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Abstract: We present an update on the status of electroweak baryogenesis in minimal
composite Higgs models. The particularity of this framework is that the electroweak phase
transition can proceed simultaneously with the confinement phase transition of the new
strong dynamics that produces the composite Higgs. The latter transition is controlled
by the dilaton — the pseudo-Goldstone boson of an approximate scale invariance of the
composite sector. Since it naturally is first-order, the electroweak phase transition becomes
first-order too. Another appealing aspect is that the necessary additional source of CP
violation can arise from the variation of the quark Yukawa couplings during the phase
transition, which is built-in naturally in this scenario. These two features address the
shortcomings of electroweak baryogenesis in the Standard Model. We confront this scenario
with the latest experimental bounds derived from collider searches for new resonances and
measurements of the Higgs couplings and electric dipole moments. All these constraints
provide (or will be able to provide in the near future) important bounds on the considered
scenario, with the most stringent ones coming from LHC searches for new resonances which
constrain the dilaton mass and couplings. We identify the viable region of parameter space
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which satisfies all the constraints, and is characterized by a dilaton mass in the 300–500GeV
range and a Higgs decay constant f . 1.1TeV. We discuss its future tests.
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1 Introduction

The observed imbalance between the amount of matter and antimatter, although being ex-
tremely important for the understanding of the evolution of the Universe, has no confirmed
explanation. While the standard model (SM) appears to fail in generating the observed
baryon asymmetry, a number of promising beyond-the-SM scenarios have appeared (see
e.g. refs. [1–4]). The asymmetry generation could a priori have occurred at any tem-
perature between reheating after inflation and big bang nucleosynthesis (and could have
involved particles of a corresponding range of mass scales). It is particularly interesting to
analyse scenarios where the new-physics scale is sufficiently low to allow the mechanism of
baryogenesis to be tested, even if only indirectly, in controlled laboratory conditions, such
as particle accelerators. One such a scenario is electroweak baryogenesis (EWBG) [3, 4]
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(see e.g. refs. [5–17] for recent work and refs. [18–24] for its variations), which is the most
studied baryogenesis option in (B − L)-preserving theories. It relies on non-perturbative
processes at high temperature in the standard electroweak theory, the sphalerons, which
violate the (B + L)-symmetry. The defining feature of this mechanism is that the asym-
metry is produced during an electroweak (EW) phase transition that is first-order. Its
out-of-equilibrium dynamics, where regions with broken and unbroken electroweak sym-
metry are spacially separated, allows to use the electroweak sphalerons which are active in
the unbroken phase to create an excess of baryons if new additional sources of CP-violation
are present in the vicinity of the bubble walls.

Although the SM predicts the EW phase transition to be a crossover, various TeV-
scale extensions can make the transition first-order. One well-motivated example of such
an extension is the composite Higgs scenario. Designed to solve the Higgs mass naturalness
problem, it assumes that the Higgs is a composite state of some new confining dynamics
and a pseudo-Nambu-Goldstone boson (PNGB) of some global flavour symmetry of the
confining sector [25]. As is well-known from QCD, such a confining sector typically produces
a large set of composite resonances. Some of these fields can be PNGBs which can undergo
phase transitions together with the Higgs field, and thereby make the EW phase transition
first-order [26–29]. Another possibility is that the compositeness-induced changes of the
Higgs boson self-interactions can result in a first-order EW phase transition [30–33]. Finally,
the phase transition can be first-order if it happens simultaneously with the confinement
phase transition of the new strong dynamics which is itself naturally first-order [34, 35].
In fact, cooling down from high temperatures in the early universe, the strong sector is
expected to pass from the deconfined phase to the confined one. The deconfined phase
contains no composite Higgs and the EW symmetry is unbroken. The composite Higgs
is produced during confinement and if the phase transition happens at sufficiently low
temperatures, the Higgs can simultaneously obtain a vacuum expectation value (VEV),
breaking the EW symmetry.1

In this work, we will concentrate on such a scenario with an EW phase transition in-
duced by confinement, updating the earlier analyses of refs. [34, 35]. One of the main ingre-
dients of this model is an approximate conformal invariance of the new strongly-interacting
sector, which is broken spontaneously by the confinement and thereby dynamically gen-
erates the mass scales in the theory. This can give rise to a relatively light PNGB of
conformal invariance — the dilaton χ. We call this scenario “Minimal Composite Higgs”
as the only extra light scalar beyond the Higgs is the dilaton, whose existence does not
depend on the details of the global symmetry-breaking pattern that delivers the Higgs as
a PNGB. The lightness of the dilaton allows to consider the confinement phase transition
as a transition from a metastable minimum at the origin χ = 0 of the dilaton potential
to a global minimum at χ = χ0. We thus study phase transitions during which the Higgs
and dilaton simultaneously obtain VEVs. This is depicted schematically in figure 1. The
confinement phase transition is first-order as a result of the large thermal barrier which is

1We will not discuss the possible domain wall problem pointed out in [36], and assume that the degeneracy
of inequivalent vacua is broken by some explicit symmetry-breaking source as proposed in [36].
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Figure 1. Schematic evolution of the Higgs h and the dilaton χ. At the nucleation temperature
Tn, the dilaton tunnels from the metastable minimum at χ = 0 to some intermediate value (grey
dashed line) and subsequently rolls towards the minimum of the potential (grey straight line). The
Higgs potential is detuned during the phase transition and hence the Higgs VEV can be larger than
in today’s minimum, see the end of section 2.1. The phase transition is followed by reheating, which
tends to decrease the Higgs VEV (red line) compared to late times (blue line). The reheating and
phase transition temperatures have to be below approximately 130 GeV to prevent h falling below
T which would reactivate the EW sphalerons and wash out the baryon asymmetry.

(qualitatively) generated by states of the strong sector becoming massive when the dilaton
acquires a VEV, combined with the shallowness of the T = 0 dilaton potential at large
number of degrees of freedom.

For successful EWBG, a first-order phase transition is necessary, but this is not suffi-
cient. Models of electroweak baryogenesis must rely on new sources of CP violation (CPV)
in the interactions of the plasma with the bubble wall, beyond what is present in the SM.
This often results in sizeable contributions to the electron and neutron electric dipole mo-
ments (EDM) which are notoriously tightly constrained by experiments, with the electron
EDM currently giving the most stringent bounds [37]. One appealing aspect of compos-
ite Higgs models is the way the SM Yukawa couplings are generated. This goes under
the name of partial compositeness, where elementary particles with SM quantum numbers
couple to operators from the composite sector [38, 39]. Importantly, the strongly-coupled
nature of the underlying theory allows to have operators whose energy scaling can differ
significantly from that of a free theory. In particular, the operators which give rise to
the SM Yukawa couplings can experience significant running starting from some high UV
scale, which can lead to the observed hierarchical fermion mass structure [38, 39]. Since
the constituents of the strong sector confine at the dilaton VEV, this running stops there.
The variation of the dilaton VEV during the phase transition can therefore lead to the
variation of the quark Yukawa couplings. The latter can then source CP violation needed
to produce the baryon asymmetry [10, 40, 41]. We will consider two qualitatively different
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benchmark models, where the CPV is induced by the running of either the top or charm
quark Yukawa coupling.

With the EW phase transition being first-order and the existence of new CP-violating
sources, we thus have in principle all ingredients for successful EWBG. A crucial require-
ment on the model comes from an upper bound on the reheating temperature after the
(potentially supercooled) phase transition. Indeed, too high a temperature would push the
ratio of Higgs VEV and temperature h/T below 1, leading to EW sphalerons being active
again and washing out any baryon asymmetry generated during the phase transition. As
we will demonstrate, this bound leads to an upper bound on the dilaton mass. This allows
to effectively test this model using collider searches for new resonances. These bounds are
actually stronger than the bounds from the electron EDM, which are known to be generally
very constraining on any model of EWBG.

In our analysis we will account for

• a precise estimate of the sphaleron washout effects,

• the latest improvements in the collider bounds on the dilaton [42],

• the updated bounds from the electron EDM,

• the constraints on deviations of the Higgs couplings from the SM.

The collider bounds are especially efficient in constraining the model parameter space, yet
they leave a window to successfully realize EWBG. The main focus in this work will be on
analysing the combined confinement and electroweak phase transition, with less emphasis
on the CP-violating sources which are also necessary to generate the baryon asymmetry
(see refs. [34, 35] for an extensive discussion on this point).

The paper is organized as follows. In section 2, we define the effective scalar poten-
tial of the model. Thermal corrections to the potential and the dynamics of the phase
transition are discussed in section 3. In section 4, we recap the key features of EWBG in
the minimal composite Higgs framework. We present the results of our numerical compu-
tations in section 5, showing the parameter space where EWBG can be realized and the
predicted gravitational-wave signals. In section 6, the constraints from the electron EDM
measurements are analysed. We discuss our findings in section 7. appendices contain a
comparison between the 4D and 5D approaches to the analysis of the phase transition and
details of the one-loop corrections to the potential.

2 The Higgs-dilaton potential

Instead of solving the full UV theory of new strong interactions we will limit ourselves to
the more tractable problem of analysing the dynamics of the lightest states in the theory,
laying below some mass scale m∗. These light states include all the SM particles (although
with altered properties compared to the SM) and the dilaton. The presence of the light
dilaton is justified by assuming an approximate conformal symmetry in the new strong
sector [43–51]. In this case the confinement phase transition of the new strong dynamics
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can be modelled as a phase transition of the dilaton field χ from the phase with χ = 0
to χ ' χ0, where χ0 ∝ m∗ sets the mass scale of the confined theory. The value of the
Higgs field, being a composite object, has to also be related to the value of the dilaton
field, vanishing for χ = 0 and taking some potentially non-zero value for χ = χ0. The
confinement phase transition therefore triggers the electroweak phase transition.

In order to quantitatively describe the coupled dynamics of the composite Higgs and the
dilaton we will employ a 4D description based on a large-N expansion, dimensional analysis,
conformal invariance and the approximate shift symmetry of the composite Higgs [34, 35].
We will discuss its ingredients below. In addition, we devote appendix A to the discussion
of the sources of model-dependence in our approach and compare it to 5D scenarios.

2.1 Higgs effective potential

The Higgs boson is assumed to be a Goldstone boson associated with the spontaneous
global-symmetry breaking SO(5) → SO(4) in the new strongly-interacting sector, which
happens as this new sector confines. The potential for the Higgs is generated via loops
involving SO(5)-breaking interactions between the elementary fermions (such as the top
quark) and the new strongly-interacting sector. The SM electroweak gauge group is em-
bedded in a subgroup of SO(5) and a U(1)X factor. It is convenient to break down the
Higgs potential into several parts as follows:

Tuned part. After integrating out the heavy composite resonances with mass ∼ m∗, the
zero-temperature Higgs potential reads [25]

V 0
h = α0 sin2 h/f + β0 sin4 h/f, (2.1)

where f is the breaking scale of the SO(5)/SO(4) symmetry, also referred to as the Gold-
stone decay constant. The parameter ξ ≡ (246 GeV/f)2 controls deviations of various
observables from the SM predictions [52] and is therefore constrained from above. In this
work we adopt the value ξ = 0.1 or f ' 800GeV. The coefficients α0 and β0 depend on the
shift-symmetry-breaking parameters of the theory, such as elementary-composite mixings
and SM gauge couplings. They have to be chosen to reproduce the observed Higgs mass
and the Higgs VEV vCH satisfying

f sin(vCH/f) = vSM = 246 GeV. (2.2)

Note that we prefer to keep the one-loop contribution of the top quark to the Higgs potential
separate from eq. (2.1) and will account for it together with other one-loop corrections from
light degrees of freedom.

We call this part of the scalar potential tuned, as the coefficients α0 and β0 have to
be tuned down with respect to their generic values in order to reproduce the desired Higgs
mass and vCH � f [53–55]. The desire to minimize this tuning is the reason why we prefer
to keep f fixed around the minimal experimentally allowed value.
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Accounting for varying f . Our goal here is to consider the dynamics of the confinement
phase transition, therefore we have to promote the compositeness scale f to a dynamical
variable proportional to the VEV of the dilaton χ. By assumption, the only source of mass
in the theory is the dilaton VEV and therefore the dimension-4 coefficients α0 and β0 have
to scale ∝ χ4. This is reflected in the potential

Vh[h, χ] = (χ/χ0)4V 0
h , (2.3)

where χ0 ∝ f is the dilaton VEV today. In order to account for the scaling of f with χ in
the trigonometric functions of h/f in the potential, we write the kinetic terms of the Higgs
and the dilaton as

Lkin = 1
2(∂µχ)2 + 1

2
χ2

χ2
0
(∂µh)2. (2.4)

Compared to simply substituting χ instead of f in the potential (2.1), this choice ensures
the invariance under the symmetry of the theory h→ h+ 2πf .

For the following, when considering the dilaton interactions, we will need to specify the
exact relation between f and χ0. We will assume that the strongly-coupled sector behaves
as an SU(N) confining theory, similar to QCD. Since the Higgs transforms non-trivially
under the global SO(5) symmetry of the strong sector, it is expected to be an analogue
of the QCD mesons, and hence the value of f is related to the strength of an analogue of
the quark-antiquark condensate. Unlike the Higgs, the state controlling the confinement
phase transition — the dilaton — can be composed of SO(5)-neutral constituents and hence
can in principle behave as a glueball or a meson. The analyses based on the AdS/CFT
correspondence prefer the former option, but we will consider both possibilities to make
the discussion more general. In the limit of a large number of colors N , the interactions of
mesons and glueballs are expected to have the parametric size [56]

gmes ≈ 4π/
√
N , gglue ≈ 4π/N. (2.5)

The factors 4π are chosen to reproduce strong coupling in the limit N → 1. The masses of
mesons and glueballs, on the other hand, do not scale with N . Dimensional analysis then
tells us that their VEVs scale as

〈meson〉 ∝ mmes
gmes

∝
√
N, 〈glueball〉 ∝ mglue

gglue
∝ N

⇒ 〈meson〉
〈glueball〉 ∝

gglue
gmes

∝ 1/
√
N.

(2.6)

The relations (2.5) are expected to hold up to order-a-few factors. We introduce coeffi-
cients c(h)

k , c
(χ)
k to account for this freedom and consider the following couplings associated

with respectively the (meson) Higgs and the (glueball or meson) dilaton:

g∗ = c
(h)
k

4π√
N

(2.7)

gχ = c
(χ)
k

4π
N

(glueball) or c
(χ)
k

4π√
N

(meson). (2.8)
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We then fix the relation between the dilaton VEV and the Higgs decay constant as

χ0 = (g∗/gχ)f = c
(h)
k

c
(χ)
k

f ×


√
N for glueball dilaton

1 for meson dilaton.
(2.9)

We refer the reader to refs. [35, 42] for further discussion of this relation. Notice in partic-
ular that, if f is kept fixed, the interactions of a glueball dilaton (which are controlled by
1/χ0) become more and more suppressed at large N . Given the presence of order-one pa-
rameters which can alter the relations discussed in this section, we will consider an effective
number of colors N which can also take non-integer values.

Accounting for varying Yukawa couplings. Finally, we account for the fact that α0
and β0 can scale differently from ∝ χ4 in the presence of explicit breaking of the conformal
symmetry by quantum effects, in particular by the running of the Yukawa couplings. As
discussed in the introduction, we consider two concrete scenarios for this running, both
motivated by the need to have an additional source of CPV for successful electroweak
baryogenesis. In the first scenario, we assume that the top quark Yukawa coupling changes
significantly between χ = χ0 and χ = 0, while the Yukawa couplings of the other quarks
remain small and can be neglected. In the second scenario, the charm Yukawa grows from
its small value today at χ = χ0 to a large value at χ = 0. The top Yukawa, on the other
hand, is taken to be approximately constant. As was shown in [34, 35] both possibilities
can effectively produce the baryon asymmetry.

Let us begin with the first scenario. We will assume the usual partial compositeness
mechanism for the generation of the top quark Yukawa coupling. The latter then is the
result of the mixing between the elementary top quark tL,R and operators OtL,R from the
conformal field theory (CFT)

ytL,R(µ) t̄L,ROtL,R . (2.10)

The dependence on the renormalization scale µ is induced by strongly-interacting degrees
of freedom of the CFT above the compositeness scale, and can be significant. The CFT
operators can excite composite fermionic states (which we assign a mass m∗ = g∗f = gχχ0).
The term in eq. (2.10) then leads to mass mixing of these states with the top quark,
schematically given by

ytL(µ) f sin(h/f)t̄LTR + ytR(µ) f t̄RTL + m?T̄ T. (2.11)

Evaluating the couplings at the condensation scale, µ = χ, we can find the value of the top
quark Yukawa coupling. The latter can act as a source of CPV for electroweak baryogenesis
if it has a varying complex phase. To achieve this, we will assume that the Yukawa coupling
has the form

Ltop = − λt√
2
f sin(h/f)q̄LtR, λt = ytL(y(1)

tR + y
(2)
tR )/g∗, (2.12)

where y
(1)
tR and y

(2)
tR have a non-zero relative complex phase. This can be obtained if

tR couples to two different CFT operators, with two different mixings y(1)
tR , y

(2)
tR . As we

– 7 –
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mentioned earlier, we will not specify the physics at the scale m∗ and will use directly
the expression (2.12) for the top Yukawa. One choice allowing for a varying top Yukawa
phase during the EW phase transition (i.e. while χ is changing from 0 to χ0) is to assume
constant ytL and y(2)

tR , and to take y(1)
tR ≡ yt varying according to the RG equation [57]

∂yt
∂ logχ = γyyt + cyy

3
t /g

2
∗. (2.13)

Note that the heavy fermionic states at the scale m∗, which we have integrated out,
also contribute to threshold corrections of the scalar potential which are sensitive to the
varying coupling yt. In order to account for this we make the following substitution in
eq. (2.1)

α0 → α0 + (α[χ]− α[χ0]),
β0 → β0 + (β[χ]− β[χ0]),

(2.14)

where
α[χ] = cα

3y2
t [χ]

16π2 g
2
∗f

4,

β[χ] = cβ
3y2
t [χ]

16π2 g
2
∗f

4
(2.15)

are the parametric estimates of the one-loop contribution of fermionic top partners in
eq. (2.11) to the scalar potential [34, 35]. As was noted in refs. [34, 35], the substitu-
tion (2.14) detunes the Higgs potential when χ is away from χ0. As a result, the Higgs
VEV takes its detuned value during the phase transition (for intermediate χ values). This
detuned value can be either 0 or ∼ χ, depending on the coefficients cα,β which are free
order-one parameters in our description. This, in turn, can respectively suppress or enhance
the produced baryon asymmetry.

The discussion for the scenario with a varying charm quark Yukawa coupling is anal-
ogous. For most of the expressions in eqs. (2.10)–(2.15) we just need to replace the cor-
responding quantities for the charm. One difference with respect to the top-induced CPV
is that for the charm one can obtain large CPV even if it is coupled to only one CFT
operator [35]. Instead of eq. (2.12), the charm quark Yukawa coupling then reads

λc = ycL ycR
g∗

. (2.16)

2.2 Dilaton potential

We assume that some unspecified strongly-coupled and approximately conformal sector
generates a dilaton potential of the form [43–50]

Vχ = cχg
2
χχ

4 − ε(χ)χ4. (2.17)

The first term is scale-invariant and the second one breaks conformal invariance due to the
running of ε with the dilaton VEV according to the RG equation

∂ε

∂ logµ = γεε− cεε2/g2
χ. (2.18)

– 8 –
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This running is arranged such that the second term in eq. (2.17) is much smaller than
the first term at large χ � χ0 and then grows towards smaller χ. At χ = χ0 the two
contributions in eq. (2.17) equilibrate each other, and thereby produce a minimum of the
dilaton potential.2

We will set gχ to be either the glueball or the meson coupling of eq. (2.5), as was
motivated in section 2.1. Furthermore, we will fix the coefficient cε to a constant value
chosen to minimize ε at χ� χ0 in order to avoid that it grows above g2

χ which would make
the perturbative description inadequate. The scaling dimension γε in eq. (2.18) is then
chosen to reproduce the desired dilaton mass — a free parameter in our setup. Finally,
the integration constant of eq. (2.18), ε(χ0), is determined by the requirement that the
minimum of the dilaton potential be at χ = χ0.

The remaining free parameter of eq. (2.17) is cχ, which is expected to be of order one.
If cχ ≈ 1, ε(χ) would need to be of order cχg2

χ ' g2
χ at χ = χ0 to produce a minimum,

and would be even larger than that at χ < χ0. Given that our description is based on an
expansion in ε/g2

χ, we have to require cχ < 1 to avoid a loss of perturbativity.

2.3 Higgs-dilaton mixing

As we will show in section 5, the size of mass mixing between the Higgs and the dilaton has
important consequences for the phenomenological tests of the considered scenario. We will
now present a simple analytic estimate of this mixing which will be useful in the following.

The scale-invariant part of the composite Higgs potential (2.3) does not lead to any
mass mixing between the Higgs and the dilaton [35, 48]. Indeed, in this case the mass
mixing is given by ∂χ∂h(χ4V 0

h ) = (∂χχ4)(∂hV 0
h ) which vanishes at the minimum of the

potential where ∂hV 0
h = 0. However, the running top or charm quark mixings, which we

use as CPV sources, contribute to the Higgs-dilaton mixing through the scale variation of
α and β (2.14) in the potential (2.3). For the top quark-induced CPV the mixing angle θ
can be estimated as

sin θ ' ∂χ∂hVh[h, χ]
m2
χ

' γy
3cαy2

t

4π2
g∗gχvf

m2
χ

= γy
3cαy2

t

4π2
m2
∗

m2
χ

v

f

gχ
g∗
. (2.19)

The expression for the charm case is analogous, although the resulting mixing angle θ is
generically expected to be much lower due to the smaller Yukawa coupling.

3 Dilaton phase transition

We will next discuss the thermal corrections to the potential and the phase transition of
the dilaton. Our discussion is in many aspects similar to that in [58–63] for the phase
transition in 5D dual models. Let us first consider the region of the potential for large
dilaton VEVs with χ & T/gχ, where T is the temperature. The confinement scale ∼ gχχ

is larger than the temperature in this region and we can thus use the description of the
strong sector in the confined phase. Furthermore, most of the confined states have masses

2For simplicity, we neglect the term proportional to cχy of ref. [35] since it only has a minor effect on
the phase transition properties.
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Figure 2. The dilaton potential, with the region dominated by the thermal effects (red) and the
region dominated by the zero-temperature potential (blue).

∼ gχχ & T or larger and we can neglect their thermal corrections to the potential. We
only have to include thermal corrections from the light states, namely the SM particles
including the Higgs, and the dilaton. The free energy then reads

F [χ & T/gχ] ' Vh + Vχ + ∆VT,light, (3.1)

where Vh and Vχ are given in eqs. (2.3) and (2.17) and

∆VT,light =
∑
light
bosons

nT 4

2π2 Jb

[
m2

T 2

]
−

∑
light

fermions

nT 4

2π2 Jf

[
m2

T 2

]
. (3.2)

The masses m depend on χ and/or h. The sums run over all SM bosons, fermions and the
dilaton; n is the number of d.o.f. for each particle species. Furthermore, the functions Jb
and Jf are given by

Jb[x] =
∫ ∞

0
dk k2 log

[
1− e−

√
k2+x

]
and Jf [x] =

∫ ∞
0

dk k2 log
[
1 + e−

√
k2+x

]
. (3.3)

For χ = 0, on the other hand, the strong sector is in the deconfined and (nearly)
conformal phase. Using dimensional analysis and large-N counting, the free energy in this
phase is then given by

F [χ = 0] ' − cN2T 4 − π2gSM
90 T 4 , (3.4)

where the constant c is a function of the number of d.o.f. per color in the strong sector and
gSM ' 100 is the total number of d.o.f. of the SM. For definiteness, we will use c = π2/8
as arises in N = 4 SU(N) super-Yang-Mills (including a factor 3/4 due to strong coupling
which can be calculated from the AdS dual [64]).

In the intermediate region 0 . χ . T/gχ, the temperature is larger than the con-
finement scale and we would need knowledge of the UV description of the strong sector
in terms of the deconfined constituent fields in order to properly account for the thermal
corrections.3 In absence of this knowledge, we will model a smooth transition of the free

3A proper calculation of the thermal corrections in this regime is difficult already due to the fact that
the conformal sector is expected to be at strong coupling.
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energy between eq. (3.1) for χ & T/gχ and eq. (3.4) for χ ∼ 0. As discussed in more detail
in ref. [35], we expect that our results do not depend sensitively on the precise way in which
this modelling is performed. For concreteness, we follow ref. [59], and include the thermal
corrections from ∼ N2 states with mass gχχ. The free energy then reads

F ' Vh + Vχ + ∆VT,light + ∆VT,trans., (3.5)

where ∆VT,trans. is given by an expression analogous to eq. (3.2) but with the sums running
over the states with mass gχχ. Since the difference between the thermal corrections of
bosons and fermions is small, we assume that they are bosonic. Furthermore, we choose
the number of these states such that ∑

states with
mass gχχ

n = 45N2

4 . (3.6)

This ensures that eq. (3.5) reproduces eq. (3.4) for χ = 0.4 On the other hand, for χ & T/gχ
the thermal corrections from the states with mass gχχ are negligible and the free energy
matches eq. (3.1) with only light states included. A sketch of the free energy is shown in
figure 2.

Let us next discuss the dynamics of the phase transition of the dilaton. At high tem-
peratures, we expect that the thermal potential has only one minimum, at χ = 0 and
with free energy given in eq. (3.4). Going to lower temperatures, eventually a second min-
imum appears near the one of the zero-temperature potential at χ0 = g?f/gχ. Neglecting
the Higgs-dependent part and the thermal corrections in eq. (3.1), the free energy in this
minimum is given by

F = V min
χ ' γε

4 cχg
2
χχ

4
0 = γε

4 cχ
g4
?

g2
χ

f4 . (3.7)

The phase transition becomes energetically possible at the critical temperature Tc where
the free energies in both minima are equal. Using eqs. (3.4) and (3.7) and neglecting again
the thermal corrections from light particles, we find

Tc ' 2
(

g2
?

4πgχN

)1/2

(2γεcχ)1/4f = 2(2γεcχ)1/4f ×

N−3/4 , for gχ = 4π/
√
N

N−1/2 , for gχ = 4π/N .
(3.8)

The critical temperature is thus suppressed by the number of colors N . Furthermore, going
from the minimum near χ0 = g?f/gχ of the thermal potential in eq. (3.1) at T = Tc towards
smaller values of χ, the free energy grows. This shows that the two minima of the free
energy are separated by a barrier and the phase transition is therefore first-order. The phase
transition then proceeds by the nucleation of bubbles of broken phase which form inside the
plasma of unbroken phase and which subsequently expand. Initially, the nucleation rate of
these bubbles is too small to compete with the expansion of the universe. Subsequently, the
size of the barrier decreases with the temperature and the bubble nucleation rate grows.
The phase transition then eventually completes at some temperature Tn < Tc to which we
refer as the nucleation temperature.

4Note that Vh and Vχ are normalized such that they vanish for χ = 0.
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4 Electroweak baryogenesis in composite Higgs models

As we have discussed in section 3, the confinement phase transition involving the dilaton is
naturally first-order. If this phase transition happens at a temperature Tn . 130GeV, the
EW phase transition takes place simultaneously and thereby becomes first-order too. This
satisfies one requirement for successful EWBG. Another requirement is a source of CPV
(beyond CPV from the CKM matrix which is not large enough). As we have discussed in
section 2.1, the size of the Yukawa couplings can naturally depend on the dilaton VEV in
composite Higgs models. Since the dilaton VEV changes when moving from the inside of
the bubbles during the phase transition towards the outside, the Yukawa couplings vary
across the bubble walls too. As was pointed out in [41], this can give rise to CPV near the
bubble walls. The CP-violating source term is given by

SCPV ∝ Im[V †m†′′q mqV ], (4.1)

where V is the unitary matrix diagonalizing the product of the quark mass matrices m†qmq,
and the primes denote spacial derivatives along the direction of the bubble wall velocity.
The size of SCPV is thus sensitive to the squared mass of the quarks during the phase
transition whose varying Yukawa couplings provide CPV. The Higgs and dilaton tunnel
along a trajectory in the two-field potential with approximately constant h/f in the nor-
malization5 of eq. (2.4) which can be understood as the angle of the trajectory (see [35]
for more details). The top mass in turn is proportional to sin h/f according to eq. (2.12).
The size of SCPV therefore depends on sin h/f and we will be interested in maximizing the
latter. We will consider two main cases, where the CPV is induced either by the top or
the charm varying Yukawa coupling.

The baryon asymmetry is primarily generated at the nucleation temperature. Af-
ter the phase transition is completed, the energy stored in the bubble walls is converted
into thermal energy which increases the temperature of the plasma. The resulting reheat
temperature TR is given by

π2gc
30 T 4

R ' ∆V + 3π2N2

8 T 4
n + π2gc

30 T 4
n , (4.2)

where gc is the number of relativistic degrees of freedom in the confined phase (i.e. the
SM plus dilaton) and ∆V is the difference between the potential energies in the false
and true vacuum. This reheating can reduce the baryon asymmetry, which was produced
during the EW phase transition, by two effects. One is washout due to sphalerons. At high
temperatures, thermal corrections move the minimum of the potential in the Higgs direction
towards smaller Higgs VEVs. Denoting the Higgs VEV in the minimum at temperature
T by hmin[T ], sphalerons become active again if hmin[T ]/T . 1 and begin to wash out
the baryon asymmetry. To quantify this washout, we calculate the reduction factor ωsph
of the baryon asymmetry due to sphalerons by integrating the corresponding Boltzmann
equation from T = TR to T = 0 (or some small enough temperature where sphalerons are

5For a canonically normalized Higgs, its value is proportional to the dilaton value.
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guaranteed to be inactive). This gives [65]

ωsph = exp
[∫ 0

TR

dT
111
34

1
H[T ] exp

(
− 2C
αW

mW [T ]
T

)]
, (4.3)

where H[T ] is the Hubble rate at temperature T , C ≈ 1.9 is a numerical constant and
αW = g2

W /4π with gW being the SU(2) gauge coupling. Here we have assumed the SM
value for the sphaleron energy, which is expected to be very close to the one obtained in
the composite Higgs set-up [30, 66]. Furthermore,

mW [T ] = gW
2
gχ
g∗
χ sin

[
hmin[T ]
f

]
(4.4)

is the mass of the SU(2) gauge boson resulting from the Higgs VEV at temperature T .
Note that the reheat temperature is related to the dilaton mass. The latter can be

approximated as

m2
χ = −4γεcχm2

∗ = 16
g2
χ

g2
∗

∆V
f2 . (4.5)

Using eq. (4.2) to obtain ∆V as a function of TR, and accounting for the fact that the term
∝ T 4

n is typically subdominant compared to ∆V we then obtain

m2
χ '

8π2gc
15

g2
χ

g2
∗

T 4
R

f2 . (4.6)

This implies that an upper bound on the reheat temperature restricts the dilaton mass.
After the confinement phase transition the dilaton rests around χ = χ0, and the

deformations of the composite Higgs potential with respect to the SM Higgs are suppressed
by the large scale f . Hence the constraint from the sphaleron freeze-out condition h/T < 1
implies almost the same bound on the reheat temperature as in the SM, TR < 130 GeV [67],
as we have confirmed numerically. This leads to the bound on the dilaton mass

mχ .
gχ
g∗

500GeV. (4.7)

In the case of a glueball-like dilaton we have gχ/g∗ ∝ 1/
√
N and the bound (4.7) becomes

especially tight. On the other hand, this bound can be relaxed by a factor c(χ)
k /c

(h)
k if the

latter is greater than one, see eq. (2.9).
The second effect that diminishes the baryon asymmetry is entropy injection due to

the increase of the plasma temperature from Tn to TR after the phase transition. This
reduces the baryon asymmetry by an extra factor (Tn/TR)3. Therefore, the total washout
factor of the baryon asymmetry after reheating is given by

ωtot = ωsph ×
(
Tn
TR

)3
. (4.8)

We will be interested in maximizing this quantity.
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c
(h)
k cε cχ cα cβ γy cy yt[χ0]
1 0.5 0.2 -0.3 0.3 -0.3 1.875 0.6

√
λtg?

Table 1. Parameters chosen for the numerical studies. Here λt is the top Yukawa and yt is one
of two contributions to the right-handed top mixing, cf. eq. (2.12). The remaining parameters, not
given in the table, which determine the Higgs-dilaton potential are mχ, N , f , c(χ)

k . In the first scan,
we fix f = 800GeV and c(χ)

k = 2 (c(χ)
k = 1) for a glueball-like (meson-like) dilaton, and vary mχ, N .

For the second scan, we in addition vary f, c(χ)
k .

5 Numerical results for the phase transition

In section 2, we have introduced the Higgs-dilaton potential and its thermal corrections.
In addition, the potential receives loop corrections at zero-temperature which we discuss
in appendix B. We next present numerical results for some concrete scenarios. In order
to obtain a new CPV source for electroweak baryogenesis, we assume that the Yukawa
coupling of either the charm or top changes significantly with the dilaton VEV. We have
performed numerical scans for both cases. As we discuss below, however, for the charm we
find no region in parameter space with reasonably small washout of the baryon asymmetry
after the electroweak phase transition and where LHC constraints are fulfilled. In the
following, we therefore only present numerical results for the top. Technical details about
how the relevant quantities of the phase transition in the two-field potential for the Higgs
and dilaton were calculated can be found in [35].

As discussed in section 2.1, we assume that the right-handed top mixing has two
contributions (see eq. (2.12)), one of which runs significantly between χ = χ0 and χ = 0.
We choose the parameters which determine this running as in table 1. This choice ensures
a large source of CPV during electroweak baryogenesis. Furthermore, we set several other
parameters relevant for the Higgs-dilaton potential to the values given in table 1. This
leaves mχ, N , f , c(χ)

k undetermined. We have performed two numerical scans for the
top quark scenario. In the first one, we fix f = 800 GeV. This minimizes the residual
fine-tuning of the Higgs potential, while ensuring that the v/f -corrections to the Higgs
couplings are small enough to satisfy constraints. We then set c(χ)

k = 2 (c(χ)
k = 1) for

the glueball-like (meson-like) dilaton, and scan over mχ, N . We show contour lines in the
mχ, N -plane of several quantities describing the phase transition in figures 3 and 6 for a
glueball-like dilaton and in figures 4 and 6 for one that is meson-like. For the second scan,
we in addition vary f, c(χ)

k to better understand the dependence on these parameters. For
each choice of f, c(χ)

k , we perform a scan over mχ ⊂ [300, 600]GeV and N ⊂ [4, 7] and
demand that several constraints, to be discussed below, are fulfilled. The resulting allowed
regions in the f, c(χ)

k -plane are shown in figure 7. In the following, we will discuss the results
in more detail.

5.1 Constraints on the parameter space

Let us begin the discussion with the analysis of the relevant constraints. We have hashed
the resulting excluded regions in the mχ, N -plane in figures 3, 4 and 6 and have also
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Figure 3. Results for a glueball dilaton and with varying top Yukawa. The parameters that we have
used are given in table 1. Upper left panel: the total washout factor ωtot of the baryon asymmetry
due to sphalerons and entropy injection. Upper right panel: the (sine of) the tunneling angle
sin h/f , which is important for the amount of CPV during the phase transition. Lower left
panel: the nucleation temperature Tn (in GeV). Lower right panel: the critical temperature
Tc (in GeV). In the red hashed region, there is no consistent solution to the zero-temperature
Higgs-dilaton potential. The orange hashed region is excluded because the Higgs couplings deviate
too much from the SM. Furthermore, the purple hashed region with straight (dashed) lines is not
allowed by LHC searches assuming cgg = 0 (cgg = 0.1). In the blue hashed region, the washout
factor ωsph from sphalerons is below 10−2. The dot at mχ = 480GeV, N = 5.3 marks the point
with the largest product of ωtot in the upper left panel and sin[h/f ]2 from the upper right panel,
while satisfying all constraints for cgg = 0.
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applied these constraints in figure 7. In the red hashed regions, there is no solution for the
parameters α0, β0, γε and ε(χ0) which determine the zero-temperature potential leading to
the required minima and masses for the Higgs and dilaton. In the orange and purple hashed
regions, on the other hand, LHC constraints on respectively the Higgs couplings and the
dilaton are not fulfilled. These constraints are discussed in more detail below. Furthermore,
we have hashed regions in blue, where the washout factor ωsph due to sphalerons is smaller
than 10−2. Note that this washout factor changes rapidly between 1 and 0 when crossing
from the white region into the blue region. Demanding that the washout factor be larger
than a somewhat different value will therefore not change the blue region significantly.
Notice also that our numerical results for the blue hashed region confirm the bound that
was derived in eq. (4.7).

5.2 Properties of the phase transition

Important quantities which describe the phase transition are the critical temperature Tc,
where the phase transition becomes energetically possible, and the nucleation temperature
Tn, where the phase transition completes. We show contour lines for the critical tempera-
ture and the nucleation temperature in the lower left and right panels of figures 3 and 4.
In particular, the nucleation temperature should satisfy Tn . 130GeV in order to allow
for a simultaneous confinement and electroweak phase transition. This is automatically
fulfilled everywhere once TR < 130GeV. Another interesting quantity is the ratio Tc/Tn
which measures the amount of supercooling of the phase transition. As one can see from
figure 3 this ratio is always greater than 1. The value of Tc/Tn is important as it enters the
determination of the bubble wall velocity and with Tc/Tn larger than 1, one naively gets
relativistic velocities from the perturbative estimates available in the literature, e.g. [68].
Too large bubble wall velocities would be dangerous for electroweak baryogenesis. How-
ever, we can expect the sizeable supercooling to be countered by the friction from the large
number ∝ N2 of degrees of freedom in the plasma, and also by the strong coupling. Un-
fortunately, there is no estimate in the literature for the bubble wall velocity that applies
to strongly-coupled theories. It is therefore beyond the scope of our paper to conclude
anything about the value of the bubble wall velocity in our framework.

As we have discussed in section 4, the size of the CP-violating source depends on
the squared top mass which in turn is proportional to the squared (sine of the) tunneling
angle sin2 h/f during the phase transition. Since the size of CPV determines the amount of
baryon asymmetry that is produced, we are interested in regions where sin h/f is large. We
plot contour lines of sin h/f in the upper right panels of figures 3 and 4. As also discussed
in section 4, another quantity that determines the yield of EWBG in our scenario is the
total washout factor ωtot due to sphalerons and entropy injection after reheating to the
temperature TR given in eq. (4.2). We plot contour lines of ωtot in the upper left panels
of figures 3 and 4. In order to compensate for this washout and reproduce the observed
baryon asymmetry today, the latter has to be overproduced at the electroweak phase
transition. We have tried different settings for the parameters that control the produced
baryon asymmetry in our scenario (see [35] for a detailed discussion) and found that it
is difficult to overproduce by much more than a factor 100. Correspondingly, ωtot should
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Figure 4. Results for a meson dilaton and with varying top Yukawa. The parameters that we have
used are given in table 1. Upper left panel: the total washout factor ωtot of the baryon asymmetry
due to sphalerons and entropy injection. Upper right panel: the (sine of) the tunneling angle
sin h/f , which is important for the amount of CPV during the phase transition. Lower left panel:
the nucleation temperature Tn (in GeV). Lower right panel: the critical temperature Tc (in GeV).
The color code for the hashed regions is the same as in figure 3. The dot at mχ = 320GeV, N = 5
marks the point with the largest product of ωtot in the upper left panel and sin[h/f ]2 from the
upper right panel, while satisfying all constraints for cgg = 0.
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not be much smaller than 10−2. As can be seen in figures 3 and 4, this requirement still
leaves an open region in the mχ, N -plane. Combining the effects of the tunneling angle
and washout from sphalerons and entropy injection, we expect that our mechanism is most
effective for the point in the mχ, N -plane (and some region around it) where sin2 h/f ·ωtot
is maximized. Assuming cgg = 0 for the LHC constraints discussed below, this point is
mχ = 480GeV, N = 5.3 (mχ = 320GeV, N = 5) for a glueball-like (meson-like) dilaton
which we have marked by dots in figures 3, 4 and 6.

5.3 Gravitational waves

First-order phase transitions can produce a stochastic background of gravitational waves.
The two dominant sources for these gravitational waves are sound waves generated during
the phase transition and collisions of bubble walls. One expects that the latter source
is sizeable only if the bubble walls keep accelerating in the surrounding plasma. The
calculation of the velocity of the bubble walls and whether they enter such a runaway regime
is technically difficult and beyond the scope of this work. Due to the friction effects pointed
out in [69], however, one can estimate that the runaway regime only occurs for extreme
amounts of supercooling (see [68] for a detailed discussion). Since in the regions of the
mχ, N -plane that are allowed by constraints the phase transition is never very supercooled
(cf. the ratio Tc/Tn from figures 3 and 4), we will focus on sound waves as the source for
the production of gravitational waves.

The spectrum of these gravitational waves is mainly controlled by four parameters.
The first parameter is the reheat temperature TR after the phase transition has completed,
given in eq. (4.2). Another important quantity measures the strength of the phase transition
and reads

α ≡
(∆V
ρrad

)
Tn

' (V [0, 0]− V [χ0, vCH])Tn
3π2N2T 4

n/8
, (5.1)

where ∆V is the latent heat released during the phase transition and ρrad is the energy
density of the surrounding plasma at the nucleation temperature. We have plotted contour
lines of α in the upper (lower) left panel of figure 6 for a glueball-like (meson-like) dilaton.

The spectrum also depends on β ≡ [(dΓ/dt)/Γ]Tn , where Γ is the bubble nucleation
rate, which measures the inverse duration of the phase transition. Assuming fast reheating
so that H[Tn] = H[TR] with H being the Hubble rate, one finds

β

H[TR] '
(
T
dSbub
dT

)
Tn

, (5.2)

where Sbub is the bubble action. Contour lines of β/H[TR] are shown in the upper (lower)
right panel of figure 6 for a glueball-like (meson-like) dilaton. Finally, the fourth parameter
is the bubble wall velocity vw which is the only one that we do not calculate and have to
estimate.

We have determined the gravitational-wave spectra for the benchmark points for the
glueball and meson case which are marked by dots in figures 3, 4 and 6 (and which we
estimate to have an optimal yield for the baryon asymmetry remaining at late times as
discussed above). To this end, we have used the web-based tool PTPlot [70] which generates
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Figure 5. Gravitational-wave spectra for the benchmark points highlighted by dots in figures 3, 4
and 6, corresponding to mχ = 480GeV, N = 5.3, α ' 31.3, β/H[TR] ' 139, TR = 139.9GeV
for the glueball-like dilaton (left panel) and mχ = 320GeV, N = 5, α ' 116.9, β/H[TR] ' 94.5,
TR = 109.2GeV for the meson-like dilaton (right panel). The gravitational waves are assumed to
be dominantly produced by sound waves (purple lines) or bubble-wall collisions (orange lines), with
the wall velocity set to vw = 0.9 (continous lines) and vw = 0.3 (dashed lines). We also show the
sensitivity curve of LISA as expected for a 3-year mission (blue line).

gravitational-wave spectra sourced by sound waves based on the results from [68, 71] and
takes TR, α, β/H [TR], vw as input. We have used the calculated values for the first three
parameters and assumed two values for the bubble wall velocity, vw = 0.3 and vw = 0.9.
The resulting spectra are shown in figure 5. Note that the contribution from sound waves
to the gravitational-wave spectrum has only been calculated for the case α . 0.1. Since
α in our case is much bigger, our prediction for the spectra from sound waves should be
taken with a grain of salt. Given this uncertainty, we also show the spectrum obtained from
bubble-wall collisions in the case vw = 0.9 using the results from [72]. This is compared
with the sensitivity curve of the planned gravitational-wave observatory LISA as expected
for a 3-year mission. As one can see, for the assumed values of vw the gravitational waves
which are produced for our benchmark points are within reach of LISA.

5.4 Dependence on f and c(χ)
k

So far we have presented the results for fixed values of c(χ)
k and f = 800GeV. Although

this choice of f minimizes the fine-tuning in the Higgs potential, an order-one increase of
f does not raise the fine-tuning drastically and therefore we will explore this possibility.
Furthermore, we would like to estimate the impact of the variation of c(χ)

k which is a
free parameter of our EFT. We chose to vary this parameter as it directly affects the
relation between the Higgs-related scale f and the scale χ0 which is crucial for both the
phase transition properties and the collider phenomenology of the dilaton. For reasons of
computational limitations we will not vary the remaining free parameters. The result of
the scan over f and c

(χ)
k is presented in figure 7. The green points have a nonvanishing

region in the mχ, N -plane where all previously mentioned constrains are satisfied, the total
washout factor ωtot from sphalerons and entropy injection is larger than 10−2 and the (sine
of) the tunneling angle sin[h/f ] during the phase transition is greater than 0.1. The blue
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Figure 6. Results of our numerical study for a glueball dilaton (upper panels) and a meson
dilaton (lower panels), both with varying top Yukawa. Left panels: the strength of the phase
transition α. Right panels: the inverse duration (over Hubble time) of the phase transition
β/H[TR]. The color code for the hashed regions is the same as in figure 3. The benchmark point
for the glueball-like dilaton at mχ = 480GeV, N = 5.3 has α ' 31.3, β/H[TR] ' 139 and the one
for the meson-like dilaton at mχ = 320GeV, N = 5 has α ' 116.9, β/H[TR] ' 94.5.
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points feature too large a dilution of the baryon asymmetry due to entropy injection after
reheating, given by the factor (TR/Tn)3. These points in parameter space however might
be suitable for realizing cold electroweak baryogenesis [18–21]. In this scenario, the baryon
asymmetry is produced during the reheating of the universe after the bubble walls collide,
which does not require any pre-existing density of SM particles, hence it is not sensitive
to the ratio TR/Tn. For these points, we therefore only require that the washout factor
ωsph from sphalerons is larger than 10−2. Finally, the grey points in figure 7 correspond to
parameter values incompatible with both standard and cold electroweak baryogenesis.

An important feature of the allowed parameter space shown in figure 7 is the presence
of an upper bound on the compositeness scale f . 1000 − 1100GeV. Phenomenological
constraints on the composite Higgs scenarios typically feature the opposite behaviour,
predicting lower bounds on f , since in the limit f →∞ all the interactions become SM-like.
An upper bound on f , on the other hand, typically comes from fine-tuning considerations.

Qualitatively, this behaviour of the parameter space favoured for EWBG can be un-
derstood as follows. The production cross-section of the dilaton goes like 1/χ2

0, hence its
non-observation provides a lower bound on χ0 ∝ f/c

(χ)
k . This results in a constraint of

the type c(χ)
k < #f , where # is some number, defining the upper border of the viable

region in figure 7. According to eq. (4.6), the reheat temperature is related to the dilaton
mass via T 4

R ∝ (f/c(χ)
k )2m2

χ. The upper bound on the reheat temperature from the re-
quirement that sphalerons do not become active again after the EW phase transition thus
leads to a constraint m2

χ < #(c(χ)
k /f)2. At the same time, according to eq. (2.19), the

Higgs-dilaton mixing goes as sin θ ∝ c
(χ)
k f/m2

χ. The mass mixing is bounded from above
to ensure the existence of a solution to the zero-temperature potential with the required
mass and VEV for the Higgs and dilaton. In addition, it is also bounded from above due
to constraints on the Higgs couplings. The upper bound on the mixing therefore translates
to a constraint m2

χ > #c(χ)
k f . Combining the two bounds on the dilaton mass we obtain

(c(χ)
k /f)2 > #c(χ)

k f , or c(χ)
k > #f3. This forms the lower edge of the allowed region in

figure 7.

5.5 Collider and Higgs-coupling constraints

We have derived the 95%CL LHC bounds on the dilaton using the results presented in
ref. [42] which are based on the HiggsTools software [73–76]. The main production channel
for dilaton particles is gluon fusion, and they decay dominantly into W and Z bosons. Gluon
fusion production is greatly enhanced in the presence of a non-vanishing direct coupling
between gluon and dilaton, which in the notation of ref. [42] reads

L ⊃ cgg
3
g2
s

g2
∗

cθχ̂

χ0
GaµνG

aµν . (5.3)

Here gs is the QCD coupling, cθ is the cosine of the Higgs-dilaton mixing angle, and χ̂ is
the dilaton mass eigenstate which is related to the original fields by the redefinition

χ = χ0 + cθχ̂− sθĥ, h = v + cθĥ+ sθχ̂ , (5.4)
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Figure 7. Results of our numerical scan over f and c
(χ)
k for a glueball dilaton (left panel) and

a meson dilaton (right panel), both with varying top Yukawa. For green points, we have found
a nonvanishing region in the mχ, N -plane where ωtot is less than 10−2, sin h/f during the phase
transition is larger than 0.1 and collider constraints on the Higgs couplings and the dilaton are
fulfilled. The corresponding values of f and c

(χ)
k are thus expected to be suitable for EWBG.

Blue points fulfill the same criteria, except the one on ωtot and instead ωsph is required to be less
than 10−2. The corresponding values of f and c

(χ)
k are expected to allow for cold electroweak

baryogenesis. The remaining grey points do not satisfy at least one of the mentioned criteria.

where ĥ is the Higgs mass eigenstate. The interaction (5.3) is generated by the strong
sector and is controlled by the coefficient cgg whose exact value can only be inferred from a
complete UV theory of the strong sector. In order to pass the current stringent experimental
constraints on the dilaton we have only considered cgg = 0 and cgg = 0.1 in this section.
As one can see in figure 3 the allowed parameter space for cgg = 0.1 shrinks by about 50%
compared to cgg = 0. For cgg = 1 it almost completely vanishes. Yet, even for cgg = 0 a
dilaton coupling to gluons is generated via top quark loops, proportional to the dilaton-top
coupling

L ⊃ − λt√
2

{
sθ cos vCH

f
+ cθ(1 + γt)

vSM
χ0

}
t̄tχ̂+ h.c. ≡ − λt√

2
κχt t̄tχ̂+ h.c., (5.5)

where γt = d log λt/d logµ with λt given in eq. (2.12). Note that this coupling decreases
if the anomalous dimension γt or the Higgs-dilaton mixing angle sθ are negative. In the
scenario where CPV is generated by a varying top quark Yukawa coupling we indeed need
γt to be negative and sizeable. This reduces the size of the second term in eq. (5.5)
and thereby the gluon-dilaton coupling. Moreover, in this case a sizeable mixing sθ is
automatically generated due to the large size of the top quark Yukawa coupling at χ = χ0,
see eq. (2.19). If sθ is negative, this results in an accidental cancellation between the
two terms in eq. (5.5) and in a further reduction of the gluon-dilaton coupling. We plot
the contour lines of κχt in figure 8 which shows that the cancellation reduces the coupling
along a valley for small mχ, N . As one can see, this produces a window in the parameter
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Figure 8. Contour lines of the dilaton-top coupling κχt from eq. (5.5) for a glueball dilaton (left
panel) and a meson dilaton (right panel), both with varying top Yukawa. The color code for the
hashed regions is the same as in figure 3.

space where the LHC bounds can be satisfied (cf. the white region in figure 8). Note also
that a sizeable negative sθ can decrease the deviations of the composite Higgs couplings
to massive vector bosons and quarks from their SM predictions [42]. The corresponding
coupling modifier with respect to the SM prediction for Higgs-W,Z couplings is given by

κhV = cθ cos vCH
f
− sθ

gχ
g∗

sin vCH
f
. (5.6)

In our scans we have imposed the current 2σ limits on the deviation of the Higgs couplings
to vector bosons [77, 78], leading to the constraint 0.936 < κhV < 1.106.

Furthermore, from the expression for the mixing angle (2.19) we find that sθ ∝ vSM/χ0.
Hence both terms in the dilaton-top coupling (5.5) scale as vSM/χ0. Since χ0 ∝ (g∗/gχ)f
(see eq. (2.9)), this means that the collider constraints get relaxed for large f and chk/c

χ
k .

Additionally, for the glueball-like dilaton one finds that χ0 grows with
√
N which also

suppresses the bounds.
The situation with the collider bounds is significantly different in the scenario with

charm-induced CPV. First of all, the typical values of the Higgs-dilaton mixing angle in
this case are much lower, due to the smaller charm Yukawa coupling (see eq. (2.19) with
yt → yc ∝

√
λc). Moreover, γt is zero in our benchmark scenario. Hence the dilaton-

top coupling (5.5) does not experience any accidental cancellations. This results in all the
parameter space acceptable for EWBG being excluded by the collider bounds. In principle,
the Higgs-dilaton mixing angle can be increased by raising the size of the coefficient cα.
However, in this case we observe that large negative mixing angles, needed to cancel the
dilaton-top coupling, are always accompanied by a sizeable detuning in the Higgs potential
at χ < χ0 in such a way that the preferred phase transition trajectory becomes h = 0.
In this case the CP-violating source (4.1), which is proportional to space derivatives of
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the quark mass matrix, vanishes and no baryon asymmetry can be generated. Note that
in the Conclusions we show a simple way to fix the problem with collider bounds in the
charm-induced CPV scenario.

6 Constraints from the electron EDM

In our benchmark scenario with a varying top Yukawa, there are CP-violating couplings
between the top and the Higgs and also between the top and the dilaton. These, in turn,
contribute to the electron EDM, which we will quantify in this section. Beyond the CP-
violating couplings relevant for EWBG which we analyse, there are generic CPV sources
in composite Higgs models that can contribute sizeably to the electron EDM [79, 80], or
to CP-violating flavour physics observables, leading to severe bounds on composite Higgs
models. These additional CP-violating interactions are a priori independent from the
interactions that are relevant for our work. In order to systematically suppress the un-
wanted contributions to the EDM induced by generic CPV sources, and also to satisfy the
flavour physics constraints, one has to assume either some additional dynamical mecha-
nisms (see e.g. [81]) or symmetries (e.g. [82]). However, these new ingredients can also
constrain or forbid the CPV needed for EWBG. For example, the proposed U(2) [83–85]
and U(3) [36, 82, 86] flavour symmetries do not allow for sizeable mixing between different
SM quarks at small dilaton values χ < χ0, which is needed to generate CPV in our charm
benchmark scenario. Less constraining scenarios, like the approximately U(1)-symmetric
and CP-conserving composite Higgs model of ref. [82], can in principle be compatible with
both our top and charm benchmark scenarios, however the allowed amount of CPV in the
mixings between the elementary and composite fermions becomes constrained. A dedicated
analysis would be needed to access the compatibility of this model with the current exper-
imental bounds and EWBG. Note however that the assumptions about new symmetries in
the composite sector can be relaxed if, for example, the “generic” correction to the electron
EDM is accidentally suppressed by a factor of order 10. We leave a detailed analysis of
this topic for future work.

Let us now come back to the CP-violating interactions related to EWBG. A sizeable
contribution to the electron EDM can be generated in the scenario with top-induced CPV.
This contribution is sourced by the top Yukawa term

LYuk = −λt(χ)√
2

(gχχ/g∗) sin h
f
t̄LtR + h.c. ⊃ − 1√

2

{
λt + ∂λt

∂ logχ
χ− χ0
χ0

}
vSM t̄LtR + h.c.

(6.1)
The CP-violating coupling arises from the complex part of ∂λt/∂ logχ. To evaluate it we
will use the expression (2.12) for the top Yukawa as a function of mixings

λt = ytL(yt(χ)eiφ + y
(2)
tR )/g∗, (6.2)

where we assume ytL, y(2)
tR , yt(χ) to be real, with the complex phase parametrized by φ.

Using the energy scaling (2.13) for yt(µ), with ∂yt/∂ logµ ' γyyt, we then find

∂λt
∂ logχ = λt

γyyt(χ0)eiφ

y
(2)
tR + yt(χ0)eiφ

≡ λt γt. (6.3)
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Figure 9. Electron EDM for the glueball (left panel) and meson (right panel) case, with the
varying top Yukawa coupling, to be compared with the current bound |de|/e < 1.1 · 10−29cm.
The parameters are set as for the plots in figures 3, 4 and 6, in particular c(χ)

k = 2, c(h)
k = 1

(c(χ)
k = 1, c(h)

k = 1) for the glueball (meson) dilaton. The complex phase φ is fixed to 0.1. The
remaining parameters are given in table 1. The color code for the hashed regions is the same as
in figure 3. Note that the case with varying charm Yukawa features a suppression in the electron
EDM of at least mc/mt ∼ 10−2, making this bound irrelevant.

Finally we can write down the CPV interactions

LCPV Yuk = −i |λt|√
2
Im[γt]

χ− χ0
χ0

vSMt̄γ5t (6.4)

= −i |λt|√
2
Im[γt]

vSM
χ0

(
cθχ̂− sθĥ

)
t̄γ5t ≡ −i

|λt|√
2

(
κ̃χt χ̂+ κ̃ht ĥ

)
t̄γ5t, (6.5)

where in the second line we switched to the mass eigenstates basis (5.4).
The two-loop Barr-Zee-type diagrams with one internal dilaton or Higgs propagator,

one internal photon, and a top quark loop give the following contribution to the electron
EDM [87, 88]

de/e = 16
3
αEM
(4π)3

√
2GFme

(
κhe κ̃

h
t f1

[
m2
t

m2
h

]
+ κχe κ̃

χ
t f1

[
m2
t

m2
χ

])
, (6.6)

where GF ' 1.166 · 10−5 GeV−2. For the CP-preserving electron-dilaton and electron-
Higgs couplings κχe and κhe we use the following expressions [42] (neglecting a possible
energy scaling of the electron Yukawa)

κχe = sθ cos vCH
f

+ cθ
vSM
χ0

, (6.7)

κhe = cθ cos vCH
f
− sθ

vSM
χ0

. (6.8)
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Furthermore, the loop function is

f1[x] = 2x√
1− 4x

{
Li2

[
1− 1−

√
1− 4x

2x

]
− Li2

[
1− 1 +

√
1− 4x

2x

]}
(6.9)

with
Li2[x] = −

∫ x

0
du

ln[1− u]
u

. (6.10)

Note that f1[m2
t /m

2
h] ' 3 while at small x one has f1[x] ' x(π2 + 3 log2 x)/3. Using

these approximations we can estimate eq. (6.6) as

de/e ' 16 αEM(4π)3

√
2GFmeIm[γt]

vSM
χ0

{
−sθ + m2

t

m2
χ

(
vSM
χ0

+ sθ

)(
1 + 1

3 log2 m
2
t

m2
χ

)}
, (6.11)

where we assumed sθ � 1, vSM/χ0 � 1. Hence, the contribution to the electron EDM
decreases at large χ0 ∝

√
Nf . Furthermore, as follows from eq. (2.19), the Higgs-dilaton

mixing scales as sθ ∝ 1/m2
χ and therefore the overall correction to de/e also scales as

1/m2
χ, leading to a suppressed EDM for large dilaton masses. However, as follows from

our analysis, successful EWBG requires a relatively light dilaton and relatively low values
of N , resulting in a non-negligible contribution to de/e.

Currently the strongest bound on the electron EDM comes from the ACME collabo-
ration [37]. The 90% CL upper bound reads

|de|/e < 1.1 · 10−29cm ' 5.6 · 10−16GeV−1. (6.12)

The predicted values of de/e from eq. (6.6) are shown in figure 9. For these plots we have set
the complex phase φ = 0.1 as an estimate of what would be needed to generate a sufficient
amount of baryon asymmetry [34, 35]. For the points preferred by EWBG, N ∼ 4− 5 and
mχ ∼ 300−500GeV (see figures 3, 4) the predicted values of |de|/e are less than an order of
magnitude away from the current limit. Although a comprehensive analysis of the baryon
asymmetry generation and its interplay with EDMs is beyond the scope of this paper, we
can conclude that the next-generation EDM experiments can provide a decisive test of our
EWBG benchmark with top Yukawa-induced CPV.

7 Discussion

We have presented an update of the analyses [34, 35] of EWBG in scenarios where the
EW phase transition is triggered by the confinement phase transition of the new strongly-
interacting sector that produces a composite Higgs boson. To this end, we have employed
an effective field theory containing the Higgs and the dilaton as pseudo-Nambu-Goldstone
bosons arising from the spontaneous breaking of respectively a global flavour symmetry and
conformal invariance of the strong sector. The latter field serves as an order parameter
for the confinement phase transition. A comparison with the alternative 5D approach to
describing the confinement phase transition is given in appendix A. The new elements
taken into account in this work compared to refs. [34, 35] are
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• the complete one-loop T = 0 corrections to the dilaton potential,

• a more detailed computation of washout effects,

• LHC bounds on the dilaton,

• LHC bounds on the Higgs couplings,

• ACME EDM bounds.

As a result, we were able to determine the remaining window of parameter space in this
minimal composite Higgs realisation of EWBG. It will be fully probed by future LHC and
EDM measurements.

The generation of the baryon asymmetry requires new sources of CPV. We have anal-
ysed two benchmark sources. CPV in the first case is produced by the top quark Yukawa
coupling whose phase, being a function of the dilaton VEV, varies during the confinement
phase transition. In the second case, CPV is sourced by the variation of the non-diagonal
quark Yukawa matrix, which is in turn due to the variation of the charm quark mixing.
While we have not performed a detailed analysis of the baryon asymmetry generation, the
assumptions about the quark Yukawa variation also have paramount importance for the
collider tests of the dilaton.

The dilaton plays a crucial role for defining the properties of the phase transition. In
particular, too large dilaton masses lead to reheating temperatures that are high enough
for sphalerons to become active again after the phase transition, washing-out the baryon
asymmetry. The relatively light dilaton which is therefore required for EWBG is effectively
constrained by the LHC data [42]. We then find that only the benchmark scenario with
top-induced CPV passes the combination of the bounds imposed by the collider data and
the requirements of EWBG. This case has a viable parameter region (see figures 3, 4) as
the result of a suppression of the gluon-fusion production of the dilaton, easing the collider
constraints. This is in turn due to an accidental cancellation in the dilaton coupling to top
quarks. Such a cancellation does not take place in the benchmark scenario with charm-
induced CPV, and we were not able to find a viable parameter region for it.

We have found viable parameter space for both a glueball-like and a meson-like dilaton.
However, the first one features a higher efficiency of the baryon asymmetry production,
which can be estimated from the product of the total washout factor ωtot after reheating
and the squared (sine of the) tunneling angle sin2 h/f which influences the size of CPV
during the phase transition.

The viable window for the benchmark scenario with top-induced CPV is expected to
be effectively covered by collider searches for the dilaton in the near future. Furthermore,
in this case our estimate for the size of the electron EDM is less than an order of magnitude
away from the current experimental sensitivity, and hence the corresponding experiments
are also very relevant for the considered model.

Although the benchmark scenario with charm-induced CPV appears to be disfavoured
by the collider bounds, there is a simple fix to it. Namely, one could envisage a scenario
where the top quark mixings vary sizeably with the dilaton VEV, but do not introduce
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any significant CPV during the phase transition. This possibility is actually more minimal
than the original assumption for the case with top-induced CPV, since it does not require
one of the top chiralities to mix sizeably with two different composite operators, and one
operator is sufficient. It however has the same effect on the collider phenomenology, leading
to relatively large γt and Higgs-dilaton mixing, which can open a window for EWBG. The
CPV source could in this case instead reside in the mixing of the charm or other light
quarks. Note that one then also expects that the contribution to the electron EDM is
suppressed by the charm Yukawa coupling with respect to the values plotted in figure 9.
In fact, a simultaneous variation of all quark Yukawa couplings (including the one of the
top), with the CPV sourced by the interplay of different quark generations (as happens in
our charm-induced CPV benchmark), can be achieved in a rather generic way [10].

Another important test of the considered scenario are Higgs-coupling measurements.
These are sensitive to the Higgs-dilaton mixing, and the overall compositeness scale f . The
latter sets the size of the reheating temperature after the phase transition, and therefore is
bounded from above. Taking into account variations of the other parameters while ensuring
successful EWBG, we find an upper bound f . 1100GeV (see figure 7). At the same time
Higgs couplings currently provide a lower bound f & 800GeV which is not far away and
will be improved in the future. However, one should keep in mind that there can be an
order-one variation in our bound on f from the variation of the parameter c(h)

k which we
have set to 1.

In the regions of parameter space suitable for EWBG for both the meson- and glueball-
like dilaton, a gravitational wave signal is generated during the Higgs-dilaton phase tran-
sition that has the right properties to be detectable by the future observatory LISA.

We have demonstrated that the simplest benchmark scenarios, even though they allow
for viable parameter space, are highly constrained by collider searches for the dilaton, and
predict an electron EDM close to the current limit. It is therefore interesting to consider
scenarios with a modified thermal history of EW symmetry breaking [89–98] which allow
to increase the overall mass and temperature scale where EWBG takes place, potentially
significantly relaxing the discussed bounds. We will present an analysis of such scenarios
in follow-up work [99].

As a final comment we would like to emphasize that we have focused on the constraints
relevant for ‘vanilla-type’ EWBG. For example, for the scenario of cold electroweak baryo-
genesis one of the most stringent constraints, limiting the dilution of the baryon asymmetry
from entropy injection after reheating, does not apply. In this case, the collider bounds can
be evaded by going to large N provided that cgg � 1 [42]. This motivates further analysis
of alternative realizations of EWBG in the context of composite Higgs models.
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A 4D EFT vs. 5D warped models

In this paper we have tried to infer the properties of the confinement phase transition
from the 4D effective field theory describing the physics below the confinement scale,
with the interactions derived from assumptions about the symmetries of the theory (a
spontaneously-broken global symmetry with coset SO(5)/SO(4) and spontaneously-broken
conformal invariance, with additional small explicit breakings) and large-N counting ex-
pected to hold in confining SU(N) gauge theories.6 An alternative approach to the problem
is provided by 5D models with a warped extra dimension, the Randall-Sundrum (RS) sce-
narios [10, 58–60, 62, 101, 102], which can be related to consistent 4D CFTs through holog-
raphy. Although more technically challenging and restrictive compared to our low-energy
approach using effective field theory, these 5D theories can be more predictive, for instance
providing calculable (i.e. finite) potentials for the Higgs and the dilaton fields without ad
hoc assumptions about the cutoff physics that we have to invoke for e.g. the analysis of
Coleman-Weinberg corrections in appendix B. Below we discuss several main differences
between the 4D effective field theory approach of refs. [34, 35] which we follow here and
the description based on 5D dual models, emphasizing the sources of model dependence
in the analysis of the confinement phase transition. Given the focus of this paper, we will
skip an introduction to the RS scenario. After listing the main differences we will show
how they affect the computation of the phase transition strength.

Dilaton kinetic term and quartic coupling normalization. In order to derive the
dilaton coupling gχ we have employed large-N counting. Let us take a step back here and
follow its derivation. We will consider a glueball-like dilaton, to which the RS radion is
a direct counterpart. The N -scaling of the glueball7 two-point function (corresponding in
the lowest order to a gluon loop) in the ’t Hooft limit Ng2

s/(4π)2 → 1 is given by N2,
which allows to write down the kinetic term of the glueball

LCH
kin = N2

(4π)2
1
2(∂µχ)2. (A.1)

The (4π)2 suppression factor is a naive estimate of the loop factor from the gluon loop. The
two-point function however receives an infinite number of contributions from the diagrams
with the same N -scaling and therefore this suppression can only be taken as an estimate.
After normalizing the field χ canonically, each field insertion becomes accompanied by

gχ = 4π
N
, (A.2)

which allows to identify the latter with the glueball coupling strength. The 4π factor makes
the theory fully strongly coupled in the limit N → 1. The additional coefficient c(χ)

k which
6See also [100] for recent work on 4D modelling of confinement phase transitions.
7For simplicity we refer to the fundamental constituents of the new strong dynamics as quarks and

gluons and to their coupling as gs, not to be confused with their SM prototypes.
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we introduced in the definition of gχ in eq. (2.8) compared to eq. (A.2) thus can be seen
as a factor reflecting possible variation in the normalization of the dilaton kinetic term.

The kinetic term of the radion field µRS in the RS setup is given by

LRS
kin = 12 (M5/k)3(∂µµRS)2 = 24 N2

16π2
1
2(∂µµRS)2, (A.3)

where M5 is the 5D Planck mass and k is the AdS curvature scale. In the second equality
we used the AdS/CFT identification

(M5/k)3 = N2/(4π)2. (A.4)

Comparing the kinetic terms (A.1) and (A.3) we see that there is an extra factor of
4! in the RS case, which means that after canonical normalization the field space becomes
more “stretched”. This difference can be corrected by choosing c(χ)

k =
√

1/4!.
To make the comparison more precise we will need to also specify the scalar potentials

before canonical normalization in the two cases. The Goldberger-Wise (GW) [103] radion
potential has the form [104]

VRS ' µ4
RS

{
(4 + 2εRS)(v1 − v0(µRS/µRS0)εRS)2 − εRSv2

1

}
, (A.5)

where εRS corresponds to our γε — the scaling dimension of ε[χ]. Furthermore, v0,1 are the
VEVs of the GW field at the UV and IR brane in units of k3/2. For the comparison between
the 4D (2.17) and 5D (A.5) cases we will use the scale-independent part of the quartic
dilaton coupling after canonical normalization of the kinetic term (assuming |εRS| � 1):

cχg
2
χ ←→

1
6v

2
1(k/M5)6. (A.6)

Applying the identification (A.4) in the r.h.s. together with gχ = 4π/N in the l.h.s., we
obtain

cχ
16π2

N2 ←→ v2
1

144
16π2

N2 . (A.7)

For the typically used values of parameters, e.g. cχ ∼ 0.1 and v1 ∼ 1, the 4D counterpart
has an approximately one order of magnitude larger quartic coupling.

Note that the two dilaton potentials can not be made equal by simply choosing a
different N in the two descriptions to compensate for the difference of the numerical factors
in eq. (A.7). The reason is that there is yet another part of the potential which is crucial
for the phase transition — the thermal dip around the dilaton origin, for which we assumed
the result of N = 4 SU(N) gauge theory, i.e. the same as in the RS case:

FCH[χ = 0] = FRS[µ = 0] = −π
2N2

8 T 4. (A.8)

This means that any relative N rescaling in the two descriptions will detune the depth of
the thermal parts and change the transition properties.
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Running of the dilaton quartic. In the RS scenario with GW mechanism the VEV of
the radion field is stabilized around

µRS ' µRS0

(
v0
v1

)−1/εRS
, (A.9)

where µRS0 is of the order of the Planck mass and the desired µRS is at the TeV scale.
Negative and small εRS (we chose εRS < 0 to match the negative γε in our 4D scenario)
allows to generate a large separation between µRS0 and µRS even for a very moderate
tuning v0/v1 ∼ 0.1. In this case εRS has to be fixed at around −1/20. In the 4D picture
this would correspond to ε(χ) having a fixed energy scaling with a constant γε starting
from MPl down to the TeV scale. Instead, we prefer to stay more general and to not make
such an assumption, treating γε (and therefore the dilaton mass which depends on γε,
see eq. (4.5)) as a free parameter. Note that such a situation can also be realized in less
minimal 5D setups, such as that of ref. [105].

Dilaton scale vs. Higgs decay constant. In section 2.1 we stated that the dilaton
VEV χ0 is given by

√
Nf , up to a numerical proportionality factor. This enhancement of

χ0 can for example suppress the dilaton production cross-sections and the mixing with the
Higgs, making it harder to track the dilaton experimentally. In the 5D dual scenario the
Higgs as a pseudo-Nambu-Goldstone boson can be described by the 5th component of a
5D gauge field, and the Higgs decay constant is then given by [39]

fRS ' 2µRS/g∗. (A.10)

Here g∗ approximately corresponds to the coupling strength of the Kaluza-Klein modes of
the 5D gauge field [106], dual to meson-like composite states in the 4D picture. Taking
the large-N estimate for their coupling, g∗ = 4π/

√
N , and normalizing the dilaton field

canonically, µ̃RS =
√

24µRS/gχ with gχ = 4π/N , we obtain the relation

fRS = µ̃RS
2√
24
gχ
g∗
' µ̃RS

0.4√
N
. (A.11)

This is very close to what we have used in eq. (2.9), up to an order-one factor, which can
be accounted for by varying the order-one coefficients ci of our description.

Having pointed out the differences in the two descriptions we can estimate their im-
pact on the confinement phase transition. The approximation that we employ here is rather
simplistic for the sake of conciseness and to avoid an overlap with the analysis of ref. [107],
but it gives a qualitatively correct understanding of the actual physics and the numerical
results that we presented before. We will consider the situation where the tunnelling hap-
pens from the origin to the slope of the dilaton potential far from the true minimum, which
is often the case for the dilaton phase transition featuring a large amount of supercooling.
In this case the quartic term of the dilaton potential is dominated by ε(χ) which grows
towards χ = 0. The relevant part of the dilaton potential can then be written as, using
the high-T approximation of the thermal CFT contribution (3.2),

V ' 15
32N

2T 2g2
χχ

2 − ε[χ]χ4 ≡ 1
2m

2
effχ

2 − 1
4λeffχ

4, (A.12)
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and the corresponding tunnelling action for the O(3) bounce is [108]

S3/T '
19meff
λeff T

. (A.13)

Note that by approximating the dilaton potential with quadratic and quartic terms only, we
miss the Boltzmann suppression of thermal effects at gχχ & T which cuts off the quadratic
term in eq. (A.12) and decreases the barrier size.

The size of the dilaton effective quartic coupling λeff/4 ' ε(χ) is dictated by the size of
the constant quartic term cχg

2
χ, which it has to match at χ = χ0, and γε, which determines

how fast ε(χ) grows from that point towards smaller values of χ. Before reaching an IR
fixed point, ε(χ) reads

ε(χ) ' cχg2
χ(χ/χ0)γε , (A.14)

while the value at the IR fixed point is given by

ε(χ→ 0) = (γε/cε)g2
χ. (A.15)

As we have shown above, the constant quartic coupling cχg2
χ is set at a relatively larger

value in our case, and at the same time we allow for higher γε. This means that in the
considered parameter space of our model we typically have higher nucleation rates.

B Coleman-Weinberg corrections

The zero-temperature potential for the Higgs and the dilaton that we discussed in sec-
tions 2.1 and 2.2 only includes the contributions generated by CFT states with mass ∼ χ

which can be integrated out from our description. The light degrees of freedom present in
our effective field theory can also contribute to the scalar potential. Accounting for these
corrections is important because they can in particular affect the Higgs-dilaton mixing.
We will now outline our procedure for the calculation of these corrections. In comparison
to the usual Coleman-Weinberg potential with dimensional regularisation, our procedure
allows us to obtain the correct form of the dilaton and Higgs potential if states external
to the CFT are present, with a mass independent of the dilaton field. While this is not
necessary in the setup considered here, it is important for the case studied in the accompa-
nying paper [99] with high-temperature EW symmetry breaking. To consistently compare
the two scenarios we will thus apply the same methods to both.

During the confinement phase transition, the mass scale of the new strong sector
m∗ = gχχ changes from 0 to ∼ χ0. In the presence of elementary states with masses m
which are independent of the dilaton and have m� g∗f , the theory then transits between
two very distinct regimes, with m∗ � m and m∗ � m. In the former case, the one-loop
correction induced by the elementary states is expected to be significantly affected by the
presence of the lighter composite resonances. More precisely, the composite physics at
m∗ is expected to cut off the momentum integrals, thus removing the sensitivity of the
composite Higgs and dilaton potential to large elementary masses [109].
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Figure 10. Comparison of the tree-level and one-loop potentials for a glueball dilaton with top-
induced CPV, for mχ = 450 GeV, c(χ)

k = 2, N = 5, and the other parameters set as in table 1.

Let us first consider the general form of the one-loop effective potential before regu-
larization, in terms of Euclidean momenta, and per d.o.f. of a state with mass m,

V1L = (−1)F
2

∫
d4kE
(2π)4 ln(k2

E +m2), (B.1)

where F = 1(0) for fermions (bosons). In order to model the effect of the new physics at
the scale m∗, we will add a step function θ(m∗ − k) to the integrand in eq. (B.1). This
momentum cutoff leads to a finite potential of the form

V1L = (−1)F 1
2(4π)2

∫ m2
∗

0
k2
Edk

2
E ln(k2

E +m2)

= (−1)F 1
64π2

[
m4
∗

(
ln(m2

∗ +m2)− 1
2

)
+m2

∗m
2 +m4 ln m2

m2 +m2
∗

]
.

(B.2)

All the loop corrections to the scalar potential originating from the degrees of freedom
of our effective field theory have to vanish with the elementary-composite mixings. To
account for this we use the subtracted one-loop potential

V̄1L = V1L({g, λt, yL,R})− V1L({0, 0, 0}). (B.3)

We can rewrite the subtracted potential as

V̄1L = (−1)F
2

∫ m∗

0

d4kE
(2π)4 ln

[
k2
E +m2

k2
E +m2

0

]

= (−1)F
2

∫ m∗

0

d4kE
(2π)4 ln

[
1 + δm2

k2
E +m2

0

]

= (−1)F
2

∫ m∗

0

d4kE
(2π)4

δm2

k2
E +m2

0
+ . . . ,

(B.4)

– 33 –



J
H
E
P
0
8
(
2
0
2
3
)
0
1
2

where δm2 is the mixing-induced correction to the square of the particle mass, and m0 is
the dilaton-independent part of the mass. The expression (B.4) indeed corresponds to the
series of diagrams with increasing number of mixing insertions that we are looking for. In
the specific case that we consider here, there are no bare masses independent of the dilaton,
thus m0 = 0. In general, however, m0 can be non-vanishing if we consider an elementary
sector with a non-zero mass coupled to the CFT.

The potential (B.4) also has a very similar form to the dilaton potential obtained using
the 5D dual picture [109], where the sharp momentum cutoff at m∗ is substituted with an
exponential suppression by a form-factor inside of the integral.

C Masses of the Goldstone bosons

In the parametrization used in the main text of this paper, the four Goldstone bosons Πα,
including the Higgs, can be combined into one field Σ, formally transforming as an SO(5)
quintuplet

Σ = f

{
~ΠT

Π sin Π
f
, cos Π

f

}
. (C.1)

Then |∂µΣ|2 can be used to derive the kinetic terms of the Goldstones which turn out
to be non-canonically normalized. To get rid of the latter complication, we introduce an
auxilliary field σ to complete the quadruplet of Goldstones to a full linear SO(5) multiplet
Σ̂ given by

Σ̂ = {Σ1,Σ2,Σ3,Σ4,Σ5} = σ

{
~ΠT

Π sin Π
f
, cos Π

f

}
. (C.2)

The kinetic terms of Σ̂i are now canonical and the scalar potential can be directly used to
compute the mass spectrum. The scalar potential for the linearly realized fields, including
Goldstones, can be obtained from the Higgs potential eq. (2.1) using the substitution

sin2 Π
f
→ Σ̂2

α/Σ̂2
i , α = 1 . . . 4, i = 1 . . . 5. (C.3)

We also assume the appropriate potential to ensure 〈σ〉 = (gχ/g∗)〈χ〉, for instance

Vσ = −1
2g

2
χχ

2|Σ̂|2 + 1
4g

2
∗|Σ̂|4. (C.4)

In the minimum of the potential of the heavy auxiliary field σ = |Σ̂|, V ′σ = 0, one then
finds the Goldstones mass

m2
G = g2

∗
g2
χχ

2 2(α+ 2β sin2 vCH/f) cos2 vCH/f. (C.5)
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