove 2π
offsets of the value of θ± (see Fig. 3(A)). Finding the intersection given some noise in the data θ±
then amounts to the minimization of the error function

E(ϕ) =
∑︂

i
min

[︁
(cos(θ±)i − cos(ϕ))2, (sin(θ∓)i − sin(ϕ))2

]︁
(26)

where the sum is over the N pairs of possible solutions for our chosen u⃗. The optimal value is the
desired value of ϕ at u⃗, ϕ(u⃗) = ϕopt.

The landscape of the error function E(ϕ) presents challenges for conjugate gradient optimization
because it contains multiple local minima separated by large barriers. An example for a random
pixel in a 2D phase array is shown in Fig. 3(B). Since the value of the phase needs to be optimized
for each pixel on the detector, a rapid and accurate method of determining the absolute minimum
is desired. This is most straightforwardly accomplished by supplying an optimization algorithm
with the minimum value of log E(ϕ) on a grid in [−π, π]; the logarithm increases the contrast
of the absolute minima significantly, allowing accurate calculation of an initial guess for the
conjugate gradient optimizer. The optimizer polishes the brute-force search to a precise final
value.

Since the value of ϕ(m⃗ + n⃗) depends on previous values of ϕ(m⃗) and ϕ(n⃗), it is especially
important that values calculated early in the retrieval are accurate. Depending on the quality
of the data in Φ(m⃗, n⃗), the error function may present multiple deep local minima which cause
the algorithm to, initially, choose an incorrect value of ϕ. In this case, log[E(ϕ)] for subsequent
pixels in the retrieval sharply increases, indicating that at least one previous pixel has ϕ assigned
incorrectly. Plotting the total fit error for all pixels indicates the location of problematic pixels
which require resolving by toggling candidate phase values until the total error of all pixels is
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minimized. The consequences of toggling alternate values of ϕ near the origin to minimize the
error across all pixels are illustrated nicely in Fig. 4 by comparing the boxed and unboxed figures.

Fig. 4. Exact ab initio phase retrieval from triple correlations both with (A-D) and without
(boxed, E-H) alternate value toggling. (A) shows the phase retrieved from the third-order
correlations used to produce the object image via Fourier inversion in (D). The true positions
of the atoms used in the simulation are indicated by light blue circles in (D) and (H). (B)
shows the error values calculated for each pixel during phase retrieval and (C) shows the
difference between the true and retrieved phase values. (E-H) shows the same plots for the
same set of atoms and number of shots but without alternate phase value toggling. When
alternate phase values at pixels adjacent to spikes in the error function are toggled correctly
as in (B), the error is reduced and the difference between the retrieved and true values is
small. When alternates are not toggled correctly as in (F), the error is large and faithful
structure retrieval is less likely. Phase information past the physical edge of the detector
(
|︁|︁|︁k⃗max

|︁|︁|︁ = 2 in this example) is retrieved via the triple correlations, enhancing real space
resolution that would be measured in a typical diffraction experiment.

4. Results

Using Eq. (11) and the algorithm described in Section 3, we can calculate the Fourier phase from
triple correlation data and compare the result to the true value. Figure 4 shows the results of phase
retrieval in a simulation with a 2D pixel detector. Note that in regions where the error Fig. 4(B)
is small, the solved phase matches the true phase quite well. In this example, sufficient phase
information is retrieved to fully resolve the seven simulated atoms (blue circles in Fig. 4(D)) with
only 104 shots. The Fourier inversion was performed using the phase retrieved via our algorithm
from the third-order correlation function and

|︁|︁g(1)|︁|︁ calculated via the second-order correlation
function. No use of coherent diffraction data was required.

Acquiring additional shots significantly improves the fidelity of phase retrieval. The primary
practical limit on phase retrieval via the triple correlations is the computation of the bispectrum
which, for a 2D detector, requires storage of a (Npix × Npix)

2 floating point array. For large
detectors, the bispectrum can rapidly consume all available memory on small workstations. The
11 × 11 detector simulated in Fig. 4 with 104 shots was chosen as a reasonable compromise
between memory usage, execution time, and visual impact for this demonstration on a 2015
MacBook Pro running a 2.8GHz Intel i7 processor.
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5. Conclusions

We have described a mathematical solution to the sign problem in phase retrieval from triple
correlations of fluorescent or thermal light. We provided a numerical demonstration of our
method with simulated data which accurately retrieved the reciprocal space Fourier phase of
an atom array. We envision this method as another potential solution to the phase problem in
crystallography via photon correlations of fluorescence radiation from atoms pumped by x-ray
free-electron lasers. The method presented in this paper may also prove interesting for pulse
metrology [32–35], observing many-body correlations in ultracold atomic gases [36–38], imaging
in turbid media [39–41], and for imaging with radio telescope arrays [12–14].
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