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1. Introduction

Superstring theories offer ultraviolet completions of supersymmetric gauge theories and supergravity in D < 10
spacetime dimensions (with D = 11 and D = 12 in closely related M- and F-theory, respectively). Since gauge and
gravity supermultiplets are realized through the massless vibration modes of open and closed superstrings, respectively,
their interactions are naturally unified: superstring scattering amplitudes are computed from a topological expansion in
terms of random fluctuating surfaces dubbed worldsheets that automatically incorporate the interplay of open and closed
strings via splitting and joining.

The worldsheet origin of string amplitudes is a rich source of structure and information. First, it realizes the connection
between gauge theories and gravity through the Bern-Carrasco-Johansson (BC]) double copy in a geometrically intuitive
manner. Second, the computation of string-corrections to field-theory amplitudes from moduli spaces of punctured
worldsheets reveals intriguing mathematical structures and cross-fertilizes with string dualities. In order to bring these
appealing implications of string amplitudes to their full fruition, it is important to have detailed control over their explicit
form and hence efficient methods to organize their computation.

The worldsheet degrees of freedom underlying superstring theories and their amplitudes admit a variety of formula-
tions. The more recent pure spinor formalism developed by Berkovits since the year 2000 [1-3] led to the first manifestly
super-Poincaré invariant quantization of the superstring. The more traditional Ramond-Neveu-Schwarz (RNS) [4-7] and
Green-Schwarz (GS) [8,9] formalisms are for instance described in textbooks on string theory including [10-17] and
differ in the implementation of worldsheet and spacetime supersymmetry. The equivalence of these formalisms is widely
expected based on [18-20] and explicitly confirmed for leading orders in string perturbation theory but in general a
subject of ongoing research.

This is a comprehensive review of the state of the art regarding the computation of massless superstring tree-level
amplitudes in Minkowski spacetime with the pure spinor formalism. We will illustrate in detail how the manifest
spacetime supersymmetry of the pure spinor formalism simplifies computations and efficiently organizes the information
on the external gauge and gravity multiplets. The main results of this review include compact expressions for superstring
tree-level amplitudes with an arbitrary number of massless external states revealed by a pure spinor computation in
2011 [21]. These expressions will be shown to elegantly resonate with a web of double-copy relations between a wide
range of string- and field theories as well as number-theoretic properties of the low-energy expansion.

1.1. Summary of the main results

Throughout this review, the topics are presented in an order which emphasizes completeness rather than brevity. As
such, the topics are developed to a depth higher than what is usually necessary for a brief application of certain parts of
the formalism.! This is unavoidable in a comprehensive review but it can be mitigated by jumping to the topic of interest
and choosing to pick up the minimal background as one goes along. This section aims to give an overview of the main
results in this review along with pointers that facilitate the identification of key passages on a given topic. References to
original work can be found in the main text.

1 We welcome the readers’ help in spotting typos or technical mistakes. Every correction in the arXiv version that is firstly brought to our
attention will be rewarded with 20 Euro Cent per numbered equation, to be paid in cash during the next in-person encounter with one of the
authors.
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1.1.1. Basics of the pure spinor formalism
We start by summarizing the worldsheet variables in the (minimal)? pure spinor formalism in ten-dimensional
Minkowski spacetime, based on selected aspects of Section 3. Center stage is taken by the worldsheet action in (3.50)

1 1. _ _
Sps = — / d*z (Eaxmaxm + P, 060% — wﬁk"‘) (1.1)
v

with 9 = % = % and d’z = %dz A dz, and we shall now give a brief characterization of its main ingredients. Just like
the bosonic string and the RNS or GS formulation of the superstring, the embedding coordinates X™ (with vector indices
m,n,...=0,1,...,9)enter (1.1) as free worldsheet bosons. In parallel to Siegel’s reformulation of the GS formalism [22],
the matter sector of the pure spinor worldsheet action (1.1) also features a pair of anticommuting spacetime spinors
(pa, 0%) of holomorphic conformal weights h, = 1 and hy = 0 (with Weyl-spinor indices o, 8,... = 1,2,...,16 of
50(1,9)).

The main characteristic of the pure spinor formalism is the pair of commuting ghost variables (w,, A*) of holomorphic
conformal weights h,, = 1 and h, = 0. They are spacetime spinors in contradistinction to the anticommuting scalar
(b, c)-system of bosonic strings or RNS superstrings. Cancellation of conformal anomalies and nilpotency of the BRST
charge Qgrst below requires A% to obey the pure spinor constraint

(M/m)v) =0 s QBRST = %dz )\ada s doz = Poa — %3Xm()/m9)a - %(Qymag)(ymg)a (12)

with 16 x 16 Pauli matrices VJZ}; = yf’;‘x of SO(1, 9). Further details on the worldsheet ghosts and their contributions N™
to the Lorentz currents can be found in Section 3.3.

We have only displayed the left-moving spacetime spinors in (1.1). The pure spinor formulation of type II superstrings
involves right-moving counterparts (pg, %) and (g, A%) with 9 in the place of 9 in the action. The Weyl-spinor indices
« are of the same (opposite) chirality as the indices « of the left-movers in (1.1) in case of the type IIB (type IIA) theory.
One can also construct a pure spinor version of heterotic strings by incorporating right-moving bosons for compactified
16 extra dimensions into (1.1) instead of (pg, 8%) and (w3, AY), see Section 7.5 for a brief discussion of its amplitudes.

1.1.2. The prescription for disk amplitudes

The physical spectrum of the pure spinor superstring is constructed from the cohomology of the BRST charge in (1.2). As
usual in worldsheet approaches to string theories, physical states are associated with vertex operators V and U, conformal
primaries of weight hy = 0 and hy = 1 in the BRST cohomology. For massless states of the open superstring, the integrated
and unintegrated representatives of the vertex operators are

V=214, /dz U= /dz (060%Aa + AnIT™ + dy W + SN F™) (1.3)

see the discussion around (3.60) and (3.63). They combine the worldsheet variables in (1.1), (1.2) and [T™ = 3X™ +
%(9)/’“80) with linearized superfields A,, A™, W*, F™ of ten-dimensional super Yang-Mills (SYM) reviewed in Section 2,
depending on the worldsheet variables X™ and 6“ but not on their derivatives.

The main subject of this review are the superstring disk amplitudes obtained from the vertex operators in (1.3) through
the prescription [1]°

A(1,2,...,n)= / dzy dzs ... dzy 3 (V1(21)U2(22)U3(23). . .Un—2(Z0—2)Vn-1(Za—1)Va(za))) , (1.4)
—00<Zj<Zj;1<00

see Section 3.4.2. The integration domain informally refers to an ordering of the vertex-operator insertions on the disk
boundary parameterized by —oco < z; < z; < --- < z; < oo which is associated with the Chan-Paton trace in the
cyclic ordering Tr(t*1t% ...t%). The correlators ((...)) arise from the path integral over the worldsheet variables, and
the contributions from their non-zero modes can be evaluated from the OPEs encoded by (1.1). The zero modes of the
variables A%, 8% with conformal weight hy = h, = 0 require a separate prescription

((Ay™0) Ay "0)AyPO)OyYmnpf)) = 2880 (1.5)

which automatically fixes zero-mode correlators of arbitrary tensor contractions of A*A#A¥6%10%20%9%49% via simple
group-theoretic considerations (see also [23]). Consistency conditions on (1.4) and the extraction of three-point compo-
nent results for external gluons and gluinos are reviewed in detail in Section 3.4. Massless n-point tree-level amplitudes
of type II superstrings and heterotic strings are obtained by integrating double copies of the correlator in (1.4) over the
sphere, see Sections 7.2 and 7.5.

2 See [3] for the “non-minimal” pure spinor formalism with additional worldsheet variables.
3 The representation (1.4) of superstring disk amplitudes can be derived from the gauge-fixing procedure of [23].

5
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1.1.3. The multiparticle formalism

The driving force for the simplification of the n-point disk amplitude (1.4) is the organization of the OPEs among
the vertex operators in (1.3) through multiparticle superfields. The local incarnations Ag,AIT, Wg, Fi" of multiparticle
superfields (with words or ordered sequences P = pip,... in external-state labels p;) are obtained from recursions
inspired by nested OPEs of vertex operators and an analysis of their equations of motion. The construction of Section 4.1.6

in so-called BCJ gauge leads to multiparticle superfields with generalized Jacobi identities under permutations of P, e.g.
Ar1n2 = _AT1 ) ATB = _Aglm’ ATza +Ar2n31 +A5n12 =0. (1.6)

More generally, the symmetries of AT,;, and all the other local multiparticle superfields in BCJ gauge are those of
contracted structure constants f@1%bfbascfcasd  corresponding to the half-ladder graph

az as aq

ay

Accordingly, the multiparticle superfields inherit a diagrammatic interpretation that resonates with the BC] duality
between color and kinematics in gauge theories and can be described in a combinatorial framework based on planar
binary trees, see Section 4.3.

By dressing the Ag,Am, Wg, Ff'" with the propagators of the associated cubic-vertex diagrams, one is led to non-
local superfields or Berends-Giele currents .Az, AR, Wi, Fi in B(] gauge. This is an alternative to the construction of
Berends-Giele currents in Lorenz gauge via perturbiner methods [24-27]: the wave equations (4.91) of ten-dimensional
SYM encode recursions for Lorenz-gauge currents such as

1

_ Z[A];l'"p(kjﬂmp “An ) AL (v e — (12, < j4+1.. p)] (1.7)

A;Z"'p = 12
<12...p

j=1
with k= ki +kj+ - - - and similar ones for AJ, Wy and 7", see (4.94). These recursions terminate with the linearized

superfields in the vertex operators (1.3) in the single-particle case, e.g. A, = Al . Berends-Giele currents in Lorenz and
B(J gauge obey the same multiparticle equations of motion (4.96) such as

p—1
DOCA;‘Z...p + DﬂA;Z...p _ VC%A;Z...p + Z(Af“‘fﬂﬁﬂ"'p _ A{J{+1»<»IJA;2~J) (1.8)

j=1
and, through their BRST-invariant combinations to be reviewed in the next sections, both give rise to SYM and superstring
tree amplitudes.

1.1.4. SYM tree-level amplitudes

Multiparticle superfields turned out to be invaluable to determine tree and loop amplitudes in string and field theory
from first principles including locality and BRST invariance. As a simple manifestation thereof, color-ordered n-point tree
amplitudes of ten-dimensional SYM obey the compact formula presented in (5.13),

n—2
A(1,2,...,n)= Z(MHHJM]'-%—]...n—an) . (1.9)
j=1
The My, ; may be viewed as non-local multiparticle vertex operators defined by the spinorial Berends-Giele currents in
(1.7) and whose BRST variation follows from the multiparticle equations of motion (1.8)
p—1
Mp = 2%AF QerstM12.p = ZMlz“.ijﬂ.np . (1.10)
j=1
Since the superfields in the zero-mode bracket of (1.9) are easily checked to be BRST invariant via (1.10), the component
amplitudes following from the zero-mode prescription (1.5) are guaranteed to be gauge invariant and supersymmetric.
An efficient Berends-Giele organization of the component amplitudes is described in Section 5.2.2 which follows from
(1.9) and a combination of Lorenz and Harnad-Shnider gauge for A”. In particular, this implies the bosonic components
of (1.9) to reproduce the Berends-Giele formula [28] for n-gluon tree amplitudes.

The superspace formula (1.9) is a convenient starting point to prove the Kleiss-Kuijf (KK) and BCJ relations between
SYM tree amplitudes in different color orderings, see Sections 5.2.4 and 5.2.5. The KK relations [29] can be written
as A(P wQ,n) = 0V P,Q # @ with the shuffle operation defined in (C.5) and follow from the shuffle properties
Mpug = 0V P,Q # @ of the currents in (1.10). The B(] relations [30] take the form A({P,Q},n) = 0V P,Q # 0
with the so-called S-bracket {-, -} defined in (4.141) and are derived from multiparticle superfields in BC] gauge using the
vanishing of BRST-exact expressions under the zero-mode prescription (1.5), (Q(...)) = 0.

6
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1.1.5. Superstring disk amplitudes
As a key result of this review, color-ordered superstring disk amplitudes A(P) with any number of external gauge
multiplets are reduced to SYM tree amplitudes A(Q) in a BCJ basis of color orderings Q,

A(1LP.n—1,me)= Y F%)A1,Q.n—1,n). (1.11)
Q€Sp-3

In this simplified form of the string amplitudes, the entire «’-dependence resides in the disk integrals Fp¢ (indexed
by permutations P, Q of legs 2, 3,...,n—2) which are defined in (6.51) and depend on external momenta. The SYM
amplitudes A(Q) in turn carry the complete polarization dependence of (1.11) for any combination of external bosons
and fermions. Remarkably, the superspace structure of string tree amplitudes is captured by field-theory building blocks
A(Q) and separated from the string effects in the scalar disk integrals FpC.

As detailed in Sections 6.1 to 6.3, the derivation of (1.11) starts from the opening line (1.4) and relies on the local
multiparticle superfields to perform the OPEs among the vertex operators. After integration-by-parts reduction of the
disk integrals, the SYM amplitudes are identified through their superspace representation (1.9) in BCJ gauge.

The expression (1.11) for n-point superstring disk amplitudes turns out to line up with the Kawai-Lewellen-Tye
(KLT) formula for supergravity tree amplitudes M2’ once the integrals Fp¢(«’) are rewritten in a Parke-Taylor basis
of Z-integrals defined in (6.62):

ME® =— " A(1,Q.n,n—1)S(QIR)MA(1,R,n—1,n) (1.12)
Q.ReS;—3
< AP)=-— Y Z(P|1,Q.n,n—1)S(QIR:A(1, R, n—1,n).
Q.ReS;_3

The entries of the (n—3)! x (n—3)! KLT kernel S(Q|R), are degree-(n—3) polynomials in k; - kj, see (4.159). Since the
KLT formula for M&™" reflects the tree-level double copy of supergravity as a square of SYM, we interpret (1.12) as a
field-theory double-copy construction of the open superstring from SYM and disk integrals Z(P|Q).

As detailed in Section 6.4.3, the disk integrals Z(P|Q) at fixed color ordering P obey field-theory KK and B(] relations
between different Parke-Taylor integrands specified by Q. By these relations and their appearance in a field-theory KLT
relation (1.12), the Z(P|Q) are proposed to furnish (single-trace) tree-level amplitudes in a ultraviolet-completed theory
of bi-colored scalars dubbed Z-theory. This is furthermore supported by the emergence of doubly-partial amplitudes of
bi-adjoint scalars in the field-theory limit

lim Z(P|Q) = m(P|Q), (1.13)
a’—>0
see Section 6.4.4 and in particular (6.80) for the definition of m(P|Q).

1.1.6. Color-kinematics duality and double copy

Another main result of Section 6 is the manifestly local (n—2)!-term representation (6.64) of superstring disk
amplitudes. By the field-theory limit (1.13) of the disk integrals therein, we obtain SYM amplitudes from a sum over
permutations Q of legs 2, 3,...,n—1,

AP)= " m(P|1,Q, n)Nyqn- (1.14)

QeSy—2
The kinematic factors Ny, are trilinears in local multiparticle superfields A” in BCJ gauge,
Niponain = (=D VipVaVar) . Ve = A%A7. (1.15)

The appearance of Ny, in (1.14) identifies them as BC] master numerators that manifest the color-kinematics duality
of SYM at all multiplicities for any combination of external bosons and fermions. More precisely, by the discussion in
Section 7.1, the kinematic numerators in (1.15) are associated with the half-ladder diagrams in Fig. 8 and generate all
other cubic-diagram numerators by kinematic Jacobi identities.

In the same way as the open superstring manifests the color-kinematics duality of n-point SYM tree amplitudes,
Section 7.2.3 reviews the derivation of the gravitational double copy in its cubic-diagram formulation from closed
superstrings,

ME™ = 3" Nypm(1, P, 11, Q, mNyqpn (1.16)
P,QeSp—

which is equivalent to the KLT formula for supergravity tree amplitudes M5 in (1.12). In both (1.14) and (1.16), the
key to realize the BCJ duality and double copy with manifest locality is the simplification of the correlator in (1.4) to the
(n—2)!-term combination (7.64) of local multiparticle superfields and Parke-Taylor factors. Moreover, the construction
relies on doubly-partial amplitudes m(P|Q) from the field-theory limit (1.13) of disk integrals and closely related sphere
integrals (7.61).
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Similarly, we shall construct explicit BC] numerators for the non-linear sigma model (NLSM) of Goldstone bosons in
Section 7.4 reflected in the amplitude representation

Ausw(P)=1"7 Y m(P|1,Q, n)S(QIQ); (1.17)

QeSn—

analogous to (1.14), with S(Q|Q); the diagonal entries of the KLT kernel in (1.12). Section 7.5 in turn is dedicated to
double-copy representations of Einstein-Yang-Mills tree amplitudes similar to (1.16) that are derived from the heterotic
version of the pure spinor superstring.

1.1.7. o’-expansions of open- and closed-superstring tree amplitudes
The low-energy expansion of the n-point disk integrals Fp¢ and Z(P|Q) in the open-string amplitudes (1.11) and (1.12)
yields infinite series in dimensionless Mandelstam invariants «'k;- k; with multiple zeta values (MZVs) in their coefficients,

Cnyng,my = Z kK Mk™ k™, ngng,...,n €N, onp > 2. (1.18)

0<kq<ky<---<ky

After a brief review of mathematical background in Section 8.2, the f-alphabet description of (motivic) MZVs is shown
to determine the entire o’-expansion from the coefficients of the Riemann zeta values ¢,, (i.e. (1.18) at depth r = 1), see
(8.38). This reflects a kind of closure of disk integrals under the motivic coaction A of MZVs which has also been observed
in other areas of high-energy physics and can be expressed in terms of another KLT formula (8.41) for AZ(P|Q).

On top of these structural results, we review two recursive methods to explicitly determine the polynomials in k; - k;
within the «’-expansion of n-point disk integrals. In Section 8.5, matrix representations of the Drinfeld associator relate
the (n—1)-point and n-point versions of the Fp? basis in (1.11). Section 8.6 is dedicated to a Berends-Giele recursion for
the Z(P|Q) integrals in (1.12) which is generated by a non-linear field equation of bi-colored scalars in o’-expanded form
and supports the interpretation of Z(P|Q) as Z-theory amplitudes.

The o’-expansion of closed-string tree amplitudes only features the subclass of MZVs obtained from the so-called
“single-valued” map sv. Even though the notion of single-valued MZVs is only well-defined in a motivic setting, we
informally write the main result of Section 8.7.1 as

M=oy == Y A1, P, n,n—1)S(P|Q)1svFo"(e)A(1, R, n—1,n). (1.19)
P,Q,ReS;_3

The single-valued map acts on the MZVs order by order in «’, for instance sv &, = 0 and sv {11 = 2¢2¢4+1 at depth one,
but leaves the external polarizations and momenta inert. Similar to the expression (1.11) for open-superstring amplitudes,
the o’-dependence of (1.19) is isolated in a scalar quantity svFo®(a’) while all the superfield-polarizations are carried
by SYM amplitudes A(P) and A(R). With the SYM amplitudes in (1.9) one can access all multiplet components of type
IIA and IIB amplitudes via (1.19). Moreover, the low-energy expansion of (1.19) can be made fully explicit through the
single-valued map of disk integrals Fo® within the reach of the expansion methods in Sections 8.5 and 8.6.

Note that (1.19) only applies to closed-string amplitudes on the sphere. Closed-string amplitudes on the disk in turn
are subleading in the string coupling and also involve MZVs beyond the single-valued ones in the «’-expansion. Mixed
amplitudes involving open and closed strings on the disk were studied from the perspective of the pure spinor formalism
in [31-33] and can be expressed in terms of those of only open-string insertions on the disk boundary [34,35].

1.1.8. A web of field-theory double copies for string amplitudes

There is a steadily growing web of double-copy relations among field theories of different spins [36-38] which can
be formulated in terms of the KLT formula (1.12) with kernel S(P|Q);. In case of supergravity and Einstein-Yang-Mills,
such double-copy relations can be derived from the string-theory KLT formula reviewed in Section 7.2.1. It expresses
closed-string tree-level amplitudes via bilinears in color-ordered open-string tree amplitudes with an «’-dependent kernel
S,/(P]Q); that depends trigonometrically on the external momenta.

The representations in (1.12) and (1.19) for open- and closed-string tree-level amplitudes in turn involve the field-
theory KLT kernel S(P|Q); = lim,/_, Se/(P|Q); and are still exact in «’. The emergence of a field-theory double-copy in a
string-theory context can be traced back to the KLT form (6.73) of the n-point correlation function of vertex operators in
the pure spinor formalism. This correlator including the field-theory KLT kernel therein also enters the tree amplitudes of
type Il and heterotic superstrings upon pairing with right movers and for instance explains the factor of S(P|Q); in (1.19).
The latter can in fact be written as

M= — 3" A(1,P,n,n—1)S(P|Q)1sv.A(1,Q, n—1,n). (1.20)
P,Q€S,_3

identifying type II superstrings as a field-theory double copy of SYM with the single-valued open superstring. Field-theory
KLT formulae require BCJ relations of both double-copy constituents as a consistency condition which is met for the
sv.A(Q) in (1.20) to all orders in «’, see the discussion in Section 8.4.1. As a commonality of (1.20) with the KLT form
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(1.12) of open-superstring amplitudes, SYM building blocks are double-copied through the field-theory KLT kernel with
one string-theoretic object — disk integrals or single-valued open-superstring amplitudes.
Also for heterotic strings reviewed in Section 7.5, n-point tree amplitudes obey a field-theory KLT formula

ME == 3" Apppyusgs(1, P, n=1)S(PIQ)1sv A1, Q, n—1,n) (1.21)
P,QeSp—3

with one quantum-field-theory component ;\(DF)z +YM4o3 and again sv A(Q) as a string-theoretic component. However, the
Lagrangian and tree amplitudes of the (DF)? +YM+¢? field theory are more complicated than those of SYM by the lack of
supersymmetry and the two types of massive internal states, see Section 7.5.3. On the basis of (1.21), the tree amplitudes
of heterotic strings with external gauge and gravity supermultiplets reveal a field-theory double copy of (DF)?> + YM + ¢
with single-valued open superstrings.

Together with similar field-theory KLT formulae (8.108) for open- and closed-string amplitudes of the bosonic theories,
we arrive at the web of double-copy relations summarized in Table 4: tree amplitudes in various perturbative string
theories are intertwined with field-theory amplitudes and string-theoretic building blocks that share the KK and BCJ
relations of gauge theories.

1.1.9. Example of a possible shortcut

The above summary of selected main results in this review together with the pointers to equations and sections may
offer shortcuts to extract the key information on specific topics of interest. For instance, the expression (1.9) for SYM tree
amplitudes can already be defined through the Berends-Giele currents Mp in Lorenz gauge. In this case, the consistency
conditions and component evaluations can already be understood from the non-linear theory of ten-dimensional SYM
using only non-local superfields, i.e. independently of string-theory methods and the local multiparticle superfields in BCJ
gauge in Section 4.1.

However, important aspects such as the BC] amplitude relations or the kinematic Jacobi identities among SYM
numerators require the notions of local multiparticle superfields and BCJ gauge as well as the associated formalism.
Therefore the theory of multiparticle superfields is given an exhaustive discussion in Section 4 before their applications
in scattering amplitudes. Here and in other contexts, the reader should be aware that the years of development led to a
healthy growth in the amount of connections between a variety of subjects which caused the review to grow beyond the
page limits envisioned in earlier stages.

1.2. Related topics beyond the scope of this review

There is a variety of related topics that fruitfully resonate with superstring tree amplitudes but could not be covered
in this review. As a small sample, we shall make a few comments on the Cachazo-He-Yuan (CHY) formalism, string
field theory, the hybrid formalism and strings in AdS spacetimes here, and a more detailed account on loop-level string
amplitudes covering references up to fall 2022 can be found in Section 9.

1.2.1. The CHY formalism

An alternative worldsheet approach to double-copy representations of field-theory amplitudes is offered by the CHY
formalism [39-41]. It may be viewed as an uplift of the Witten-RSV [42,43] and Cachazo-Skinner [44] formulae to generic
spacetime dimensions D # 4 and is underpinned by ambitwistor string theories in RNS [45,46] and pure spinor [47,48]
formulations. The reader is referred to the review [49] and the white paper [38] for the wealth of developments in the
CHY formalism and its interplay with double copy and superstring amplitudes.

CHY formulae directly compute field-theory amplitudes from moduli-space integrals for punctured Riemann surfaces
similar to those in superstring amplitudes. These CHY integrals are completely localized via so-called scattering equations
and, in case of Parke-Taylor integrands seen in the main formulae for superstring tree amplitudes such as (1.12), coincide
with the field-theory limits of disk and sphere integrals, see for instance (1.13). In fact, our main result in (6.73) or (7.64)
for the n-point correlation function of massless vertex operators in the pure spinor superstring can be readily exported
to the pure spinor version of the ambitwistor string [50].

1.2.2. String field theory

Perturbative string theories admit an alternative formulation in terms of string field theory where scattering amplitudes
including their exact «’-dependence are computed from Feynman-type rules for a string field. The wavefunction of the
string field depends on the zero and non-zero modes of the worldsheet variables and may guide an extension of the
multiparticle formalism for massless vertex operators to the entire string spectrum. Recent lecture notes on string field
theory can for instance be found in [51-53].

On the one hand, string field theory may face more technical complications in a detailed evaluation of string amplitudes
than the worldsheet techniques described in this work. On the other hand, string field theory is widely considered
more promising to describe non-perturbative features of superstring theory including duality symmetries or background
independence. In particular, string field theory turned out to be a successful approach to tachyon condensation [54-58]
or mass renormalization [59-61] and is conjectured to provide an understanding of the AdS/CFT correspondence [62-65].
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1.2.3. The hybrid formalism and strings in AdS spacetimes

As an alternative to the RNS, GS and pure spinor descriptions of the superstring, the so-called hybrid formalism admits
manifestly SO(1, 3)- or SO(1, 5)-super-Poincaré invariant quantization. The hybrid formalism was constructed in the 90’s
from a series of field redefinitions in the RNS formalism to GS-like variables which manifest half- or quarter-maximal
spacetime supersymmetry [66-70].

Apart from manifestly supersymmetric amplitude computations in flat spacetime [71], a major appeal of the hybrid
formalism is its aptitude for the description of superstrings in AdS; x S* backgrounds [69] (also see [72] for AdS, x 5%). The
intricate physical-state conditions for the AdS; x S superstring are for instance discussed in [73-77], also see [78] for a
three-graviton amplitude. The hybrid formulation in [69] became a driving force for recent progress on type Il superstrings
in AdS3 xS3 x T4 spacetime with NS flux and clarified the gauge-theory dual under the AdS/CFT correspondence [76,79-81].

For superstrings in AdSs x S° with finite radius, the RNS formulation faces difficulties in incorporating Ramond flux
backgrounds. The pure spinor formalism in turn preserves the full PSU(2, 2|4) symmetry of the coset description of
AdSs x S° upon quantization [82], though a larger amount of computations has been performed in the GS formalism [83].
The reader is referred to the comprehensive review [84] and the white paper [85] for further references on both the
pure-spinor and GS approach to superstrings in AdSs x $°; also see the white paper [86] for progress on relating string
perturbation theory with conformal correlators through the AdS/CFT correspondence.

1.3. Conventions and notation

Ten-dimensional superspace. The ten-dimensional superspace coordinates are denoted {X™, 6%}, where m =0, ..., 9 are
the vector indices and @« = 1, ..., 16 denote the spinor indices of the Lorentz group SO(]Q). The spinor representation
¥

is based on the 16 x 16 Pauli matrices yo'j}i = yg; satisfying the Clifford algebra yo(fgy”) = 26™8}. In this review,

unless stated otherwise, the (anti)symmetrization of k indices does not include a factor of % For more details on gamma
matrices, see Appendix A.

Multiparticle index notation. In this review we will use a notation based on words to label multiparticle states. More
precisely, let N = {1, 2, 3, ...} be the alphabet of external-particle labels. We will consider the vector space generated
by linear combinations of words P = pip, ... with letters p; from the alphabet N. Capital letters from the Latin alphabet
are used to represent words (e.g. P = 1423) while their composing letters are represented in lower case (e.g. p = 3). The
length of a word P = p1p; ... py is denoted by |P| = k and it is given by the total number of letters contained in it. The
empty word is denoted by P = # and has length |P| = 0. The reversal of a word P = p1p;...px iS P = pi...p2p1. The
deconcatenation of a word P into two words X and Y is denoted by ) ,_,,, and it represents all the possible ways to
concatenate two words X and Y (including the empty word) such that XY = P. This operation will often be used when
the words are labels of other objects (usually superfields such as Mp), for instance

Z MxMy = MgM123 + M1Ma3 + M12M3 + M123My . (1.22)
XY=123

More definitions can be found in the Appendix C.
The multiparticle momentum kj' for a word P with letters i from massless particles (k; - k;) = 0 and its associated
Mandelstam invariant are given by

1

kp = krTl 4+ 4 kpmw , Sp = E(kp ~kp). (1.23)

For example kT, == kT' + kJ' + k5' and s123 = S12 + S13 + S23.
2. Super Yang-Mills in ten dimensions

Super Yang-Mills (SYM) theory in ten dimensions is the simplest among D-dimensional SYM theories; its spectrum
contains just the gluon and gluino, related by sixteen supercharges [87] that form a Majorana-Weyl spinor of SO(1, 9). It
is perhaps not a coincidence that it is also the theory relevant to the low-energy limit of superstring theory [88]. Its super-
Poincaré covariant formulation [89,90] is, in particular, one of the pillars supporting the pure spinor description of massless
states of the open superstring. And indeed the SYM superfields of [89,90] and their multiparticle generalization [91-93]
reviewed in Section 4 played an essential role in the calculation of the general n-point superstring disk amplitude. It is
therefore beneficial to start this review by giving a detailed account of this beautiful field theory.

On top of the original superfields of [89,90] we will define additional superfields of arbitrary mass dimension and
study their non-linear equations of motion. This framework simplifies the 6-expansions of multiparticle superfields as
detailed in Appendix F and the expressions of kinematic factors in higher-loop scattering amplitudes, including the D6R*
interaction in the superstring three-loop amplitude [94] as discussed in [95].

It is also well-known that the dimensional reduction of the simple ten-dimensional SYM theory gives rise to various
maximally supersymmetric Yang-Mills theories in lower dimensions, including the celebrated ' = 4 theory in D = 4 [87].
Therefore a better understanding of the D = 10 theory propagates to a variety of applications* to any lower dimension.

4 The dimensional reduction of the multiparticle superfields appears to be unexplored territory so far.
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2.1. Ten-dimensional SYM

To describe the gluon and gluino states of ten-dimensional SYM, one introduces Lie-algebra valued superfield
connections A, = Ay(X, ) and A, = A(X, 6), the supercovariant derivatives,
Vo =D, — A, , Vin = 0m — Ap, (2.1)

and imposes the constraint [89,90]

{Va. Vs} = ALY (2.2)
Note that 8, = 727, and the superspace derivative
Dy = —— + X(yma)0 (2.3)
o« = Sha 2 14 o Om .

satisfies {Dy, Dg} = ya";; om, see Appendix A.1 for our conventions for the 16 x 16 Pauli matrices Va"}a-

Non-linear equations of motion. The constraint (2.2) and the associated Bianchi identities imply the following non-linear
equations of motion [89,90]

{Var Vg} = Vs Vi, [Va: Vin] = —(ymW)a , (2.4)
{Va, WP} = %(y’"")aﬂan, [V, F™] = (Wmy ™),

where
Frn = —[Vm, Vo], W% = [V, W], (2.5)

and we recall that our conventions for (anti-)symmetrizing k indices do not contain factors of % e.g T = TH _ Tk,
The superfields F™ and W“ are the field strengths of the gluon and gluino, respectively.

Gauge invariance. The equations (2.4) are invariant under the infinitesimal gauge transformations of the superfield
connections under a Lie algebra-valued gauge parameter superfield 2 = £2(X, 0)

Sohy = [Va. 2], Sohn=[Vm, 2] (2.6)
which in turn induce the gauge transformations of their field-strengths

SoW® =[R2, W],  8oF™ =[R,F™],  soW: =[2,Ws]. (2.7)

Lemma 1. The equations (2.4) imply the (massless) Dirac and Yang—Mills equations,

Vap[Vm: WP =0, [Va, F™] =y {W*, WP} (2.8)

Proof. To obtain the Dirac equation, we use the constraint equation (2.2) to get

Vap [V W'] = [{Var, Vi) W] = =[{W7, V), V] = [{V, W'Y, Ve ]
1

1 1
_ _Z(ymn)aﬁ[ﬂvmn’ Vﬂ] — Z(ymnynwm)a _ Z(ymnymwn)a

9
= 5)/;73 [V, WP, (2.9)

where we used y™y" = 9y™, y’""ﬂﬂ = 0 and (2.5) to arrive at the last line, implying that yo%[vm, Wﬂ] = 0. To obtain
the Yang-Mills equation, one evaluates the anti-commutator of the Dirac equation with yr‘j“S Vs and uses the Bianchi (or
Jacobi) identity,

0 =12y s { Vs [Vim. WP} = v vib AWP, V5, Viml} + v vis [ Vi, (WP, V53]

1
= =1 Vaprmdso {WE, W7} 2y (v ™) [Vim, Fis]

= 8y, (W, W7} — 8[Vin, F™]. (2.10)
where to arrive in the last line we used the Clifford algebra (A.28) and y™yn = 10 to obtain —(y™y"ym)ss = 8y, and
used the trace relation (A.24) to get Tr(ymyny™) = 4(8585, — 85,85). O
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Non-linear equations of motion. The equations of motion (2.4) can also be rewritten as

{Vao, Mg} + (Vs Ao} = VogAm — {Aa, Ag), [Vo, Al = [0m, Ag] + (YmW)e ,
(% W) = 20/™), o [V, F™] = (W), 2.11)
After using the definitions (2.1) these become
{Das Ag} +{Dp, Aa} = VyphAm + {Aa, Ag}, [De, Am]l = [0m, Ag] + (Y W)y + [Ag, An],
{Dy, WP} = %(ym”)f]an + {Ay, WEY, [Dg, F™] = (WM™, + [Ag, F™], (2.12)

which will be used later in Section 4.2.3 to obtain the Berends-Giele recursions for superfields from a perturbiner
expansion. For later convenience, we use the collective notation K referring to any element of the set containing these
superfields,

K € {Ag, Am, W, F™} . (2.13)
2.2. Linearized superfields

The asymptotic states for external gauge multiplets in scattering amplitudes are addressed through the linearized
description of ten-dimensional SYM. This is obtained by discarding the quadratic terms from the equations of motion
(2.11) and yields

1
DW= 2™, "F,

o mn>

DaFrirm = Om(ymWie - (2.14)
In addition, the linearized version of the gauge transformations (2.6) are given by
3aAy = Dy 82, SoAm = 0ns2, (215)

and they will play a role in the definition of massless vertices in the pure spinor formalism in Section 3.4.

In the context of scattering amplitudes, the linearized superfields are labeled by natural numbers i. These numbers
are the single-particle labels keeping track of the ith external state taking part in the scattering process. In addition, the
linearized equations (2.14) describe the motion of a single SYM particle with label i. More abstractly, i can be thought of
being a letter from the alphabet of natural numbers. As we will discuss in Section 4, the concept of labeling superfields
with a single letter i has been generalized for multiparticle states labeled by words P, the multiparticle superfields. It will
then be shown in Section 5 that SYM scattering amplitudes involving multiple particles can be compactly written in terms
of these multiparticle superfields. And in Section 6 we will see how they are utilized in the computation of superstring
amplitudes.

2.2.1. 9-expansions

The linearized version of the gauge transformations (2.6) can be used to attain Harnad-Shnider gauge Q“AL = 0, where
the 6 dependence is known in terms of fermionic power-series expansions from [96-98]. After peeling off the dependence
of linearized superfields on the bosonic coordinates X™ via plane waves® e%* with on-shell momentum ki2 = 0, the
different orders in # alternate between gluino wave functions y;* and gluon polarization vectors ef", or their associated
linearized field strength

™ =kel — ki'el". (2.16)

More precisely,

1 1 1

AL(X,0) = {2 O¥m)a 3(9Vm) (0" Xi) — 5(91/ )* (0 YmnpO )f;™" (2.17)
1 D 1 p nedr ki-X
6*(9)/ )o (0 Vmnp0 K} (xivP0) + ﬁ(ey ) (OVimp® XOYP OIS + -+ 1 e,

+
"X, 0)= {e + (0™ xi) —f(GVmquprq (GanPG)k?(XfV”@)
+

(97/ M0N0y O —

480(93’ "0y KK (xiy10) + - } el

5 We absorb factors of i into momentum factors k™ in order to attain plane-wave factors of e¥X subject to the simple conversion 9,, — k;, instead
of the more conventional e*X with 8,, — ik,. The traditional conventions can be retrieved by replacing k, — ik, and sij — —s;j for Mandelstam
variables defined in (1.23).
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o o 1 o cmn 1 o 1,m n 1 q\o menp
WX, 0)={xi" + Z(Qymn) ™= Z(eymn) k' (xiy"0) — &(9%,1 (O vanp K"
1 1 .
+ 5607 O vanpO K (xiv"0) = 1555 (0 ) (O 0N Ovspg KT KISH + - } el

1 1
F™(X,0) = 1™ = K"Our™0) + g0, OIS — (07 O Cxi 10

(O, Ok KEET (07%,6) Oy WK iy 0)OY S, 0) + - - } efiX |

1 n 1
192 480
see (F.7) for the analogous #-expansions of the non-linear fields K in (2.13). Terms in the ellipsis involve six or higher
orders in 6 which will not be needed for the purpose of this review (the zero-mode prescription (1.5) annihilates
expressions with more than five 8s) but can be obtained in closed form via expressions such as [97]

A"(X,0) = {(cosh Joymel + (W)mq(eyqx,-)} ekiX (2.18)

where

1
omy = E(Oqune)k?. (2.19)
2.3. Superfields of higher mass dimension

As the loop order of SYM amplitudes increases so does the mass dimension of the associated kinematic factors. In the
pure spinor formalism the maximum mass dimension for a four-point amplitude using only the standard SYM superfields
in (2.13) is k?F* obtained from the pure spinor superspace expression ((Ay ™4 L) Ay W )FpnFyqeFrs) at genus two [99].

Therefore it would be convenient to define SYM superfields of higher mass dimension as compared to the standard ones
in K. The obvious candidates of the form 9,9, ... K are inadequate because the ordinary derivatives d, do not preserve
gauge covariance at a non-linear level probed by higher-point amplitudes. So, instead, the connection V,, in (2.1) guides
the subsequent definitions [95]

e A A (2.20)
F™--mklpg . — [le , Fm2~~mk|PCI] ,

where the vertical bar separates the antisymmetric pair of indices present in the recursion start FP,

2.3.1. Equations of motion at higher mass dimension

Similarly as in the standard SYM superfields of [89,90], the equations of motion for the superfields of higher mass
dimension (2.20) follow from [Vy, Vi] = —(ym W), and [Vin, V] = —Fpma together with Jacobi identities among iterated
brackets. In general, one can prove by induction that

{ Vo, W} = 20m)e"FP = Y {(wy )}, WY,

8(N)=R®S
R#0

[Va, FNIpq] = (WNPyay, — Z [(Wy)z, IFS“"’]. (2.21)

8(N)=R®S
RAD

The vector indices have been gathered to a multi-index N := nyn, ... n; with (Wy )N := (W™-™-1y™) and §(N) denotes
the deshuffle map defined in (C.10). The simplest examples of (2.21) are given by

{Var W} = 1(1p)"F™PT — {(Wy™)o, WP}, (2.22)
[Va, MY = (WlPy ), — [(Wy™),, FP],
[V, WP = 2(10)PE™PT — L (W™ y ), WP — {(Wy ™), WY — {(Wy ™)y, WP
[Va, F™P] = (WP ), — [(W™y")y, FP] = [(Wy ™), FUP] — [(Wy" ), F™P]
{Va, WP} = 2(yis)o” TS — (W™ yP)y, WP — {(WTy "), WP} — {(WTyP)y, WP}
— {(W"yP)o, WP} — (WyP)y, WP} — (Wy "), WP} — {(Wy™)y, WPP),

where we used §(mnp) =mnp RV +mn@p+mpRn+npRm+pRmn+n@ mp+me np + ¥ ® mnp. One can also
show inductively that the Dirac- and Yang-Mills equations (2.8) generalize as follows at higher mass dimension:

[va (ymWN)CZ] = Z [IFRmv (Vmws)a] ’ (2.23)

8(N)=R®S
R#A0
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[V, FVPT) = S D [FE P = Y W (PWO] (2.24)
5(N’g;5®5 5(N)=R®S

where FX" for non-empty R := Qq is defined as F&" := Fl9", For example,

[V, (y "W ] = [F™, (W) ], (2.25)
[va ()/mwnp)a] = []Fnlpr! (er)a] + []Fnr! (erp)a] + []Fpr! (%’Wn)a] ’
[V, P = [F"™, FP ] — (W, (W)} — {W, (yPW"),},

where we used the deshuffle map §(np) =np® P +np+pRn+ 0 np.
Note that the linearized versions of higher-mass dimension superfields are simply the outer products of derivatives

WT”L“'"I(”‘ — am1 amkwia an1~~~mk‘Pq — am1 3mkF_pq (2 26)
; - , ; - Ha .
where i denotes a single-particle label. In this case, the equations of motion (2.23) and (2.24) translate into

(Y™ W) =0,  9,F"™ =0. (2.27)

In case of an empty multi-index N — ¢, this includes the linearized Dirac and Yang-Mills equations 9,,(y™W;), = 0 and
ImF" = 0.

The higher-mass-dimension superfields obey further relations which can be derived from Jacobi identities of nested
(anti)commutators. For example, (2.5) determines their antisymmetrized components

pylmnzlnz..mef [W”}u"kﬂ, IF‘”]”Z] , (2.28)
Flmnzins..nelpg [IF~113~~«11k\Pq7 IF‘”]”Z] .

Similarly, more antisymmetrized indices give rise to nested commutators, for instance
wimme — [wh, Fmny (2.29)
wylmnplB — [Wmﬂ’ FP] + [Wnﬂ, FP™ + [Wpﬂ’ F™,
wylmnpalp — [[Wﬁ, F™, FP9] — [[Wﬂ, F™], FY] + [[Wﬂ, F™], )
+ [[WP, F™], F™] — [[WF, F™], F™P] + [[W7, FP7], F™]

with similar expressions at higher multiplicities.
Moreover, the definitions (2.20) via iterated commutators imply the generalized Jacobi identities of Section 4.1.5 on
the set of vector indices, of which first instances are

Flminel — g, gimnlipg 4 plpglimn _ g (2.30)
3. Pure spinor formalism and disk amplitudes

The discovery of the pure spinor formalism by Berkovits in [1] led to an efficient tool to compute superstring scattering
amplitudes in a manifestly super-Poincaré invariant manner. It combined numerous convenient aspects of the Ramond-
Neveu-Schwarz (RNS) [4-7] and Green-Schwarz (GS) formulations [8,9] in a way that allowed computations of various
amplitudes previously out of reach.

In this section we will review the basic aspects of the formalism with a view towards the prescription to compute
disk amplitudes in the superstring; multi-loop aspects will not be covered, but a path through the recent literature can
be found in Section 9. The presentation will follow the ICTP lectures by Berkovits [100] as well as a combination of the
PhD theses of the present authors [101,102].

We will now present some of the motivations that led to the development of the pure spinor formalism.

3.1. Difficulties with the covariant quantization of the Green-Schwarz string

Type I superstrings [103], type II superstrings [ 104] and heterotic strings [ 105] are supersymmetric in ten-dimensional
space-time and therefore it is natural to seek a manifestly 10d supersymmetric description of their worldsheet action.
This is traditionally achieved with the GS formalism [8,9] but unfortunately the classical action cannot be quantized while
maintaining Lorentz covariance.

The GS action for heterotic superstrings (or a chiral half of type II superstrings) in conformal gauge is given by [8]

Scs = 1 f d*z [lnmﬁm + 117,,1(9;/'"59) - 1ﬁm(e)ymae)] (3.1)
b4 2 4 4
1

- 1 _ 1 _
=— / d’z [Eax'"axm + 5 0Xn(0y"30) + g(eymae)(eymae)] ,
T
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where we employ supersymmetric momenta
1 — — 1 _
am = 3x™ + E(9;/"89), " =ax"+ 5(97/"39). (3.2)

The dependence of X™, 6 on the worldsheet coordinates z,z as well as the action of the gauge sector of the heterotic
string is suppressed. Throughout this review, the integration measure is d’z = dRez AdImz = 3dz A dz, and derivatives
are denoted by the shorthands 8 = 9, and 9 = d;. Holomorphic and antiholomorphic derivatives are related to those
w.r.t. worldsheet coordinates ¢® = %(z +Z)and o' = %(z —Z)viadp = 0+ 9 and 9; = 9 — 9. Following the standard
closed-string conventions, we are setting o’ = 2 in Sections 3 to 5 (but will reinstate it in Sections 6 to 8).5

Covariant quantization of (3.1) is hindered by a technical challenge: the conjugate momentum to 6¢

8Scs 1 1
=2 = O"— -(0y™0:0 0 3.3
Do ”8(809(){) 2( 4( Y 1 ))(Vm )0( ( )
depends on 6¢ itself, so it gives rise to the GS constraint d, = 0 with
1 1
duz = Pa — E(Hm - Z(eym819)>(ym9)a . (34)
The variable d, associated with the GS constraint satisfies the Poisson brackets
{du, dp} = iy T (35)

Due to the Virasoro constraint I7,,I7™ = 0, the relation (3.5) mixes first- and second-class types of constraints in a way
that is difficult to disentangle covariantly [106].” The standard way to deal with this situation is to go to the light-cone
gauge [103,104,108,109], where the two types of constraints can be treated separately and quantization can be achieved.
However, one obviously loses manifest Lorentz covariance in the process. These difficulties are universal to heterotic and
type Il string theories in their GS formulations.

3.2. Siegel’s reformulation of the Green-Schwarz formulation

In 1986 Siegel [22] proposed a new approach to deal with the covariant quantization of the GS formalism. His idea
was to treat the conjugate momenta for 6% as an independent variable, proposing the following action for the left-moving
variables

1 1 _ _
Ssiegel = — / d*z [2ax'"axm + pa89“:| (3.6)
T
in which the variable d,

dy = ! ax™ 19 M3 0 3.7
w = Pa = 5 (0X" + 2(07796)) (b (37)

was assumed to be independent and not a constraint (the difference between the expressions (3.4) and (3.7) for d, is
proportional to d0* and vanishes by the equations of motion for p,, ). In this way, the mixing (3.5) of first- and second-class
constraints of the GS formulation is not an issue in Siegel’s approach.

Lorentz c%trrents and energy-momentum tensor. The action (3.6) is easily checked to yield a Lorentz current of the spinor
variables

1
2= —o(pr™9) (3.8)

and a holomorphic component T := T(z) of the energy-momentum tensor
1 1
T = —Eaxmaxm — Ded6% = —517’”17," —d,060“. (3.9)

The supersymmetric momentum /7™ = 0X™ + %(9;/”‘89) is defined as in Section 3.1 though its right-moving counterpart

1" relevant for type Il superstrings departs from (3.2) and is defined with separate §-variables. For example, under the
Lorentz transformation with parameters &,

1 1
Ope = Jem(y™) I pg, 0% = Jeml(y™) 0", (3.10)

6 The a’-dependence of the worldsheet CFT and the associated scattering amplitudes can be reinstated based on dimensional analysis. For instance,
demanding worldsheet actions to be dimensionless and X™, +/«’ to have dimensions of a length, we retrieve Sgs — # [ d?>z0X™ Xy + - - -

7 Recall that first-class (second-class) constraints are defined by the vanishing (non-vanishing) of their Poisson bracket [107]. The constraint
IT? = 0 then implies that one half of the Poisson brackets (3.5) vanishes. We are grateful to Max Guillen for discussions on this point.

8 The double-colon notation for normal ordering of coincident operators, :A(z)B(z):, will be left implicit in this review.
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we define the variation of (3.6) to be 8Ssjegel = —% f %Em”gemn. The calculation using Noether’s method is straightforward

1 — 1 1 — 1 -
(SSSiegel = ; / dzz 5(Pa39a) = ; / dzz [ZEmn(Vm")fpﬁ%“ + Zpaa(emn(ym”G)”)}

1 1- 1 1 _
= ;/dzz [Zasmnpa(ym")aﬁeﬂ] = _;fdzzizm"aemn, (3.11)
where we used the antisymmetry (y™),? = —(y™)#,, see (A.16).

CFT. The action (3.6) defines a conformal field theory in which the holomorphic conformal weights of dX™, p, and 6“ are
hsx = h, = 1 and hy = 0, respectively. See [110] for an in-depth review of conformal field theory. The operator product
expansions (OPEs) among the variables in Sgjegel follow from standard path-integral methods [22]

B
X™(z,Z2)X"(w, W) ~ =™ In|z — w|?, Da(2)0P(w) ~ . f*w , (3.12)
do(2)dg(w) ~ —y‘”iim:m, do(z)[T™(w) ~ % (3.13)

where here and throughout this review, ~ indicates that regular terms as z — w are dropped on the right-hand side.

Vertex operator. Siegel also proposed a supersymmetric integrated vertex operator for massless open-string states labeled
by i as follows

U = [ de (36°A,(X,0) + A, O™ + dWECK.0) (3.14)
where {A!, A", W} are the linearized SYM superfields reviewed in Section 2.2.
3.2.1. Difficulties with Siegel’s approach

There are three types of difficulties with Siegel’s approach which will be addressed by the pure spinor formalism to
be introduced in Section 3.3 below.

Non-vanishing central charge. According to the bc-system calculations [4] with conformal weight h, = 1, each spinor

component of the fermionic pair (py, %) in the energy-momentum tensor (3.9) contributes —3(2h, — 124+1=-2to
the central charge for a total of 16 x (—2) = —32 while the X™ contribute 410 [12]. Therefore the central charge of the
energy-momentum tensor (3.9) is ¢x + ¢ = 10 — 32 = —22. This non-vanishing result for the central charge leads to

an anomaly when quantizing the theory, raising a first major difficulty in Siegel’s approach to the GS formalism.

Inequivalence of massless vertex operators. As emphasized in [1], the vertex operator (3.14) cannot reproduce the same
results for amplitudes computed in the RNS formalism as it does not satisfy the same OPEs. More explicitly, after using
the 6-expansions (2.17) of the linearized SYM superfields, the gluon vertex operator obtained from (3.14) is

Uf’gelﬁffn = /dz (e;.“axm - Z(PVmHQ)fr'nn +- ')el(i'X (3.15)

up to terms of order 6> in the ellipsis. The vertex operator for a gluon with polarization vector el in the RNS formalism,
on the other hand, is given by (see (7.3.25) in [10]°)

1 i\ ki
RS = /dz (eaXn = S 0™ iy ). (3.16)
where ™ are the RNS worldsheet spinors of conformal weight hy, = 1, and f} = ki el — kiel denotes the linearized
field strength of the gluon.

Comparing (3.16) with (3.15) one notices that the operator multiplying % frim is the Lorentz current for the fermionic
variables in each formalism,

1
o

1
Zins =~V Dhieg = — 5 (py™0). (3.17)
The difficulty arises because their OPEs are different. On the one hand, in the RNS formalism we get

§PIM Sk (w) — 89 Sk () - gmiaspIn

zZ—w (z—w)3’

Zins(2) Zpus(w) ~ (3.18)

‘9 The relative factors of the contributions from 9X;, and ¥™y" to (3.16) depart from most references for the following reason: for plane waves
X, the RNS vertex operator at superghost picture zero is proportional to e™(idXy, + (k - ¥)¥,), and our conventions including (3.16) are obtained
by rescaling k — —ik.
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where the double-pole term has coefficient +1 which can be identified with the level of the Kac-Moody current algebra.
On the other hand, using the OPE (3.12) we get

 Ipa(w)(y™yPd — yPy™g0P(w) 1Tr(y™yP7)

mn (z)zg’;;gel(w)

Siegel zZ—w 4 (z —w)?
splm yonlq — §4lm y;nlp smlggpin
_ (w) (w) 7 (3.19)
zZ—w (z —w)?

where in the second line we used y™yP? — Pdy™ = 2§y Md —2§M4y,MP 4 2§Md, P — 25MP ™ following from (A.32) and
Tr(y ™ ypq) = 16(83781'; — 8;”8[;) from (A.24).

The discrepancy in the coefficient of the double pole between (3.18) and (3.19) leads to analogous discrepancies in the
computations of gluon scattering amplitudes using the RNS vertex operators (3.16) and those of Siegel in (3.15).

Missing constraints. Finally in Siegel’s formulation (3.6) one would need to include an appropriate set of first-class
constraints to reproduce the superstring spectrum: the Virasoro constraint T and the kappa symmetry generator G of
the GS formalism

1
T= oM™y = dud6” . G = T"(ymd)" (3.20)

in terms of the supersymmetric momentum and GS constraints should certainly be elements of that set of constraints.
Even though there was a successful description of the superparticle using Siegel’s approach [111,112], the whole set of
constraints was never found for the superstring case. Nevertheless, Siegel’s idea was not lost as it was used by Berkovits
in his proposal for the pure spinor formalism [1].

3.3. Fundamentals of the pure spinor formalism

We have seen above that while Siegel’s approach circumvented the difficulties associated to the GS constraint, the
non-vanishing central charge cx 4 cp9 = —22 and the level 44 of the Lorentz current algebra presented serious challenges
to this new formulation. This motivated Berkovits to modify Siegel’s approach by introducing pure spinor ghost variables
contributing +22 to the central charge of the energy momentum tensor and —3 to the double pole in the OPE of the
Lorentz currents, thereby fixing the most pressing issues with the formulation by Siegel and leading to Berkovits’ pure
spinor formalism [1]. Let us briefly review below some of the central elements in this reformulation.

Lorentz currents for the ghosts. Berkovits’ idea was to modify the Lorentz currents (3.8) by the addition of a contribution
N™ coming from ghosts,

M™ = pmn g ™ (3.21)

The newly defined M™" would satisfy the same OPE (3.18) as in the RNS formalism if the contribution to the double pole
arising from the ghosts N™ had a coefficient —3,10

SPIMNTA( ) — AMNTIP (1) smlggpin
~ 3

N™(Z)NP(w) Fa— Z_wp’

X™(z)NP(w) ~ regular . (3.22)

This would fix the issue with the Lorentz current OPE and set the level of the overall Lorentz currents M™ to 4 —3 =1,
in lines with the level of the RNS currents in (3.18).

Energy-momentum tensor for the ghosts. To fix the problem with the non-vanishing central charge of the energy-
momentum tensor in Siegel’s approach, one would need these same ghosts to have a central charge ¢, = +22. Fortunately,
the right solution to both problems was found when a proposal for the BRST charge was put forward and the need for
pure spinors became evident.

The BRST operator. The next step in the line of reasoning which led to the pure spinor formalism is the proposal of the
BRST operator

QgrsT = 7{ dz \*(z)dy(z), (3.23)

where A% are bosonic spinors and the Siegel variable d, corresponding to the GS constraint has been defined in (3.7).
The BRST charge (3.23) must satisfy the consistency condition Qxe; = 0, otherwise the BRST charge itself would not be
invariant under a variation of the gauge constraint [12]. Using (3.23) and the OPE (3.13) we obtain

1 1
Qprst = E{QBRST, Qgrst} = 5 % dz (Ly™ M)y, . (3.24)

10 gee [113] for a discussion of how to derive these OPEs from the decomposition of N™ in terms of A* and w,.
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Therefore imposing that the BRST charge is nilpotent

Qpest =0 (3.25)
implies that the bosonic fields A* must satisfy the pure spinor constraints

Ay™A =0, (3.26)

which were first studied by Cartan from a geometrical perspective [114].

3.3.1. U(5) decompositions

The formalism discovered by Berkovits is based on the properties of the pure spinor A%, and it is important to identify
the number of degrees of freedom which survive the constraints (3.26). Naively, one could think that those ten constraints
associated with m = 0,1, ...,9 would imply a pure spinor of SO(1, 9) to have only 16 — 10 = 6 degrees of freedom.
However, this not the case; we will see below that a pure spinor has eleven degrees of freedom.

U(5) decomposition of pure spinors. In order to see that a pure spinor has eleven degrees of freedom, it is convenient to
Wick rotate SO(1, 9) to SO(10) and to break manifest SO(10) symmetry to its U(5) subgroup [1]. The explicit calculations
are shown in Appendix B, with the result that a Weyl spinor decomposes into irreducible U(5) representations as

A — (AT, Aap, A7) (3.27)

corresponding to 16 —» (1, 10, 5) with A5, = —Ag. The solution to the pure spinor constraint (3.26) further implies that

29 = ieabcdek A abcde=1 5 (3 28)
_8k+ bc/de » U, 6,4, €= 1,..., )

for A* # 0, where €% js totally antisymmetric with €'2**> = 1. In this language, Aq» parameterize a SO(10)/U(5) coset.

The pure spinor constraint therefore only eliminates the 5 > A% in favor of A™ € 1 and Aq, € 10. Hence, there remains
1+ 10 = 11 degrees of freedom in a pure spinor of SO(10).

Note that in absence of Wick rotation the A, parameterize the compact space SO(1,9)/(U(4) x R°) with R®
representing nine light-like boosts [18,115,116].

U(5) decomposition of the Lorenz currents. To solve the pure spinor constraint (3.26) it was convenient to break the
manifest SO(10) symmetry to its subgroup U(5), so a pure spinor is written in terms of U(5) = SU(5) ® U(1) variables.
Consequently, the Lorentz currents must also be decomposed to their irreducible U(5) representations

N™ — (n, n%, ngp, n), (3.29)

with corresponding U(1) charges (0,0, + 2, — 2) in a manner specified in Appendix B. In the remainder of this section,
these SU(5) Lorentz currents will be constructed out of elementary ghost variables to be denoted by s(z), ugy(z) and their
conjugate momenta t(z), v%?(z) such that the required condition (3.22) is met. To do this we will first state how the OPE
(3.22) decomposes under SO(10) — SU(5) ® U(1) given by (3.29):

Proposition 1. The SO(10)-covariant OPE of the Lorentz currents

BTN (w) — 8N (w) — SN (w) + 8" N (w) (smagmp — mpsna)

N™(z)NP(w) , (3.30)
zZ—w (z —w)?
implies that the SU(5) ® U(1) currents (n, nZ, nay, n%) satisfy the following OPEs:
Nab(2)nea(w) ~ regular, n(z)n(w) ~ regular, (3.31)

—3{ani(w) + 8ngy(w) — 287,87 n(w) L858 — scop

Nap(z)n(w) ~ , n(z)nf(w) ~ regular,

Z—w (z — w)?

—8En%(w) + 84nS(w) 8585 — 1878 2 ngy(w)
ng(z)ns(w)'v Z—w -3 Z—w) , ”(Z)nab(w)""i‘ﬁz_w ,

=8P (w) + 82n%(w) — 285n%(w 2 nob
nab(z)né(w) ~ d ( ) d ( ) 5% ( ) . n(z)nab(w) - _771 (w) ’

zZ—w V5z—w

—8Snga(w) + 8npg(w) + 285ngp(w) 3

Nap(z)nG(w) ~ b @ ; _— Sl , n(zn(w) ~ —m .

Proof. See Appendix B.2 and also [117,118]. O
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U(5) decomposition of spinors. There is one more consistency condition to be obeyed when constructing the U(5) Lorentz
currents. The pure spinor A must obviously transform as a spinor under the action of the total Lorentz current M™ in
(3.21),

4

Since the OPE of A* with the Lorentz currents X™" of (3.8) is regular we conclude that the pure spinor must satisfy (3.33)
given below. Given the solution of the pure spinor constraint (3.28) in U(5) variables we need to know the group-theoretic
decomposition of how a SO(10) spinor transforms in terms of its U(5) representations.

1 1
mazz[de%mﬂﬁxﬂ::%ﬂymxf. (3.32)

Proposition 2. The SO(10)-covariant transformation of a spinor
1™ 518 (w)

N™(z)A% ~N 3.33
@) ~ 5 s (333)
implies that the OPEs among the SU(5) representations (n, ng, Ngp, n®) and (A1, Aeg, AS) are given by
V5 1t (w) 1 Aea(w)
AT (w) ~ —— , A ~—— , 3.34
)t (w) ~ — 52— @halw) ~ ——= (334)
3 A
N2 (w) ~ 7z fwuz , ni(2)3* (w) ~ regular,
8GAp(w) — 8%Agp(w) 2 8 hea(w) 18IA(w) S A%w)
%z ~ _d’d c _ %% ; n% (2 ~ __b _ b ,
(2 Pheal) z—w) 5 (z—w) W)~ S T T a—w)
A A€
@ ) ~ 22 Nao@hd(w) ~ LX)
zZ—w zZ—w
nap(2)A(w) ~ regular, n(2)A*(w) ~ regular,
8[ﬂ8b])\'+ abcde)L
n( () ~ — 20 R () ~ — S 2tel).
zZ—w 2(z — w)

Proof. See Appendix B and also [117]. O

It turns out that all these OPEs can be reproduced from an action involving the ghost variables s(z), uq(z), t(z) and
v%(z) below that serve as the ingredients of the Lorentz currents (n, nZ, Nab, 1%) and pure spinor (A1, Ae, AS). The pure
spinor formalism crucially hinges on the existence of such a construction.

Before moving on, note the consistency between the OPE (3.33) and the simple pole of (3.30) arising from a twofold
application of the spinorial transformation. That is, if [N™, 1%] = 5(y™)?sA# then [NP9, [N™, 3*]] = 1(y™)*p(yP1)Ps2°
which implies,

1
[N, NP9], 2.7 = [N™, NP, A1) — NP0, IN™, 359 = [Py ™) — (y ™y P |47 (3.35)
= §M™P[N", A%] — S"[N™I, A%] — S™I[N™, A%] + STI[N™P, 2],

where we used the gamma-matrix identity yP9y™ — y™yPd = 2™y — 25MPy,MI — 2§Mdy "™ 4 25, ™P which follows
from the product relation (A.31). These OPEs play a crucial role in evaluating the CFT correlation functions for string
amplitudes and will for instance be used in the derivation of the multiparticle vertex operators at multiplicity two in
Section 4.1 [91,119].

3.3.2. The pure spinor ghosts

In this section we will display the solution to the above problems found by Berkovits with the introduction of a specific
U(5) parameterization of pure spinors, Lorentz currents and the energy-momentum tensor.

The action for the ghosts appearing in the pure spinor constraint is given by [1,18,100]

1 2 Y 1 abyy.
Si=5- dz(—atas—i—iv Buab>, ab=1,...,5, (3.36)

where t(z) and v®(z) are the conjugate momenta for s(z) and ugp(z). Furthermore, s(z) and t(z) are chiral bosons, so one
must impose their equations of motions by hand, ds = at = 0. The OPEs are given by

t(2)s(w) ~ In(z — w), (3.37)
8980 — 5asb
v“b(z)ucd(w) ~ c7d TdTe
zZ—Ww
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Matching group theory with CFT. The fundamental result allowing the construction of the pure spinor formalism is given
by the explicit construction of the U(5) Lorentz currents (n, nj, ngp, n®) and pure spinors (AT, Ag, A%) in terms of the
ghost variables s(z), t(z), v®(z) and ug(z) from the action (3.36). This has to be done in such a way as that their U(5)
OPlE]s among themselves satisfy all the group-theoretic relations (3.31) and (3.34). The solution found by Berkovits is given
by!! [1,18,100]

n= —%(%uabv“b + gat - gas) , A=e, (3.38)
nd = —upv™ + %Sgucdv“d, Aab = Ugb »
nt = —eSp, A= %eisfabweubcude»
Ny = —€° (Zauab — Ugpt — 2UgydS + Ugelipgv™ — %uabucdv“i) )

The unusual normalization of n(z) was chosen such that the coefficient of its double pole is —3. Straightforward but long
calculations show that their OPEs among themselves reproduce all OPEs in (3.31) and (3.34), provided that the ghost
variables s(z), t(z), v®®(z) and ug,(z) satisfy the OPEs (3.37). For instance, two sample calculations are

n(z)n®(w) = %(%Ufg(Z)vfg(Z) + gat(z) - gas(l))es(“’)v“b(w) .
- %%eS(w)Ufg(z)mw(w) 3 ?t’@“”v“%m
11 (—888b +08280) /5 1
~ =7 i gy’ N2 s(w), ab
\646 vfg(Z) 7 —w 5 Z_we v (w)
N inab(w)
- \/3 zZ—w
and
nA ) = _%eS(Z)GCdefg(mde(w)ufg(w) + ude(w)mlfg(w))efs(w (3.40)

2embfgufg(w) + ZGCde“bude(w))

zZ—w

7es(z) ( efs(w)

ash  sash
where we used the OPEs ug(z)v®(w) ~ W and 9t(z)e"™) ~ L") that follow from (3.37) and discarded non-
singular terms coming from Taylor expansions of fields at z around w. The above results reproduce two of the OPEs in
(3.31) and (3.34) that were obtained from a group-theoretic decomposition of the parental SO(10)-covariant OPEs. All the
other OPEs can be verified similarly. Therefore, even though the action for the ghosts S; is not manifestly Lorentz covariant,
all OPEs involving N™ and A* descend from manifestly SO(10)-covariant expressions. So the pure spinor formalism has
manifest Lorentz covariance.

Energy-momentum tensor. We will show that the central charge of the energy-momentum tensor for the ghosts
1
T, = Eua”auab + 9tds + 9%, (3.41)

following from the ghost action (3.36) is +22. This is indeed the required value for it to annihilate the total central charge
when added to Siegel’s matter variables. The derivation of (3.41) follows from Noether’s procedure using

1 — _
88, = — f d’z [9eTy(2) + 92T (7)] , (3.42)
2
under the conformal transformations of (v, ug, s, 3t) whose conformal weights are (1, 0), (0, 0), (1,0) and (0, 1),
respectively,
v = dev® + £9v® + zgv?, Sy = €dUgp + UG, , (3.43)
805 = 9£0s + £0%s + 9Eds + 9Es , 59t = edt + dedt + D5t + 79 ¢,

and requiring the Lorentz currents (n, nj, n® ng) to be primary fields [1,100] (see also [117] for the explicit calculations).

11 Note the sign flip of the Lorentz generators and of A with respect to [100]. This ensures that the conventions of Appendix B.2 are respected.

20



C.R. Mafra and O. Schlotterer Physics Reports 1020 (2023) 1-162

Proposition 3. The central charge of the energy-momentum tensor for the ghosts (3.41) is ¢; = 22.

Proof. The central charge is determined from the fourth-order pole in Ty (z)Tx(w) ~ % ---. There are two
contributions
1yt 1808500% ;) 10
—v(2)dugp(2)v (w)du =_—4d°5 , 3.44
7@ w)aw) = ;T = o (3.44)
— ‘l
ot(z)os(z)ot(w)os(w) = ——,
(z —w)

whose sum implies that ¢, = +22. O

Therefore, as there are no poles between the ghosts and matter variables, the total central charge of the energy-
momentum tensor in the pure spinor formalism

1 1
Tpg = —Eaxmax,,, — P d0% + 5v“”auab +9tds + 9%, (3.45)
vanishes; cx + ¢p9 + ¢, = 10 — 32 + 22 = 0. Therefore there will not be a conformal anomaly in the formalism.

3.3.3. The action of the pure spinor formalism

U(5)-covariant action. From the discussion above we learn that adding the pure spinor ghost action of (3.36) to the Siegel
action (3.6) implies that the energy-momentum tensor of the theory has vanishing central charge, as cx + ¢y = —22
from the matter variables is neutralized by ¢, = 22 from the ghosts. Furthermore, the Lorentz currents of the combined
actions have the same OPE as in the RNS formalism. Berkovits then proposed that the pure spinor formalism action for
the left-moving fields is given by [1]

Sps = % / &z (%axmﬁxm 4 P 30% — 3t3s + %v“bguab) . (3.46)
Spacetime supersymmetry transformations are generated by

0, = btz (pu + 507000 + 5, (7"OU(O00)) (3.47)
and their action on the variables in the pure spinor formalism with Weyl-spinor parameter &% is given by

8X™ = % (ey™0), 80 =e°, (348)

s = 5 (67 )+ (v 08y
8s = 8t = Sug, = $v™ = 0.
The action (3.46) is found to be supersymmetric by exploiting that the total derivatives
[ (eym®)aX™] — 8[(eym0)OX™] = (e¥m00)IX™ — (6ymd0)OX™
[ (eymO)Oy™30)] — 3[(eym0)(Oy™30)] = 3(eymd)(06y™30) (3.49)
from the variation of 3X™3X,, and the #?-contribution to dpg integrate to zero under d’z.

S0(10)-covariant action. The action (3.46) in the pure spinor formalism can be written covariantly as

1 2 1, o= — —
Sps = — [ d?z 5ax X + Pa00% — wy LY |, (3.50)
T
where w, is the conjugate momentum to the pure spinor. The dependence on «’ can be reinstated from the following
length dimensions of all these variables [120,121]'2
1 1
[]1=2, [X"I=1, [0*]1=["]1= 5 [Pa] = [we] = 5 (3.51)

Inspired by the approach of Siegel, this action needs to be supplemented by the definitions of the supersymmetric
momentum 1™, the GS constraint d, and the supersymmetric derivative D, which we repeat here for the reader’s
convenience:

1
" = 0X" + (8y"06).

12 We omitted all factors of o' for brevity and maximum flexibility. For the open- and closed-string they can be restored from the conventions
o' =1/2 and o’ = 2 respectively.
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1 1
dy = po — 5(axm n Z(eymae))(yme)a , (352)
a1
Da = 20 + E(Vmg)aam-

In addition, the BRST charge is given by!3 (dropping the subscript grst henceforth)
Q= %dz A4 (2)dy(2). (3.53)

The SO(10)-covariant versions of the energy-momentum tensor (3.45) and the fermionic Lorentz currents derived from
the action (3.50) are given by

1 1 1
TPS = —Enmnm - daaea + UJc(a)MQ 3 an = _5(pym"9) + E(wymn)")‘ (3'54)

3.3.4. Operator product expansions
We shall now summarize the SO(10)-covariant form of the OPEs that govern the CFT of the pure spinor formalism. The
basic worldsheet matter variables obey'#

B
X"(z, 2X"(w, W) ~ =" In|z —wl*, da(2)0" (w) ~ ~ ixw , (3.55)
dy(z)dp(w) ~ —M, d, ()™ (w) ~ M
Z-w z—w
AT () ~ — —
M@ W)~ — -

the OPEs involving the Lorentz currents are
SPIMpMMA( ) — sAmpRIP () §mlagpin
~ zZ—w (z—w)p?’
SPIMNMA(yy) — AMNTIP () smlggpin
~ 3

M™(z)MP9(w) (3.56)

N™(z)NPI(w)

zZ—w (z—w)’
(™) paP(w)
N™ ()% (w) ~ T pr W)
2 (z—w)
and generic superfields K(X, 8) that do not depend on any derivatives 8¥X™, 8%9% with k > 1 obey

do(2)K (X(w, W), O(w)) ~ D‘”K(X(Zw;?’ ow) , (3.57)

™K (X(w, w), O(w))

zZ—w

I"(2)K (X(w, w), O(w)) ~
Using these OPEs one can check that the supersymmetry currents (3.47) satisfy the supersymmetry algebra
{Qu, O} = Vup f X (3.58)

and that all of {06%, IT™, d,, N™} are conformal primary fields of weight +1,
{06°, 1™, doy, N™ H(w) N 9{06%, IT™, do, N™ }(w)
(z — w)? Z—w

Tps(2){06%, T™, do, N™ }(w) , (3.59)
a crucial fact in the construction of the integrated massless vertex operator below.

3.4. Scattering amplitudes on the disk

We shall now review the opening line for superstring disk amplitudes along with the dictionary between superspace
expressions and component amplitudes.

13 I recent years this BRST charge has been derived from first principles [122]. For previous attempts, see [123-126].
14 Note that we have not written a 50(10) covariant OPE for w,(z)A#(w) since the pure spinor constraint implies that these are not free fields. The

N
way around this issue is to decompose these fields into U(5) variables and to notice that the naive OPE w,(z)Af(w) ~ Z”fw receives non-covariant
U(5) corrections needed to make the OPE of (1y™A) with w, non-singular [1].
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3.4.1. Massless vertex operators

In order to compute scattering amplitudes in superstring theory using conformal-field-theory methods, first we need to
describe the vertex operators containing the information about the string states. The integrated massless vertex operator
(3.14) proposed by Siegel led to the discrepancy of double-pole coefficients due to the Lorentz currents of the fermionic
variables. The integrated massless vertex operator proposed by Berkovits adds a correction to Usjegel(z) proportional to
the Lorentz current Ny, of the pure spinor ghost [1]

1
U(z) = 36“Au(X. 0) + An(X, 6)T™ + dy W (X, 6) + - NnF™(X..0) (3.60)

where the linearized SYM superfields A, (X, 0), An(X, 0), W¥(X, 8) and F™(X, ) were introduced in Section 2.2 and the
dependence 6% = 6%(z) and X™ = X™(z, Z) on the vertex insertion points is left implicit. The superfields have the following
length dimensions [120,121]

1 1
[Ac] = 3 [An]l =0, [W*]= —3 [Fanl = =1, [V(2)]=[U(Z)] =1, (3.61)
and the superfields K(X, 6) are decomposed into plane waves as
K(X,0)=K(0)e"* . (3.62)

Using the #-expansions (2.17) in Harnad-Shnider gauge, the gluon vertex operator following from (3.60) features the
complete Lorentz current M™(z) = X™(z) + N™(z) of (3.21) as the coefficient of the component field strength. In this
way, the issue with the double-pole mismatch with the RNS vertex operator is absent from (3.60). In addition, given that
U has conformal weight + 1, it has to appear in the amplitude prescription integrated over (parts of) the worldsheet
boundary, i.e. in the conformally invariant combination f dzU(z).

The prescription to compute tree-level amplitudes will also require a massless vertex operator with conformal weight
zero to be used at fixed locations on the Riemann surface to remove the redundancy of the Mébius transformations. The
proposal by Berkovits for this unintegrated vertex is

V = A%A,(X, 6). (3.63)

Furthermore, the massless vertex operators represent the physical states of gluons and gluinos and must be in the
cohomology of the BRST operator Q of (3.53).

Definition 1. A state ¥ is said to be in the cohomology of the BRST operator if it is BRST-closed, Q¥ = 0, and not
BRST-exact, ¥ # Q$2 for some £2.

Recall that the BRST charge satisfies Q% = 0 due to the pure spinor condition (3.26) and the OPE (3.13).

Proposition 4. The unintegrated vertex operator V(z) = A%(z)A«(X, 0) for massless particles k* = 0 is BRST closed QV = 0
when the linearized superfield A,(X, 6) is on-shell and has zero conformal weight.

Proof. An on-shell linearized superfield A, satisfies the equations of motion (2.14). In particular D,Ag) = y(fngm, S0
1
oV(w) = 7§dz A*(2)do (2 )P (w)Ag (X(w), O(w)) = A*APD,Ag = E(M/"'A)Am =0, (3.64)
where we used the OPE (3.57) and the pure spinor constraint (3.26). To show that V has conformal weight zero, first

recall that in a conformal field theory the OPE of the energy-momentum tensor with a conformal primary ¢y of weight
h is given by [12,110]

_ hén(w)  duwen(w)

@) ~ S (3.65)
Using the total energy-momentum tensor Tps from (3.54) and the OPEs (3.57) we get

oty L T O e W o
where we used the massless condition and the chain rule for 9,

(IT"3y 4+ 30%Dy )V + 01%A, = A%8Au(X, 0) + (01" )Au(X, 0) = aV(X(w), O(w)) = dV(w) (3.67)
since

(80PDg + M™3,)K(X, 0) = (36F 35 + X™3)K(X, 0) = IK(X, 0) (3.68)

for an arbitrary superfield K(X, ) that is independent on A* and on the worldsheet derivatives of X™, 6, as can easily
be checked using the expressions for D, and I7T™ in (3.52). O
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As can be seen from (2.15), a BRST-exact vertex operator of the form Q £2 is interpreted as capturing the gauge variation
of the super Yang-Mills fields Q 2 = A“D, 2 = A%8,A,. In this sense, viewing V as a representative in the cohomology
of Q excludes pure-gauge superfields.

The synergy between pure spinors and the SYM equations of motion seen in (3.64) was already anticipated by Howe
and Nilsson in [127,128], also see [129,130] for a more recent overview articles on the importance of pure spinors for
off-shell supersymmetric actions. An early application of ten-dimensional pure spinors to the classical superstring can be
found in [131].

Relating integrated and unintegrated vertices. In the RNS formalism, the integrated vertex operator Ugys is related to the
unintegrated vertex operator Vgns = CUgns Via QUrns = 9Vens [132]. This can be checked by recalling that Urns =
{ f b, Vgns} and T = {Q, b}, where (b, c) is the ghost system used to fix the reparametrization invariance of the worldsheet.
The proof then follows from the Jacobi identity

QUrns = [Q, {% b, Vrns}] = —[Vkns, {Q, ig b}] — [% b, {Vkns, Q}] = 9dVgns (3.69)

because the cohomology condition requires {Vgns, Q} = 0 and the conformal weight h=0 of Vyys implies that [55 T, Vansl =
9dVRrns by (365)

While the pure spinor formalism does not feature any direct analogue of the (b, ¢) system!® - that is why the forms of
the unintegrated (3.63) and integrated (3.60) vertex operators are very different - the vertex operators V, U still satisfy
the relation (3.69) of their analogues in the RNS formalism (see also [137]):

Proposition 5. The massless integrated and unintegrated vertex operators (3.60) and (3.63) are related by

QU = aV. (3.70)
Proof. Using the OPEs (3.55) and (3.57) as well as the equations of motion for the linearized SYM superfields (2.14) we
get

Q(36%A,) = (0A")A, — BeakﬂDﬁAa, (3.71)
QUI™Ap) = (Ay™30)Am + " A*(DyAm),
Q(d,W*) = (Ay’"W) —dﬁ)ﬂD w#,

Q5™ =

Summing them up ylelds
QU = (3A")Aq — 007 X*(DuAg — ¥J5Am) + A% T (DoAm — (YmW o)

= (Vmn ) o F™ + 51\1,71,1/\‘*13aF’“" .

1
= 37y (DWP + 2™, Fan ) + NanlGoy"0" W)
= (0X")Ay + A*30P DAy + A TT™3A, (372)
where Np,(Ay"9™W) vanishes due to a combination of the pure spinor condition (Ay"),(Ays)p = 0 proven in (A.45) and
the linearized equation of motion y,j WP =0,
1
Non(Ay"0"W) = E(wym)/nk)(w"a"'w) — (wA)(ry" W) = 0. (3.73)
Therefore, using (3.67) the BRST variation QU in (3.72) becomes
QU = (IA“)Ay + A%(36PDgAy + MM dnAy) = (A" )Ay + A% A, = I(AA) = AV, (3.74)

as we wanted to show. O

Corollary 1. The integrated vertex operator f dzU(z) is BRST invariant up to surface terms.

As we will see below, surface terms do not contribute to open- or closed-string amplitudes by the so-called canceled-
propagator argument. The cancellation of surface terms is also used to demonstrate linearized gauge invariance of
the massless vertex operators: under the linearized variations §oA, = D,$2 and SpA, = 0,8 of (2.15) with some
gauge-scalar superfield £2, the variation §oV = A“D, 2 = Q £2 vanishes in the cohomology, whereas

U =030°D, 2 + I™0, 2 = 382 (3.75)

reduces to vanishing surface terms after using the chain rule (3.68).

15 gee [3,133-135] for a composite b ghost in the non-minimal pure spinor formalism (see also [136]).
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Superspace vertex operators for massive open-string states ¢ can be constructed by following the same principle:
identifying a BRST-closed unintegrated vertex operator V,, of conformal weight zero and then engineering its integrated
counterpart U, of weight one such that QU, = dV,. By the conformal weight h(e*X) = —N at the N™ mass level,
the combinations of IT™, d,, ... accompanying the plane waves accumulate more and more conformal weight and
Lorentz indices at growing N. That the pure spinor cohomology contains all massive states of the superstring was shown
in [138,139] (see also [140]). The vertex operators at the first mass level are known in superspace from [141-143], and
it is an open problem to pinpoint their explicit form at higher levels.

3.4.2. Scattering-amplitude prescription at genus zero
The prescription to compute n-point tree amplitudes of open-superstring states is given by the following correlation
function of vertex operators on a disk worldsheet [1]

A(P) = / dzy dzs . .. dzy—p (V1(21)U2(22)U3(23). . .Un—2(20—2)Vn-1(Z0—1)Va(za))) , (3.76)
D(P)

where ((...)) refers to the path integral over the variables in the pure spinor action (3.50) and Mébius invariance of
the correlator was used to fix the insertion points of the three unintegrated vertex operators. We adopt the particularly
convenient choices to parameterize the disk boundary by the compactified real line z; € R and to place the unintegrated
vertex operators at

(21, Zn-1,za) — (0, 1, 00). (3.77)

For a general n-point disk ordering characterized by a cyclic permutation P := pip;...p,, the formal definition of the
integration domain P in (3.76) reads

D(P):={(z1,22, ..., Za) €R" | —00 <2y, <Zp, <+ < Zp, < OO}. (3.78)

For example, with the three fixed positions as in (3.77), a domain specified by the canonical ordering P = 123...n
amounts to the disk ordering 0 < z; < z3 < --- < z,_5 < 1 of the integrated vertex operators at the boundary of the
disk such that the cyclic ordering 1, 2, ..., n in P is preserved.

The prescription (3.76) is tailored to color-ordered amplitudes .A(P) and can be color-dressed by weighting each disk
ordering D(P) with a trace of Chan-Paton factors t% in the same cyclic ordering,

M2 on) = Y AL (2,3, ) (e @) f%m), (3.79)

PESH—1
where p is in the set of permutations S,,_; of the n—1legs 2, 3, ..., n. Cyclicity of the trace propagates to the color-ordered
amplitudes, A(1,2,...,n) = A(2,3,...,n,1), and the prescription (3.76) furthermore implies reflection properties

A(1,2,...,n)=(—1)"A(n,...,2,1).

As will be reviewed from several perspectives, the %(n—l)! cyclically and reflection inequivalent permutations of
A(1,2,...,n) are not linearly independent. First, the monodromy relations [34,144] in Section 7.3 only leave an (n—3)!-
dimensional basis of disk orderings. Second, these relations among the disk amplitudes can be refined according to the
multiple zeta values in the o’-expansions, see Section 8.4: Parts of the string corrections obey field-theory relations of SYM
tree amplitudes [145,146] and others obey KK-like symmetries [147] related to permutations in the (inverse) Solomon
descent algebra [148-152].

CFT calculation and zero modes. In order to evaluate the tree-level correlation function {...)) in (3.76), one first integrates
out the non-zero modes using the OPEs (3.55) to (3.57) to obtain its dependence on the positions z; carried by the
conformal-weight-one variables [00%(z), IT™(z), d,(z), N™(z)]. As explained in [12], this unambiguously determines the
correlator as a function of the positions z; on a genus-zero surface. After using the OPEs in this way, the correlation
function (3.76) will still contain the zero modes of A% and 6%, as they are variables of conformal weight zero with a single
zero mode at genus zero [5]. These zero-mode correlators are denoted by (. ..) (as opposed to the above double brackets
{...) including the non-zero modes), and one needs an ad-hoc rule to integrate them. Using the shorthand

(A°6%) == (Ay™0) Ay ") Ay PO YmnpH) , (3.80)
the only non-vanishing contributions in ten-dimensional'® zero-mode correlators is proportional to (3.80) [1]
((A36°%)) = 2880, (3.81)

where the normalization 2880 was chosen in [154] in order to match the RNS tree-level amplitude conventions. As we
will see in (3.95), the scalar (3.80) is unique since the tensor product of three pure spinors and five s only features a
single scalar representation of SO(10).

16 For the dimensional reduction of the condition (3.81) to D = 4, see [153].
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Proposition 6. The combination (136°) is in the cohomology of the pure spinor BRST operator.

Proof. It is BRST closed
QAy™0) Ay "0)AyPONO Ymnpt) = 3(Ay ™A AY"O)AyPO) O Yimnph) (3.82)
- Z(M/mg)()ﬁ/ng)()‘Vpe)()t)’mnpg) =0.

The first term vanishes by the pure spinor constraint (3.26), while the vanishing of the second term (Ay™),(Ay")s
(AyP)y (AYmnp®) = 0 can be seen by decomposing y™" = y™y™ — §MyP + ™" and using (A.45), (Ay™)a(Aym)s = 0.
Moreover, (3.80) is not BRST exact,

(y"O) Ay O Ay PO O Vmnpt) # QS2(A, 0), (3.83)

because there is no scalar built from two As and six 6s. If there was a £2(A, 6) such that Q 2 = (136°), it would necessarily
be a scalar function containing two As and six 6s since Q6% = A% and the d,,-admixture of A*D, can be dropped for
functions of only A and 6. The SO(10) representation of two pure spinors A is characterized by Dynkin labels (00002)
while six antisymmetric thetas are represented by (01020) & (20100), see Appendix D. However, their product [155]

(00002) ® ((01020) ® (20100)) = (00011) @ (00022) & 2(00120) & - - - (3.84)

has no scalar representation (00000). This shows that the putative BRST ancestor §2(A, 6) in (3.83) cannot be constructed,
finishing the proof. O

In the formulation of the prescription (3.76), we have chosen legs 1, n—1 and n to be represented by an unintegrated
vertex operator V; at fixed locations z1, z,—1, z,. It remains to verify that any other choice of three legs to appear in the
unintegrated picture leads to the same result for each color-ordered amplitude.

Proposition 7. The disk amplitude prescription (3.76) does not depend on which triplet {i, j, k} of the external legs enters via
unintegrated vertex operators Vi(z;)Vj(z;)Vi(zx) at fixed punctures z;, z;, z, on the compactified real line.

Proof. Following the strategy of [ 154], it is sufficient to show that the representation V;, f dz; 1 Uiy 1 of neighboring states
i and i+1 can always be swapped to f dz; Ui, Vi, ie.

<< (0 )/ dz, Us(z5) ]‘[/ dz; Uj(z))Va_1(1)Va( oo)>>
:<</ dy Uy (y)Va 0)]_[/ dz; Uj(z)V, (1)Vn(oo)>>. (3.85)

Since QUj(w 95 dz \*d,(z)Uj(w) = aVj(w), we can rewrite the left-hand side via
0 0
nOwoe) = [ dyaviovioo) = [ dya(uimitoe). (3.86)

In the first step, we have discarded V;(o0)V,(oc0) by the so-called “canceled-propagator argument” [12] which states that
terms with colliding vertex operators Vj(z)V;(z) or Vj(z)Uj(z) identically vanish. As a next step, we deform the integration
contour of the BRST current A%d,, such that it encircles all the vertex operators apart from Uy:

<<v1(0) / dz, Us(z, H / dz; Uj(z)V - 1(1)vn(oo)>>
0 Zji_q
0
—- <<f dyU1(y)f dzzq[uz 2 1"[/ 2 Uz VoA (1)Vi (oo)}>>
—00 0 Zj_q
0
=— <</ dyUl(y)/ dz; 3Vs(2) ]_[f dz; Uj(z)V, (1)v,,(oo)>>
-+ <</ dy Uy (y)Va( 0)]_[/ dz; Uj(zj)V— ](1)Vn(oo)>> (3.87)

In passing to the third line, terms where Q acts on the U; vertices with 3 < j < n—2 were discarded due to the
canceled-propagator argument: it forces both boundary terms of the fz;_l dz; 0Vj(z;) integrals to vanish,

Uaz) (V1) = V(z1)) -+ Vaoa(1) ... = 0., (3.88)
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On the other hand, the integral over QU, = 9V, contributes non-trivially to the last line of (3.87): while the upper
integration limit z; = 1 cancels due to V5(1)...V,_1(1) = 0, the lower one z, = 0 generically does not coincide with the
position y of Uy, i.e. Ui(y)V5(0) #0. O

As we have seen in (3.48), the worldsheet action in the pure spinor formalism is spacetime supersymmetric. This
means that the OPEs among its worldsheet fields have the appropriate transformations under the generators Q, in (3.47)
and will not violate supersymmetry. However, one still needs to show that the zero-mode integration rule (3.81) for the
disk-amplitude prescription (3.76) preserves the supersymmetric nature of the formalism.

Proposition 8. The disk-amplitude prescription (3.76) is supersymmetric [1].

Proof. We will show that the supersymmetry variation of the amplitude under §6% = €* vanishes, i.e. that § A(1, ..., n) =
0. Note that the only possibility of getting a non-vanishing result after the supersymmetry transformation §6% = €“ is if
the correlator in the amplitude (3.76) contains a term of the form

A(P) = / dzy - -+ dzn— (LY "O)AY"OYAYPOYO Yimnp0 YO Pu(z, €, X, K) + ...)) (3.89)
D(P)

for some @,(z, e, x, k) depending on the worldsheet positions z; of all open-string vertex operators as well as polarizations
e™, x* and momenta k™. The zero-mode integration (3.81) would then imply the supersymmetry variation to be §A =
fdz; . fdzn_ze‘”‘qba(z, e, x, k). To see why this variation must be zero, note that the result of the OPE calculation in
the amplitude prescription (3.76) leads to an amplitude that can be written as fdzz- . -fdzn,z(kakﬁkyfaﬁy(e, e, x, k)
for some function f depending on the zero modes of # and on the momenta and polarizations of the open-string states.
However, the amplitude must be BRST invariant, so its correlator must be such that

/ dzy - - - dzg— A*APAY A°Dsfp, (0, €, x, k) = 0. (3.90)
D(P)
Using the function f following from (3.89) and plugging it into (3.90) we conclude
/ dzy - dzp_o AAPAY AP Dy(z, e, x, k) = 0. (3.91)
D(P)

This vanishing is only possible if ®@; is a total worldsheet derivative, &5 = 9(...), implying that the supersymmetry
variation of the amplitude vanishes after integration, 54 =0. O

3.4.3. The field-theory limit

Disk amplitudes of massless open-superstring states reduce to n-point tree-level amplitudes among the supermultiplet
of ten-dimensional SYM [87] when the dimensionless combinations «'k; - k; are taken to be small [156-159]. We will refer
to this low-energy regime as the field-theory limit and informally write &’ — 0. Since the scattering energies are small in
comparison to the inverse string-length scale, this limit can also be thought of as shrinking the string to a point particle.

Throughout this review, SYM tree-level amplitudes in the field-theory limit will be denoted by A(1, ..., n) when they
contain all states in the supermultiplet, i.e.

A(1,2,...,n)= lijA(l,Z,...,n). (3.92)

As will be illustrated in Section 3.4.5 below, the superstring-amplitude prescription (3.76) yields formal sums of
component amplitudes with external bosons and fermions since the pure spinor formalism is manifestly supersymmetric.
When restricted to bosonic external states, the field-theory tree-level amplitudes will be denoted by AY(1, 2, ..., n).
The construction of SYM tree-level amplitudes A(1, 2, ..., n) using pure spinor cohomology methods will be described
in Section 5.2, and the alternative derivation from the o’ — 0 limit of the superstring amplitude will be reviewed in
Section 6.5 (see also (7.42)).

3.4.4. Pure spinor superspace
Superfield expressions containing the zero modes of three pure spinors define pure spinor superspace [1,160]

MM fop, (0, €, X, K), (3.93)

where f,4,(0, e, x, k) represents a function containing zero modes of 8% as well as gluon and gluino polarizations and
momenta. It is easy to see that such expressions necessarily arise from the amplitude prescription (3.76) after integrating
the non-zero modes via OPEs as outlined above. For example, the massless three-point disk amplitude A(1,2,3) =
(V1V,V3) leads to the pure spinor superspace expression fyg, (6, e, x, k) = A;(@)Af,(@)A (0), see (2.17) for the 6-expansion
of the SYM superfields A’ (6).

As seen above, the final step in the computation of string disk amplitudes boils down to integrating out the zero modes
of three pure spinors and five 8s using the prescription (3.81). These zero-mode integrations result in the component

3
Y
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expansion of the amplitude under consideration written as a scalar function of polarizations and momenta. Let us write
the most general form of a pure spinor superspace expression containing five 0s as

AOAPAY 0°10%20%30%0% 515 555455 (€5 X K) (3.94)

where (e, x, k) indicates a dependence on gluon and gluino polarizations as well as their momenta. We need to extract
the Lorentz contractions of polarizations and momenta from pure spinor superspace expressions like (3.94). This can be
done on the basis of the group-theory statement that there is only one scalar built from three pure spinors A% and five
unconstrained 6s.

Lemma 2. There is only one scalar representation in the decomposition of three pure spinors and five unconstrained fermionic
Weyl spinors of SO(10).

Proof. This follows from the tensor product of SO(10) representations (00003) corresponding to three pure spinors A*A# 1Y
and (00030) @ (11010) corresponding to 6%10%20%39%49% [155]

(00003) ® ((00030) & (11010)) = 1 x (00000) & 2 x (00011) & - - - , (3.95)
where the scalar (00000) occurs with multiplicity one. O

The above Lemma means that any expression containing three As and five s can be reduced to its scalar component
(x36°) with proportionality constants given entirely in terms of Kronecker deltas, gamma matrices and Levi-Civita €;o
tensors. This will be exploited in Appendix E to build up a catalog of various pure spinor correlators.

For example, suppose we have the pure spinor superspace expression {((Ay™0)(Ay"0)(LyP0)(0yaw:0)) with free vector
indices m, n, p and a, b, c. In order to use the rule (3.81) one needs to extract its scalar component (136°). Because we know
from the Lemma above that there is only one scalar representation in this product, this is easily done using symmetry
arguments alone. The result is

((Ay™O)Ay"0) AyPO)OVarch)) = 248 (3.96)

where Sggép is the generalized Kronecker delta (A.9). To see this, observe that the right-hand side is the unique term

that is antisymmetric in both [mnp] and [abc], as required by the symmetries of the left-hand side. The proportionality
constant can be fixed by contracting the vectorial indices on both sides with 8,‘1‘1828;: On the left-hand side we get ((A36°)),
while the right-hand side reduces to 24 x 120 = 2880 (using Spn, = (130) = 120, see (A.11)). Therefore we recover the
normalization (3.81), and the Lemma guarantees that this is the correct tensor.

For another example, consider ((Ay™8)(Ay"0)(AyPO) x ya0 )Y yp0)), for two arbitrary Weyl spinors x and . Based on

the Fierz identity (A.18), 9%6f = %yﬁf‘(@y’“@), we obtain

1
(Ay™O) Ay "0)AyPO)OYax ) Oyp¥r)) = XY™ ¥ (Ym0 Ay ") (AyPO) O yrst0))

96
1
= =2 (xvay ™) = 1800y Y, (3.97)
where we used (3.96) and y,y ™"y, = —72y™. For an alternative derivation, see [154]. And for a more in-depth excursion

on the evaluation of pure spinor superspace zero-mode correlators, see Appendix E.

3.4.5. Component expansion from pure spinor superspace
As an illustration of the above steps, the supersymmetric three-point tree amplitude following from (3.76) is given by

A(1, 2, 3) = ((AA1)(AA2)(AA3)) (3.98)

= A(1p, 25, 3p) + A(1, 2r, 3¢) + A(1y, 2p, 3r) + A(1y, 27, 3p),
where the subscripts b or f refer to the bosonic or fermionic component polarizations, corresponding to the gluon or
gluino at the massless level of the open superstring. Note that the tree-level prescription (3.76) for less than four massless
external states does not involve any conformal fields of weight h = 1. Hence, the massless three-point amplitude does not
receive any contributions from OPEs and is entirely determined by the zero modes of A%, 6% and their correlator (3.81).

Component amplitudes with an odd number of fermions (say .A(15, 25, 3f) or A(1y, 2f, 3¢)) are absent from (3.98) due to
the zero-mode prescription (3.81)."7

17 Contributions to ((AA1)(AA2)(AA3)) from an odd number of fermions reside at even orders in & which are annihilated by the prescription (3.81).
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Three-gluon amplitude. Evaluating the explicit component expansion for the three-gluon amplitude is a matter of plugging
in the 6-expansions (2.17) in Harnad-Shnider gauge and selecting the components with five 6s which contain the gluon
fields. Doing this for the spinorial superpotential A,, the only terms in the bosonic #-expansion that can contribute are

1 1
Au(X.0) = | 3en(r"0)u = S5 fmn(10)u(07 ™ 0) | (3.99)

It is easy to see that the term containing a gluon with 6° in A,(X, 6) does not contribute because it leads to superspace
expressions of the form A30P=7 once the terms from the other two vertex operators are taken into account, and this is
annihilated by the pure spinor bracket rule (3.81). There are three ways to saturate #° with bosonic contributions (3.99)
from each vertex, namely (91,8, 63), (91, 63,6') and (63,6, 81). This results in the three-gluon component amplitude

A(1p, 25, 3p) = ﬁf?]qu e3((Ay"O) Ay 0) Ay "0)Opgr0)) + cyc(1, 2, 3), (3.100)
where the Koba-Nielsen factor from the plane waves ek evaluates to a constant (chosen as 1 together with an implicit
momentum-conserving delta function §'°(k;+k,+k3)) due to the on-shell condition ki2 = 0 of massless external states.
As discussed above, symmetry arguments and the normalization condition (3.81) fix all pure spinor correlators and we
find (using (3.96) and §; = 10)

((Ay™MO) Ay ) Ay O) O ypgr0)) = 245;’};” = —648;,",4". (3.101)
Hence, the three-gluon amplitude (3.100) is given by

1
A(1p, 2p, 3p) = Eem el 4+ cye(1, 2, 3) (3.102)
= (e1 - k2)(ez - e3) + cyc(1, 2, 3),

where we have applied transversality e; - k; = 0 and momentum conservation k;+k,+k3 = 0 in passing to the second
line.

One-gluon and two-gluino amplitude. There are three possible distributions of 6 variables governing the contribution
from the external states as one gluon and two gluinos: (1y, 2f, 3p), (1f, 2, 37) and (1p, 2f, 3f). For instance, to obtain
the amplitude with one gluon and two gluinos distributed as (1p, 2f, 37), we use the fermionic component expansion
A"AL(0) — —1(AymO)Oy™xi)ekX in (2.17) for the external states i = 2,3 and A"AL(0) — el (Ay™0)ek1X for the
external state i = 1 to get

1
A(lp, 27, 37) = ﬁe'{’<(?»J/m9)(kynQ)()»VpG)(GV"Xz)(Q)/pX3)> = el (x2Vmx3). (3.103)

using (3.97) in the last step.

Supersymmetric three-point amplitude. Assembling all the different external-state contributions to the three-point ampli-
tude (3.98) yields

1
A(1,2,3) = 5e"' el + el (x2ymxs) + cye(1, 2, 3). (3.104)

Given the systematic nature of the above procedure, an implementation using FORM [161] has been written which
performs these expansions automatically [162] (see also [163]).

In contrast to the three-gluon amplitude of the open bosonic string, the three-point superstring amplitude (3.104) is
independent on «’ and therefore coincides with the SYM amplitude,

1
A(13293) A(] 2 3) 2 mzmneg+e1 (XZVmX3)+CyC(172s3) (3105)
For both color-ordered and color-dressed amplitudes of ten-dimensional SYM,
A(1,2,...,n)= lim A(1,2,...,n), M(1,2,...,n)= lim M(1,2,...,n) (3.106)
o’ =0 a’—>0

we will use non-calligraphic letters to distinguish them from the analogous superstring quantities, see (3.79) for the
color-dressed open-string amplitude.

3.4.6. Preview of higher-point SYM amplitudes

In the same way as the single term V;V, V3 in the superspace expression for .A(1, 2, 3) produces the six terms in (3.105)
upon component expansion, higher-point string and SYM amplitudes take a particularly compact form in pure spinor
superspace. For instance, we will see later that the six-point SYM tree-level amplitude can be written in pure spinor
superspace as

A(L2.....6)= 1 (V12V34Vs6) n 1<< V123 n V31 )(V45V6 n V4Vse
3 512534556 2

))+ cye(1,2,....6), (3.107)
$125123 5235123 S45 S56
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in terms of multiparticle vertex operators Vp subject to beautiful combinatorial properties that will be introduced below.
The expression (3.107) can be checked to be gauge invariant and supersymmetric in a couple of lines with pen and paper.
Moreover, it evades BRST-exactness for purely kinematic reasons and lines up with a recursive structure of n-point SYM
tree amplitudes in pure spinor superspace. Here and below, our normalization conventions for Mandelstam invariants for
massless particles are

1 L 1
S1p =Ky - ky = 5(k1+k2)2, S12.p = Z sj = 5(k1+k2+ k) (3.108)

1<i<j

Already for the purely bosonic terms, the component expansion of (3.107) in terms of single-particle polarizations and
momenta produces more than 6700 terms. Still, we will see later that the complete component expansion of (3.107) can
be arranged in the compact form

1 1
A1,2,...,6)= Eerlnzfgfege + Z[eTBfTS”eg + e ey + eg s ehs + (4 < 6)] (3.109)

1
+ (X12VmX3a)elg + 5[(2‘5123)%?(45)6@1 + (XasYmXs)eThs + (Xo¥mXi23)es + (4 <> 6)] + cye(1,2, ..., 6)

in terms of recursively defined multiparticle Berends-Giele polarizations e, X5 of (4.116) and field strengths f"" of (4.119)
instead of single-particle polarizations and momenta. Similar objects also drive compact representations of supersymmet-
ric loop amplitudes in string and field-theory, and they are excellently suited for numerical computations [164].

The ten-dimensional polarization vectors in the bosonic components of expressions in pure spinor superspace
can be straightforwardly dimensionally reduced. In this way, one obtains scalar and gluon amplitudes in maximally
supersymmetric SYM in lower dimensions, say /' = 4 in four dimensions. Upon insertion of spinor-helicity expressions,
(3.107) and (3.109) then reproduce all the six-point MHV and NMHV components of ' = 4 SYM at tree level. Hence,
pure spinor superspace elegantly unifies all the MHV, NMHV, N\MHV components upon reduction to four dimensions and
captures all the different functional forms of color-ordered amplitudes with particles of alike helicities in neighboring or
non-neighboring legs. The number of terms in the pure spinor superspace representations of n-point SYM amplitude
grows moderately with n thanks to the multiparticle formalism to be introduced below.

4. Multiparticle SYM in ten dimensions

OPEs among massless vertex operators of the pure spinor superstring feature rich patterns which led to a systematic
definition of multiparticle superfields of ten-dimensional SYM in [91-93], in both local and non-local forms. These
multiparticle superfields encompass arbitrary numbers of single-particle gluon and gluino states and can be constructed
independently of their OPE origins using field-theory methods, in particular Berends-Giele recursion relations [28] and
perturbiner methods [24-27]. The compatibility of OPE methods and field-theory methods follows from the fact that SYM
amplitudes are recovered from the o’ — 0 limit of open-superstring amplitudes.!®

Over time, the definition of multiparticle superfields led to an elegant symbiosis of an ever-increasing number of
related topics: their local version is at the heart of the local B(J-satisfying numerators, and their non-local version is
used to relate the BC] properties of the amplitudes as originating from standard finite gauge transformations. In addition,
multiparticle superfields appear in connection with planar binary trees leading to a combinatorial underpinning of the KLT
map [165,166] as well as the closely related S bracket [91] and contact-term map [93]. Ultimately, the use of multiparticle
superfields simplifies the construction of expressions for scattering amplitudes of both SYM field theory and superstrings.

4.1. Local superfields

The definition of local multiparticle superfields is inspired by OPE calculations of massless vertex operators (3.60)
and (3.63) in the pure spinor formalism. These multiparticle superfields generalize in a natural way the single-particle
description of ten-dimensional SYM theory reviewed in Section 2.2. For each of the standard four types of superfields
AL(X,O), A;(X,O), W (X, 0) and F,"nn(X,Q), the single-particle label i is generalized to labels for multiple particles,
characterized either by words P such as P = 1234 or by nested Lie brackets as [[[1, 2], [3, 4]], 5]. As such, it will be
convenient to refer to their multiparticle counterparts collectively in a set Kp

Kp € {A"(X,0), AF(X,0), WE(X,0), FI™(X,0)}, (4.1)

with obvious extension for Kjp o; where P and Q can themselves be nested brackets.

Calculations of superstring disk correlators revealed that there is a rich set of properties obeyed by the multiparticle
superfields, reflected by the symmetry properties of their multiparticle labels. The symmetries in turn are attained
by various gauge transformations of the individual single-particle superfields and give rise to different definitions of

18 The detailed matching of multiparticle superfields constructed from OPEs and field-theory methods, up to non-linear gauge transformations,
relies on the propagator structure arising from the o’ — 0 limit of the disk integrals (6.62), see Section 6.4.4.
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multiparticle superfields, all related by gauge transformations. Of special importance is the gauge transformation leading
to Jacobi identities within the nested brackets characterizing the multiparticle state. We will see in Section 7.1 that this
gauge leads to the color-kinematics duality of Bern, Carrasco and Johansson [30]. At the superfield level, this translates to
non-linear gauge transformations which act on multiparticle superfields defined recursively in the so-called Lorenz gauge.

The construction of the two-particle superfields is inspired by string-theory methods in the following way. The
insertion of a gauge-multiplet state on the boundary of an open-string worldsheet is described by the pure spinor
integrated vertex operator (3.60),

Ui = 00“A, + IT"Al, + d, W + IN™F), . (4.2)

In the computation of disk amplitudes with the prescription (3.76), the worldsheet fields of conformal weight one
[06%, IT™, d,, N™] contracting linearized superfields K; with particle label i approach other linearized vertex operators
describing other particle labels. This is captured by OPE singularities (3.55) to (3.57) and lead to composite superfields at
their residues, dubbed multiparticle superfields.
The first example of a multiparticle superfield appears in [167] as the OPE residue of two massless vertex operators,
an integrated U, describing SYM states with particle label 2 and an unintegrated V; with particle label 1
Vi(z1)Uy(zz) ~ 22_1"1"{2 LZ;(Z1) , Zij '=zi—%. (4.3)
21

In order to attain open-string conventions, we dropped the z; dependence of the Koba-Nielsen factor,

n n
kX (2 —2ki-k
([T @ = [T 1zl ™4, (44)
=1 1<i<j
s H . —2k:-k; —kf’(,‘,—kf’(,‘ —kj”k,‘ . .
i.e. extracted the disk correlator from the truncation |z;|~™"" =z, "z, - z; of the n-point correlation

function (4.4) on the sphere. The Koba-Nielsen factor is most conveniently computed via path-integral methods as in
section 6.2.2 of [168], consistent with the OPE of plane waves ek1X@)gkaX(z2) ~ |z, |72k1k2gk12:X(22) and the equivalent
ITM(z;)ek2X@2) ~ Mz TekaX(22) of (3.57).

The superfield structure of the OPE is captured by

Ly1 = —AT(AymWa) — Vi(ky - A2) + QA1 W) (4.5)
which has a simple BRST variation
Qla = (k1 - ka)Vi V2, (4.6)

where Q = A“D,, denotes the action of the BRST operator (3.53) of the pure spinor formalism on superfields independent

of 3¥219. The BRST-exact term Q(A;W>) in (4.5) does not contribute to the variation (4.6) and will be removed in passing

from L, to the two-particle superfield V;, below. In the context of (n > 5)-point disk amplitudes, replacing L,; — V1

in the contribution from the V3(z;)U,(z;) anticipates the cancellation of terms (—(A;W>)Q(Us...)) under integration by

parts in z; which are studied in detail at n =5 [119] and n = 6 [169] and conjectural at higher n > 7, cf. Section 6.1.
Proceeding recursively and defining higher-rank superfield building blocks [170]

o +do- 1) L2131, p-1191(21)

L1 p-11(21)Up(2p) ~ 2, (4.7)

Zp
yields BRST transformations such as
QLz131 = (k12 - k3)La1V3 + (k1 - k2 )(L31V2 + Vil3,),
QLz13141 = (K123 - ka)L2131V4 + (K12 - k3)(L21Lsa3 + La141V3) (4.8)
+ (ki - k2)(L3141V2 + L31Lap + LaiLsp + ViL343)

with a suggestive recursive structure. The collection of Lyy3q. p1 is said to be BRST covariant since their Q-variation is
expressible in terms of products of lower-rank building blocks (with V; as their rank-one version) along with factors of
ki - k;. Here and below, we are using the notation

klZ...p = k] +k2+ . +kp (49)
for multiparticle momenta. However, a major shortcoming of the OPE residues Lyi31_p1 defined above is their lack of
symmetry under exchange of labels 1, 2, 3, ..., p. Luckily, the obstructions to having symmetry properties conspire to

BRST-exact terms and can be removed by redefinitions that do not affect the desired amplitudes [21,91,171]. As a simple
example of this phenomenon, the symmetric part of the rank-two OPE is BRST exact

L+ L= Q[(Alwz) + (A W) — (A4 'Az)} . (4.10)

The spinor and vector superfields A, and A™ of D = 10 SYM can be distinguished by identifying the superfields that they
contract — above these are W* or A, (and we only use the - for vector-index contractions, i.e. not for spinor indices). Using
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the BRST transformation properties of L,;31.., these BRST-exact admixtures have been identified in [21] up to rank five,
and their removal leads to a redefinition of the OPE residues that satisfy generalized Jacobi identities (see Section 4.1.5 for
their definition). The outcome of this removal procedure is an improved family of multiparticle superfields Vi3, dubbed
BRST building blocks.

This approach was streamlined and further developed in [91] where all multiplicity-two superfields K, were extracted
from the OPE between two integrated vertices as the coefficients of the conformal fields in the OPE, following earlier
calculations in [119]

U(z1)Ua(z2) ~ 230" (39“[(k1  A)AL — (ks - AL + D A2WF — D,ALWY)
+ 11" [(ky 'Az)Al — (ky - ADAY + k2 (A Wr) — ki (A W) — (Wiym W)
+ do[(ky - AW — (ky - AWS + (¥ ™MW1) Fry — (™ W)y ]
+2N’”"[(k1 ADFL — (ks - A)F2 2k:n2(w1ynw2)+2f,;aﬁfa])
(14 ki - k)2 2[(A1W2)+(A2W1) — (A1 - Ar)]. (4.11)

The superflelds multiplying z,, K272 i1 the last line are located at K; = Ki(z;), and the position of the K; multiplying

Z:; Fike=1 i immaterial in the two- particle context of (4.11) since less singular terms z,, —K1%2 are not tracked. Using the
relation 0K = 060*D,K + IT™k,K for superfields K independent of non-zero modes 96 and 1%, cf. (3.68), we can absorb
the most singular piece ~ z;zkl‘krz into total z;, z, derivatives and rewrite

Us(z1)Us(22) = —23;7" 2 ‘(ae”/\l2 + ™A% + d, WS + Nm”FQ) (4.12)

+ (27 [0 - A) — (AW ) — (2,7 [ - A2) — (Aawn)] )

Straightforward calculations using the linearized SYM equations of motion (2.14) yield the following multiplicity-two
superfields,

Al = 3[Adka - AD) + AT (rmWi)e — (1 > 2)].
ATy = 2[AT (ks - A)) + AT + (Wiy™W,) — (1 < 2)],
Wi, = %(anwz) F™ + W (ky - A1) — (1 < 2), (4.13)
FI" = F™(ky - Ar) + SEEDP KWy "W,) — (1 < 2),
where we reiterate our conventions F\",FI'" = FI',F’ — FI,F™ for antisymmetrization brackets. An interesting

observation is that the two-particle field strength FJ}" admits a more conventional form
F' = KLAY, — KLAT, — (ki - ko )(ATAS — ATAT) (4.14)

with a non-linear extension as compared to the linearized field-strength superfield F™ = k["A! — k'A[". More importantly,
the covariant nature of the BRST transformations observed in (4.8) generalizes to the whole set of superfields in Ki,. In
fact,

DoAY + DgAy = )/%Au + (k1 - ka)(ALAS + ARAL) (4.15)
D AT, = yaﬂW + KA 4 (ky - ky)(ALAT — A2ZAT),
DaWiy = 3 (vmn)aF3" + (ki - ko JALWS — A2WY),
DaFf = K5y " Wiy + (k1 - k2)[ALFS™ + AT (y ™ Wa)o — (1 < 2)].

This set of superspace derivatives for the multiparticle superfields K;; mimic the single-particle case (2.14). The difference
involves contact-term corrections proportional to the Mandelstam invariant kq - k; = s12. We will see below that these
contact terms admit a generalization and can be compactly described by the so-called contact-term map acting on Lie
polynomials. In this review a “Lie polynomial” is understood to be any linear combination of terms that can be written in
terms of nested commutators. For a more mathematical definition, see [152].

The definition of multiplicity-two superfields can be formalized by

Upp(z) = — % dz1 (z1 — 251702 Uy (21)Us(22) (4.16)
= 00“A) + IT"A? + d, W, + IN™F2

where the contour integral extracts the singular behavior of the approaching vertex operators as z; — z, and annihilates
the total derivatives w.r.t. z;, z, spelled out in (4.12). Similar to the earlier remark below (4.6), the OPE of U;(z1)U,(z2)
in the context of (n > 5)-point string amplitudes gives rise to additional contributions where the total derivatives act
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on z3, Z4, . . .-dependent terms. By discarding BRST-exact terms and additional total derivatives, such contributions were
found to cancel from five-point [119] and six-point [169] amplitudes, and their conjectural cancellation at higher points
is used in Section 6.

As we shall see below, these singularities on the worldsheet translate into propagators k]’z2 = 251’21 of the gauge-
theory amplitude after performing the field-theory limit. In other words, OPEs in string theory govern the pole structure
of tree-level subdiagrams in SYM field theory obtained from the point-particle limit.

In addition to the multiplicity-two integrated vertex U;,, we define the multiplicity-two version of the unintegrated
vertex as

Vip = A°AL%. (4.17)

The two-particle equations of motion (4.15) imply that the single-particle relations QV; = 0 and QU; = 9V, generalize
as follows at multiplicity two [91]:

QViz = (k1 - k2)V1V (4.18)
QUyp = Vg + (kq - ko )(V1Uy — VaUy).

Note that the total derivatives in the last line of (4.12) are in one-to-one correspondence to the BRST-exact difference
Via = Lot + Q| (A1 - 42) — (W)} (4.19)

The higher-multiplicity extensions of Vi, and U, to be constructed below also enjoy covariant BRST transformations
among multiparticle vertex operators such as

QVi23 = (ky - ko)[V1Vas 4 VisVa] + (kiz - k3)ViaVs, (4.20)
QU3 = 0Via3 + (ky - ko )(ViUzz — VasUy + VisUz + VoUsz) + (kip - k3)(ViUs — V3Uyp),

whose systematics are accurately described by the contact-term map in the subsequent section.

4.1.1. The contact-term map

We will see in the discussion below that many formulae simplify if we have a general formula to associate contact
terms Y (kg - ks)(...) with general nested brackets of the form [P, Q]. The algorithm to do this is called the contact-term
map and it was defined for the first time in [93] and further analyzed in [166]. This map encodes in a systematic manner
many properties that were implicitly used and assumed in several papers. Among its many useful properties, we will
see that the contact-term map C gives rise to the various contact terms in the local equations of motion of multiparticle
superfields. In addition, its combinatorial properties will allow us to prove that the later equations of motions of non-
local superfields exhibit a “deconcatenation property” in their non-linear terms, based on fine-tuned cancellations of the
contact terms and associated kinematic poles.

The contact-term map acting on a letter i and on Lie monomials [P, Q] is defined by the following recursion [93,166]

C(i):=0, (4.21)
C([P, Q1) := [C(P), Q1 + [P, C(Q)] + (kp - k)(P ®Q —Q ® P) ,
where the Lie bracket in the space £ of all Lie polynomials is extended canonically to £ ® £ as
[A®B, Q] =[AQ]®B+AQ®[B,Q], (4.22)
[P,AQB]:=[P,A]l®B+A®[P,B],

and we have kp = ki+ky+ - - - +k, for P = 12. .. p according to the definition (4.9) for multiparticle momenta. To illustrate
the definition, some examples can be worked out to give

C([1,2D) = (k1 - k)(1®2—-2® 1), (4.23)
C([[1,21,3) = (k1 - k2)([1,31®2+1®[2,3] - [2,3]® 1 -2 ®[1, 3])
+ (kiz - k3)([1.21® 3 —3®[1,2]),
C([1,[2,31) = (k2 - k3)([1,21 ®3+2®[1,3] - [1,3] ®2 - 3®[1,2])
+ (ki - k3)(1®1[2,3]1 - [2,3]® 1),
C([[[1,2],3],4]) = (k1 - k)([[1,3], 4] ® 2+ [1, 3] ® [2,4] + [1,4] ® [2, 3] + 1 ® [[2, 3], 4]
—[[2,31,41®1—1[2,31®[1,4] — [2,4] ®[1,3] - 2 ®[[1, 3], 4])
+ (k12 - k3)([[1,21, 41 ® 3+ [1,2] ®[3,4] — [3,4] ® [1,2] —3®[[1,2],4])
+ (k123 - ka)([[1, 2], 3] ® 4 — 4 ® [[1, 2], 3]) ,
C([[1,2],[3,41D) = (k1 - k)([1,[3. 4] ® 2+ 1®[2,[3,4]] — [2,[3, 4]l ® 1 — 2 ® [1,[3, 4]])
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+ (k3 - ka)([[1, 21,31 ® 4+ 3@ [[1,2]. 4] — [[1.2]. 4] ® 3 - 4 ®[[1,2]. 3])
+ (k12 - k3a)([1, 21 ® [3, 4] — [3.4] ® [1, 2])

where the expression for C([[1, 2], 3]) for instance encodes the Mandelstam invariants in QU,3 previewed in (4.20). By
definition, the contact-term map produces the antisymmetrized combinations P ® Q — Q ® P of Lie monomials. Therefore
it is convenient to consider the image of the contact-term map as being in the wedge product of Lie polynomials

PAQ=P®Q—-QQ®P, (4.24)

which implies that (4.22) becomes [A A B, C] = [A, C] A B+ A A [B, C]. Using this notation streamlines the output of the
contact-term map, for example

C([1,[2,31) = (ko - k3)([1, 20 A3+ 2 A [1,3]) + (ky - kas)(1 A [2,3]). (4.25)

Contact-term map and BRST charge. A definition, implicit in [93,166], extends the action of the contact-term map to LA £
as

C(PAQ)=C(P)AQ =P AC(Q). (4.26)

From this definition it follows that

Lemma 3. The contact-term map is nilpotent,

c*=o0. (4.27)

Proof. See Appendix H.

The condition (4.27) turns out to be an important consistency check, as the contact-term map will be related to the
pure spinor BRST charge in the discussions below,

C < QBRST . (428)

In addition, when acting on a left-to-right Dynkin bracket £(P) = [[... [[p1, p2], p3l, . . .1, pn] defined in (C.1), it gives rise
to the deshuffle sums, as proven by induction [93]

CP) = Y (ke - k[LXR) @ £(S) — LR ® €XS)] = > (kx - ki)E(XR) A £(iS) (4.29)
shres shores

where the deshuffle map §(Y) is defined in (C.10) and the effect of the swap X <> j is to replace ® — A since the deshuffle
map §(Y) = R® S is symmetric sum over R and S. For example,

C(€(123)) = (k1 - ko)(1 A €(23) + £(13) A 2) + (ki - k3)E(12) A 3. (4.30)

As we will see later, this is the same structure of the BRST variation of Vi,3 seen in (4.72) and will play an important role
in motivating the correspondence (4.175) below.

The synergy between the contact-term map and multiparticle superfields will become more natural once we define
how the Lie polynomials P and Q in the image of the contact-term map become labels of generic superfields'® K and T

(K ® T)p@Q = KPTQ s (K N T)pAQ = KPTQ s (431)
and extended by linearity. For example,

(A" ® V)21 31014.05.611 = Aff1.21.31Vi4.15.6]] » (VA V)spinz =s2ViVa. (4.32)

4.1.2. Multiparticle superfield in the Lorenz gauge

The generalization of the single-particle linearized superfields of (2.14) to an arbitrary number of labels naturally leads
to a Lie-polynomial structure for the multiparticle labels. For a simplified definition sufficient for this review, P is a Lie
polynomial if it is a linear combination of words generated by nested Lie brackets acting on non-commutative letters
representing the particle labels. For example, P = [[1, 2], 3] = 123 — 213 — 312 + 321 is a Lie polynomial.

Initially defined by consistency of the resulting equations of motion in [91], the following recursive definition of
multiparticle superfields was identified in [92] to correspond to a multiparticle version of superfields in the Lorenz gauge:

AP = (A% ) + AR, — (P < Q] (433)

A 1.~ A Apa A A
Afp.q) = 5[AG(ka - Ap) + ALFG" + (Wpy"Wo) — (P < Q)]

19 This notation deviates from the one used in [93].
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A 1Ars 2\ 1 A \A7a 1AmozAP
Wi o1 = ZFP (ysWo )" + E(kQ “Ap)Wq + EWQ A, —(P<Q),
1a A pimnap . Am & ~ e
S [R5 ko - Ap) + B A7+ BB — 27,0 Wi WG — (P < Q)]
where the momentum indexed by a Lie polynomial is understood to be stripped of brackets, for example k[’}’[”” = k7.

The hat in Iqu.QJ above distinguishes this definition in the Lorenz gauge from other definitions of multiparticle superfields
in other gauges, as we will see shortly. In order to complete (4.33) to a recursion, we define the multiparticle instances
of the higher-mass-dimension superfields in Section 2.3

Wikt = ki Wis.o) — (A" © W)cqp - (4.34)
Fipg) = KroFfrq) — (A" ® FP)cqp.ap
where the contact-term map C is defined in (4.21) and we are using the notation (4.31), for instance
FY8 = kL EPL, — (ki - ko )ATER? — ATFPY),
IS = Ky — Gk s ) A P30+ AR, — Ay P00 — AR (435)
— (k1 - ka3)(ATERY, — AT 5 FP9) .

Like in the multiplicity-two case (4.14), the multiparticle field strength can be rewritten in a more conventional form as

rmn __
F[P,Q] -

F) = Ko AT o) — Kig AT o) — (A" ® A")eqp.q)) - (4.36)
The recursions (4.33) terminate with the single-particle superfields IAQ = K;, and the resulting two-particle superfields in
Lorenz gauge turn out to match the expressions (4.13) obtained from OPEs, i.e. Kj; j; = Kj;.

It is important to emphasize that the above recursions apply to arbitrary bracketing structures encompassed by P and
Q. For example,

~ 1r- ~ ~r A ~ ~
Am, = 5[Agl(kz Ay A L (W) — (1 2)] , (4.37)
~ 1r- ~ ~ ~ ~ ~
All213 = E[Agn(kB - Ap2y) + APTES™ 4+ (Wi g™ Ws) — ([1, 2] < 3)] ,
~ 1r- ~ ~ ~ ~ ~
All121113.41.50] = E[AW3,4J.SJ(k345 - Ar1,21) +A,[11’2]Fﬂ3m,4j,51 + (Wh217 ™ Wiz a151) — ([1, 2] < [[3, 4], 5])] .

In addition, from the contact-term terms in C([[1, 2], [3, 4]]) as in (4.23), namely
(11,21, 13, 411) = (k1 - ko)([1, 13, 411 ® 2+ 1® [2, [3, 411 — [2, [3, 411 ® 1 — 2 ® [1, [3, 4]])
+ (ks - ka)(1[1.21.31 @ 4+ 3@ [[1. 21, 4] — [[1,2], 4] ® 3 — 4 ® [[1, 2], 3])

+ (kiz - ksa)([1. 21 ® [3.4] — [3.4] ® [1,2]) (4.38)
the field-strength (4.36) for P = [1, 2] and Q = [3, 4] becomes
ﬁ[rﬂn.m,[z;,zm = sz34A1[1[1,2J.[3,4” - "'1]234':‘[7[]1,21,13’4” (4.39)

— (ky - ko) (AT} (3 4pAs + ATAT, 154y — (1 <> 2)
— (k3 - ka)(Afl1 21.3/A% + ATAT 514 — (3 < 4))
- (ku : k34)(Aﬁ.2JAF3.4J - AEAJA?LZJ) .

Identifying the pair of words P and Q for the superfields on the right-hand side of the above examples leads to further
applications of the recursions in (4.33) until eventually all superfields are of single-particle nature. Naturally, the number
of terms in the multiparticle superfields increases very rapidly when expanded down to single-particle superfields.
Fortunately, there is rarely the need for doing so as even component expansions using the top cohomology factor (3.81)
of pure spinor superspace can be performed efficiently at a multiparticle level, see Appendix F.

OPE channels and Catalan numbers. In presence of more than two vertex operators, different orders of performing the
OPEs lead to different multiparticle superfields. One can intuitively understand the different bracketings of the definition
(4.33) of multiparticle superfields in the Lorenz gauge and the associated vertex operators

Vp = 2%AL,  Up = 30°A0 + IT™A", + d, Wy + IN™FD

mn

(4.40)
in this way: three vertex operators U;(z;)Us(22)Us(z3) admit two?? possible ways of performing two OPEs in sequence
while preserving the order of z; on the disk: z; — z; and z3 — z; or z3 — z; and z; — z;. These two possibilities lead
20 of course, in a correlation function, the ordering of operators is arbitrary and will lead to index permutations of the multiparticle vertices. But
in the end, the B(J-gauge counterpart Upp 1,3 of U (1,3 Will still be expressible in terms of Uy 2,3y, Uj1,2),3), see Section 4.1.5.
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to two possible bracketings for the resulting multiparticle vertex at position z;

0[[1,2],3](21), 0[1,[2,3]](21)- (4.41)

In general, for a string of p vertex operators there will be C,_; bracketings, where C,_; is the (p—1)-th Catalan number.?!
For example, the C3 = 5 bracketings corresponding to the different OPE orderings among neighboring vertices in the
correlation U;(zq)U,(z3)Us(z3)U4(z4) give rise to the following vertex operators at z;:

Unn2nsi4(z1), Uzsna(z) s Unnanean(@),  Ungesian(zi), Upgeas,aen(z1) - (4.42)

For example, the first vertex in (4.42) corresponds to performing the OPEs as z, — z; first, then z3 — z; and z4 — z;.

4.1.3. Equations of motion of local multiparticle superfields in Lorenz gauge

The equations of motion satisfied by the local multiparticle superfields given in the recursive definition (4.33) can
be written in a similar fashion as their single-particle counterparts of (2.14). To see this we define an analogue of
Vq = D, — A, at the level of local multiparticle superfields as

VPKip.q) = DaKip.o) — (A ® K)cqp.o (4.43)

in terms of the contact-term map (4.21) and the notation (4.31). )
With this definition, the equations of motion for the Lorenz-gauge superfields Kjp o) can be written as

(L)AIP.QT ~ [P, .
Vi Ay ! = vapA VIAR o) = KAL) + (" Wip o) » (4.44)
1 . .
(L)ya/B P, L [
VWi = 2 EE Vi Fipo = Wipigr™),,

which assume exactly the same form as their non-linear counterparts (2.11). After expanding out the derivatives V(! in
(4.43), the local equations of motion for the Lorenz-gauge superfields (4.44) are given by

DALY = ymAPY 4 (A, ® Ap)egpa (4.45)
DoAly ) = (ynW!P ), + kRALT Y + (A ® A™)cp.ay »

1 . R R
D, W[lls; 0] = 4(an)aﬂFr[rfr{QJ + (Acx ® Wﬂ)C(IP,QJ) ’

DoFifa) = (Wi v™), + A ® F™)cqpap -

In the simplest case P = 1 and Q = 2, the contact-term map produces a factor of k; - k, and we recover the two-particle
equations of motion (4.15) upon noting that Kj; j; = Kj;. To illustrate the above equations, consider the equation of motion
D, AP for [P, Q] = [[1, 2], 3]. Using the contact-term map C([[1, 2], 3]) from (4.23) leads to

Doy 51,31 = (¥ Wip1 2131)a + KAL) (4.46)
+ (ky - ko) (ALIAT + ALAT 5 — AZBIAT — AZAT )
+(k]2 ’(3)( [1 Z]Am A3 [1 2])

thus recovering equation (3.20) from [91].

4.1.4. Local multiparticle superfields in the BC] gauge

The explicit calculations of string disk amplitudes at multiplicities five [119,170] and six [169] revealed a truly
fascinating pattern arising from a conjunction of factors: first, the double poles in the OPEs among massless vertex
operators can be integrated by parts within the full string integrand containing the Koba-Nielsen factor ~ ]_['1’<i<j |z,-j|"‘f'kf',
see (4.12) for a two-particle example. This amounts to redistributing the superfields in the double-pole terms among
various single-pole terms in the OPEs of the vertex operators. Second, the superfields in the numerators of the double poles
have the precise form that, once redistributed to single-pole terms via integration by parts, lead to effective single-pole
numerators that satisfy improved symmetry properties within their multiparticle labels — so-called generalized Jacobi
identities [172]. This mechanism hinges on the fact that the BRST-exact terms in (4.19) match the total derivatives in
(4.12).

Unfortunately, doing these calculations in practice is tedious, and currently the best justification for this mechanism is
the total-derivative distribution seen at the two-particle OPE (4.12) and extensive explicit cancellations in the six-point
disk amplitude of [169], see section 3.2 and appendix B.3 of the reference. Luckily after these patterns were understood
in [91] these integration-by-parts steps could be bypassed by the recursive procedure to be described below. However, it
remains a challenging open problem to rigorously prove the recursions from the OPE approach.

21 Catalan numbers are given by G, = ﬁ(znn), and the simplest examples are C; =1, (; =2, C3 =5 and (4 =
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| | | T > K1234...p
1

Fig. 1. The symmetry mapping between a half-ladder cubic graph and the local SYM multiparticle superfields K € {A,, Am, W*, F™}.

4.1.5. Generalized Jacobi identities A

In Section 4.1.6 below, we will introduce a gauge-transformed version Kp of the multiparticle superfields Kp in Lorenz
gauge defined in (4.33). Before spelling out these redefinitions due to double-pole terms in OPEs, we shall here describe
the resulting symmetries of the multiparticle labels in Kp. These symmetries can be summarized by

Kaegye + Kpeaye =0, A, B#0, VC, (4.47)
where ¢(A) is the left-to-right Dynkin bracket,
£(123...n):=£(123...n—1)n —n€(123...n—-1), «£(i)=1i, €W) =0, (4.48)

for instance £(12) = 12 — 21 and £(123) = 123 — 213 — 312 + 321. The symmetries (4.47) are known as the generalized
Jacobi identities in the mathematics literature [172] (see also section 8.6.7 of [152]).

These are the same symmetries obtained by a string of standard structure constants [ 173], or equivalently, by a Dynkin
bracket

0(1234...p) <> Kipza_p <> 1202 f02303 fosd0s - fOp-1ptp (4.49)
see Fig. 1. A few examples of generalized Jacobi identities are as follows
Kiac +K21c =0, VC,
Ki2sc + Kzs1c + Kz12c =0, VC, (4.50)
Ki2zac + Ka1asc + Kzanac + Kazpic =0, VC.

Let A be a word and £(A) its Dynkin bracket defined in (4.48). The generalized Jacobi identities correspond to the elements
in the kernel of £. The simplest examples

£(12+21)=0, £(123+231+312)=0 (451)

are tantamount to the antisymmetry and Jacobi identity of the Lie bracket.

Using Baker’s identity £(P£(Q)) = [£(P), £(Q)] [152], it is easy to see that A¢(B) + B¢(A) is in the kernel of £ for any
pair of words A and B. In addition, due to the recursive definition of ¢, if £(P) = 0 it also follows that £(PQ) = 0 for the
concatenation of P with any word Q. Therefore the generalized Jacobi identities can be encoded by an abstract operator
£k

£k o Kapc = KA((B)C + KB((A)C , VA,B 75 ¢ and V C such that |A| + |B| =k. (452)

We emphasize the arbitrary partition of non-empty words A and B in the above definition (while C can be empty), leading
to a non-unique operator £. For instance

£30Kpp3 =Kip3 — Ki3p + K31, forA=1,B=23and C =40, (4.53)
£30Ki23 = Kio3 + K312 — K321, forA=12,B=3and C=40.

However, if £, 0K153 = 0 then the right-hand sides of the above expressions agree and both are equal to Ki33 4+ K331+ K315.
For reasons to become clear later, multiparticle superfields that satisfy £,Kp = 0 for all k < |P| are said to be in the
B(J gauge. When Kp is in the BCJ gauge we use the notation

Kopy = Kp . (4.54)

For example K{[1.2),3; in the BC] gauge (not to be confused with the Lorenz gauge) is represented by Ki,3. In particular,
with this notation we can write Baker’s identity for superfields in the BC] gauge as

Kip.q1 = Kpe(q) - (4.55)

For example, K[12,349 = Ki234 — Ki243. The expansion of more general bracketings works similarly, and it amounts to
rewriting an arbitrary Lie monomial [I", X'] in the Dynkin bracket basis of £(1P), for instance:

Kir12,341,15,6711 = Ki1234567 — Ki1234576 — K1234675 + K1234765 — K1243567 + K1243576 + K1243675 — K1243765 - (4.56)
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In addition, if Kp with P = AiB and i a single letter satisfies generalized Jacobi identities, then it follows from (4.47) that
Kaip = —Kigap, A#9, VB, (4.57)

as £(i) = i for a letter i. This relation implies that there is an (p—1)! basis of permutations K; of K12 p.

1evip
4.1.6. Multiparticle superfields in the BCJ gauge

As mentioned above, explicit calculations of superstring disk amplitudes with the pure spinor formalism in [119,169,
170] led to the discovery that the superfield numerators of single-pole integrands were being redefined by the double-
pole terms under integration by parts.2? The end result of these redefinitions is an improved symmetry property of the
composite superfields, which turns out to be the same as the generalized Jacobi identities of the previous section.

These calculations and observations led to the definition of multiparticle superfields in the BCJ gauge. Later computa-
tions in [91,92] suggested that these multiparticle superfields in the BC] gauge could be computed by an intrinsic recursive
method - culminated in [93] - independent on the (fortuitous) interference between superstring OPEs and integration
by parts when multiplied by the Koba-Nielsen factor.2> The recursive method can be approached in two ways, each one
convenient for different situations. Let us now review these.

From a hybrid gauge to BC] gauge. It is convenient to encode the redefinitions needed to attain the BCJ gauge by defining an
intermediate set of multiparticle superfields in a hybrid gauge, denoted by Kjp ;. The definition of multiparticle superfields
in the hybrid gauge Iv<[p_Q] assumes that all superfields of lower multiplicities Kp and K, have been redefined to satisfy all
the generalized Jacobi identities, i.e. £,Kp = 0 for k < |P| (and similarly for Q). We then define

v 1

A7 = S1AZ(kq - Ap) + Ag(ymWe) — (P < Q) (458)
v 1

Alp.q = 51Ag (ke - Ap) + AyFg" + (Wpy"Wo) — (P < Q)]

17 1o o 1 o 1 maam
Wi o) = ZFP (visWo)* + i(kQ <Ap)Wq + EWQ Al — (P < Q),

v 1

Rty = L[F ke - o)+ FJPL 4 B FRY — 23w W — (P > ],

and Iv<i = K;, where the superfields Kp and K, on the right-hand side satisfy the generalized Jacobi identities £;,Kp = 0 for
k < |P| and

Wipia) = kpo Wip.q) — (A" @ W¥)c(ip.q)) » (4.59)
mlpq
Fip.q) = kpoFip.g) — (A" ® F*)cqp.) »

are the local form of the multiparticle superfields of higher mass dimension defined in [92] involving the contact-term
map C([P, Q]) in (4.21) and the notation (4.31). A

In contrast to the definition§ (4.33) of Lorenz-gauge superfields Kjp ¢, in the hybrid gauge their definitions (4.58) are
not recursive: The superfields Kp o; on the left-hand side of (4.58) have to be redefined Kjp o1 — Kjp o) before qualifying
as input on the right-hand side in the next step of the recursion.

The hybrid gauge leads to more convenient explicit expressions to arrive at multiparticle superfields in the BC] gauge.
One can show that the following redefinitions

Kip.o1 =K1 — Y (ke - k)[Hixrq) Kis — (X < J)] (4.60)

P=XjY
8(Y)=R®S

DO,H[p,QJ : K= Aa
+ Z (kx . kj)[H[XR,p] Kjg — (X (—)])] — klr’nQH[P,Q] c K =A"
s 0 K =Ww*
imply that the left-hand side satisfies all generalized Jacobi identities. Note that §(Y) in (4.60) denotes the deshuffle map
defined in (C.10) and the superfields H will be defined below. To illustrate the above redefinitions we write down explicit
examples for A’[’;,’Q] up to multiplicity five (recall that A]" := A" and AE{ = Ag?)

Allz3 = Ali2,3 — KixsHiz 3 (4.61)

22 The simplicity arising from integration by parts hinges on the fact that the double-pole terms in superspace are proportional to factors of
(1 + sjjx...). Explicit computations up to six points show that this is the case in the pure spinor formalism.

The recursive construction in [91-93] of multiparticle superfields in the BC] gauge in principle has no limitation in terms of multiplicity. Whether
the superfields in the BC] gauge resulting from the recursive method agree with the result from manipulations of superstring integrands is not yet
mathematically proven beyond six points and is taken as an assumption in the calculations of Section 6.
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Allz34) = Aﬂz,m — kiy34Hp12,34)
— (ki - kz)[H[1,34]A§" - H[2,34]AT]
+ (k3 - ’<4)[H[3,12]AT - H[4,12]A’;1] ,
Ali2sa = Aﬁ23.4] — kia34H(123.4)
= (ky - ’<2)[H[13,4]Ar2n - H[23,4]Ar1”]
— (k12 - k3)H[12,4/A3'
All2sa5) = Aﬂz34,5] — Kih3asH(12345)
— (ky - k2)[H{134.5/A5 4 Hp1a51A% + Hiiss1A0 — (1 < 2)]
— (k2 - k3)[H[124,511‘\g1 + Hpiz51A33 — (12 < 3)]
— (k123 - ka)Hp123,5)A7'
Aﬁz3,451 = Aﬁ23,45] - kT2345H[123,45]
— (kq - ’<2)[H[13,45]Agl + Hp1451A% — (1 < 2)]

— (k12 - ’<3)[H[12,45]A5,n —-(12 < 3)]
+ (ke - ks)| Hig, 123AT = (4 <> 5)].

The explicit expressions for the new superfields Hjp o) were obtained up to multiplicity five in [92] and for arbitrary
multiplicity in [93]:

PR —(_ IM& Y|y
Hip =0, Hiam = (-1 Y 1H —(AeB), (462)
XjY=aB

where @ and b denote the letterifications of A and B as defined in (C.12) and

1
Hj ¢ =Hagc+ I:EH[A,B](kAB -Ac) + cyc(A, B, C)] (4.63)
- [ Z (kx - k;)[Hixz.s1Hys.c; — (X <> j)] + cyc(A, B, C)] ;
XiY=A
8(Y)=R®S
1 1
Hppc = —ZA/TAgann + E(WAVmWB)A? + cyc(A, B, C). (4.64)

It is straightforward to check that the superfields Hs g satisfy generalized Jacobi identities within A and B. This justifies
using the notation where nested brackets are flattened, e.g. Hjj1,2),35.4) = Hj123,4) in accordance with the notation (4.54).
The combination of (4.62), (4.63) and (4.64) reduces all the redefinitions (4.60) from hybrid gauge to BC] gauge to products
of building blocks Hu p.c and (ks - Ac).

The superfields Hpp o) in (4.62) up to multiplicity seven are given by

1
Hiiz3) = g(HQ 23) (4.65)
H[123,4] = (H;2 3,4 H1 2 43)
1
Hpz 34 = 2(2 1234 —2H3415)
1
Hpiz3s5 = g(” 123,45 — Hiz354 T Hi2503) »
1 /
Hi123,451 = 5(2 12,3,45 — 1 2,453 3H4.5.123) ’
1
H[12345,6] - g (H 1234,5,6 H123 4,65 + H12 3,654 H1 2 6543)
1 /
Hi2sase = & (2H123.4.56 — 2H15.3.564 + 2H1 5 5643 — 4H5 5 134) »
1 /
Hi123,456) = g( 12 3,456 1 2,4563 3H4/lS.G.123 + 3H44,5,1236) ’
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1
! 4 ! !/ ’
H[123456,7] - ;(H12345,6,7 - H1234.5.76 + H123,4,765 - H12,3,7654 + Hl,2,76543) ’

— _ 4 ! _ !/ _ !
H[12345,67] =7 (2H1234,5,67 2H123.4.675 + 2H12,3,6754 2H1,2,67543 5H6,7,12345) ’

Hii234567) = ;(31_1423.4,567 - 3H{2.3.5674 + 3H;,2,56743 - 4Hé6,7,1234 + 4H§,5,12347) )

and the simplest non-vanishing instances of the primed superfields in (4.63) are
Hi,3=Hi23, (4.66)
Hiy34=Hu3a+ %[H1.2.3(’<123 Ag)— (3 < 4)].

For example, the explicit expressions for the first two superfields above are given by

1 1
EATAZF;“” + E(W1 ymW2)AT + cyc(1, 2, 3), (4.67)

1 1
Hi123,.4) = Z(H12,3,4 +Hzg12) + ﬁ[H1,2,3(/<123'A4) — Hi2.4(ki24-A3) + Hs 4.1(K134-A2) — H3 4 5(ka34-A1)] .

Hi2,3 = —

It is interesting to observe that the expressions for the superfields H, g; that lead to the BCJ gauge are not unique. In fact,
simpler explicit expressions can be derived using the Bern-Kosower formalism [174].
To complement the definition (4.60), the field strength in the BC] gauge is defined using the contact-term map (4.21)

Fiplo) = kpoApp.q) — kpoAp.o) — (A" ® A")cqpa)) » (4.68)

see the definition (4.31). Concretely, the above superfields can be explicitly checked to satisfy the generalized Jacobi
identities. For example, using the notation (4.54) as Af},3, 5; = AT)345, ONe can see that

Alyzss + AJ1ass + Ay1os + Afs =0, (4.69)
corresponding to the third identity in (4.50) with C = 5. In addition, long calculations demonstrate that
Aly3as — Alyzsa + Alsios — Agsons — Agszin T Agszg = 0, (4.70)

in agreement with the expansion (4.55) applied to Af},3 45; + Ajis 123y = 0.

As an alternative to the method above to obtain multiparticle superfields in the BCJ gauge, one can choose to go directly
from the Lorenz gauge to the BC] gauge. The process is more or less the same, but the explicit formulae make it more
evident that the whole process corresponds to a finite gauge transformation of the corresponding perturbiner expansion
of Berends-Giele currents to be reviewed shortly. The discussion of these redefinitions is left for the Appendix G.

4.1.7. Equations of motion of multiparticle superfields in the BC] gauge
Written in terms of the BRST charge Q = A“D,, the equations of motion for the multiparticle superfields in the BCJ
gauge become (ks := 0) [91]

QVp = Z (kx - ki) VxrVs » (4.71)
=XjY

5(Y) R®S

QAY = (Ay™Wp) + kj'Vp + Z (kx - kj)[VXR/‘\]'-151 - VjRA)ngs] )

P=XjY
5(Y)=R®S
1
B
QWP = 4( mn ﬂFP + Z kx kJ VXRW VJRW ]
P=XjY
8(Y)=R®S
Q™ = (/"W + D (k- k) [ViwER" — VieFa']
§V)—kas

where Vp = A%AP is the multiparticle unintegrated vertex operator and the last line involves the superfield W™ of higher
mass dimension defined in (4.59). In addition, the sum over P = XjY assembles the |P|—1 deconcatenations of the word
P into a word X, a single letter j, and a word Y. Moreover, §(Y) = R ® S denotes the deshuffle (C.10) of the word Y into
the words R and S. A few examples help to illustrate the above formulae,
QV; =0, (4.72)
QVi2 = (k1 - k2)V1 V2,
QVi23 = (ky - ko)[ViVas + VisVa | + (kiz - k3)Via Vs,
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QVi23a = (k1 - k2)[V1Va3s + VisVas + ViaVas + VizaVs
+ (k12 - k3)[V12Vaa + Vi2aVs] + (K123 - ka)Via3Va,
QVi23a5 = (k1 - k2)[V1Va3as + VisVaas + VizaVas + VizasVa
+ Vi35Vo4 + ViaVass + ViasVas + VisVass
+ (k12 - k3)[V12Vaas + Vi24Vas + VizasV3 4 ViasVas
+ (k123 - ka)[V123Vas + Vi23sVa]
+ (k1234 - k5)V1234V5 .

Note that the instances at rank < 4 can be formally obtained from the BRST variations (4.6) and (4.8) of the OPE residues
upon promoting Ly131.p1 — Vi23.p. In other words, the chain of redefinitions in (4.19) and generalizations to higher rank
preserve the form of the covariant BRST algebra.

Recalling the notation (4.54) Kypy := Kp for superfields in the BCJ gauge, the BRST variations in (4.71) for the left-
to-right nested commutator £(P) can be obtained as the special case [R, S] := £(P) of the BRST variations for general
commutators

QVirs) = %(V ® Versy) » (4.73)

QAfks) = Ay "Wirs) + kisVirs) + (V @ A™)eqres) »
1
QWies) = Z(kymn)ﬂF[rlg,"S] + (VW qrs) -

QF's) = (AW[[,Q'TS]V”]) +(VQF™)cqrsyy »
where we are employing the notation (4.31) for the contact-term map. The fact that
VOKkpy = Y (k- k)[VxeKis — (X < j)] (474)
P=XjY
8(Y)=R®S
for superfields in the BC] gauge was proven in Lemma 1 of [93].%4
The multiparticle versions of the on-shell constraints k'(yn W)y =0 = k,‘nF{"" take a form similar to (4.71),

K (vmWode = Y (kx - k[ AR (YmWis o — Afp(ymWis)a ] - (4.75)

P=XjY
8(Y)=R®S

KnFp™ = D (ke k) vl WiWis + ATEE" — (X < J)].
P=XjY
8(Y)=R®S
for instance
KTy (ymWi2)e = (k1 - k2)[AT (ymWa)o — A5 (ymW1)a ] . (4.76)
kaZFPSt = (ky - ko)[2(Way"Wa) + AL FS™ — AZFI™]
Using the multiparticle SYM superfields in the BC] gauge, it is natural to define the multiparticle massless vertices in the
pure spinor formalism as

Vipgr = A*A7Y . Upg) = 00°A0 Y + ™AV + d WS o, + sN™FLQT (4.77)

where [P, Q] denotes an arbitrary Lie monomial, e.g. [[1, [2, 3]], [4, 5]]. The multiparticle equations of motion (4.73) and
the non-linear Dirac equation (4.75) imply the relations

QUpp,q) = dVip,q1 + (V ® U)cqrr,q)) (4.78)

between the two types of vertex operators, in lines with QU; = 9V, and the rank-two example (4.18).
4.2. Non-local superfields and Berends-Giele currents

In addition to the local multiparticle superfields reviewed above, the pure spinor formalism naturally leads to another
class of multiparticle superfields containing kinematic poles in generalized Mandelstam invariants [91,171]. These non-
local SYM superfields are denoted collectively by kp and were dubbed Berends—Giele currents®> [171] due to their relation

24 The replacement Kypy — Kp was left implicit in the proof of [93].

25 The story is longer than this since in [171] the relation with the standard Berends-Giele current Ji' was observed from a structural similarity
between the appearance of the superfield Berends-Giele current Mp in the pure spinor cohomology formula for SYM tree-level amplitudes and in
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with the standard gluonic currents Ji' defined by Berends and Giele in the 80s [28]. Specifically, they share the same
shuffle symmetries, and the 6 = 0 term in the Berends-Giele superfield current A7() in a suitable gauge is equal to jj',
see Section 5 for a review.

Each local superfield representative in Kp € {AP AF, Wg, F'} admits a corresponding Berends-Giele current with
multiparticle label P = 12...p denoted by calligraphic letters

Kp € {AD, AT we, 7y, (4.79)
starting with KC; := K; and
K
Kip = -2, (4.80)
S12
Ki23 K321
K123 = + ,
$125123 5235123
1 Ki234 K3214 K341 K3241 Ki12,341
K234 = — +
S1234 \ S125123  S235123 5345234 5235234 $12534
with generalized Mandelstam invariants defined in (1.23), s12., = k2 In contrast to the bosonic Berends-Giele

currents in [28], the supercurrents Kp also contain fermionic degrees of freedpom as required by supersymmetry, and their
construction does not include any quartic vertices. Note that for historical reasons the Berends-Giele currents associated
to the local multiparticle unintegrated vertex Vp = A"‘Az is denoted by Mp rather than Vp,

Mp = 2%A4F. (4.81)
More explicitly, My = V; and
Viz
My = —, (4.82)
S12
V123 V321
M3 = ——+ —,
$125123 5235123
1 V1234 V3214 V3421 V3241 V12,34]
M3y = — + .
S1234 \ S125123 5235123 5345234 5235234 512534

In the early stages of unraveling the cohomology properties of multiparticle superfields with the pure spinor formalism,
the Berends-Giele currents xCp were defined case by case to encompass all tree subdiagrams compatible with the ordering
of the external legs in P in such a way as to transform BRST covariantly [21,171]. For instance, from the equations of motion
(4.72) we get

QM; =0, (4.83)
QM2 = MiM>,
QM123 = M12M3 + M1Mas,,
QMi234 = M123Ma + M12M34 + M1M234 .
In contrast to QV123..p as given by (4.72), there are no explicit Mandelstam variables in (4.83) as the propagators s;_ ¥ Lin
(4.80) absorb the appearance of explicit momenta in the contact terms of the equations of motion of the local superﬁelds

A rigorous proof of this statement from a combinatorial perspective can be found in (4.155). The generalization of (4.83)
to higher rank is given by [171]

QMp =) MxMy (4.84)
XY=P

and it was proven in [92]. The sum involves all the |P|—1 deconcatenations XY=P of P into non-empty”® words X, Y, e.g.

X=12...jand Y =j+1...pwithj = 1,2,...,p—1in case of P = 12...p. These deconcatenations will be later on

associated with partitions of the p on-shell legs on two Berends-Giele currents while preserving the color ordering. For a

combinatorial proof of (4.84) from the perspective of BRST variations of the composing local numerators Vg, see (4.178).
It is useful to define a BRST-exact superfield Ep as

Ep= ) MxMy (4.85)
XY=P

the role played by J;' in the standard Berends-Giele setup. It was much later in [92,175] that a rigorous relation between the superfield version
of the Berends-Giele currents iCp and the standard bosonic J;' was established via .A™(6). So in fact, the non-local superfields iCp generalize the
Berends-Giele currents in a supersymmetric manner and may also be named Berends-Giele supercurrents.

26 Defining My := 0, the restriction to non-empty words may be lifted and the general definition (1.22) may be applied.
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which will be used in the pure spinor cohomology formula for SYM tree-level amplitudes in Section 5.2. One can show
that Ep is conditionally BRST exact

Ep = QMP if Sp ;ﬁ 0, (486)

provided that sp # 0 is true as Mp contains the propagator 1/sp. We will see later that this condition of the momentum
phase space is of crucial importance.

The connection between Berends-Giele currents subject to the deconcatenation equation (4.84) and the cubic tree
subdiagrams compatible with a color ordered amplitude is supported by the following consistency check: the number
of terms or kinematic pole channels in Mi,_, is the Catalan number C,_; (see (5.19) below for a proof) which counts
the number of cubic diagrams in a color-ordered (p+1)-point tree amplitude. As the relation with the Catalan number
suggests, the definition of Berends-Giele currents admits a beautiful combinatorial interpretation in terms of planar binary
trees and is connected with the KLT matrix in many surprising ways [165,166,176]. We will return to this point later in
Section 4.3.

4.2.1. Non-linear wave equations and Berends-Giele currents
In [92] the definition of Berends-Giele currents was shown to arise from solutions of the non-linear wave equations
of ten-dimensional SYM theory in the Lorenz gauge

[0m, A" = 0. (4.87)

To show this one first needs to derive the non-linear wave equations obeyed by the superfields K € {A,, A™, W%, F™},
This can be done starting from

OK = [8"™, [9m, K]] (4.88)
and using the Jacobi identity together with d™ = V™ 4+ A™. That is,
OK = [V" + A", [0, K]] (4.89)

=[[V", 9], K] + [A™, [, KI] + [A™, [Vin, K] + [V", [V, K] .

The first term in the second line vanishes in Lorentz gauge (4.87) as [0, V"] = —[0m, A™]. For the simpler choices of
superfields K — {V,, Vi,}, the last term of (4.89) can be converted to quadratic expressions in the non-linear fields using
the Dirac and super Yang-Mills equations (2.8). In the case of K — {W¢, F™"}, the analogous conversion necessitates the
equations of motion,?’

1

[V, W] = 2 [Fomn, (y™"W) ] (4.90)

[Vp. FPI™] = 2[F™, Fp"] + 2{(Wimy™),, W}
of the higher-dimension superfields W™ := [V™, W] and FPI™ := [VP?, F™] from (2.20). Upon inserting (2.8) and (4.90)
into (4.89), one gets [92]:

OAa = [Am, [0™, Ad]] + [(¥"W)a, An] . (4.91)

DA™ = [Ap, [9P, A™]] + [F™, Ap] + yop (W, WP},

1
OW* = [Am, [8™, W] 4 [A™, W] + = [Foun, (y™ W],

2
OF™ = [Ap, [8°, F™]] 4 [Ap, FPI™] 4 2[F™, F,"] 4 2{(WMy™), , W},

with the convention AT"B" = A™B" — A"B™. We will see below that these equations are the precursors of supersymmetric
Berends-Giele recursion relations. In particular, the bosonic restriction of the equation for OA™ will give rise to a
derivation of the standard Berends-Giele currents of [28].

4.2.2. Perturbiner solution

To solve the wave equations (4.91), it is convenient to use the perturbiner method of Rosly and Selivanov [24-27] by
expanding the superfields K € {A,, A™, W%, F™} as a series with respect to the generators t¥ of a Lie algebra, summed
over all possible non-empty words P = p1p; ... pp| [95] (note t” := tP1tP2 . . . PIPI)

K=Y KptPe?X =) gt 4+ " thezelin X 4 (4.92)
p i1 i1.ip
> 1 S ) ) )
=YY = Kol [, (o2 [ fP] L etz
p=1 i1,i,..ip p
27 The first line of (4.90) can be derived by applying the Clifford algebra [V,,,, W] = %[Vm, [V, (y"y"W)* 4 (y"y™W)*]] followed by the Dirac

equation, Jacobi relations and the definition Fy,; = —[Vi,, V1. The second line of (4.90) in turn follows from [V, F™P] = [V,,, [V, [V4, V™]]]
combined with the super Yang-Mills equation and additional Jacobi relations.
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with coefficients given by Kp, which will be identified with the Berends-Giele currents shortly. The second line follows
from the shuffle symmetry (4.102) obeyed by the Berends-Giele currents and guarantees that K is Lie-algebra valued,
see [177] for a proof. Note that we are implicitly considering the generators t! to be formally nilpotent?3 t'...t' = 0 in
order to avoid repetition of indices like in K112 or K121.

In order to derive recursion relations for the expansion coefficients Kp € {AZ, AP, Wi, Fpi'}, we insert the series (4.92)
into (4.91) and use the action of Box operator OekP* = 2spek?’X on the plane-wave factors of the superfields. By isolating
the coefficient of t” in the wave equations, one readily finds that

1
Kp = - Z Kix.y1 (4.93)
P xy=p
where the contribution from each deconcatenation of P into non-empty X, Y is a non-local version of (4.33)
1
A = [ A kg - Ap) + AG(ymWp)a = (P < Q)] (4.94)
1
P01 = Q[Ag(ka “Ap) + ATF + Wy ™Wo) — (P < Q)]
1 1
Wi.a1 = E[Wg(ka SAR) FWGEAY + SFP (W) — (P < Q)].

1
Firlg) = 5 [75"(ka - Ap) + F" AL + R+ 200y WD = (P o Q)]

The definition F™ = —[V™, V"] and those of higher-mass-dimension superfields lead to the following Berends-Giele
currents
Fpm = KPAD — KBAT — > (AFAY — AT AY)
XY=P
W = KEWE + ) (WRAT — Wy AR) (4.95)
XY=pP
Frld _ pm pPd (]_-qum _ ]_—Pqu)
P PP x Ay Yy X )
XY=P

and the above recursion terminates with the single-particle superfields k; = K; € {A}, A, WY, F™}. By comparing the
expressions in (4.80) with the first few explicit expansions from (4.94) it is possible to recognize these expansions as the
Berends-Giele currents obtained previously using BRST cohomology arguments.

4.2.3. Equations of motion of Berends—Giele currents
By inserting the perturbiner expansions (4.92) of the SYM superfields in K into their non-linear equations of motion
(2.12), one immediately obtains the equations of motion of the Berends-Giele currents in the form

Do A + Dp AL = yJh Ab + > (AN AL — A AY) (4.96)
XY=P
Do Ay = Kb AL + (ymWp)o + Y (AR AN — ATAL)
XY=P
1
DWp = 5 (™l Fp + D (AW = AD).
XY=P
Da}—;;ﬂn — (Wl[;m]/n] Yo + Z (Aﬁf;”” _ AZ]‘—)TH)
XY=P

by comparing coefficients of the products of gauge generators t” on both sides. Apart from the deconcatenation sum
Y xv—p. these equations of motion have the same form as the linearized ones (2.14). For example the two- and
three-particle equations of motion of .4!? and A!* read

Da Ay’ +Dp At = yap A + Ay Ay — A Ap, (4.97)
123 123 __ 123 1 423 12 43 23 41 3 412
Dy Ag” +Dp A = Yy Ar + ALAD + APAY — AD Ay — AJAL

These equations lead to a simple proof of the deconcatenation property (4.84), based on the action of the pure spinor
BRST charge on superfields via Q = A*D,. Therefore, multiplying the first equation of (4.96) by A“A# and using the pure
spinor constraint A%A# yg}g = 0 together with anti-commutativity of the superfields, one recovers the variation (4.84).

28 I the original perturbiner discussion of [24], repeated indices are avoided by adjoining nilpotent symbols £ to each t' in the expansion (4.92).
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As we will review later, these simple equations of motion for Kp play a key role in various proofs of BRST invariance
of scattering amplitudes in string and field theory, see [21,170,171] for examples at tree level and [173,178-182] at loop
level. The need for superfields that represent multi-particle contact vertices on a skeleton graph was also observed in the
worldline version of the pure spinor formalism [183,184].

In addition, the Lorenz gauge as well as the Dirac and super Yang-Mills equations [95]

[0m. A"] =0, [V, (y"W)o] =0, [V, F™] = y s {W*, W} (4.98)
imply, after using V,, = 0, — A, that the Berends-Giele currents satisfy
K AT =0, (4.99)
Kn(y™We)a = D [A%(r ™ Wy )a — An(y™Wxa] (4.100)
XY=P
K FEm = > 200y " Wy) + AL FP — AL F (4.101)
XY=P

While (4.100) and (4.101) have local counterparts (4.75) in BC] gauge, the local multiparticle-superfields Af' subject to
generalized Jacobi identities depart from Lorenz gauge and generically obey k’;.,Ag’ # 0.

4.2.4. Symmetry properties of Berends—Giele currents
The symmetry properties of the KCp can be inferred from their cubic-graph expansion and can be summarized in terms
of the shuffle product

Kawp=0, VAB#0, (4.102)
see (4.139) below for the proof. For example,

0= K2 = K2 + K21, (4.103)
0 = Kyu23 = K123 + K213 + Ka31
0 =Kipu3 — Kiwz2 = K123 — K321+

The shuffle symmetry (4.102) was proved for the gluonic currents J' of Berends and Giele in [185], while a proof of
Kaws = 0 for their supersymmetric counterparts K € {A,, A™, W¥, F™} can be found in the appendix of [92]. Since the
0-independent component of the Berends-Giele current of the vector connection reduces to the gluonic Berends-Giele
current after setting the fermionic polarizations to zero, Ap'(6 = 0)|,,—0 = Jp', the supersymmetric proof of [92] yields an
alternative proof of the shuffle symmetry of the standard Berends-Giele current Ji'.

The shuffle symmetry (4.102) implies that the Berends-Giele currents admit a (p—1)!-element basis of permutations
Ki i, of K12..p which can be taken as Ki4(23. p) With o € S,_1 via Schocker’s identity [186]

Kaia = (= 1)K, 5 (4.104)

where B denotes the word reversal of B, see Section 1.3. In particular, for A = ) we get the alternating parity under
reversal of P,

Kp = (="', (4.105)

for example, K1 = —K31 and K123 = K331, as can be seen from (4.103).

4.2.5. Berends-Giele currents and finite gauge transformations

It was shown in [92,93] that in terms of the perturbiner series of Berends-Giele currents K, the local superfield
redefinitions reviewed in the previous section correspond to a finite gauge transformation of the superfields K satisfying
the non-linear field equations (2.11). To see this, one can explicitly check that the poles in the definition of the Berends-
Giele current cancel the contact terms present in the local redefinitions from Lorenz to BC] gauge (this will be proven in
(4.155)). More explicitly, we first define a perturbiner series of the redefining superfields as (recall e.g. t123 := t1t2¢> etc.)

Hi= ) Hpt'eh™, (4.106)
P

as well as Lorenz K and BCJ KBY perturbiner series in which the numerators are composed of local superfields in the
Lorenz or BC] gauge, respectively. For example,

K K K j ¢
IC?%: [12,3] [1,23] ICL23: [[1,2],3] + [1,[2,3]] , (4.107)

’ 1
$125123 5235123 $125123 5235123
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with Kip.o; = —K{q.p; from (4.33). The local redefinitions from Lorenz to BCJ gauge of the vector superpotential
A'[qza] = A?Enz]s] — KiysHz3) AH,B] = A'[q,[zs]] — Kiy3Hi1,23) (4.108)

(with 1:1[12’3] defined by (G.6)) imply that their perturbiner series are related by

Hi12,3) n Hi1,23

A = ALY — KMy, His = , (4.109)
S125123  S$235123
corresponding to the gauge transformation
Apd = AL — [Om, HT + [Af, H] + - - - . (4.110)

The ellipsis indicates additional terms of a finite gauge transformation (see below) that do not contribute to (4.109) since
H1 = Hi2 = 0 at multiplicities one and two vanish identically. In fact, the calculations of [93] using superfields up to
multiplicity nine revealed that the relation between the Lorenz and BCJ] gauges is given by a finite gauge transformation

AR —yALUTT 4+ 9,UUT, U = exp(—H) (4.111)

whose expansion yields the omitted terms in (4.110) as an infinite series

A3) = AL, + [HL, ] — [, AL ] — o 58, (8, )+ 3 (58, (5, AL 1]+ 5. 05, [, (6L ] + - (4.112)
Following [187], one can obtain the series (4.112) iteratively. To see this, define [188]

Li(Am) = Ap — Jl,[am, H] — },[H, Lj+1(Am)] (4.113)

and evaluate
AE-ICJ — L](A;I;q) . (4114)

The fact that it is the gauge transformation (4.112) that relates the superfields A&q and Afn justifies the terminology of
their corresponding local superfields as being in the Lorenz (Kp o) or BC] gauge (Kpp,q1)-

4.2.6. The multiparticle Berends-Giele polarizations

In Section 2.2.1 we have seen that the linearized superfields admit a 6-expansion where each component depends
on single-particle polarizations e[", x/* and field-strengths, f™". In principle, the recursive construction of multiparticle
Berends-Giele currents at the superspace level also determines the coefficients in their 6-expansion in terms of single-
particle polarizations. However, the tensor structure of the 6-expansion (2.17) in the single-particle case is not preserved
under the Lorenz-gauge recursion (4.93) and (4.94): generic orders in the 0-expansion of multiparticle Kp in Lorenz gauge
will receive multiple contributions from different partitions of the s over the lower-multiplicity superfields in (4.94).

A notable exception arises at the zeroth order in 8, where the Lorenz-gauge recursions in superspace have an
immediate echo at the level of components: the multiparticle polarizations ¢p', X5, f3"* defined by setting 6 = 0 in

ep = AF(0), Xy = wWg(0), = Fp(0), (4.115)

obey the following recursions as a consequence of (4.93) and (4.94) (with ¢f" = e" and &7 = x; for single-particle
labels),

1 o l o
o = - Z My, XY= ~ Z Xy s (4.116)
P xy=p P xy=p
where
1
el vy = 5[2$(ky cex) + AT 4 (A y ™ Ay) — (X < V)], (4.117)
1
Xy = 5(k§ + kD) P [ (ym&y )p — eF (YimAx )] - (4.118)
Moreover, the non-linear component field-strength is given by
= kpep — khel — > (efey — ekel) . (4.119)
XY=P

Note that the transversality (k; - e;) = 0 of the gluon and the Dirac equation kﬁn(ym Xi)a = 0 of the gluino propagate as
follows to the multiparticle level,

(kp-ep)=0, kb (v Xp)o = Z [e)r?(meY)a - e?(mex)a] ) (4.120)
XY=P
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where transversality of e is a peculiarity of the Lorenz gauge (4.87) chosen in the derivation of the corresponding
superspace Berends-Giele current AJ'(6).

In Lorenz gauge, the above ¢j', X, fi" are insufficient to describe higher orders ~ 6™ of multiparticle Xp with
1 < m < 5 which complicates the component expansions via (3.81). However, one can streamline these §-expansions
by means of non-linear gauge transformation (2.6) with a perturbiner expansion of both the superfields K and the gauge
parameter 2. As detailed in Appendix F, the non-linear version O“A};'S = 0 of Harnad-Shnider gauge reorganizes the
6-expansion of the Kp to simple combinations of the ¢, X, f". In particular, the orders =3 of A relevant for n-point
tree-level amplitudes take the same form as in the single-particle 6-expansion (2.17), see (5.30) below, which dramatically
simplifies the component expansions in Section 5.2.2.

One can similarly arrange the 6-expansions of local multiparticle superfields in Lorenz or BCJ gauge such that the
components relevant to tree-level amplitudes are built from three types of multiparticle polarizations. In case of B(CJ
gauge, the construction of the superfields A7', W§', Fi'" in Section 4.1.6 determines the local multiparticle polarizations

el = AT(0),  x%:=WZ0), f™.=FI"(0) (4.121)

via evaluation at & = 0, for instance
1
el = el(er - ky) —ef'(e - ky) + E(krln—k'zn)(ﬁ ce2) + 0y x2),

1
X = S Ky, (€7 (vmxa)o — € (Vmx1)a] (4.122)
15" = ke, — kiel, — (k1 - kz)(eT'e) — efel).
The local multiparticle polarizations (4.121) obey generalized Jacobi identities in P by construction and compactly encode
the components of the local BC] numerators to be reviewed in Section 7.1.3. Note that transversality of the multiparticle
polarizations ej' at |P| > 3 is violated in BC] gauge, e.g.

1 1
kix3€Ta3 = 5123(63T3n 3= g(xmez)e? + cye(1, 2, 3)) . (4.123)

Further details on local multiparticle polarizations can be found in section 4.3 of [175].
4.3. Combinatorial framework of Berends-Giele currents

The definition of Berends-Giele currents encompassing all the Catalan number of poles in a color-ordered tree-level
amplitude suggests a combinatorial interpretation in terms of planar binary trees. We will see that this point of view
provides a rich mathematical framework to prove many assertions related to Berends-Giele currents and associated
topics [166].

4.3.1. Planar binary trees

In the appendix of [91] a construction of Berends-Giele currents exploited the fact that nested Lie brackets can be
interpreted as planar binary trees and vice versa [189]. A planar binary tree is a tree embedded in a plane in which each
vertex has three edges: one root and two (left and right) daughters. An edge is called a leaf if it has an end point. In the
context of tree-level amplitudes a planar binary tree is also called a cubic graph and we map each planar binary tree to
a product of inverse Mandelstam invariants (the Feynman propagators) and nested Lie brackets. In addition, each leaf is
indexed by a particle label and planarity implies that the labels are in a fixed ordering. For example the two planar binary
trees with three leaves labeled 1, 2, 3 are mapped to

1 2 3 1 2 3

N

[[1,2],3] [1,[2,3]]

S128123 $235123

It turns out that the sum over all possible bracketings, or cubic graphs, in a color-ordered tree-level amplitude can be
generated from the Lie-polynomial valued recursion proposed in [165] (inspired by [189])

b(P) :== % Z [b(X), b(Y)], b(i) =1, b(¥):=0. (4.124)
XY=P

This recursion constructs combinations b(P) of non-commutative words with inverses of Mandelstam invariants sp in
(3.108) as their coefficients, i.e. the right-hand side of b(i) = i is not understood as i € N, but as a letter in a non-
commutative word. From well-known combinatorial results, the number of terms in the recursion above is given by the

47



C.R. Mafra and O. Schlotterer Physics Reports 1020 (2023) 1-162

NN

b(1234) = [1.2.3].4] [[L.[2.3]] [[1,2],[3,4]] [1,[2,[3,4]] (1,[[2,3],4]]
$128123S51234 523312351234 51283451234 534523431234 523523451234

Fig. 2. The planar binary trees generated by the recursion of b(1234) from (4.124).

Catalan numbers 1, 2, 5, 14, .. .22 and one gets, for example, the following Lie polynomials
1,2 1,2],3 1,(2,3
b(1)=1, b(12)= [ ], b(123) = [L1. 2], 3] + 1. [2. 31] , (4.125)
S12 $125123 5235123
1,2],3],4 1,[2,3]],4 1,2],[3,4 1,[[2, 3], 4 1,[2,[3,4
b(1234) = ({11, 21, 31, ]+[[ (2, 31] ]+[[ I, [ ]]+[ [[2, 3] ]]+[ [2,[ ]]].
512512351234 512351234523 51251234534 512345235234 512345234534

The nested commutators in the numerators can be expanded in terms of formal words in letters 12..., and the
diagrammatic representation of b(1234) can be found in Fig. 2.

Lemma 4. The b map (4.124) is self adjoint,

(b(P), Q) = (P, b(Q)), (4.126)
where (A, B) = 84 p is the scalar product of words (C.11).
Proof. This is easy to see when P = i is a single letter with b(i) = i, so we will use induction over the length the word

|P| := k assuming that (4.126) is true for words of length up to k—1. Then, from the definition (4.124), the left-hand side
of (4.126) becomes

1
(b(P). Q) = = ) (BX)D(Y), Q) = (X < V). (4.127)
XY=P
Using the elementary property (see (1.5.12) in [152])
(AB,RS) = (A,R)(B,S), |A|=I|R|, |B|=IS|, (4.128)
and noting that |b(X)|=|X| and |P|=|Q| we get
(b(X)b(Y), Q) = (b(X), q1q2 - . . qx){b(Y), qixj1q)x142 - - - Gjay) (4.129)
= (X, b(q1G2 - - - Q) NAY, (@) +-191x142 - - - G101}
= (XY, b(q192 - . . qixDb(qix1+191x1+2 - - - G101 ) »

where in the second line we used the induction hypothesis since |X| < k—1 as the deconcatenation (4.127) vanishes if
one of the words is empty due to the definition b(#) := 0. Therefore,

D BXOB(Y), Q) = Y (P, b(@1a - - - Gpb(qxi+1Gmi2 - - qia))) = Y, (P BEXOB(Y)) , (4.130)

XY=P XY=P XY=Q

leading to the conclusion that (b(P), Q)=(P, b(Q)), finishing the proof. O
Assuming linearity b(A + B) := b(A) + b(B), the expansion of b(P) satisfies the shuffle symmetry b(A w B) = 0 for
A, B # (). We will prove this in two different ways.
Proposition 9. The planar binary tree expansion b(P) in (4.124) satisfies the shuffle symmetry
b(AwB)=0, VA B#D. (4.131)

Proof 1. We will show this by induction on the length of the word in b(P) starting from b(1 w 2) = b(12) + b(21),
which is easy to verify. Assume that b(A s B) = O for |A|+|B| = k, and consider b(R w S) for nonempty words such that

29 This can for instance be seen from the recursion C,_; = Zx+y:p72 CxCy for the number of terms in b(12...p) with (o =C; =1 and p > 3. As
detailed in the discussion around (5.19) below, this coincides with the recursive definition of the Catalan numbers.
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|[R|+|S| = k+1. The result will follow from the word identity (C.13), the antisymmetric nature of the deconcatenation in
the definition of the b map (4.124), and the induction hypothesis. That is,

sesb(RwS)= Y [b(X), b(Y)]
XY=RwWS
= [B(#), B(R 1 S)] + [B(R W S), B(#)] + [B(R). b(S)] + [B(S), b(R)] (4.132)
i Z Z [b(X W Y), b(Z wW)],
XY=R ZW=S

where we used the identity (C.13) to expand the deconcatenation sum in the second line. The second line vanishes by
the antisymmetry of the Lie bracket, while the third line vanishes since |X|+|Y|=|R| < k with nonempty X, Y implies, by
the induction hypothesis, b(X w Y)=0. Therefore b(P.wR)=0 for P,R # . O

Proof 2. Recall Ree’s theorem [177] that a Lie polynomial I" is orthogonal to shuffles with non-empty words (see Theorem
3.1 (iv) in [152])

(F',RwS)=0, RS#A. (4.133)
Since b(P) is a Lie polynomial by the definition (4.124) and b is self-adjoint by (4.126), we have
0= (b(P),RwS)=(P,b(RwS)), RS#P, VP, (4.134)

and the result follows. O

4.3.2. Berends-Giele currents from planar binary trees
Having the planar binary tree recursion (4.124), one can define Berends-Giele currents in BC] gauge Kp or Lorenz gauge
Kp as
Kp = Knpy, Kp = Kupy , (4.135)
where Kppy and Kpp) are defined by linearity. We are here departing from the notation in Section 4.2, where Berends-Giele

current in Lorenz gauge were denoted by Kp or IC,L, and those in BCJ gauge by IC,ECJ. For example, with Kjp ¢ = A'[’],qQJ we
get AT = AT and

m Aﬁll
2= ) (4.136)
S12
m m
m A[[1,2],3] + A[l,[2,3]]
123 = >
$125123 5123523
m m m m m
m A[Hl.2],3],4] A[[L[2,3ﬂ,4] A[[1,2],[3,4]] A[l,[[2.3l,4ﬂ A[l.[Z,[3,4ﬂl
1234 = ’
512512351234 512351234523 51251234534 512345235234 512345234534
m Aﬁ[[1,2],31,4l,5] Aﬁ[l.[2,3ﬂ,4],5] AFFH,Z],BAH,Sl AFFH,Z]J].M,SH
Al23a5 + + +

$12512351234512345 $12351234512345523 $1251234512345534  S125123512345545

m m m m
A[[l,[[2‘3],4]],5] + A[[1,[2,[3-,4]]],5] + A[[1,[2,3]],[4‘5]] + A[[1,2]‘[[3,4]-,5]]
$12345123455235234  $12345123455234534 $123512345523545 $125123455345345

Al A" Al Al
[[1,2],[3,[4,5]1] + [1,[[[2,3],4],5]] + [1,[12,[3,411,51] + [1,[[2,3],[4,5]1]

$125123455345545 $12345523523452345 $12345523452345534  $1234552352345545

A A

m m
[1.(2.[13.4].5]11 [1.[2.(3.[4.51111

$12345523455345345  S12345523455345545
Since these expansions will be frequently used later we also write the expansions of the Berends-Giele currents
Mp = Vb(p) (4.137)
using this algorithm to get (4.125)
Vo

M;=V;, Myp , M3 ,
S12 $125123 5123523

Vii11,21,31.4 Vi, 2,311,4 Vi,2),13,4 V1,112,314 Vi1 2,34
ll[]]]+[[[JJJ+[[JlJJ+ll[JJJ+[[[JJJ

V| Vi
_ [[1,2],3]4_ [1.[2,3]] (4.138)

Mip3s = ,
512512351234 512351234523 51251234534 512345235234 512345234534

Vii.21.31.41.5) + Vii.12.311.41.5) + Viii1.21.13.411.5) + Vii.21.31.14.5)

Miz345 =
$12512351234512345 $12351234512345523 $1251234512345534 $125123512345545

Vi, 112,31,411,51 Vii1,12,13,4111,51 Vi, 12,31,14,51 Vi11,21,113,41,51

$12345123455235234  $12345123455234534  $123512345523545 $125123455345345
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Vir1,21,13.14.5 Viv1112,31.41,5 Vi112,3.41.5 Vi1 112,31,14.5
[[1,2],[3,[4,5]1] + [1,[[[2,3],4],5]] + [1,[12,[3,4]1],5]] + [1,[12,3],[4,5]]]

$125123455345545 $12345523523452345 $12345523452345534 $1234552352345545
V[LIZ,IBA],S]H + VH,[Z,[3,[4,5]H]

$12345523455345345  S12345523455345545

After using Baker’s identity (4.55) to expand the nested brackets in the basis of £(1Q) and adopting the notation (4.54),
e.g., Vii1,21,31.41 = Viz34, these examples reproduce the Berends-Giele expansions of Kp — AJ', Mp given before in (4.80)
and (4.82).

The proof of (4.131) shows that any antisymmetric deconcatenation will satisfy the shuffle symmetry, as this is
a property obeyed by the underlying words. Hence, the Berends-Giele supercurrents, defined by their antisymmetric
recursion (4.93), and the BRST-closed superfield Ep, defined by (4.85), both satisfy the shuffle symmetry. We therefore
obtain the following corollary:

Corollary 2. The Berends-Giele supercurrents Kp (4.79) and the BRST-closed superfield Ep (4.85) satisfy
Krus = Egus =0, VR, S #0. (4.139)

4.3.3. The S bracket

B(J relations for SYM amplitudes were expressed in [91,175] using the so-called S map defined in [91] by its action
on Berends-Giele currents. The properties of this map provided the motivation for a more general definition in [165,166]
as a bracket {-, -}, dubbed the S bracket, acting on words in the dual space of Lie polynomials £* and producing words in
the dual space £*, i.e. {-, -} : £* ® £* — £*. For our purposes, this space is defined by the equivalence classes of words
differing by proper shuffles, i.e.,

A~B if A=B+ Y RwS with R,.S#0. (4.140)

For instance {1, 2} ~ —{2, 1} because {1,2} = 51212 = —s51321 + 5121 w2 ~ —{2, 1}. See the Appendix C.1 for more
information.

There are several equivalent definitions of the S bracket [91,165,166]. A recursive definition for letters i, j and words
A, B was given in [166] as

{iAj, B} = i{Aj, B} — j{iA, B},

{B, iAj} = {B, iA}j — {B, Aj}i, (4.141)
{i,j} = siij.
Example applications are given by
{1,2} =s1212, (4.142)

(1,23} = 512123 — 513132,
{12, 3} = 553123 — 513213,
{1,234} = 5121234 — 5131324 — 5131342 + 5141432,
{123, 4} = 5341234 — 5941324 — 55,3124 4 5143214,
{12, 34} = 5931234 — 5941243 — 5132134 4 5142143 .
We note that the original definition of the S bracket in [91] is given in terms of a closed formula

P,Q) = > ki k(X wV)ii(Rw S)(—1)"HH, (4.143)
XiY=P
RjS=Q
which, in particular, yields the following for one-letter words P — i
[,Q}= )" ki-kiii(Rw S)(—1)". (4.144)
RiS=Q

Several properties of the S bracket were proven in [166]:

Proposition 10. The S bracket satisfies:

i. {AwB,C} =0 forA,B#0
ii. {-,-}is a Lie bracket in the space of dual Lie polynomials (4.140)
iii. The binary tree map b of (4.124) acting on the S bracket satisfies [165]

b({P,Q}) = [b(P), b(Q)] . (4.145)

iv. Yy plX, Y} ~ spP
50



C.R. Mafra and O. Schlotterer Physics Reports 1020 (2023) 1-162

The proofs of these statements can be found in [166], we will restrict ourselves to showcasing some examples. As a
simple illustration of the shuffle property, we consider:

{1w2,3} ={12,3} 4+ {21, 3} = (523123 — 513213) + (513213 — 53123) = 0, (4.146)
this is consistent with the fact that the S bracket operates on dual words (4.140), where A wu B ~ 0. For the Lie-bracket
property we explicitly verify the simplest cases, antisymmetry for two letters and the Jacobi identity:

{1,2}+{2, 1} = 51212 + 59121 2512(1U_12)’\’0, (4147)

{{1,2}, 3} + {{2,3}, 1} + {{3, 1}, 2} = 5125133 w 12 = 2w 13) + 512523(23 w 1 — 3w 21)

+S]3523(2 w31 —32w 1) ~0.
An example for the third property is given by

b({12, 3}) = Sng(]23) — S]3b(2]3)

[[1,2]1,3] | [1,[2,3]] (12, 11,31 | [2,[1,3]]
=523 + —S13 +
$125123 5235123
(01, 2], 3]
S12
where we used the third example from (4.142), s15 + S13 + S23 = S123 and the Jacobi identity. Note that there is no pole
1/s123 in the right-hand side of (4.148). An illustration of the fourth property is the following
DX Y] = (1,23} + {12, 3} = 512123 — 513132 + 53123 — 513213 (4.149)
XY=123

$125123 5135123

= [b(12), b(3)], (4.148)

= (S12 + S13 +523)123 — 513(2 W 13) ~ 513123
From the property (4.145) it is straightforward to conclude:

Corollary 3. There is no 1/spg propagator in b({P, Q}), that is [166]
lim speb({P,Q})=0. (4.150)
spQ —>0

B(J] amplitude relations. We see that the S bracket in {P,Q} cancels the overall propagator 1/spy from the linear
combinations in b({P, Q}). From what we have seen in (4.86), this condition implies that the superfield Ep o} is a BRST
exact expression, Ejp gy = QMp,q; as the divergent propagator 1/spg (in the context of an amplitude of |P|+|Q|+1
massless particles) is absent from Mjp o;. This only happens when the numerators satisfy the Jacobi identity, and this
fact plays a key role in the proof of the BCJ amplitude relations using the cohomology of pure spinor superspace, see the
discussion in Section 5.2.5. A result we will need later is the following:

Lemma 5. The S bracket in the special case when one of the words is a letter admits the form

{i,Q} =) ki-ksRiS. (4.151)

RS=Q

Proof. We will show that the right-hand side of (4.151) is shuffle equivalent to the expression (4.144). Using the shuffle
equivalence proven in (5.46) we get

Z ki - ksRiS ~ Z ki - ksi(R w S)(—1)®

RS=Q RS=Q
~ 3 ki kisi(Rj 1w kS)(— 1) (4.152)
RijkS=Q
~ 3 [k hisiiR s kSY— 1R 4 ki - kasik(R o Y- 1)FH]
Riks=Q

where to arrive at the second line we relabeled the summation variables as R — Rj and S — kS, and in the third line we
used (jR) wi(kS) = j(RwkS)+ k(jRw S) from the definition of the shuffle product (C.5). Now we relabel kS — S in the first
sum in the right-hand side of (4.152) and Rj — R, k — j in the second one (so that (—1)®+1 — (—1)l). This implies that

D kit ksRiS ~ Y —ki - ksii(Rw SY—1)® + > ki kisii(R 1w S)(—1)" (4.153)
RS=Q RiS=Q RiS=Q
~ Y ki kii(Rw S =R,
RjS=Q

which is the same expression as (4.144), finishing the proof. O
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4.3.4. The contact-term map and the S bracket

The S bracket is intimately related to the contact-term map discussed in Section 4.1.1. In fact, the recursive definition
of the contact-term map (4.21) admits an equivalent representation in terms of the S bracket. If I" is a Lie monomial,
then [166]

(P®Q.C(I) =({P.Q}, 1), (4.154)

where the scalar product of words (A, B) takes values 1 for A = B and O for A # B, see (C.11). This means that the adjoint
C* of the contact-term map is the S bracket; C*(A ® B) = {A, B}. Exploiting this interpretation allows one to prove that
C? = 0 as stated earlier in (4.27), see Appendix H.

Important properties of the contact-term map relevant to the description of SYM in terms of local and non-local
multiparticle superfields were proven in [93,166]. For instance, the contact-term map deconcatenates the planar binary
tree map involving pole cancellations in a highly non-trivial manner:

Lemma 6. The contact-term map (4.154) satisfies

C(b(P)) = > (b(X)®b(Y) = b(Y) ® b(X)) := »_ b(X) A b(Y), (4.155)

XY=P XY=P
where ANB=A®B—B®A.
Proof. From the characterization (4.154) as the adjoint of the S bracket we obtain
(R®S, C(b(P))) = ({R, S}, b(P)) = (b({R, S}), P) (4.156)
= ([b(R), b(S)], P) = (b(R)b(S), P) — (R <> S)
= Y (b(R), X)(b(S), Y) = (R < )

XY=P

= Y (R BX))(S, b(Y)) — (X < V)
XY=P

=Y (R®S, (bX)@b(Y)— (X < V),
XY=P

where in the first line we used that b is self adjoint (4.126), in the second we used the property (4.145), and (4.128) in
the third. In the fourth line we used the self-adjoint property of the b map again and finally the definition (AQ B, R®Q S) =
(A, R)(B, S) in the last line. Since R, S are arbitrary, the result follows. O

For example, the simple identity C([1, 2]) = s121 A 2 leads to the deconcatenation of b(12) = 12 (note b(#}) := 0)

S12

C(b(12)) = b(1) A b(2) = Z b(X) A b(Y). (4.157)
XY=12
However, it is already non-trivial to explicitly check using C([[1, 2], 3]) and C([1, [2, 3]]) given in (4.23) that C(b(123)) =
b(12) A b(3) + b(1) A b(23) with b(123) given in (4.125).
In [166,190], the definition (4.154) was used to show that the S bracket is in fact a Lie cobracket as defined in the
context of Lie coalgebras [191].

4.3.5. The KLT map

The KLT relation was derived in [192] as a way to express the closed-string tree-level amplitude as a sum over products
of color-ordered open-string tree amplitudes, see Section 7.2.1 for a brief review. In the field-theory limit o’ — 0, it
readily implies the same type of squaring relations between n-point supergravity amplitudes M5 and color-ordered
SYM amplitudes A(...). In a modern language, the field-theory KLT relation can be written as

ME® = = A1, P,n,n=1)S(PIQ)iA(1, Q. n—1,1n), (4.158)
P.Q

where the ;\(. ..) feature polarizations é;, x; independent from the e;, x; in A(...) and S(P|Q); is the KLT matrix or the
momentum kernel indexed by permutations P, Q € S,,_3 of legs 2, 3, ..., n—2.In a series of papers [ 193-196] the algorithm
to obtain the precise form of the KLT matrix was sequentially simplified to a recursive definition [197]

S(A]|B]C), = kj . kiB S(A|BC),‘ s S(Qm)l =1, (4159)
where i is some fixed leg, conventionally chosen i = 1. For example,

S(2|2)1 = k1 . kz s 5(23|23)1 = (’(3 . k12)(k1 . ’(2) s (4160)
5(23132); = 5(32123)1 = (k1 - k2)(k1 - k3), 5(32132); = (ka - k13)(k1 - k3).
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1 2 1 2 3 1 2 3

{1,2} {{1,2},3} {1,{2,3}}

Fig. 3. Examples of the KLT map (4.163), where {-, -} is the S bracket (4.141). Each planar binary tree is mapped to the expressions given in (4.162).

In the framework of twisted deRham theory, the entries of the inverse KLT matrix have been interpreted as intersection
numbers [198-200], see Section 7.3.2 for further details.

In recent years, the KLT matrix has been found in various relations involving the computation of string scattering
amplitudes. These relations can often be understood from a combinatorial/free-Lie-algebra perspective, usually intimately
related to planar binary trees. For instance, we will see that the expression relating local multiparticle superfields Vp
in the BC] gauge and Berends-Giele currents in (4.181) descends from the free-Lie-algebra relation (4.179) below. In
addition, the KLT matrix also plays a major role in the integration-by-parts identities used in the derivation of a closed
formula for the massless n-point superstring disk amplitude in Section 6.3.1. Moreover, the KLT matrix is the inverse of
the Berends-Giele double currents from which the tree-level amplitudes of the bi-adjoint scalar theory are calculated.
These in turn are related to the field-theory limit of the superstring disk integrals which, as we will see in Section 6.4.4,
admit a combinatorial interpretation. In summary, the KLT matrix is indeed a central player connecting various objects
participating in the calculation of string scattering amplitudes.

Generalized KLT matrix. In the pursuit of a combinatorial framework for understanding the standard KLT matrix and its
relations to multiparticle superfields, a generalized KLT matrix has been proposed in [165] and analyzed further in [ 166,190]
(see also [201]). To see this more precisely, one defines a map that converts every Lie bracket [-, -] in an arbitrary Lie
monomial I" to a S bracket {-, -}. This conversion is denoted by {I"}

{(ry:1—H,1, (4.161)

and acts recursively in commutator depth, transforming a Lie polynomial to a dual Lie polynomial (see Appendix C for
the definitions). For example,

{[1,2]} = {1, 2} = 51212, (4.162)
{[[1, 2], 31} = {{1, 2}, 3} = s12(523123 — 513213),
{[1, 12,311} = {1, {2, 3} = s23(512123 — 513132),
{[[1,2], [3, 411} = {{1, 2}, {3, 4}} = s12534(5231234 — 5241243 — 5132134 + 5142143) .
The KLT map is defined as a map between planar binary trees I" and its S bracket version
S:I' = (I'}. (4.163)

A graphical illustration of the KLT map is given in Fig. 3.
The matrix elements of the KLT map with respect to a basis of Lie monomials I", X' are given by S(I", X) = ({I'}, X)
which motivate the definition of the generalized KLT matrix for words P and Q [165]

S‘(PIQ) = (£{P}. £(Q)) . (4.164)
where the dual Dynkin bracket ¢{P} is defined as the conversion (4.161) of the Dynkin bracket (4.48),

L{P} == {¢(P)} (4.165)
with ¢(P) defined in (4.48) and {I"} defined in (4.162). Alternatively, a recursive definition is given by

£{123...n} = {£(123...n—1),n}, iy =i, @} =0. (4.166)
The simplest examples of (4.164) include §¢(12|12) = s;3, and S¢(12]21) = —s;3, as well as

$°(123]123) = sia(s13 + 523) §(123411234) = s15(513 + 523)(S14 + 524 + 534) »

“(132123) = 52513, 5(1243(1234) = s15(513 + 523)(514 + 524,
SY(312]123) = —sp2813, SY(3412[1234) = —s12513534,, (4.167)
SY(231]123) = —s12523, SY(3421[1234) = 512523534,

and it is shown in [166] that S¢(P|Q) is a symmetric matrix, S(P|Q) = S(Q|P), see the reference for further details. One
of the main attributes of the above generalized KLT matrix S¢(P|Q) is that it satisfies generalized Jacobi identities in both
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P and Q,

S‘(AL(B)IQ) + S“(BL(A)Q) =0, VQ. (4.168)
For example, with A = 12 and B = 34

SY(1234|Q) — SY(1243]Q) + S%(3412|Q) — S%(3421|Q) =0, VQ. (4.169)

Moreover, the standard KLT matrix recursion (4.159) is obtained as the special case when the first letters in both words
coincide [165,166],
SY(iPliQ) = S(P|Q); . (4.170)

The unrestricted nature of the first letters in the permutations of the matrix (4.164) is the motivation for the qualifier
generalized.

An important interplay between the Lie-bracket conversion (4.161) from the space of Lie polynomials to the space of
dual Lie polynomials is summarized in:

Lemma 7. The planar binary tree map (4.124) satisfies

b(¢{P}) = ¢(P), (4.171)
where the dual Dynkin bracket is given by (4.166) and the Dynkin bracket by (4.48). In fact,
b{ry)=r (4.172)

for any Lie polynomial I.

Proof. Using the property (4.145) together with the recursive definition (4.166) yields
b(£{123...n}) = b({€¢{123...n—1}, b(n)})
= [b(£{123...n—1}),n] = - - - (4.173)
=[[...[[1,2],3],...1,n] = £(123...n),

where we used that b(j) = j for a letter j. Since £(P) is a basis of Lie polynomials, the result (4.172) follows by a basis
expansion. O

In effect, as ¢{P} = {¢(P)} implies ¢{P} = S(¢(P)) in terms of the KLT map (4.163), the result (4.172) isthe bo S = Id
part of a more general statement proven in [166]:

Proposition 11. The planar binary tree map b : £* — L defined in (4.124) and the KLT map S : £ — L* defined in (4.163)
are inverses to each other,

boS:L— L, Sob:L*— ¥, (4.174)
I'e— T, P* +— P*.

Correspondence between multiparticle superfields and free Lie algebra. Over the years, it became clear that relations
governing multiparticle superfields discovered in pursuit of expressions for string amplitudes had a combinatorial flavor
of the type commonly studied within the free-Lie-algebra framework. This is particularly true in the context of the color-
kinematics duality [30], where the generalized Jacobi identities played a major role in the simple form of the general
massless disk amplitude of [21].

The correspondence suggested above can be made precise with the following mapping between free-Lie-algebra
structures on one side and multiparticle superfields in the pure spinor formalism on the other>C:

C < Qerst, U(P)<Vp, b(P)< Mp, (4.175)

where the Dynkin bracket £(P) is defined in (C.1). That is, the contact-term map C is identified with the BRST charge
Q as already hinted in (4.28), the Lie monomials encoded in the Dynkin bracket ¢(P) correspond to the multiparticle
unintegrated vertex Vp in the BCJ gauge, and the planar binary tree expansion b(P) corresponds to the Berends-Giele
current Mp as in (4.137). As an immediate consistency check, note that both C and Q are nilpotent, see (3.25) and (4.27).
In addition, the symmetries on both sides agree: generalized Jacobi identities (4.47) for both £(P) and Vp as well as shuffle
symmetries for both the planar binary tree expansion b(P) in (4.131) and the Berends-Giele currents Mp in (4.139) (or
more generally KCp).

30 The generalizations ¢(P) <> Kp and b(P) <> Kp are immediate, where Kp and Kp are defined in (4.1) and (4.79), respectively. We chose the
representatives Vp and Mp for pedagogical reason.
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For a more precise relation, the identities (4.29) and (4.71) illustrate the correspondence between Vp and £(P) as well
as the contact-term map C and the BRST charge Q. For example, note the parallels of these equations at multiplicity three:

C(€(123)) = (kq - kz)(E(l) AL(23)+£(13) A 8(2)) + (k12 - k3)e(12) A £(3), (4.176)
QVi23 = (ky - ka)(ViVas + Vi3Va) + (kiz - k3)ViaVs
where the fermionic property VpVy = —V, Vp is mapped to the antisymmetric wedge product A of (4.24). Moreover, using

the notation defined in (4.31), the BRST variation of the unintegrated vertex operator V- for an arbitrary Lie monomial
I' can be written as

QVr =V AV)e(ry, (4.177)

which is extended to arbitrary Lie polynomials by linearity.

The precise cancellations between the contact terms in the equations of motion for local superfields and the
Mandelstam propagators featured in the definition of Berends-Giele currents constituted an early indication of a beautiful
and rigorous underlying mathematical framework. See, for example, the discussions in [165] and several proofs in [166].
For instance, the proof that the Berends-Giele current Mp deconcatenates under the action of the BRST charge over its
local numerators V, easily follows in a free-Lie-algebra setting,

Lemma 8. The Berends-Giele current Mp in the BCJ gauge satisfies QMp = ) _y_p MxMy.

Proof. The Berends-Giele current Mp is given by an expansion of local multiparticle vertices Vz encoded in terms of
planar binary trees as Mp = Vy(py given in (4.137). The deconcatenation property of C(b(P)) in (4.155) implies

QMp = QVipy = (V A V)epy) = Z(V A Vbxynby) = Z Vi) Viy) = Z MxMy , (4.178)
XY=p XY=p XY=p

where we used the notation (4.31). O

This proof sheds light on the deconcatenation property (4.84) of the Berends-Giele current from a different perspective
compared with the equations of motion (4.96) derived from the perturbiner expansion. The result arises from the use of
the equations of motion of the local multiparticle superfields yielding contact terms that cancel the propagators present
in the planar-binary-tree expansion, demonstrating that the patterns observed in (4.83) hold to all orders. The other
equations of motion for the currents in Kp can be derived from their local counterparts in a similar fashion [93].

Finally, the relation between the local multiparticle superfields Vp satisfying generalized Jacobi identities and the non-
local Berends-Giele supercurrents Mp in BC] gauge satisfying shuffle symmetries follows from the identity proven in [ 166]:

Lemma 9. The Dynkin bracket (4.48) and the planar-binary-tree expansion (4.124) are related by
(R) =y S“RIIQ)b(iQ), (4.179)
Q

where SY(R|iQ) is the generalized KLT matrix (4.164).

Proof. Consider the dual Dynkin bracket ¢{R}. Since it is a dual Lie polynomial it can be expanded in the Lyndon basis iQ
of the dual Lie polynomials using the formula (C.16)

ERY =) (E{R}, €(iQ))iQ . (4.180)
Q

Acting with the b map (4.124) on both sides gives b(¢{R}) = ZQ(E{R}, £(iQ))b(iQ). The left-hand side can be rewritten
using (4.171), while the scalar product on the right-hand side is the definition of the generalized KLT matrix. Thus,

€R) =Y S“(RiIQ)b(IQ). O

After setting R = iP and using the definition (4.170) the generalized KLT matrix reduces to the usual matrix S(P|Q); in
(4.159). Replacing £(iP) — Vip and b(iQ ) — Mjq as suggested by the correspondence (4.175) leads to the relation between
Berends-Giele currents and multiparticle unintegrated vertex operators:

Vip = ZS(P|Q)1'M¢'Q . (4.181)
Q

This identity was first explicitly mentioned in [176], but it had already played an implicit role in the derivation of the
closed formula of the massless n-point open-superstring amplitude in [21], see Section 6.3.1. The inverse of (4.181)
expressing Mjp as a linear combination of Vjy will be given in (6.103).
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The relation (4.181) can be straightforwardly adapted to reproduce the local multiparticle superfields (see Section 4.1.6)
from their respective Berends-Giele currents in BC] gauge,

Kip = ) S(PIQ)iKiq - (4.182)
Q

However, plugging the Berends-Giele currents in Lorenz gauge into the right-hand side of (4.181) and (4.182) will lead
to a non-local outcome of the S(P|Q); multiplication.31

5. SYM tree amplitudes from the cohomology of pure spinor superspace

In this section we are going to review how to obtain supersymmetric expressions for SYM tree-level amplitudes. One
could in principle start by computing the n-point superstring disk amplitudes and then take its &’ — 0 limit [156-159].
However, the construction in this section relies entirely on pure spinor cohomology considerations [171], following the
ideas of [170], and predates the calculation of the n-point superstring disk amplitude in [21,202]. The alternative derivation
of SYM amplitudes from the o’ — 0 limit of string amplitude was done later, see Section 6.5.

Inspired by progress in organizing string amplitudes, it was realized in the 1980’s that gauge-theory amplitude
calculations simplify tremendously by considering ordered gauge invariants depending only upon kinematics — called
color-ordered or color-stripped partial amplitudes [203,204]. The full color-dressed S-matrix elements could be obtained
by summing over a product of these color-ordered amplitudes with appropriate color-weights, either somewhat redun-
dantly in a trace basis, or more efficiently in the Del Duca-Dixon-Maltoni basis of [205]. The advantages in considering
stripped or ordered partial amplitudes are enormous; they grow exponentially rather than factorially in local diagram
contributions. Thus here we only consider color-ordered amplitudes.

The pure spinor cohomology formula for n-point SYM tree-level amplitudes turns out to be the supersymmetrization
of the standard Berends-Giele recursion relations [28], as one might have correctly suspected from the discussion of the
Berends-Giele currents in the previous section. Therefore we will first review the recursive method proposed by Berends
and Giele to compute Yang-Mills amplitudes.

5.1. Berends-Giele recursion relations

In the 80s, Berends and Giele proposed a recursive method to compute color-ordered gluon amplitudes at tree level
with the formula [28]

AM1, 2, p o pH) = sy i (5.1)
The Berends-Giele currents J;' are defined recursively in the number of external particles starting with the polarization

vector e} of a single-particle gluon, by (note j;' := 0)

.]lm = el'ﬂa SP.]IT = ZUXs]Y]m + Z {_,X7]Y’.]Z}m s (52)

XY=P XYZ=P

1
Ux, 1™ == (ky - X )y + Ek?(]x Jr)—-X<eY),

1 1
Ux, Jy. J23" = Ux - 20y — EUX )7 — EUY 2

where the brackets [-, -]™ and {-, -, -} are given by stripping off one gluon field (with vector index m) from the cubic
and quartic vertices of the Yang-Mills Lagrangian. The deconcatenation of the word P into non-empty words X and Y is
denoted by ) ,,_p, with obvious generalization to ) ,,_p, and P = 12...p encompasses several external particles, see
Section 1.3 for more details on the notation. In addition, the Mandelstam invariants sp and multiparticle momenta kj' are
defined as in (3.108) and (4.9).

In [28] the Berends-Giele currents J;' were shown to be conserved

K =0, (53)

which can alternatively be understood as the statement that the currents are in the Lorenz gauge [92].
As the simplest example of the recursion (5.2), the Berends-Giele current of multiplicity two is,

1
sy = €y(er - ka) —ef(ex - ki) + E(k'{‘ —ky')er - ea), (5.4)

I;;é:(é — i) of the gauge transformation (4.109) due to total antisymmetry of
m

1:1[123] = %H1,2.3- The KLT matrix renders the difference between the Lorenz- and BCJ-gauge variants of (4.182) for A}YB and AT,; proportional to
S(23123)1H123 + S(23132)1H132 = M(sBJrsz; — 2s12) and therefore non-local.

35123

31 This can be anticipated from the alternative form Hq3 =
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and leads to the well-known three-point amplitude,
A™M(1,2,3) = s1oJ )5 = (e1 - e2)(ky - e3) + cyc(123), (5.5)

whose manifestly cyclic form is attained after using momentum conservation ki+k,+ks; = 0 and transversality e; - k; = 0.
Higher-point amplitudes are generated by a straightforward application of the recursion (5.2). The multiplicity-three
current

s123)123 = Un2s J31™ + Un, Jo31™ + U, J2, Js1™ (5.6)

gives rise to the four-point amplitude A"™M(1,2,3,4) = s123J]35€4 and so forth. These recursion relations are a very
efficient method to calculate tree amplitudes numerically, see e.g. [ 164,206]. While the Berends-Giele formula (5.1) is not
supersymmetric - it computes purely gluonic amplitudes - its supersymmetrization via uplift to pure spinor superspace
will be given below.

5.1.1. Kleiss—Kuijf amplitude relations
A crucial identity satisfied by the currents was also demonstrated by Berends and Giele in [ 185], the shuffle symmetries:

Jm,=0, VAB#(Q. (5.7)

Together with the amplitude formula (5.1), the shuffle identity (5.7) can be used to demonstrate that the Yang-Mills tree
amplitudes satisfy the Kleiss—Kuijf (KK) relations [29]

AMP. 1,0, n) = (—1)PIA™M(1,PwQ, n). (5.8)

To see this one exploits the mathematical literature of free Lie algebras [177,186]. More precisely, Ree’s theorem [177]
shows that a necessary and sufficient condition for a series of the form Zn>0],-1i2A‘A,»nX"lX"2 ... X with non-commutative
indeterminates X' to be a Lie polynomial is the shuffle symmetry (5.7) of its coefficients. In the context of Yang-Mills tree-
level amplitudes, the X’ are gauge-group generators which have to conspire to Lie polynomials and therefore contracted
structure constants f¢ by Yang-Mills Feynman rules. Corollary 2.4 of [186] in turn states that > o J,~1,~2minx"1xi2 L X
is a Lie polynomial if and only if

Jriq = (_1)|P|.],'13UJQ . (5.9)

Since both results (5.7) and (5.9) are “if and only if” statements, they must be equivalent (for a proof of this, see (5.45)).
As a corollary of this equivalence together with the Berends-Giele amplitude formula (5.1) and the shuffle relation (5.7),
it follows that the KK relation (5.8) must be satisfied. An alternative proof of the KK relations appears in [205].

We are now going to recover the Berends-Giele recursion (5.2) and the amplitude formula (5.1) from the bosonic
components of a supersymmetric formula for SYM tree amplitudes derived from pure spinor cohomology considerations.

5.2. The pure spinor superspace formula for SYM tree amplitudes

In this subsection we will review the derivation of the recursive method in pure spinor superspace for the computation
of supersymmetric tree amplitudes of ten-dimensional SYM theory. The method first appeared in [171] and it relies on
the simple cohomology properties of multiparticle superfields in pure spinor superspace as suggested earlier in [170]. The
end result is a method based on the recursive nature of the BRST variations of the supersymmetric Berends-Giele currents
(4.83). When truncated to its bosonic components, the pure spinor formula was later shown in [175] to reproduce the
standard Berends-Giele gluonic formula of [28].

However, there are certain beneficial novelties in the pure spinor approach worth highlighting:

e the direct derivation of multiple currents for each type of superfield K € {A,, A, W%, F™} using their non-linear
equations of motion,

o the usage of only cubic interactions as a result of identifying the natural superfields in the recursion®? - the quartic
interactions appear due to the quadratic terms in the field strength,

e the structural relation to planar binary trees and the construction using local numerators,

o the derivation of the shuffle symmetry of the currents using free-Lie-algebra methods,

o the identification of the different gauges associated to these local numerators and the subsequent derivation of local
B(J-satisfying numerators.

Reasons for the cohomology method. In intermediate states of the calculations, the prescription to compute disk amplitudes
in the pure spinor formalism yields a superspace expression containing three pure spinors and the superfields of

32 see [207] for a reformulation of the purely gluonic Berends-Giele currents using cubic vertices.
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ten-dimensional SYM as well as their covariant derivatives; in other words they constitute pure spinor superspace
expressions. Superstring theory dictates that the field-theory SYM tree-level amplitudes must be recovered in the ¢’ — 0
limit of the disk amplitudes. These, in turn, are obtained from the tree-level amplitude prescription (3.76), which requires
multiple OPEs among the vertex operators of schematic form V4 U, ... U,_»V,_1V,, see e.g. section 2.3 of [2]. Given that
SYM tree-level amplitudes are supersymmetric and gauge invariant, we know from [1] that their corresponding pure
spinor expressions must be in the BRST cohomology. It is important that the amplitudes are left written in pure spinor
superspace since integrating out the pure spinors and the fermionic theta variables via (3.81) would lead to a multitude
of terms in polarizations and momenta [97] where all the simple superspace patterns are no longer present.

Let us first review the explicit superstring calculations for low multiplicities that led to the general method for arbitrary
multiplicities, using the latest conventions for the notations.

Explicit results and the birth of the cohomology method. At low multiplicities the SYM amplitudes written in pure spinor
superspace were obtained from the field-theory limit of the corresponding superstring disk amplitudes: the three-point
case was known from the very start [1] while the four- and five-point amplitudes were computed in pure spinor
superspace in [119,167]:

A(1,2,3) = (ViVhVs3), (5.10)

A(1,2,3,4)= i<V12V3V4) + l(V1V23V4) ,
S12 523
(Vi23VaVs)  (Va1VaVs)  (ViaVaaVs)  (ViVasaVs)  (ViVasaVs)

$12545 523545 512534 5235851 534551
Furthermore, using pure spinor cohomology arguments, expressions for the six- and seven-point SYM tree amplitudes in
pure spinor superspace were proposed in [170]. The six-point amplitude was later reproduced from the field-theory limit
of the pure spinor superstring disk amplitude in [169].>> In possession of these results a general pattern was discovered
in [171] ingaerms of the Berends-Giele currents written with multiparticle versions of the unintegrated vertices Vp in the
B(J gauge.

The clue was to notice the composing factors in the above amplitudes satisfied a regular pattern under BRST variation
(note s45 = S123 at five points)

V- 1% V. V: V
2wy, Q(ilB + 2 ) == 4+ By, (5.11)

S12 S125123  S$235123 523 S12

These early computations together with six-points examples not shown led to the pattern of the Berends-Giele currents
in (4.83). In addition, the Catalan numbers govern both the number of cubic graphs in a color-ordered tree amplitude and
the number of kinematic poles in the Berends-Giele currents Mp as derived in (5.19), so the assumption was that tree
amplitudes would be composed of Mp.

Given that the SYM tree amplitudes are the o’ — 0 field-theory limit of the superstring [156-159], whose correlator
in the pure spinor formalism is in the cohomology of the BRST charge, the proposal of [171] was based on finding a
superfield expression in the cohomology of the BRST charge that was constructed using the Berends—Giele currents Mp.
Rewriting the low-multiplicity examples (5.10) as

A(1,2,3) = (MiMxMs3) , (5.12)
A(1,2,3,4) = (M12M3Ms) + (M1Ma3My) ,
A(1,2,3,4,5) = (M23MsMs) + (M12M34Ms) + (M1 M;34Ms)

A1,2,3,4,5) =

Q»n=0, Q

not only simplifies their presentation but also suggests the n-point generalization [171]
n—2
A(1,2,...,n) =Y (M jMjs1_n1 Ma). (5.13)
j=1
Given that the superspace current My, _; is associated with the cubic tree-level subdiagrams in a color-ordered (j+1)-point

amplitude, the sum in (5.13) gathers cubic n-point diagrams as shown in Fig. 4.
More generally, the color-ordered field-theory tree amplitudes are given by

A(P, n) = (Ep Vp) (5.14)

in terms of the BRST-closed superfield Ep in (4.85). This formula was later rigorously shown to match the o’ — 0 limit
of the superstring amplitude in [21,202] and it was also shown in [175] to reduce to the standard Berends-Giele gluonic
formula [28] reviewed in (5.1). In spite of these validations, let us now give a separate proof that the expression (5.14)
satisfies all the requirements of a color-ordered SYM tree amplitude.

33 The prior computations for five and six external bosons in the RNS formalism were performed in [208,209], respectively, with considerably
longer expressions in their final results.

34 |t was later understood in [92] that the construction of Berends-Giele currents does not require any particular gauge of the associated local
superfields, so the requirement of BCJ gauge in [171] was stronger than necessary.
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Vi

Fig. 4. Berends-Giele decomposition of the color ordered SYM amplitude according to (5.13).

Proposition 12. In the momentum phase of n massless states where s15.,—1 = 0 the superfield
E12.n-1Va (5.15)

is in the cohomology of the BRST charge.

Proof. Since QV,, = 0, to show that Ey5_,_1V, is BRST closed it is enough to show that QEp = 0,

QEp = ) Q(MxMy)= Y > MMsMy — ) > MxMgMs

XY=P XY=P RS=X XY=P RS=Y
= > (MgMsMy — MgMsMy) =0, (5.16)
RSY=P

where in the last line we consolidated the sums and renamed the dummy words in the second term.
To show that (5.15) is not BRST exact we note that the relation (4.85) depends crucially on the momentum phase
space,

Ep = QMp , if Sp ;é 0 (517)
Ep ;é QMP s ifSp =0. (518)

This is because Mp = 1 (...) contains a propagator 1/sp which makes the left-hand side of (5.18) ill defined in case of

. P . ) .
sp = 0. Hence, in the momentum phase space of n massless particles where s1,_,_1 = 0, the superfield E,._,_1 is not
exact and the expression Eq5_,_1V, is in the cohomology of the BRST charge. O

Proposition 13. The number of kinematic poles from cubic graphs in the color-ordered n-point tree amplitude (5.14) with
n > 4 is given by the Catalan number C,_,.

Proof. The number of kinematic pole configurations in Ep with P of length p > 3 and My of length x > 2 are the Catalan
numbers C,_1 and Gy_1, respectively.>® To see this note that all poles on the right-hand side of (4.85) are distinct, so it
implies the recursion relation

Ga= Y. GG, G=C=1, p>3. (5.19)
x+y=p—2
The recursion (5.19) coincides with the recursive definition of the Catalan numbers with explicit solution G, = ﬁ(zn”).

Therefore the number of poles in the n-point amplitude formula (EpV,) where |P| = n—1 is C,_5. This is the same number
of cubic diagrams as in the color ordered n-point SYM amplitude, see e.g. [30]. With n = 4, 5, 6, 7, for instance, we get
Ci—2 = 2,5, 14, 42. And since the deconcatenation in the expression (4.85) for Ep is ordered, the kinematic poles in
E13. 51 are the same as in the color-ordered n-point tree amplitude. O

Proposition 14. The color-ordered n-point tree amplitude (5.14) is cyclically symmetric,

A(1,2,...,n—1,n)=A(2,3,...,n,1). (5.20)

35 The difference in the initial lengths for p and x is related to the absence of the overall multiplicative pole 1/sp present in Mp but not in Ep, as
it is easy to verify.

59



C.R. Mafra and O. Schlotterer Physics Reports 1020 (2023) 1-162

Proof. By conveniently regrouping terms of QM1,_; = Z’l;} Mi3..iMiy1.j, we can recover the difference of cyclic images
Ezgmn‘/] and E]2_'_n,1Vn from

n—2 n—2 n—2
Q ZM12..JMj+1...n =M Z My iMjp1..qn + Z Mua. iMiy1. jMjy1..n
= =2 2<i<j
n—2 n—2
- Z Mua. jMj1. kMis1..0 — ZMuAUﬂVIHL.Aonn (5.21)
2<j<k =

= Mi(Ez3..n — Mas_n-1Mn) — (E12..n—1 — MiMa3,_n_1)My

= ViExs.n —E12..n-1Va -
The double sums in the first two lines are easily seen to cancel upon renaming the summation variables i, j, k, and
the contributions of M{My3_,—1M, in the third line drop out in the last step. Given that all the My, jMj1 , in (5.21)

are perfectly valid in the momentum phase space of n massless particles (the highest-multiplicity currents contains
non-singular s3,' ., ands,; . ,), we conclude that

(Et2..n-1Vn) — (E23.2V1) = —(Q(M12M34.n + M123sMy_n + - -+ + Ma_n—2My_1a)) =0, (5.22)

using the vanishing of BRST-exact expressions under the pure spinor bracket. We have thus shown equivalence of the
amplitude (5.20) to its cyclic image i — i—1 mod n

(E12..n-1Vn) = (E23..nV1) (5.23)
which concludes the proof. O

For example, from the formula (5.14) and the definition (4.85), one can also verify directly in the momentum phase
space of the corresponding n-point amplitude that

A(1,2,3,4,5)—A(2,3,4,5, 1) = (M2M34Ms — MiMyM3gs + Mia3MaMs — M1 Ma3Mys)
= —(Q(M12M345 + M133Mys)) = 0. (5.24)

5.2.1. Manifesting cyclic symmetry via BRST integration by parts

In the above discussion we have proven that the pure spinor cohomology formula (5.14) is cyclically symmetric, but
this is not manifest. We will now show how to exploit the cohomological properties of the pure spinor formula to derive
alternative expressions with manifest cyclic symmetry. In doing so, the multiplicity of the Berends-Giele currents featured
in the formulae is reduced which renders computations including component evaluations more efficient.

In order to manifest cyclic symmetry in the pure spinor cohomology formula (5.14), we exploit the decoupling of
BRST-exact terms (Q(...)) = 0 from the cohomology. Let us start with a simple example to understand the mechanism.
Consider the five point amplitude

A(1,2,3,4,5) = (M{M334Ms + M12M34Ms + M123M4Ms) (5.25)
and note that there are BRST-exact factors of the form M;M; = QM;; = Ej. So it can be rewritten as

A(1,2,3,4,5) = (Es1M34 + M13M34Ms5 + Mip3Ess) (5.26)
= (Ms1E234 + M12M34Ms + E123Mgs)

= (Ms1(MaM34 + Ma3My) + M12M34Ms + (M1 Ma3 + M1 M3)Mys)

= (M12M3Mys) + cyc(12345)

with manifest cyclic symmetry in the last line. Note that in the second line we integrated the BRST charge by parts; by
(5.17) this amounts to

(EpMq) = (MpEq) , (5.27)

for instance (Mq23E45) = (E123Mys5) = {((M{Ma3 + M12M3)Mys). Notice the reduction of the highest-rank Berends-Giele
currents (M23, Ma34) on the left-hand side of (5.26) to rank-two M; on the right-hand side.

Naively, in the pure spinor cohomology formula (5.13) for n-point SYM tree amplitudes one needs to know all Berends-
Giele currents Mp with multiplicities up to n—2. For example, in the five-point amplitude (5.26) the first line contains
Berends-Giele currents of all multiplicities up to n—2 = 3. However, after BRST integration by parts, the maximum
multiplicity in the last line of (5.26) is two, and its cyclic symmetry is manifest.

In fact, using BRST integrations by parts it was shown in [171] that the highest multiplicity of currents can be lowered
to at most | 5] while at the same time yielding superspace formulae for n-point trees with manifest cyclic symmetry

1
A1.2.....3) = 2 (MiM:Ms) + cye(123), (5.28)
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1
A(1,2,...,4)= 5(M12534> + cyc(1234),
A(1, 2,..., 5) = (M12M3Mys) + CyC(]2345) y
1 1
A1,2,...,6)= §<M123E456> + §<M12M34M56> + cyc(123456),
A(1,2,...,7) = (M123MasMs7) + (M1M234Ms67) + cyc(12...7),

A(1,2,...,8) = = (Mi34Es678) + (M123MaseMyzg) + cyc(12...8),

(M123M4seM7sg) + (M1234(Msg7Msg + MsgMzgg + MsgzsMy)) + cyc(12...9),

—_ W= N =

A(1,2,...,10) = E<M12345E6789;10) + (M1234(Msg7Mso; 10 + Ms78Mo.10)) + cyc(12...10),

where the fractional coefficients are introduced to avoid overcounting due to the explicit sum over cyclic permutations.
For example, after summing the cyclic permutations, the four- and six-point instances of (5.28) can be rewritten as
A(1,2,3,4) = (M12M3My) + (M3MaMy)
A(1,2,3,4,5,6) = (M12M34Ms6) + (M23MasMe1) + (M123(MasMs + MsMse)) (5.29)
+ (M234(MsgM; + MsMe1)) + (M3a5(Ms1M2 + MsM12)) ,
via BRST integration by parts and/or the fermionic nature of Mp, so the factors of % and % in the cyclic sums in (5.28) are

essential to not overcount these terms. The manifestly cyclic form of the n-point amplitudes (5.28) is free of fractional
coefficients when n is not divisible by 2 or 3.36

5.2.2. Component expansion of the pure spinor SYM tree amplitude

BRST invariance of the superfields implies gauge-invariant and supersymmetric components, see the discussion in
Section 3.4.2. The gauge invariance of the SYM tree-level amplitudes allows one to choose the Harnad-Shnider gauge at a
non-linear level to perform the 6-expansion of the multiparticle supersymmetric Berends-Giele currents, see Appendix F.
After stripping off the plane-wave factor e*X as in (4.92), this leads to an expansion of A"

1 1 1
AL(0) = 5(9Vm)ae,rf + §(9Vm)a(9)/mXP) - 5(9Vp)a(9)/mnp9)ff:"" +e (5.30)

that takes the same form as the §-expansion (2.17) of the linearized superfield A! in the Harnad-Shnider gauge. The
Berends-Giele polarization currents ¢, X5 and 3" in the component formulation of D = 10 SYM are given by the
recursions (4.116) to (4.119). In this way, the simple A36° correlators (3.97) and (3.101) that govern the single-particle
correlator (M{M;M3) in the three-point amplitude [1] (see Section 3.4.5)

1
A(1,2,3) = (M{M;M3) = Ee’{’f?“eg + (X1ymXa)e§ + cyc(123) (5.31)
also determine the multiparticle constituents (MxMyM;) of the n-point amplitudes (5.14),
1
(MxMyMz) = ie)r(" fy ez + (Xxymdy ey + cyc(XYZ) = Mx vz, (5.32)

which defines the shorthand 9y y z. The component expressions for the above cohomology formulae follow easily by
reducing any (MxMyM) to the combinations My y 7 of ¢f, 3" and XF in (5.32). For instance, the earlier representation
(5.13) yields components

A1,2,...,n=1,m)= > Mxyn, (5.33)
XY=12...n—1

while the manifestly cyclic representation in (5.28) gives rise to

1
A2 4) = 5D+ cyc(1234), (5.34)
A(1,2,...,5) = M12.3.45 + cyc(12345),

1 1
A(1,2,...,6)= 593712,34,56 + 5(93T123,45,6 + DM123,4,56) + cyc(12...6),

36 More explicitly, because of the BRST identity (Mp, Ep,) = (Mp, Ep, ), we note that the cyclic sum of (Mp, Ep,) leads to an overcounting by a factor

of two if and only if |P;| = |P,|, necessitating the symmetry factor of % in the contributions (M1y. kEk+1.2¢) at even multiplicity n = 2k. Similarly,
the cyclic sum of contributions (Mp Mp,Mp,) leads to an overcounting by a factor of three if and only if |P;| = |P;| = |Ps| which necessitates the
symmetry factors of % at multiplicities n € 3N, e.g. at n = 3,6,9 in (5.28).
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A(1,2,...,7) = Mi34567 + M1 234567 + cyc(12...7),
1
A(1,2,...,8)= E(m1234,567,8 + M1234,56,78 + M1234,5,678) + DM123,456,78 + Cyc(12...8).

Given the recursive nature of the definitions of the component Berends-Giele currents ¢, f3"" and A7, the full component
expansion of the above amplitudes is readily available and reproduce the results for SYM tree amplitudes available on
the website [210]. Furthermore, as discussed in [164,206], the Berends-Giele currents lead to fast numerical evaluation
of the amplitudes.

Note that one can obtain matrix elements of the effective operators «’F> and o’’F* of the open bosonic string from
(5.34) by introducing o’-corrections of the gluonic components of My y 7 as detailed in [211].

5.2.3. Equivalence with the gluonic Berends-Giele recursion
Using the component field-strength (4.119), it follows that the gluonic three-point amplitudes of the Berends-Giele
and pure spinor formulae match.

Proposition 15. When restricted to its gluon components the pure spinor cohomology formula for SYM tree amplitudes (5.13)
is equivalent to the standard Berends-Giele formula (5.1).

Proof. The proof that the general n-point amplitudes agree was written in [175]. The outline of the proof is as follows:
first one shows that the lowest gluonic components of ¢f' in the superfield (5.30) reproduce the standard Berends-Giele
current

e |Xj:0 =Jr. (5.35)

Then using transversality (4.120) and momentum conservation in the form of ki + ki + k7' = 0 one rewrites (5.32) as

(MxMyMz) = (e[x vl ez) + e (Ay Y Xz) — of (Xx YmXz) (5.36)
+ = Z[ e - ex)es - ey) — (er - ey )(es - ex)]
2 iz

which simplifies as follows when Z is a single-particle label p+1:
(MxMyMpi1) = (egx,v] - ¢p1) + ex (Xy YmXpr1) — ey (Xx YmXps1) - (5.37)
The pure spinor superspace formula for tree-level SYM amplitudes (5.13) is given by the deconcatenation sum of the
correlator (5.37) over XY = 12...p and yields
A(1,2,...,p,p+1) = Z [(e[x,Y] “epi1) + ex (XY YmXpy1) — e?(?fx)/m?(pﬂ)]
XY=12..p
= sz ple12.p - epi1) + K p(X12 pYmApi1), (5.38)

where in the second line the recursions (4.116) and (4.120) were used to identify ¢7, ,and X7, . Setting the fermions to
zero and using (5.35) yields the gluonic Berends-Giele formula [28] and finishes the proof that the pure spinor cohomology
formula and the Berends-Giele formula (5.1) are equivalent. O

Short representations in the standard Berends-Giele formula. Despite missing the powerful BRST cohomology manipula-
tions, a reduction in the multiplicities of the currents was derived in the standard gluonic Berends-Giele method in [212]
to obtain “short” and manifestly cyclic representations of bosonic amplitudes up to eight points. For example, the six-point
amplitude was found to be
YM 1 m ym 1 mym 1 mym
A™(1,2...,6) = 55123]1231456 + §U125134] J56 + 5”1’123714} Js6

+ {1, J2, J3a}"J56 + cyc(123456) (5.39)
see (5.2) for the brackets [...]™ and {...}", and similar expressions were written for the seven- and eight-point
amplitudes [212].

5.2.4. Kleiss-Kuijf amplitude relations
In [29] the color-ordered tree amplitudes were observed to obey the KK relations
AP, 1,Q,n) = (=1)FIA(1, PwQ, ), (5.40)

which singles out legs 1 and n leading to (n—2)! linearly independent amplitudes (w.r.t. constant rather than s;-dependent
coefficients). As a simple example with P = 2, 3 and Q = 4, we have

A(2,3,1,4,5)=A(1,3,2,4,5)+A(1,3,4,2,5)+A(1,4, 3,2,5). (5.41)
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In [29] a proof of (5.40) was argued based on the shuffle symmetry (5.7) of the Berends-Giele currents derived by Berends
and Giele in [185], see Section 5.1.1. The proof that the pure spinor cohomology formula (5.14) satisfies the KK relations is
analogous, it follows as a corollary to the equivalence in the proofs of [177,186]. However, in this section we wish to see
this equivalence more explicitly and use it to prove the KK relations not as an indirect corollary but as a direct statement.
The explicit equivalence between [177,186] is given by the following lemma, first stated in [175] and proven in [213] (see
also equation (41) of [214]):

Lemma 10. Let P, Q be arbitrary words and j a letter, then
> MR wvi) = (—1)PP w Q). (5.42)
XY=P

where X and Y are allowed to be empty in the sums and P denotes the reversal of P.

Proof. The proof follows from an induction on the length |P| of the word P [213]. For the base case of length zero the

formula is true as it reduces to jQ = jQ. Assume that the formula holds for |P| = p, then for |P| = p+1 set P = Ci for a
letter i and a word C of length p. Using the elementary property of summations

D FXY) =G M+ Y fX, i) (5.43)
XY=Ci XY=C

we get
Y DX W) = (160 w Q) + Y (= 1HX w(YiiQ) (5.44)
XY=Ci XY=C

( DPIGEC) w Q' + (—1)Ni(C w Q)

—1)PI((iC) w (jQ) — i(C wjQ))
= (—U“"J(P wQ).
where we defined Q' = jQ to use the induction hypothesis in the second line, and we used the recursive definition of

the shuffle product (iC)w (jQ) = i(& w(iQ)) +j((i5) W Q) in the fourth line. So the induction holds true when |P| = p+1
and (5.42) follows. O

It 1s convenient to rewrite the identity (5.42) such that there are no empty words in the sum on its left-hand side,
Y ksp(=DRR W (SjQ) + (= 1)PIP w (jQ) + PiQ = (—1)"lj(P 1w Q) where R, S # . That is,

PiQ = (—D)"j(PwQ) = Y (=1)"Rw(SjQ) — (-1)"'Pw(Q), RS+, (5.45)
RS=P
or
PiQ = (—1)lj(P w Q) + shuffles, (5.46)

giving rise to an equivalence relation in the dual of Lie polynomials [166].

Proposition 16. The pure spinor cohomology formula for SYM tree amplitudes (5.14) satisfies the KK relations (5.40)
AP, 1,Q,n) = (—1)PA(1,PwQ,n). (5.47)

Proof. The Corollary 2 in (4.139) shows that the superfield Ep in (4.85) also satisfies the shuffle symmetry
Erus =0, VR S#0 (5.48)

since the definition of Ep = ) ,,_p, MxMy is also over an antisymmetric deconcatenation in view of the fermionic nature
of My and My. Since the words R and S in (5.48) must be non-empty, the identity (5.45) can be used to yield

Epig = (—1)PIE;

(PLwQ) - (5.49)

Consequently, from the pure spinor cohomology formula (5.14) we obtain (Epjq V) = (— 1DIPE gy Vn) and therefore the
KK relation (5.47) is satisfied. O

5.2.5. Bern-Carrasco—Johansson amplitude relations

The SYM amplitudes from the pure spinor cohomology formula (5.14) are almost trivially zero due to the fact that
Ep = QM) for generic values of all the s; ;. The only reason why the superspace expression for the n-point amplitude is
not BRST exact is because Mp with P = 12...n—1 contains a propagator 1/sp which is ill-defined in a momentum phase
space of n = |P|+1 massless particles. The BC] amplitude relations arise when certain linear combinations of s;Ep become
BRST-exact expressions. Let us consider one simple example to understand the mechanism.
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Four point B(J relation. Let us review the argument of [175]. Consider the Berends-Giele current (4.138)

_ Vinas n Viv2,31

Mia3 (5.50)

$125123 5235123
in the BCJ gauge, where the local superfields Vjp o] satisfy the generalized Jacobi identities (4.47). Now consider the linear
combination sy3M123 — S13Ma13

Vinasr , Vs Vi3, Vs Vin,2).3
[[ ]]+ [L]])_SB( ([ ]q]_i_ [v[v]]): [[1,2],3]
$125123 5235123

$23M123 — S13Ma13 = 523( , (5.51)

$125123 5135123 S12
where we used the generalized Jacobi identities of Vp g} and s12 + S13 + S23 = S123. Note the crucial cancellation of the
overall pole in 1/sq,3, for which the Jacobi identity is an essential requirement. The identity (5.51) is the Berends-Giele
counterpart of the planar binary tree relation (4.148) in terms of Lie polynomials.

Therefore, while M1,3 and M35 are ill-defined objects for a four-point amplitude where s153 = 0, the linear combination
So3M123 — S13M>13 is not! This means that it is a valid object to use as a “BRST ancestor” to derive Q-exact expressions
with vanishing components

Vii,2),3
Ef12,3) = $23E123 — $13E213 = Q(523M123 - 513M213) = Q(%) . (5.52)
12
Multiplying by the BRST-closed V, on the right and using the pure spinor SYM formula (5.14) we get
V213
sA(1.2,3.4) = s13A2, 1.3, 4) = (Q —22Va ) ) = 0. (5.53)
12

To summarize, the four-point BCJ amplitude relation [30]
SZ3A(13 27 33 4) - 513A(27 15 37 4) =0 (5.54)

holds because the superspace expression underlying the left-hand side is BRST exact. This is a consequence of the
cancellation of the propagator 1/s123 in the linear combination (5.51) which is only true if V|p o satisfies the generalized
Jacobi identities. In other words, in the BC] gauge of multiparticle superfields the four-point BC] amplitude relation
is obtained due to the vanishing of BRST-exact expressions. Note, however, that the BC] amplitude relations are valid
independently of the precise details of the numerators by non-linear gauge invariance of the cohomology formula (5.13)
for SYM amplitudes.?’ Hence, there is no loss of generality in employing BCJ-gauge numerators in the discussions above
to identify BRST-exact combinations of the superfields Ep in the cohomology approach.

B(J amplitude relations in general. The strategy to derive n-point BCJ amplitude relations from the pure spinor cohomology
method hinges on linear combinations of Berends-Giele currents of multiplicity n—1 such that the leading propagator
1/s12..n—1 is absent, as illustrated by the example (5.51) at n = 4. These combinations can be found in BC] gauge, and
their combinatorial structure is most conveniently encoded in the S bracket of Section 4.3.3 which was used in [166] to
rigorously prove the n-point statements of [175]. From the pure spinor cohomology discussion above, the property (4.145)
demonstrates that certain linear combinations of SYM trees vanish. More precisely,

Proposition 17 (B(J Relations). The pure spinor cohomology formula for SYM tree amplitudes (5.14) satisfies B(] relations

A({P,Q},n)=0, (5.55)
for any possible distribution of the labels {1, 2, ..., n—1} between P and Q. Moreover, the fundamental B(] relations in the
terminology of [215] are obtained in the special case when P =1,Q =23...n—1as

—A({1,23...n=1},m)= Y ki keA(X,1,Y,n)=0. (5.56)
XY=23..n—1

Proof. Note from the prescription (4.137) and the corollary (4.150) that there is no propagator 1/spq in

Mip.qy = Vigie,a - (5.57)

This implies, by a similar reasoning as in (4.86), that the superfield E;p o) for |[P|+]|Q| = n—1 is BRST exact in the
momentum phase space of n massless particles

Epq) = QMp g (5.58)

37 The perturbiner components of the non-linear gauge variation (2.6) with Berends-Giele currents §2p of the gauge scalar lead to the variation
SoMp = Q82p + ) p_yy(2xMy — 2yMy). The resulting non-linear gauge variation of the SYM amplitudes ), . ;_yy (MxMyM,) then conspires to
a BRST-exact expression after assembling the contributions from §oMy, oMy and 5o M,,.
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even though spg = 0. Since QV, = 0, this means that the expression Epp ¢,V, is BRST exact; Q(Mp V) and therefore
(E(p,0)Vn) = 0 vanishes in the cohomology of the pure spinor bracket. The pure spinor cohomology formula (5.14) implies
that A({P, Q}, n) = 0, proving the first claim in (5.55).

To prove that the fundamental B(J relation of [215] is recovered as in (5.56) we use the lemma (4.151)

{1.Q)~ > ki kyXiY . (5.59)
XY=Q
Therefore the BC] relation (5.55) implies
—A(1,Q}. ) == > ki kAKX, 1,Y,n) (5.60)

XY=Q

= Z ki - kxAX, 1,Y, n) + Z ki - koAX, 1,Y, n)

XY=Q XY=Q
= Z ki - kxA(X,1,Y,n),
XY=Q

where we used that momentum conservation ky = —(kx—+k;+k;,) implies that k; - ky = —kq - kx — kq - k, to obtain the
second line and ny_ X1Y = 1w Q together with A((R w S), n) = 0 to obtain the third line. The last equality follows
from Eg,s = O for non- empty R, S as in (4.139). Choosing Q = 23...n—1 finishes the derivation of the fundamental BC]
relation (5.56) and the proposition is proven. 0O

For examples of the B(] relations (5.55) generated by the S bracket, we consider
A({12, 3}, 4) = 593A(1, 2, 3,4) —513A(2,1,3,4) =0,
A({1,23},4) = 512A(1, 2, 3,4) —513A(1,3,2,4) =0, (5.61)
A({123,4},5) = 534A(1, 2, 3,4,5) — 524A(1, 3, 2,4,5) — 524A(3, 1,2, 4,5) + 514A(3,2,1,4,5) =0,
A({12, 34},5) = 523A(1, 2, 3,4,5) — 524A(1, 2,4, 3,5) — s13A(2, 1, 3,4, 5) + 514A(2, 1,4,3,5) = 0.
More generally, the distribution in —A({1, 23...n—1}, n) = 0 is equivalent, via (5.60), to the fundamental BC] relations
0=1ky -kA22,1,3,...,n)+ ks -ky3A(2,3,1,4,...,n)+ -+ ki ka3 1 1A(2,3,...,n—1,1,n), (5.62)

whose permutations are known to leave (n—3)! independent partial amplitudes [30,34,144,215,216]. As will be briefly
reviewed in Section 7.1.2, the BC] relations were derived in [30] from the color-kinematics duality, see [36,37] for reviews.
The emergence of (local) BCJ-satisfying numerators from the pure spinor superstring will be discussed in Sections 7.1.3
and 7.1.6.

5.3. The generating series of tree-level amplitudes

The SYM tree-level amplitudes from the pure spinor superspace expression (5.14) can be compactly described by a
generating function [175]. To see this one uses the perturbiner series (4.92) of the unintegrated vertex operator expanded
in terms of the Berends-Giele currents (4.81)

Vima%hy = Y My the X 43 My thezein X 4 N My et X (5.63)
it i1.i i1.i0.i3
One can show that the generating function of color-dressed SYM amplitudes is given by the natural generalization of the
three-point amplitude (V;V,V3) as

oo

n—2
D Tt A, b, ). (5.64)
n=3 n i1,i,...,0n

%Tr(WV) =

It is reassuring to note that the generating function of tree-level amplitudes (5.64) reproduces the interaction term of
the ten-dimensional SYM Lagrangian of [217] evaluated on the generating series of (non-local) Berends-Giele currents in
superspace: F™(X, 0) and W*(X, 0). To see this note from (4.115) that ¢, X¢ and " are the § = 0 components of the
generating series A™, W* and F™". Therefore (5.32) implies that

1 1
STROVVY) = ZTr(UAn, AqJE™) + Tr(Wy ™A W) ’

1
= Tr(ZIE‘mnIF‘m" + (Wy’”VmW)) ‘ , (5.65)
0=0
where we have used the massless Dirac equation meoz%wﬂ 0 as well as the field equation 9,F™ = [A,, F™] +
Vo ﬂ{W"‘ WP} and discarded a total derivative to rewrite (9, A,)F™ = —A, ([Am, Fm”]—i-y {we, Wﬂ}) The matching of the

Lagrangian with the resummation of all tree-level amplitudes is of course a strong con51stency check for the manipulations
with the perturbiner series, see e.g. [218].
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6. Superstring disk amplitudes with the pure spinor formalism

In the previous section, we have derived the elegant expression (5.13) for n-point SYM tree-level amplitudes in
pure spinor superspace from locality and BRST cohomology considerations. In this section, we will review how this
representation of SYM amplitudes emerges from the CFT prescription (3.76) for superstring disk amplitudes through the
field-theory limit ' — 0. This will in fact be a corollary of the key result of this review — a minimal and manifestly BRST
invariant form of n-point open-superstring amplitudes: as will become clear from the final and exact-in-a’ result (6.49),
the entire polarization dependence of the string amplitude is carried by field-theory building blocks. The CFT computation
is guided by the local multiparticle superfields in Section 4.1 and their generalized Jacobi identities. The manifestly local
representation (6.8) of the n-point disk amplitude encountered in intermediate steps will be later on identified as the
origin of the color-kinematics duality, see Section 7.1.

Both the local and manifestly BRST invariant representations of the string amplitude resonate with field-theory struc-
tures when expressed in a Parke-Taylor basis of disk integrals with characteristic cyclic denominators z,;, Zi,is - - - Zi,_4inZinis -
On the one hand, the full «’-dependent open-superstring amplitude lines up with the field-theory KLT formula for
supergravity tree amplitudes, see (6.69). On the other hand, the field-theory limit &’ — 0 of the Parke-Taylor integrals is
reviewed to reproduce tree amplitudes of bi-adjoint scalars which play a central role for the color-kinematics duality of
gauge theories and different formulations of the gravitational double copy. In fact, as will be argued in the present section
and the following, the o’-corrections to Parke-Taylor integrals admit an effective-field-theory interpretation in terms of
bicolored scalars with higher-derivative interactions.

6.1. CFT analysis
Tree-level scattering amplitudes of open-string states are determined by iterated integrals on the boundary of a

disk worldsheet, as can be seen in the pure spinor prescription (3.76). Using the prescription to compute n-point disk
amplitudes in the pure spinor formalism requires the evaluation of a CFT correlator

n—2 n
(Vi) [ [Ui@)Va1(zaa)Valoo)) =: (ca) [ [zl , (6.1)
j=2 i<j

with the massless vertex operators (3.60) and (3.63).
The defiqition of the tree-level correlators>® K, on the right-hand side is such that it strips off the Koba-Nielsen factor
]_[?q. |zjj|’2“ %i from the path integral. We have re-instated the «’-dependence adapted to the correlation functions on a

disk worldsheet which differs from the Koba-Nielsen exponents on the sphere in (4.4) and Section 7.2.1.

6.1.1. Double poles versus logarithmic singularities

The computation of the correlators K, from the CFT rules of the pure spinor formalism is guided by the OPE contractions
among the vertex operators in (6.1). Since the conformal h = 1 primaries [00%, IT™, d,, N™] within the integrated vertex
(3.60) do not have any zero modes at tree level, the correlator (6.1) can be computed by summing all their OPE singularities
summarized in Section 3.3.4 and placing the fields in the residues at appropriate positions, see e.g. section 2.3 of [2]. As
shown in (4.11), these OPEs generically give rise to both single- and double-poles. However, as alluded to in (4.12) and
observed in explicit calculations for five [119] and six points [169], the role of the double-pole integrals is to correct the
numerators of the single-pole integrals such that any OPE residue Ljy; . as defined in (4.7) is transformed to the associated
multiparticle vertex operator in the BCJ gauge Vjj . This is the consequence of a subtle interplay between integration-
by-parts identities among the disk integrals and the explicit form of the local superfields multiplying these integrals. In
particular, the double-pole residues feature factors of (1 + 2«'s;), as for instance seen in the last line of (4.11), which
cancel the tachyon poles (1+ 2a's;)~" that would arise from disk integrals over |z;|~2*i~2, As a rank-three example, the
relation between Vj; and the object Ty obtained from OPEs and integration-by-parts corrections in [21,169] is spelt out
in Appendix I. The generating series of the Berends-Giele currents associated with Vi and Tj; are related by a non-linear
gauge transformation that preserves BCJ gauge.

More generally, numerators (14 2c’s;; ) from nested OPEs cancel tachyonic poles of multiparticle channels in a highly
nontrivial way, see for instance appendix B.3 of [169]. In this way, all the singularities of the correlator (iC;) in (6.1)
become logarithmic: when visualizing all factors of z; ! by an edge between vertices i and j, logarithmic singularities are
characterized by obtaining a tree graph in the frame z, — oo. Integration by parts removes loop subgraphs associated for
instance with zi 2 or (zijzikzi)~!, and the accompanying numerators of (1 + 2a/s;) or (1 + 2a's;y) due to the superfields
ensure that no tachyon poles are generated in the coefficients of the logarithmic singularities. It follows from Aomoto’s
work [219] that non-logarithmic singularities can always be removed via integration by parts, but it is a peculiarity of
the superstring (as compared to bosonic or heterotic strings [220,221]) that the coefficients of the logarithmic integrands
become free of tachyon poles and in fact homogeneous in «'.

38 The context and the subscript clearly differentiates the n-point correlator K, in (6.1) and the Berends-Giele current i, in (4.79) for the
single-particle n of a generic superfield in K of (4.1).
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6.1.2. Lie-polynomial structure of the correlator

After discarding total worldsheet derivatives and BRST-exact terms, the calculation of the correlator (6.1) can be
summarized by an elegant pattern relating the symmetries of the kinematic factors and logarithmic integrands. By the
superfield contributions from the double poles and more general non-logarithmic singularities, all kinematic factors can
be written in terms of the multiparticle vertex Vp(4.77) subject to the generalized Jacobi identities (4.47). The logarithmic
singularities in turn are carried by the following worldsheet functions Zp satisfying shuffle symmetries

2123...p = ; , ZpuB = 0 , v A, B # @ . (62)
212223 - - - Zp—-1p

At rank p = 2, 3, shuffle symmetry is a consequence of antisymmetry 2, = 2;21 = —zz’]1 = — 25, and the partial fraction
Z123 4+ Zo13 + Zo31 = (212223) "' + cyc(1, 2, 3) = 0, and a general proof can be found in Lemma 5.4 of [190].

At low multiplicities, the sum of OPEs involving one unintegrated and any number of integrated vertices is given by
(the symbol = denotes equality up to total derivatives and BRST-exact terms in presence of the remaining vertex operators
Ui(z) and Vi 1(zu-1)Va(c0))

Vi(z1)Ua(22) = V2212,
Vi(z1)U2(22)Us3(23) = Vi3 2123 + V1322132, (6.3)

(
V1(21)Ua(22)U3(23)Us(24) = V123421234 + perm(2, 3, 4),
where already at rank two, we have discarded the term Q(%(Al -Ay) — (A1W2)) in (4.19) to convert the OPE residue
L, defined by (4.3) into the two-particle vertex Vi,. In the context of multiparticle correlators, contributions such as
((A1W5)Q(Us...)) due to BRST integration by parts conspire to total derivatives which are discarded as well on the
right-hand side of the symbol = (see the earlier comments below (4.6) and (4.16)).

Given the generalized Jacobi symmetry of Vp and the shuffle symmetry of Zp, the sums of terms on the right-hand
side of (6.3) furnish Lie polynomials [177]. They are in fact permutation symmetric in the labels of V; and all the U, say
Vi23Z123 + V1322132 = V2132213 + V2312231, and generalize to

n
V](Zl)l_[ Uq(2q;) = Z ViaZia, (6.4)
i=1 |Al=n
where the summation range |A| = n refers to the n! words A formed by permutations of a;a; . .. a4. The Lie-polynomial
structure implies that the right-hand side of (6.4) is permutation symmetric in 1, a;, az, ..., aj4 even though only the
weaker symmetry in a;, az, ..., a, is manifest.>”

Following this reasoning the correlator i, can be assembled from two factors of (6.4) corresponding to sequences
of OPEs terminating on one of the unintegrated vertex operators V;(0) or V,_1(1). OPE contributions involving the third
unintegrated vertex operator V;(z,) are suppressed in our choice of SL;(R) frame with z, — oo. These selection rules for
OPEs lead to n—2 deconcatenations AB = 23...n—2 (including the ones with A = ) or B = () and an overall permutation
over (n—3)! labels for a total of (n—2)! terms [21]:

Kn = Z (VMZ]A) (Vn—l.ézn—LB)Vn +perm(2, 3,...,n-2), (6.5)
AB=23..n—2

where B denotes the reversal of the word B. The first few expansions of (6.5) read (2; := 1),

K3 =ViVaVs3,
Kq = Vi2212V3Vy + V1V323,V,,
Ks = (V1232123 + Vi322132) VaVs 4+ Vi (Vazs Za23 + Vaza Za32) Vs (6.6)

+ (Viz212) (Vas Za3) Vs + (Vi3 213) (Va2 242) Vs
Ke = V123421234V5Ve + V123 2123V54 254V + V12 212 V543 2543V + V1 V432 2543,V + perm(2, 3, 4),

and we reiterate that, by the Lie-polynomial structure of the correlator, V1332123 4+ V1322132 is symmetric in 1, 2, 3 even
though only two out of 3! permutations are spelled out.
One can verify that (6.5) can be obtained using the following two effective rules for multiparticle OPEs
Valza)Un(zp) — A0 gy — DanC), (67)
Zab Zab

where z, and z, are the worldsheet positions corresponding to the first letters of the words A and B. The replacements are
again valid upon discarding BRST-exact terms and total derivatives from the complete correlator (6.1), see the comments
below (6.3). The nested brackets in V4 ) or Ujs p) are expanded as in (4.55) by virtue of the generalized Jacobi identities
satisfied by Vp and Uy.

39 This follows from the identity >4 ﬁZAVA =3 ZisVis.
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6.2. Local form of the disk correlator

Using the above results the n-point superstring disk amplitude computed with the pure spinor formalism becomes a
sum over (n—2)! superfield numerators along with different worldsheet functions (6.2) [21],

A(lp) = A(1,2,...,n)

(203 ]_[dzj 1—[ |z 250 Z ((ViaZ1a) (Voo 1 520_1.5) V) + perm(23...n—2)

D(tn) j_p 1<i<j AB=23..n—2
(203 / l_[dz] ]‘[ |2 725 (6.8)
D('l” 1<i<j
V. V V
y {Z (Viz. pVa—1,n—2,.. p+1Vn) +perm(23...n—2)}.
p (212223 - Zp—1p N Zn—1,n-2 * * - Zp+2,p+1)

Recall that the integration domain D(1,) = D(1, 2, ..., n) defined in (3.78) in the present SL,(R)-frame with (z1, z;,_1, z,) =
(0, 1, co0) amounts to the disk ordering 0 <z, <z3 < -+ <z, 5 < 1.
In order to avoid cluttering, we adopt the notation

n—1
/dug = / dz, dZ3 s dZn,Z ]_[ |Z,'j|72a/sij s (69)
D(P)

1<i<j

where the superscript of the measure tracks the number |P|=n of external labels. This shorthand is suited for the choice
of SL,(R)-frame where the worldsheet positions (z1, z,_1, z,) are fixed to (0, 1, co) (or to (1, 0, c0) to accommodate all
the (n—1)! cyclically inequivalent choices of P), and the translation into more general SL,(R)-frames will be discussed in
Section 6.4.1 below. The local form of the superstring amplitude then becomes

A(P) = (20" / dup > {(Viazia) (Vy_y 52,_15)Va) + Perm(23...n-2), (6.10)
AB=23..n-2
where we write A,(P) = A(P) ||P|=n whenever the multiplicity is not obvious from the shorthand P for the color-ordering.
6.2.1. Four-point example

While the three-point amplitude (3.98) is completely determined by zero modes, the simplest instance of OPE
contributions occurs at four points. According to (6.1), the four-point correlator is defined by

(V1(z21)Ua(22)Va(23)Va(00))) = (Ka) l21a| 2512 295|222 (6.11)
and computed by integrating out the h = 1 fields in U(z):
Vi z Vi z
Kq = Vi) l)V3(23)V4(<>0)+ V1(21)7[2’3]( 3)V4(OO)
Z12 223
V12 V3V, ViV3,V,
~ V12 34+ 1V52la (6.12)
Z12 233

The first line illustrates the origin of the four-point correlator from the OPE effective rules (6.7). The second line (which
is equivalent by Vj; = V[; ;;) reproduces (6.6) and results from permutations of (4.3) and (4.19) while dropping BRST-exact
terms and OPEs involving the vertex V, at infinity. The (...) bracket only refers to the zero modes of A%, 6%, see (3.81),
that is why the positions of the V;, Vj; are no longer displayed. The integrals in the resulting amplitude

1
Via V3V, ViV3,V, , ,
A(lg) = A1,2,3,4) = 2¢/ f dz2<< 12VsVa) | (hVsaVa) )|zu|-2“u|z23|—2“23
0 Z12 Z32

_ <(V12V3V4) n (V1V23V4>> (1 —2a's12)(1 — 2a's3)
S12 23 I'(1—2a's1; — 20/s23)
F(] - 20/512)1_'(1 — 205/523)
F(l — 2a's1p — 20/523)

(6.13)

=A(1,2,3,4)

can be straightforwardly identified with the Euler beta function f01 dxxA1(1—x)F1 = F(i Aigi; after fixing (z1, z3) = (0, 1)

which is the backbone of the famous Veneziano amplitude [222]. In passing to the second line, we have used the functional
identity I"(A+1) = AI'(A) to make the ratio —;—; of the integrals over zf; and 23’21 manifest (which is in fact a special
case of the integration-by-parts identities of Section 6.3.1). As a result, the four-point SYM amplitude in (5.10) has been
factored out in the last line of (6.13), and the remainder of this section is dedicated to the appearance of SYM amplitudes

68



C.R. Mafra and O. Schlotterer Physics Reports 1020 (2023) 1-162

from n-point correlators of the open superstring. Historically, explicit four-point tree-level computations in the pure spinor
formalism date back to 2006 and 2008 [97,167].

6.2.2. Five-point example
To illustrate the multiparticle techniques leading to the result (6.8) above, it is useful to consider the evaluation of the
five-point disk correlator via multiparticle vertex operators and the effective OPE calculations (6.7). That is, consider

(Vi(21)Us(22)U3(23)Va(2a)V5(25)) = (Ks) |212] 72512 |213] 72513 25| 720523 2, | 72/524 |73 7234 | (6.14)

where we set (z1, z4, 25) = (0, 1, 00) at the end (this means that V5 does not participate in OPEs). First we eliminate z,
using the OPEs of Uy(z;) to get

Vi1,21(21) Uz ,21(z3)

Ks = 2R U5 (23)Va(24)Vs(00) + Vi (21) =222V, Vs(00) + Vi(z1)Us(z3

Z12 232 242

followed by elimination of z3 via effective OPEs (6.7) of Usz(z3)

)V[4’2](Z4)V5(oo), (6.15)

V V V
— [[1’2]’3]V4V5+ [1,2] [4.3]V5

212213 212 Z43
V V

+ -LB21 V4Vs + V4 “aB.20 Vs (6.16)
232213 232743
V V

n [1,3] [4,2]‘/5

Ly Vita,213) vs.
213 242 242243
The contributions from the first, second and third term of (6.15) are organized into separate lines, and we are no longer
tracking the locations of the multiparticle vertex operators since only their zero modes remain at this point.
Using the generalized Jacobi identity (4.55) followed by the shuffle symmetry (6.2) we get

V V Vip V. Vis V. V. V.
Ks = —VaVs + — o VaVs + —o —2 Vs 4~ 25 4 Vi Vg o Vg (6.17)
212223 213233 212 243 213 Z42 243233 242233

which reproduces (6.6) and leads to

1 3
2 2o/ W o 2/ 2o/
A(15) = (2¢) / d23/ dz; |212] 7" 12| Z43] 77053 | 2g3 |7 23 |2pg | T 24234 T 5
0 0

Vi23V4V: V12 Va3 V. V1V4o3V:
x[< 12345)+(12435)+(14235)

212233 212243 242233
with (z1, z4) = (0, 1).

In contrast to the single integral in the four-point amplitude (6.13), the double integrals in (6.18) cannot be expressed
in terms of Gamma functions but instead involve a hypergeometric 3F, function [223] with s;-dependent parameters
at z = 1. Five-point tree-level computations in the RNS formalism with external bosons include [208,224] from the
perspective of low-energy effective actions and [225-227] in the spinor-helicity formalism upon dimensional reduction
to D = 4. The simplified five-point results in pure spinor superspace [119,170] address the entire gauge multiplet and
furnish key steps towards the representation in (6.18).

+ 2« 3)] (6.18)

6.2.3. Six-point example
The six-point instance of (6.8) is given by

Alg) = 20[ / dZ4/ dZ3f dz, l_[ |z |72a Si (6.19)

1<i<j

V1234V5V, V123V54 Vi V12Vs43Vi V1 V5432V,
X[( 123456)+<123546>+<12 543 6>+(15432 6)

+ perm(2, 3, 4):|
212223234 212223254 212254243 254243233

with (z1, zs) = (0, 1) and builds upon the pure spinor computation in [169]. Earlier six-point tree-level computations in
the RNS formalism have been performed for D-dimensional external gluons in [209] and in the spinor-helicity formalism
upon dimensional reduction to D = 4 [225-228].

6.3. Non-local form of the disk correlator

The expression (6.8) for the massless n-point open-superstring amplitude is characterized by its total number of (n—2)!
terms, written in terms of local superfields Vp in the BC] gauge and (n—2)! worldsheet integrals. The integrands are given
in terms of combinations of ZpZ, functions (6.2) with logarithmic singularities and with a distinctive pattern of label
distributions among the words P and Q. We will now see how this form can be streamlined and rewritten using only
(n—3)! terms.

69



C.R. Mafra and O. Schlotterer Physics Reports 1020 (2023) 1-162

Rearranging worldsheet functions. The driving force in this rewriting is the judicious use of worldsheet integration by parts
in the presence of the Koba-Nielsen factor [21]. To do this, we will first introduce a new set of worldsheet functions Xp,
indexed by a word P, whose integration-by-parts relations involve constant rather than s;-dependent coefficients. For
reasons to become clear below, it is convenient to define Xjp for a fixed label i as

Xip = ZS(PIQ)iZiQ : (6.20)

where S(P|Q); is the KLT matrix (4.159) and Zjq is the shuffle-symmetric worldsheet function (6.2). For example, X1, = 2—2
and

1
X123 = S(2323)1 2123 + S(23132)1 2132 = S12(513 + 523)Z + S12813 (6.21)

12223 213233

1 1 $12523  S12513  S12523
= $12513 < + + = +
212223

213233 212223 212213 212223

S12 [ S13 $23
= 7<7 + - ’
Z12 \Z13 223

where we used partial fractions in the second line. In general, one can show that after using partial-fraction identities the
Xp functions can be written recursively as

Xpi :Xp(Xp1i+Xp2i+---+ka,~), Xi=1, k=|P|-1, (6.22)
where the base case for a letter i is set to one for later convenience. Solving the recursion leads to the simplest instances
s S12 /S s S12 /S s s s s

Xi=1, Xp=-2, Xp3= £(£ + 2), X234 = ﬁ(ﬁ + 2)(ﬁ + 24 ﬁ) (6.23)
212 Z12 \Z13 223 z 213 223/ \Z14a 224 234
and more generally to
IP] j—1
Xp _ HZ PIP] ] (624)
j=2 i=1 Pxpj

One can also describe the worldsheet functions (6.20) in terms of the generalized KLT matrix (4.164) [165] satisfying
generalized Jacobi identities in P and Q such that S¢(iA|iB) = S(A|B);. The definition (6.20) then generalizes to arbitrary
words (not necessarily starting with i) as

1
Xo = oo Z S‘(PIQ)Zq (6.25)

such that the factor W compensates the higher number of permutations being summed over objects that satisfy shuffle
symmetry and generalized Jacobi identities.
The following property of (6.20) has been first experimentally observed in [173] and later proved in [165,166] from

the properties of S(P|Q) in (6.25):

Lemma 11. The worldsheet functions Xp satisfy the generalized Jacobi identities

Xpo@) +Xoepy =0, (6.26)
for instance
X2 =—X21, X123 +X231 +X312 =0, Xiz34 — X243 + X3412 + X3421 = 0. (6.27)

6.3.1. Integration by parts

As observed in [21], the chain of ” factors that appear in Xp is ideally suited for integration by parts (IBP) when
multiplied by the Koba-Nielsen factor of the disk. The key idea is to exploit the vanishing of boundary terms in the total
worldsheet derivatives

—2a's;:
/Zb 9 TIi=i lzgl =
dz;, e

Zq

-0 (6.28)
sz Ziyj1 ** Zin_ajn—a

relevant to arbitrary orderings D(. .., a, k, b, .. .) of n-point disk amplitudes. The absence of boundary terms follows from
the contributions |zk—zb|‘2‘”/5b’< and |zk—za|‘2"‘/sﬂ’< to the Koba-Nielsen factor which evidently vanish as z; — 2z, and
Zr — Zg if Re(spi), Re(sq) < 0. Analytic continuations in the s; then imply the validity of (6.28) for generic complex
kinematics which has already been used in the context of the canceled-propagator argument in (3.88).
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Particularly simple instances of (6.28) arise if z, does not appear in the denominator, i.e. if k ¢ {ij, j;}. In these cases, the
derivative % only acts on the Koba-Nielsen factor and the resulting IBP identity is homogeneously linear in Mandelstam
invariants,

n—1
/ dzy dzs - - - dzy_p 1519 Smk_ o), (6.29)
D(P)

Zirj1 * " Zin_ain—a mmy Zmk
m#k

|Zij|—2a'sij n—1

with an arbitrary permutation P = pyp, ... p, of 12...n characterizing the integration domain D(P) in (3.78). The simplest
examples at n = 4

_2d/ —2alsye S12 _2d —2alsys 523
/ dzy 212|722 |zp3| 724 —= = / dzy 212|752 |zp3| 73 = (6.30)
D(P) 212 D(P) 223

reproduces the ratio —2—; between the four-point integrals in the first line of (6.13) without invoking any Gamma-function
identity. At five points, IBP implies

4 4
/e S S S: /..S12 S
f dzydzs [ |z,—,—|*2‘“vﬁ< L 3) =/ dzydzs [ lzg/ =222 (6.31)
D(P) D(P)

z V4 Z 212 Z
1=<i<j 12 13 23 1<i<j 12 434

Using the notation (6.9), the four- and five-point instances of IBP identities (6.29) relevant to the local correlators (6.13)
and (6.18) are obtained by

/dﬂgxﬂ = —fdﬂﬁxn,

/d,ulso X12X43 = —fduféxm, (6.32)

/dMISonBz zfdu,ixm

and relabelings 2 <> 3 of the five-point cases. At six points, the set of master IBPs for the correlator in (6.19) is given by

/dﬂgx123xs4 = —/du2X1234,
/dM,?Xqu43 =/du,‘3X1234, (6.33)

/dMgX5432 = —/du2X1234

and permutations in 2, 3, 4, while at seven points we get
/dM;XlZMXGS =- / dip X123a5 , /du,z X12X6543 = — / dip Xi2345

/dM;X123X654 = /dl/«,lezﬂsg /dﬂlzxssuz = /dM;X12345, (6.34)

and permutations in 2, 3, 4, 5. In general, these IBP identities can be written as
/dﬂﬁ X1aX_pyp = (=1 / dup Xias , (6.35)

where B denotes the reversal of the word B, see the notation in Section 1.3. Recalling that we defined X; = 1, the general
form (6.35) is valid even when one of A and B is empty. Note again that the labels i = 1 and i = n—1 are singled
out, reflecting the SL,(R)-frame implicit in the shorthand notation (6.9). Still, the IBP identity (6.35) holds universally
for any disk ordering P since any cyclically inequivalent domain D(P) in (3.78) is compatible with the SL,(R) frames
(z1, Zn—1,2n) = (0, 1, 00) or (1, 0, co) employed in (6.9).

Moreover, the |B|-dependent minus signs cancel out when the identity (6.35) is used together with the reflection
property (4.105) of the Berends-Giele supercurrents. This leads to the important identity,

/du,’l (MlAXlA)(Mn_mX(n_])B)=/dMTJX1ABM1AMB(n71)a (6.36)

which will be used in the derivation of the non-local and manifestly BRST invariant form of the superstring n-point
scattering amplitude on the disk in the next section.
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6.3.2. The trading identity

The IBP identity (6.36) will ultimately allow us to derive the non-local (n—3)!-term representation of the massless
n-point superstring disk amplitude in an elegant manner. Before we do this there is one final important identity to prove,
the so-called trading identity [21].

Proposition 18. The local superfields Vp satisfying generalized Jacobi identities and the worldsheet functions Zp satisfying
shuffle symmetries are related by

Z ViaZia = Z MiaXia (6.37)
A A

to the Berends-Giele supercurrents Mp satisfying shuffle symmetries and the worldsheet functions Xp satisfying generalized
Jacobi identities.*

Proof. Starting from Vs = > _; S(A|B);Mjp (see (4.181) and [166,176]), we have
Z ViaZia = ZMI’BS(A|B)1'ZI’A = ZMiBXiB, (6.38)
A AB B

where the second step is based on the symmetry S(A|B); = S(B|A); of the KLT matrix and the definition of Xz in (6.20).
Similarly, we could have used the relation Zj, = > _;(b(iA), iB)X;, where the binary-tree map introduced in (4.124) inverts
the KLT matrix in the sense of (4.179), to obtain the same conclusion. O

6.3.3. The n-point disk amplitude

The identities derived above allow us to cast the massless n-point disk amplitude into a manifestly gauge invariant
form that contains (n—3)! terms [21]. Let us first write down explicit examples at low multiplicities before stating the
final result.

Four points. Starting from the rewriting
Ay(P) = 2d / dup (ViaZ12V3Va + Vi V3 23, Va) (6.39)
of the local form (6.12) of the four-point disk correlator, the trading identity (6.37) regroups the Mandelstam factors to
Ay(P) = 2d [ ditp (X12M12M3My + X3,M1 M3, My) . (6.40)
Then, IBP using (6.32) and the shuffle symmetry of the Berends-Giele current M3, = —M>3 yield

A4(P) = 20/ / dup X12(M12M3My + M;Ma3Ma)

Zalfdﬂgxlz(flzal\/h) (6.41)

= 2o / dup X2A(1, 2, 3, 4),

where we identified the four-point SYM tree amplitude (5.14). After unfolding the notation (6.9) we get the equivalent
of (6.13),

S12
—A

Ay(P) = 20 / Az, |212) 72512 |23 253 22 A1, 2, 3, 4), (6.42)

D(P) Z12
for the massless four-point superstring amplitude on the disk.
Five points. Similarly, starting from the local form (6.18) of the five-point disk amplitude, the trading identity (6.37)
together with the IBP identities (6.32) yields

As(P) = (2 / dpp [(Vi2sZ123VaVs) + (ViaZ12Vas Z3Vs) + (ViViz Zap3Vs) + (2 < 3)] (6.43)

=(2') / dup [(X123M123M4M5 + X12X43M12My3Ms + X430M1 Mgz Ms) + (2 < 3)]

40 As a side note, the interplay of the generalized Jacobi identity and shuffle symmetry in the trading identity (6.37) gives rise to a Lie-series
interpretation of the string disk correlator. This same structural behavior was argued to be present in the genus-one string correlator and exploited
to derive the genus-one correlators up to seven points (with partial results at eight points) in [181]. In fact, similar Lie-polynomial structures are
expected for correlators at all genera.
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=(2') / dup [X123(M123M4M5 + M12M34Ms + M1Mp34Ms) + (2 < 3)]
=(2') / dup [X123(51234M5) +2 < 3)]

= (20/)2/51#,5, [X123A(1,2,3,4,5)+ (2 < 3)].

In passing to the third line, we have used the instances My3 = —M34 and My3; = Mj34 of the reflection identity (4.105).
We then identified the BRST-closed superfields Ep using (4.85) and the five-point SYM amplitude from the pure spinor
cohomology formula (5.14). Finally, restoring the integrals from the shorthand notation (6.9), we obtain the massless
superstring five-point amplitude on the disk:

4
As(P) = (2 / dz; dz3 ]_[ 2| 72 (6.44)
b(p) 1<i<j
Sin (S S S13 /(S S
x |:]2<13+ 23)A(l 2,3,4, 5)+3<ﬁ+ 32)A(l 3,2,4, 5)]
Z12 \Z13 223 Z13\Z12 732

Six points. The non-local form of the massless six-point disk amplitude can be derived in similar fashion. Starting from
the local form (6.19),

Ag(P) = (2 / dug[ Z ((V]AzlA)(VSBZSB)Ve;)-i-perm(2,3,4)], (6.45)
A

B=234

we use the trading identity (6.37) to obtain
As(P) = (2¢') / dud [((M1234X1234M5 + M123X123M54X54 (6.46)

+ M12X12Ms43X543 + M1Msa3,Xs432) M) + perm(2, 3, 4)] .

The IBP identities (6.33) of the worldsheet functions multiplied by the Berends-Giele currents yield
Ag(P) = (2o / dpd [X1234(M1234MsMs + Mi33MasMg + M1MsasMs + MiMasasMs) + perm(2, 3, 4)]

= (227 / dup [X1234A(1, 2, 3, 4,5, 6) + perm(2, 3, 4)] , (6.47)

where we easily recognize the expansion of Ej;345Mg from (4.85) in the first line, and consequently of the tree-level
six-point SYM amplitude (5.14) in the last line. So finally [21],

5
Ag(P) = (2') / dz dzs dzy [ | Izl (6.48)
D(P)

1<i<j

S S s S s s
x [£<£ + ﬁ) (ﬁ + 24 ﬁ) (1,2,3.4,5,6) + perm(2, 3, 4)] .
Z12 \Z13 223 214 Z24 234

Higher points. Since all the key formulae above generalize to any multiplicity - the local version of the open string disk
correlator (6.8), the trading identity (6.37), the IBP relations (6.36) and the pure spinor cohomology formula (5.14) for
SYM tree amplitudes - we propose the following generalization [21]: The massless n-point superstring disk amplitude is
given by

n—2 k—1
An(P) = (2a)" 3/ ]_[dzj ]_[ || 2 []‘[ZS'"" ..,n)+perm(2,3,...,n—2):|. (6.49)

Z
1<i<j k=2 m=1 mk

We therefore see that the multlpartlcle superfield techniques and several related combinatorial identities, all inspired by
the simplicity of the pure spinor formalism, lead to a striking simplification of the n-point superstring disk amplitude:

o All polarization dependence is carried by a linear combination of (n—3)! field-theory SYM amplitudes A(1, Q, n—1, n)
with Q = 243 ...¢qn_> a permutation of 2, 3, ..., n—2. These (n—3)! permutations in fact form a basis under the
B(J relations (5.55) or (5.62).

e All the o’-dependence of the n-point amplitude (6.49) resides in the disk integrals over permutations of X5, > =

Z‘; an 11 i’”" multiplying the SYM amplitudes. Hence, all the string corrections to SYM field-theory are carried by
scalar, i.e. polarlzatlon independent, integrals.
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Additional structures become visible when restricting the integration domains of (6.49) to the (n—3)!-family of D(1, P, n—1, n)
with P = pyps3...pp—2 a permutation of 2, 3, ..., n—2, see the definition in (3.78). This (n—3)!-vector of color-ordered
string amplitudes
AP, n=1,me)= Y F%)A(1,Q n-1,n) (6.50)
Q€Sy—3

can then be organized through the following square matrix of integrals

n—1
_ Conle. S1 S1 S
Fpa) = (2a')" 3/ dzy dzs ... dz,_, ]‘[ |z 725 212 (ﬁ 4 206 (6.51)
0<2zp, <zpy <--<2Zp, 5 <1 1<i<j Z1g; \Z1q3 Zg3q3
S1 S, S, S1q,,_ S, _ Sq,_2q,_
X( Q4+ QZQ4+ Q3Q4>“.< ‘In2+ ‘IZQnZ_i_”'_i_ n-3qn—2 i
Z1g4 Zg304 Zq3q4 Z1gn_y Z430n—2 Zgn_30n—2

indexed by permutations P and Q of the n—3 labels 23...n—2. On the one hand, there is no obstruction to extending
(6.50) beyond the (n—3)! disk orderings D(1,P,n—1,n) — more general choices would simply place some of the
integration variables of (6.51) into the regions (—oo, 0) and (1, co). On the other hand, as will be elaborated in Section 7.3,
the (n—3)! color-ordered open-string amplitudes (6.50) already form a basis of the complete (n—1)!-family of 4,(Q) in
the color-dressed amplitude (3.79).

One can already anticipate from the symmetric footing of color-ordered open-string and SYM amplitudes in (6.50) that
the field-theory limit of Fo¢(a’) yields a Kronecker delta in the permutations P, Q,

FoQ(a') = 82 + 0(a?), (6.52)

and we will study this relation and its ’-corrections from several perspectives.
6.4. The open superstring as a field-theory double copy

We shall now relate the form of the disk integrand in the n-point open-string amplitude (6.49) to the structure of the
KLT formula (4.158) for gravitational tree amplitudes. In the same way as KLT formulae in field theories are hallmarks of
double copy, the form of the disk amplitude is argued to identify the interactions of massless open-superstring excitations
as a double copy of SYM with a theory of bicolored scalars dubbed Z-theory.

6.4.1. Parke-Taylor factors and Z-integrals

As pointed out above, the calculation of the string disk amplitudes was carried out in the SL,(R) frames where
(21, zZn—1, zy) are fixed to one of (0, 1, co) or (1, 0, o0) to account for the residual Mébius symmetry of the disk. In order
to generalize the n-point formula (6.49) to arbitrary SL;(R) frames, we need to undo the above fixing of z1, z,_1, z,. The
task is to identify an SL,(R)-covariant uplift of the worldsheet functions Z14Z,_, 5 or Xyq in the amplitude representations
(6.8) or (6.49). In other words, it remains to reverse the SL(R)-fixing (D(P) is defined in (3.78))

dz; dzp --- dz
/ " — |z n1Z1 nZn dzydzs ... dz,—, (6.53)
ppy VOI(SLy(R)) D(P)
and to identify a suitable function fy g(z1, ..., z;) such that,
. 21=
lim |Z1,n-121,nZn=1,n| - faB(2Z1, - ., Zn) = Z1aZn-1,B , (6.54)
(z1.2n—1.2n)—(0,1,00) zZp_1=1

or z1 <> Z;_1. The Jacobian |zyn_121,nZn—1,n| On the right-hand side of (6.53) is part of the prescription 1/vol(SL,(R)) that
avoids an infinite overcount of z-configurations that are related by Mobius transformations [10,12,16]4" The desired
uplift f p is uniquely determined by (6.54) and requiring SL,(IR)-weight two in each variable: in the same way as
1 (czi +d)(cz; + d) azy+ b
—

under z, —
zZi —zj zi — zj czx +d

with (95) € SLy(R) (6.55)

is said to have SL,(R)-weight one in z;, z;, the uplift f4 5 is required to transform as

n

Jas(zi, ..., zn) = fap(z1, ..., Z0) H(CZj +d)? (6.56)

j=1

41 One could alternatively fix any other triplet of punctures z,, zp, z. and change the Jacobian and measure on the right-hand side of (6.53) to
|ZabZacZpe| and ﬂ};a,b.c dz.
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to yield well-defined integrals with the measure on the left-hand side of (6.53). The simplest (though not the only)

quantities with SL,(R)-weight two in all of zq, z3, . . ., z, are the so-called Parke-Taylor factors
1
PT(c1,Ca, ..., Ch) = . (6.57)
ZeicaZeyes - - - Zep_yenZency
After adapting the permutation C = cicy...c, to the target expression Zi4Z,_1p, it is easy to check that the
SL,(R)-covariant solution to (6.54) is given by
fas(zi, ... zn) = (=1)F~'PT(1,A, n, B,n—1) (6.58)

with B the reversal of B. In other words, the functions Z1aZn—1.p in the local representation (6.8) of the n-point amplitude
descend from Parke-Taylor integrals

dz; dzp --- dz -
f e PT(1,A,n,B,n—1) = (—1)'3‘7] / dzydzs ... dzy_; Z1AZn-18,» (6.59)
ppy VOI(SLy(R)) D(P)
and the simplest examples are given by
1 1
PT(1,2,4,3) > ——, PT(1,4,2,3) > — (6.60)
212 233
as well as
1 1 1
PT(1,2,3,5,4) > — , PT(1,2,5,3,4) —> , PT(1,5,2,3,4) > — ,
212223 212243 24373
1 1 1
PT(1,3,2,5,4) > — , PT(1, 3,5,2,4) —> , PT(1,5,3,2,4) > — . (6.61)
213232 213242 242773

Upon dressing with the Koba-Nielsen factor of SL,(R)-weight zero in each variable, the gauge-fixed integrals in (6.8) and
(6.49) are found to be expressible in terms of Parke-Taylor- or Z-integrals defined by
dzy dzy -+ dzy  [10 124l

. (6.62)
VOI(SL2(R))  2g,4,24543 - - - Zan_1anZanas

ZPla s o n) = (2a’)”-3f
D(P)

In this setting, Z-integrals are labeled by two permutations P,Q € S, up to cyclic identifications in P or Q: the
permutation P := pip, ... p, in the first entry encodes the integration domain D(P) in (3.78), while the second permutation
Q '=q1q> . . . q, refers to a Parke-Taylor factor (6.57) in the integrand. In summary,

Lemma 12. The SL(R)-covariant uplift of the worldsheet integrals appearing in the local form of the superstring amplitude
(6.8) is given by

(2o )3 / dup Z1aZ, 5 = —(=1)®1Z(P|1,A, n, B,n—1), (6.63)
where the measure duj, is defined in (6.9).
Thus, the local form (6.10) of the superstring amplitude can be rewritten as
AP)=— > (ViaV,_; gVa)(—1)P'Z(P|1, A, n, B,n—1) + perm(23...n-2), (6.64)

AB=23..n—2

for instance

A4(P) = —(V12V3V4)Z(P|1, 2, 4, 3) 4+ (V1V3,V4)Z(PI1, 4, 2, 3),
As(P) = —(V123V4V5)Z(P|1, 2, 3,5, 4) + (V12VasVs5)Z(P|1, 2, 5, 3, 4) — (V1V43,V5)Z(P|1, 5, 2, 3, 4) (6.65)
— (Vi22V4V5)Z(PI1, 3, 2, 5, 4) + (Vi3VpV5)Z(P|1, 3, 5, 2, 4) — (V1V3V5)Z(P(1, 5, 3, 2, 4).

6.4.2. Open superstrings as a KLT formula
The Fp?-functions (6.51) in the n-point disk amplitude (6.50) are integrals of worldsheet functions X;o as one can
readily check from their expressions in (6.24),

n—1
Fr%(a') = (223 / dzydzs ... dz,_; ]_[ || 25Xy . (6.66)
D(1,P,n—1,n) 1<i<j
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In (6.20), the integrands X;o were related to the chains 24z of simple poles through the KLT kernel S(Q|R); defined in
(4.159). Accordingly, one can represent the Fpo (') via

n—1
) = (2a/)"3 Z S(QIR) f dz,dzs ... dz,_» 1_[ |2] 72250 24 (6.67)

D(1,P,n—1,n)

ReSp_3 1<i<j

dz1dz; ... dz, 1~ :
= -2 > S(Q|R)1/ gz .- G [T tzl™ PT(1,R. n,n—1),

p(1.p.n—1.n) VOI(SL2(R))

ReSp_3 1<i<j

using (6.59) at B = ¢ in passing to the SL,(R)-covariant last line. This identifies the integrals Fp? to be linear combinations
of Z-integrals (6.62) selected by the KLT kernel [176],

F%=— )" S(QIRhZ(1,P,n—1,n|1,R,n,n—1). (6.68)
ReSp_3

Hence, the n-point open-superstring amplitude (6.50) takes the form of the field-theory KLT relations [176]

An(P) = — Z Z(P|1,R,n,n—1)S(R|Q);A(1,Q,n—1,n) (6.69)
Q.ReS;_3

with one of the two SYM factors in the supergravity tree amplitude (4.158) replaced by disk integrals A(1, R, n, n—1) —
Z(P|1, R, n, n—1). This is the case for any choice of the open-string color ordering P in (6.69) which is a spectator in the
sum over permutations Q, R entering the KLT kernel. We have dropped the restriction of the disk integrals (6.49) to the
(n—3)!-family of domains D(1, P, n—1, n) which was convenient to organize the Fp< in (6.51) into a square matrix.

Given that the KLT formula is a central tree-level incarnation of the double-copy structure in perturbative gravity, it is
tempting to interpret (6.69) as signaling the open superstring to be a double copy. Indeed, we support the interpretation
of the Z-integrals (6.62) as amplitudes in a theory of bi-colored scalars in Sections 6.4.4, 7.4 and 8.6.

We conclude by illustrating the KLT products (6.68) and (6.69) through their four- and five-point examples:

Four points. Since the permutation sums over S,,_3 trivialize at n = 4 and the KLT kernel becomes a scalar S(2|2); = s12,
we find the simple results

(1 —2a's12)C(1 —2a's
F? = —s1,2(1,2.3,4[1,2,4,3) = 1L 20512)[1(1 = 2a52s)
F(l — 20[/512 — 2(/523)

A4(P) = —Z(P|1, 2, 4,3)s12A(1, 2, 3, 4), (6.70)

where we have imported the Gamma-function representation of the four-point disk integral from (6.13) in the first line.

Five points. At five points, the permutation-inequivalent entries of the symmetric KLT kernel are S(23]23); = s12(S13+523)
and S(23|32); = s2513. The resulting functions Fp¢ and KLT representation of the disk amplitude are

F2s® = —sia(s13+523)2(1,2, 3, 4,5/1,2,3,5,4) — s125132(1, 2, 3,4, 5|1, 3,2, 5, 4) (6.71)
Fs® = —s125132(1,2,3,4,5(1,2,3,5,4) — si3(s12+523)2(1, 2, 3, 4,51, 3,2, 5, 4)
as well as
T
As(P) = — Z(PI1,2,3,5,4) S12(813+523) $12513 A(1,2,3,4,5) (6.72)
T Z(P|1,3,2,5,4) S12813 si3(s12+s23) ) \A(1,3,2,4,5)) ° ’

6.4.3. KK and B(J relations of Z-integrals

The KLT formula (4.158) does not manifest the permutation symmetry of the supergravity amplitude by the sum over
(n—3)! rather than (n—1)! color-orderings of the two types of SYM amplitudes.*> One can verify on the basis of the KK
and B(]J relations (5.40) and (5.62) of SYM amplitudes that different choices of the legs (1, n—1, n) <> (a, b, ¢) excluded
from the permutation sums yield equivalent KLT formulae.

In the context of disk amplitudes, the KLT formula in (6.69) ultimately applies to the n-point correlator (6.1) in the
amplitude prescription (3.76),

dZ] dZn_l dZn

Hn) = = IS R)

> PT(1,R.n,n—1)S(RIQ)1A(1, Q. n—1,n) mod V,, , (6.73)
Q.ReSp—3

42 gee [192] for alternative versions of the KLT formula with manifest permutation symmetry and [229] for an early discussion thereof in the
mathematics literature.
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where the total Koba-Nielsen derivatives V,, f discarded in the IBP procedure are not tracked,

Vaf = oo f — 20y Y (6.74)

i
By the discussion in Section 3.4.2, the integrated correlator does not depend on the distribution of external legs to
integrated and unintegrated vertices, so the KLT representation (6.73) of the correlator is bound to be permutation
invariant. In the same way as the permutation invariance of supergravity amplitudes originates from KK and BCJ relations
of its SYM constituents, the symmetry of the correlator requires KK and BC] relations of the Parke-Taylor factors (6.57)
modulo total Koba-Nielsen derivatives. The factors of dz;dz,_,dz, on the right-hand side of (6.73) are merely a reminder
of the SL,(R) frame used to define K, in (6.1) and lead to a permutation invariant measure upon insertion into (3.76).
For a fixed choice of the integration domain D(P), the Z(P|Q) integrals (6.62) associated with different permutations

Zij

of Q = q1,qa, ..., q, indeed satisfy the same relations as color-ordered SYM amplitudes. First, cyclic symmetry and
reflection parity immediately follow from the definition (6.57) of Parke-Taylor factors,
Z(P|q1, 92,93 -, ) = Z(P|G2, q3, - . -, Gn, q1) , (6.75)

Z(P|q1, G2, - - - Gn) = (=1)"Z(P|Gn, - - ., G2, G1) -

Second, partial-fraction rearrangements of the integrand imply,
Z(P|1,A,n,B) = (—1)PZ(P|1,BwA,n), VA,B, (6.76)

which is the direct A(-) — Z(P|-) analogue of the KK relation (5.47). Third, IBP relations as in Section 6.3.1 take the form
of the B(] relations (5.62) with A(-) — Z(P|-)

n—1
0= (kg,  Kgpg5..q)Z(Pd2. 3. .- Gjs Q1. Gp1s - n). (6.77)
j=2

see appendix B of [176] for a proof. By analogy with (5.55), an equivalent system of integration-by-parts relations is
furnished by

Z(P|{Q,R},n)=0, (6.78)

see Section 4.3.3 for the S bracket. The fact that Z(P|-)-integrals at fixed choice of P obey direct analogues (6.75) to (6.78)
of field-theory amplitude relations supports the interpretation of disk integrals as amplitudes in a scalar theory.

Note that the expressions for n-point disk amplitudes in four-dimensional MHV helicities in [230] follow from the
relabeling of (6.73) involving the Parke-Taylor basis PT(1, 2, 3, R) with permutations R of 4,5,...,n as well as the
Parke-Taylor formula [231] for the dimensional reduction of the SYM amplitudes.

6.4.4. Bi-adjoint scalars from the field-theory limit of Z-integrals

The interpretation of Z-integrals (6.62) in terms of scalar field theory is further substantiated by their low-energy limits
o’ — 0, where tree-level amplitudes of bi-adjoint scalars are recovered. More specifically, we encounter the theory of
bi-adjoint scalars @ = ¢>,~|ati®f“ taking values in the tensor product U(N)x U(N) of color groups with associated structure
constants fi and fopc, i.e. [t], /] = fit* and [, £°] = fupc <. The Lagrangian defining the bi-adjoint theory features a cubic
interaction

1 1. -
Ly = Eamcpﬂaam@m + ?ﬁjkfabc®i\a¢j\b¢k\c ; (6.79)

and by the two types of adjoint indices of the scalars, its tree amplitudes can be expanded in terms of two species of
independent traces involving either t' or t9,

Mf:ZTr(t“’)Tr(ElQ)m(l,Pu,Q), ¢ =Pz Pt FIQ = RN fner (6.80)
P,Q

This doubles the color-decomposition of open-string and gauge-theory tree amplitudes in (3.79), and the color-independent
building blocks m(A|B) are referred to as doubly-partial amplitudes [41]. From the Feynman rules of the Lagrangian (6.79),
the doubly-partial amplitudes solely depend on the s; \ via propagators of tree-level diagrams with cubic vertices or
cubic diagrams for short.

Also the field-theory limit of disk integrals (6.62) yields kinematic poles that correspond to the propagators of cubic
diagrams (or planar binary trees) [156,202,232]. These poles appear only in the planar channels of the associated planar
binary trees, corresponding to groups of adjacent external particles in the planar trees. Luckily, these adjacent poles in
the field-theory limits of the disk integrals* (6.62) admit a nice combinatorial expansion encoded in the doubly-partial

43 The factor of (2a)"™3 in the definition (6.62) of Z(P|Q) guarantees that the leading term in the low-energy expansion is of order s;’", without
any accompanying factors of «'.
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amplitudes [41]
JjLnOZ(PIQ) =m(P|Q). (6.81)

In other words, the bi-adjoint scalar theory (6.79) gives the field-theory limit of Z-integrals, as expected from the early
discussions of [156,232]. Hence, bi-adjoint scalars furnish the low-energy limit of Z-theory.

Berends-Giele double currents. While the kinematic poles in Z-integrals have been systematically studied at various
multiplicities from several perspectives [176,202,226,233], the straightforward Feynman-diagram expansion and rich
combinatorial structure of the doubly-partial amplitudes make (6.81) a rewarding shortcut for the computation of field-
theory limits. In particular, we shall now introduce Berends-Giele double currents that encode the planar-binary-tree
expansion of m(P|Q) and offer a highly efficient approach to the kinematic poles of Z-integrals.

The field equation following from the Lagrangian (6.79) can be written as

0o = [, ], (6.82)

where we define [@, @] = (@i Pjp — PjjaPip)t't! @ 19T for @ = P;ot' ® % A solution to the non-linear field
equation (6.82) can be constructed perturbatively in terms of Berends-Giele double currents ¢p|q with the ansatz [234],

PX) =Y gpot’ @TLeX, (P =P o (6.83)
P.Q

which generalizes the perturbiner expansion (4.92) in SYM to two species of Lie-algebra generators. Since the ansatz (6.83)
contains the plane-wave factor ek*”X (as opposed to ekaX), the coefficients ¢p|@ must vanish unless P is a permutation of
Q in order to have a well-defined multiparticle interpretation, i.e.

¢piq =0, ifP\Q #£0. (6.84)
Plugging the ansatz (6.83) into the field equation (6.82) leads to the following recursion [234]
1
pro=— > D (Bxudvs —(X ©Y)). gy =0y, (6.85)
P XY=P AB=Q

see (3.108) for the definition of multiparticle Mandelstam invariants sp. The recursion terminates with the single-particle
double current subject to the linearized equation Dd),-l,-e"f'x = 0 such that k,-2 = 0, and we can pick normalization
conventions where ¢;; = §;. Given that the two entries P, Q of the currents enter the recursion (6.85) on equal footing,
the symmetry ¢;; = ¢;; propagates to arbitrary rank,

®rio = PP - (6.86)
Since the summands on the right-hand side of (6.85) are antisymmetric in both X, Y and A, B, the shuffle symmetry
$ausoe =0VAB#Y, dapg =0V P,Q#0 (6.87)

follows from the same type of combinatorial proof as given for the Berends-Giele currents of SYM below (4.131). In
particular, Schocker’s identity [186] can be applied to both slots to infer

¢asio = (D" bape - Parie = (=1 Bp5.0) (6.88)

from (6.87), see (4.104) for the analogous identity for SYM currents. Upon setting B — @ in the first identity or Q — @
in the second, (6.88) specializes to the reflection identities

daig = (—1)pa0.  dap =1y (6.89)

The symmetries (6.87) generalize the standard Berends-Giele symmetry to both sets of color generators and guarantee
that the ansatz (6.83) is a (double) Lie series [177], thereby preserving the Lie-algebra-valued nature of @(X) in (6.82)
w.r.t. both t' and t“.

Examples of Berends-Giele double currents. Based on ¢;; = §;;, the simplest application of the recursion (6.85) leads to
rank-two double currents:

1 1 1 1
P22 = — (P111022 — B2nnd12) = — . P1221 = — (P12d211 — P2p2br1) = —— . (6.90)
S12 S12 S12 S12
At rank three and four, it is straightforward to work out examples such as
1 1 1 1 1 1 1 1 1
P1231123 = 7(* + *) ) P1234)1234 = 7( + + + + ) ,
S123 \S12 523 $1234 \S123512 $123523  S12534 5234523 5234534
1 1 1 1
P123132 = — , P1234)1243 = —7( + ) . (6.91)
5235123 $1234 \512534 5234534
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Berends-Giele double currents from planar binary trees. As pointed out in [165], the Berends-Giele double currents ¢p|q
can be obtained from the planar-binary-tree expansions given by the b map (4.124) as

¢pio = (b(P), Q) = (P, b(Q)), (6.92)

where (-, -) denotes the scalar product of words (C.11), and the symmetry ¢pq = ¢qp of (6.86) is a consequence of the
self-adjoint property (4.126) of the b map. In addition, the shuffle symmetry (6.87) follows from the property b(RwS) =0
proven in (4.131).

For an example application of (6.92), using the expansion (4.125) for b(123) we get

$123p32 = (b(123), 132) = (1, 2], 3],132) + (1,12, 3]],132) = —

5125123 5235123 5235123
as ([[1, 2], 3], 132) = (123 — 213 — 312 4+ 321, 132) = 0 and ([1, [2, 3]], 132) = (123 — 132 — 231 + 321, 132) = —1.
We will see later in (8.93) that there is a generalization of the relation (6.92) between planar binary trees and the
Berends-Giele double current to a series expansion in o’.

(6.93)

Berends-Giele formula for doubly-partial amplitudes. Similar to the Berends-Giele formulae (5.1) in gauge theory, the
double currents of bi-adjoint scalars yield their doubly-partial amplitudes via [234]*

m(P,n|Q,n) = Slimosp<1>pm . (6.94)
p—>

We reiterate that ¢;; = d;, and ¢pjo vanishes unless P is a permutation of Q such that sp = sq. By the cyclic symmetry
of m(R|S) in both words R and S, there is no loss of generality in assuming their n-point instances to take the form
m(P, n|Q, n), where |P| = |Q| = n—1.%°

It is easy to see using the symmetries (6.87) obeyed by the double currents that the m(P, n|Q, n) in (6.94) obey
KK relations independently in both sets of color orderings. Moreover, the Cachazo-He-Yuan (CHY) representation of
doubly-partial amplitudes lead to BC] relations in both entries [41],

m({A, B}, n|Q) = m(A|{P, Q},n) = 0. (6.95)

As an earlier alternative to (6.94), doubly-partial amplitudes m(R|S) can be determined from the algorithm described
in [41] based on drawing polygons and collecting the products of propagators associated to cubic graphs which are
compatible with both of R and S as planar orderings. Their overall sign, however, requires keeping track of the polygon
orientations.

As the main result of this section, by combining (6.81) with (6.94) we get

Proposition 19. The field-theory limit of the n-point disk integrals (6.62) is given by
lim Z(P, n|Q, n) = lim Sp¢p|q - (6.96)
o’—0 sp—>0

Examples of field-theory limits. Typical expressions for doubly-partial amplitudes or field-theory limits of Z-integrals are
illustrated by the following examples at four points

1 1 1 1
lim Z(1234]1234) = — + —,  lim Z(1234/1243) = ——,  lim 2(1234/1423) = —— , (6.97)
o’—0 S12 S$23 o’—0 S12 a’—0 $23

at five points

1 1 1 1 1
+ + + +

lim Z(12345|12345) = R (6.98)

o’ —0 S$12534  S23S45 534551 S45512 551523
1 1

lim Z(12345|12354) = — — , lim Z(12345|13524) =0

a’—0 S$12545 $23545 a’—0
and at six points

. 1 1 1

lim Z(123456|134256) = — ( + ) . (6.99)
o/ =0 5234534 \ S56  Se1

Relation to the inverse KLT kernel. As another central result of [41], doubly-partial amplitudes of bi-adjoint scalars are
related to the inverse of the KLT matrix (4.159). More specifically, bases of m(P|Q ) under B(J relations (6.95) form invertible
(n—=3)! x (n—3)! matrices with entries given by

m~'(1,R,n—1,n/1,Q,n,n—1) = —=S(R|Q); . (6.100)

44 The convention for the sign of the Mandelstam invariants here is such that m"™(P, n|Q, n) = (—1)"'m™e™(P, n|Q, n) in comparison with the
normalization of [41].

45 While cyclic symmetry of m(R|S) is not manifest from the Berends-Giele formula (6.94), it is built in from the definition (6.80) of doubly-partial
amplitudes due to the cyclicity of the traces in t' and £°.
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The particular choices of BCJ] bases on the left-hand side are consistent with the fact that the recursion (4.159) for the
KLT matrix is tailored to the same BC] bases of SYM amplitudes in (4.158). By (6.81), this implies that field-theory limits
of disk integrals can also be assembled from the KLT matrix as firstly pointed out in [176].

As another consequence of (6.100), the relation (6.68) between the disk integrals Fp¢ in terms of their Parke-Taylor
analogues Z can be inverted to give [235]

Z(1,P.n=1,n/Q) = Y “m(Q|1, R, n—1,n)F:". (6.101)
R

which is for instance instrumental to convert results on the «’-expansions of both sides. Moreover, the appearance (6.81)
of doubly-partial amplitudes in the field-theory limit of Z-integrals can be derived from (6.101) and the field-theory limit
(6.52) of FpR on the right-hand side. This is not a circular conclusion since (6.52) is a necessity for the consistent reduction
of open-string amplitudes to those of SYM under (6.50), and we will furthermore substantiate (6.52) through the method
for its o’-expansion in Section 8.5.

Inverse KLT matrix and Berends-Giele double currents. In terms of the Berends-Giele double currents the statement in
(6.100) translates to the observation in [165] (see also [234]) later proved in [166]:

Lemma 13. The matrix of Berends-Giele double currents ¢ipir of (6.92) is the inverse to the standard KLT matrix S(R|Q); of
(4.170)

Z ®ipirS(RIQ)i = dp.q - (6.102)
R

Proof. Taking the scalar product with iP of the result £(iR) = ZQ SE(iR|iQ)b(iQ) from lemma (4.179), we get (iP, £(iR)) =
ZQ SE(iR[iQ)(iP, b(iQ)). That is, 8pr = ZQ S(R|Q);¢(iQ|iP), where we used that S(iR|iQ) = S(R|Q); in (4.170) and
(iP, b(iQ)) = ¢(iQ|iP) in (6.92). O

A positive aspect of the formula (6.102) identifying the Berends-Giele double current as the inverse of the KLT matrix

is that there is no need to choose the relative positions of 1, n—1, n like in (6.100) as no extraneous labels are present in
(6.102). Moreover, this identity allows us to invert the relation (4.181),

Vip = ZS(PlQ)iMiQ = Mp = Z¢iP\iQVin (6.103)
Q Q

directly without reference to extra labels.
6.5. The field-theory limit of the superstring disk amplitudes

On the one hand, as reviewed in Section 5.2, a closed formula for SYM tree-level amplitudes can be obtained using
pure spinor cohomology methods as

A1 2.on=1n) = EpoaVa) = ) (MxMyMy). (6.104)
XY=12..n—1

On the other hand, we know that the SYM tree-level amplitudes are obtained as the limit «’ — 0 of the superstring
amplitude (6.64). In the non-local KLT-representation (6.69) of the string amplitude, this follows from the field-theory limit
(6.81) together with the inverse relation (6.100) between the KLT matrix and a (n—3)!? basis of doubly-partial amplitudes
of bi-adjoint scalars.

The goal of this section is to give an alternative proof and to recover the cohomology formula (6.104) of SYM amplitudes
from the local representation of the string amplitude

A2, m) == ) > ViV gVl 1Y1Z(1, 2, nl1, X 0, Y, n=1). (6.105)
PESH_3 XY=p(23..n—2)

Proposition 20. The field-theory limit of the pure spinor superstring amplitude in its local representation (6.105) yields the
SYM tree-level formula (6.104)

lim A(1,2,....n)=A(1,2,...,n). (6.106)

o’ —0

Proof. The field-theory limit of the Z-integral in (6.105) with the canonical ordering P = 12...n in the domain is given
by (6.96),

lim Z(1,2,...,n]Y,n=1,1,X,n) = S12_n—1912._n—1)y(n—1)1X » (6.107)

o’ =0
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where we cyclically rotated 1,X,n,Y,n—1 — Y,n—1,1, X, n to attain the form of Z(..., n|..., n) with matching end
labels. Note that when the domain is the canonical ordering, the deconcatenation formula (6.85) for ¢12_n—1jy(n—1)1x
simplifies due to the constraint (6.84) and we get S12._n—1912. n—1jy(n—1)1x = —P141xPB(n—1))y(n—1) Where AB = 23 ... n—-2
with |A| = |X]|, |B| = |Y|. This means that we can write
lim Z(1,2,...nlY, n—=1,1,X, n) = - ; 2¢mx¢(n,ngl<n,w, (6.108)
=23...Nn—

where we used the reflection property (6.89) to rewrite ¢pn—1)jv(n—1) = @,_1)3(n_1)7> a0d only a single term contributes
to (6.108) where |A| = |X]| and |Y| = |B|. Therefore the limit of the string tree amplitude (6.105) as o’ — 0 becomes

lim A(1,2,...,n)= Z Z Z ¢1A|1xv1x (¢(n DBIn— l)YVn 1Y)V >( )Yl

a’'—0
pESy_3 XY=p(23...n—2) AB=23...n—2

Z (<Z ¢1AHCV1C)(_])‘B| (Z ¢’(n_])é‘(n_1)DV(n71)D> Vi) (6.109)
c D

AB=23..n-2
= D Mu(=1M, V) = D (MxMyVy)
AB=23..n—2 XY=12..n—1

= (ElZA.An71Vn> = A(]7 23 e n) )

where (6.84) implies that C and D in the second line only need to be summed over permutations of A and B, respectively.
We could therefore insert

Z d1a1cVic = Mua, Zfl)(n,])m(n,npv(n—l)n =Mqu_1)5- (6.110)
c D

from (6.103) followed by M, _, 3 = (—1)"*'Mg(,_1) which finishes the proof. O

The above proof is valid for the canonical ordering P = 123...n due to (6.107). The generalization of the relation
(6.106) for a general color ordering P was proposed in [234], see (7.42).

7. String and field-theory amplitude relations

In this section, we review the rich interplay of the results in the previous section with amplitude relations in field and
string theory. Section 7.1 is dedicated to the color-kinematics duality in gauge theory and explicit realizations of kinematic
Jacobi identities through the local representation of disk amplitudes in the «’ — 0 limit. We focus on gravitational
amplitudes in Section 7.2, briefly review the KLT relations between open- and closed-string tree amplitudes and extract the
cubic-diagram organization of the gravitational double copy from different representations of closed-string amplitudes. In
Section 7.3 we shall review the monodromy relations between open-superstring amplitudes with different disk orderings
which furnish an elegant derivation of the BC] relations among gauge-theory amplitudes.

The structure of disk amplitudes has implications for field-theory double-copy relations beyond gauge theories
and gravity. In Section 7.4, we shall discuss different representations of Born-Infeld amplitudes and manifest the
color-kinematics duality of the non-linear sigma model of Goldstone bosons. Finally, the applications of the disk
correlator for heterotic string theories will be discussed in Section 7.5, along with the resulting amplitude relations for
Einstein-Yang-Mills theory.

The discussions of this section does not rely on the detailed structure of the low-energy expansion of string tree
amplitudes. As will be detailed in Section 8, the coefficients in the «’-expansion of disk and sphere integrals exhibit an
elegant pattern of multiple zeta values (MZVs). By organizing the string-corrections to SYM and supergravity amplitude
according to their MZV content, we will find echoes of the field-theory structures of this section at all orders in o/, see
Section 8.4.

7.1. Color-kinematics duality

This section is dedicated to an explicit realization of the color-kinematics duality in SYM tree amplitudes, based
on the &’ — O limit of superstring disk amplitudes. As we will see, this field-theory limit will naturally generate
parameterizations of SYM amplitudes in terms of cubic diagrams whose kinematic factors obey the same Jacobi relations
as their color factors. The BCJ] numerators we will derive are simple combinations of the local building blocks (Vi4V,_15V})
in pure spinor superspace descending from the (n—2)!-term representation (6.8) of disk amplitudes.

7.1.1. Review of the color-kinematics duality
Our perspective on scattering amplitudes in gauge theories dramatically changed due to the seminal conjecture of
Bern, Carrasco and Johansson in 2008 that their kinematic dependence can be arranged to exhibit the same symmetries
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Fig. 5. Two possibilities of expanding a quartic vertex: the first line is compatible with a color factor f@19%bfb%94 while the second line captures the
second term in rewriting the color factor as f190fba2as _ faasbgbaias iz the Jacobi identity.

as the color factors [30]. This color-kinematics duality holds for a variety of tree-level amplitudes and loop integrands of
gauge theories with different numbers of supersymmetries. Together with the closely related gravitational double copy
to be reviewed in Section 7.2 below, the color-kinematics duality led to a large web of connections between field and
string theories, see [36,37] for reviews and [38] for a white paper.

Already at tree level, the color-kinematics duality is obscured in a Feynman-diagrammatic computation of (n > 5)-
point amplitudes. The string-theoretic approach reviewed in this section led to the first explicit realizations of the
color-kinematics duality in multiparticle tree-level amplitudes in 2011 [236]. In the first place, these results apply to
ten-dimensional SYM, but they straightforwardly propagate to dimensional reductions including ' = 4 SYM in four
dimensions. In fact, the manifestations of color-kinematics duality in this section also apply to pure Yang-Mills since its
gluon amplitudes are the same as in maximally supersymmetric gauge theories.

Cubic-diagram parameterization. The color-kinematics duality relies on an elementary observation on tree amplitudes
or loop integrands of pure or supersymmetric YM theory: any dependence on the adjoint degrees of freedom (or color
dependence in short) of the external states occurs via contractions of the structure constants f%¢, In Feynman diagrams
with exclusively cubic vertices, these contractions are straightforwardly determined by dressing internal lines with §%
and vertices with fe°.

While any non-abelian gauge-theory Lagrangian features a quartic interaction ~ Tr([A™, A"][An, A,]), its color
structure fe¢fe<d still resembles cubic diagrams. Each quartic vertex bypasses one of the propagators of the cubic dlagrams

but one can still enforce a uniform number of propagators for all gauge-theory diagrams by inserting 1 = 17 with
suitably chosen momenta p for each quartic vertex. As illustrated in Fig. 5, this amounts to expanding each quartic-vertex
contribution in a channel 1 = f - that is compatible with the accompanying color factors.

Hence, it is always p0551b1e fo parameterize gauge-theory trees and loop integrands in terms of cubic diagrams i
whose propagators D; and color factors ¢; can be straightforwardly read off from the cubic vertices and internal lines.
For color-dressed tree amplitudes, this parameterization reads*°

MEE = ali (7.1)
iely i
The associated kinematic numerators N; encoding all the dependence on momenta and polarizations receive contributions
from various Feynman diagrams with different numbers of quartic vertices. The symbol I}, in the summation range of (7.1)
denotes the set of (2n—5)!! cubic tree diagrams with n external legs that are inequivalent under flips of cubic vertices.
However, the Jacobi identity

fubefecd +fbcefead +fcaefebd -0 (7.2)

introduces ambiguities in the alignment of quartic-vertex contributions with the propagator structure of cubic diagrams.
These ambiguities illustrated in Fig. 5 lead to immense freedom in moving terms between the N; of different cubic
diagrams. This freedom was initially referred to as generalized gauge invariance [30,237,238] and later on related to non-
abelian gauge transformations of perturbiners [92], for instance the transformation (4.111) mediating between Lorenz and
B(J gauge (see [93] for an all-order expression).

46 \We depart from our notation M, for color-dressed SYM amplitudes to later on compare ME€° in (7.1) with gravitational amplitudes M and
those of bi-adjoint scalars in (6.80).
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color Ci . Gy R C . ci+cj+c=0
kinematics N; SOON; e TN Ni+N;j+N,=0

Fig. 6. Triplets of cubic graphs whose color factors ¢; and kinematic factors N; are both related by a Jacobi identity if the duality between color and
kinematics is manifest. The dotted lines at the corners represent arbitrary tree-level subdiagrams and are understood to be the same for all of the
three cubic graphs.

Kinematic Jacobi identities. For all triplets of cubic diagrams i, j, k € I, that share all propagators except for one, see Fig. 6,
the Jacobi identity (7.2) implies that the associated color factors obey c¢; + ¢; + ¢ = 0. According to the color-kinematics
duality, one can choose the numerators N; in (7.1) such that the kinematic Jacobi identity N; 4+ N; + Ny = 0 holds for each
such triplet i, j, k. Moreover, the antisymmetry f@¢ = fle¢l implies that color factors ¢; change their sign upon flipping
any of the cubic vertices. Kinematic numerators with manifest color-kinematics duality are understood to also change
N; — —N; under flips of cubic vertices in diagram i. In other words,

Gt+¢g+a=0 = N+N+N=0Vijkeln,

¢— —¢ — N;— —N;jViel;. (73)

manifest color-kinematics duality : {
Examples up to four points. The three-point instance of the gauge-amplitude parameterization (7.1) in ten-dimensional
SYM reduces to a single diagram without any propagators D; — 1, with color factor ¢; — 123 and kinematic numerator
N; — (ViVaV3) = (e; - kz)(ez - e3) + e (xavmx3) + cyc(1, 2, 3). (7.4)

Here and below, we use the shorthand a; — i for the adjoint indices of the ith external state, e.g. write f'>3 in the place
of fa19203
The first instance of quartic-vertex contributions arises at four points. The parameterization (7.1) comprises three

diagrams in the s-, t- and u-channel associated with inverse propagators s = sy, t = S;3 and u = s;3 = —s — t,
M5 = —NSSCS + —Nttc‘ + —NZC“ . (7.5)

The color factors are indexed by the relevant channel, and their Jacobi identity literally matches (7.2)
Cs =f12afa34
c; = f23afa14 = ¢ +c+c,=0. (7.6)
Cu :f31af024

One admissible choice of numerators in ten-dimensional SYM reads

Ny = (V1oV3Vy),  Np = (VasViVy), Ny = (V31VaVy), (7.7)
and they obey the kinematic Jacobi identity by BRST exactness of [170]
1
Ns + Ne + Ny = (V12V3 + Va3V + V31 Vp)Vy) = _?(Q(V123V4)) =0 (7.8)
12
using (4.72) and sq3 + Sp3 = —S12 in the momentum phase space of four massless particles. Still, any other choice of

{Ns, N¢, N, } besides (7.7) that yields the same amplitude (7.5) will obey kinematic Jacobi identities: this can be seen by
adding 0 = K(*% 4 % ) to M5 with an arbitrary kinematic factor K which modifies the numerators in (7.5) by
8Ns = sK, 8N; = tK and §N, = uK. The modification to the triplet in the kinematic Jacobi identity (7.8) then vanishes by
momentum conservation,

S(Ns+ N +N,)=K(s+t+u)=0. (7.9)
Examples at five points. At five points, the cubic-diagram parameterization (7.1) involves 5!! = 15 terms

N c N c N c
Mgauge _ V123145C12/3145 + 14/3125€14(3]25 + 153124%15|3]24 +cyc(1,2,3,4,5) (7.10)

$12545 514525 $15524

with color factors Capjgign = fP'fUfi%" subject to Jacobi identities Capjjaigny = Clabjaygn = 0. However, generic choices of
kinematic numerators Ngpjaign — Say a naive Feynman-diagram computation or a crossing symmetric choice Ngpjaign —
(VabVaVgn) — will fail to obey kinematic Jacobi identities even though they yield the correct color-dressed amplitude (7.10).
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Still, reparametrizations of the amplitude (7.10) will generically modify the three-term sum of numerators that decide
about kinematic Jacobi identities: adding 0 = K45(Slifli‘35'45 + 5235;22245 5135?1‘425‘45 ) with some kinematic factor K45 modifies
thrge of the numerator factors, 5N]2‘3‘45 = $12Kys, 5N23|1|45 : 5231.<45 and 83.N31‘2|45 = 5131.<45, Whlle leaving the rerr!ain?ng
12 inert [239]. The sum of the three numerators which vanishes in a manifestly color-kinematics dual parameterization

is modified by the above reparametrization via
8(N12j3145 + Na3jijas + N3qj21a5) = (S12 + 523 + 513)Kas = S45Ks5 # 0. (7.11)

One can similarly check that, in the naive crossing-symmetric choice Ngpjgigh — (VanVaVen), the superspace expression
(V12V3 4 V3V 4 V31V5)Vys is not BRST closed. In this way, the validity of the kinematic Jacobi identity Njipj3j45s = 0 is
seen to be gauge dependent. Hence, it is generically a matter of a suitable parameterization of the gauge-theory amplitude
whether the color-kinematics duality is manifest or not.

Relation to the color decomposition. In order to extract color-ordered gauge-theory amplitudes A(1, 2, ..., n) from the
cubic-diagram representation (7.1) of the color-dressed amplitude, one relies on the unique expansion of the color factors
¢; in terms of traces of gauge-group generators Tr(t”) = Tr(tP1tP2 ... tPr). The above four- and five-point examples give*’

e = Tr(t'e263t4 — 162643 — 2613t + 26't4%), (7.12)
ciaps = Tr(t'23¢ e — 1220 — o' et + 2o'e e — (112 < 1),

see section 2.1 of [240] for a general algorithm for arbitrary color factors c;. Hence, the color-ordered amplitudes obtained
from (7.1) are sums of diagrams

AP) =" 5, |y (7.13)
iely
where the coefficients take values in ¢; |Tr(t,,) € {0, 1, —1}. The four- and five-point instances in the above notation
N, N
A1,2,3,4)= = - —, (7.14)

S t
N

A(1,2,3,4,5)= 2% 4 cye(1,2,3,4,5)
$12545

are clearly invariant under the reparametrizations ~ K, K45 of the numerators in the color-dressed amplitude.

B(C] amplitude relations from the color-kinematics duality. The BC] relations (5.62) among color-ordered gauge-theory
amplitudes were firstly derived in [30] by assuming the existence of color-kinematics dual numerators (7.3). For instance,
inserting N, = —N; — N; into
N; N Ne N
A(1,2,3,4)= = -1, AQ2,31,4)=—-— (7.15)
S t t u
leads to the B(J relation A(2,3,1,4) = %A(l, 2, 3, 4). However, B(J relations are gauge-independent statements, i.e.
they affect color-ordered amplitudes which do not depend on reparametrizations of (7.1). Hence, the gauge dependent
kinematic Jacobi relations cannot be necessary conditions for BC] amplitude relations. Instead, they are sufficient
conditions as shown in [30].

7.1.2. DDM form of YM and bi-adjoint scalar amplitudes

In preparation for our proof that the &’ — 0 limit of disk amplitudes yields numerators N; subject to all kinematic
Jacobi relations, we introduce the so-called Del Duca-Dixon-Maltoni (DDM) representation of color-dressed gauge-theory
amplitudes. The color decomposition of ME**®® in terms of (n—1)! color traces does not expose that the latter conspire to
products of n—2 structure constants as required by Feynman rules. Only after exhaustive use of KK relations (5.40) among
color-ordered amplitudes, one can see that the color decomposition simplifies to contracted f%¢ in the coefficients of the

KK independent A(1, P, n) with P € S,,_, a permutation of 2, 3, ..., n—1. This kind of reduction by KK relations is known
as the DDM form [205]
MEUSE = 37 cuppA(1,Pon),  cypyy i= [P ez, (7.16)
PeSy_o

where the color factor cypj, with P = p,ps3...py—;1 corresponds to the cubic diagram of half-ladder topology in Fig. 7
below. In fact, the collection of {cypj,, P € S,—»} furnishes an (n—2)!-element basis of all the (2n—5)!! color factors ¢;
under Jacobi identities.*® Accordingly the (n—2)!-family of half-ladders in Fig. 7 is referred to as the master diagrams.

47 We are following normalization conventions [t¢, t*] = f%¢t¢ and Tr(tt?) = 5% which leads to Tr(t![t2, t3]) = f'23 at three points and the
coefficients £1 in (7.12).

48 This is a consequence of the fact that arbitrary Lie monomials built from non-commuting ti, ti2, ..., t can be expanded in a Dynkin bracket
basis of [[...[[t!, t?@], t¢®], ..., trk=D] r0], see Section 4.1.5.
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D2 b3 D4 Pn—2 D1

‘ ‘ ‘  Clipaps...pn_1ln

Ve .

Fig. 7. Master diagrams whose color factors cqp, defined in (7.16) are independent under Jacobi relations.

In the same way as (7.16) follows from KK relations of the color-order amplitudes in M™%, one can start from

the double color decomposition (6.80) of bi-adjoint scalars and exhaustively insert KK relations of their doubly-partial
amplitudes m(A|B). After expanding both entries A and B in (n—2)!-term KK bases, (6.80) takes the form [41]

3 ~
M = Y cuypem(1, P, nl1,Q, )i (7.17)
P,QeSy_2

by analogy with (7.16), where &g}, is the half-ladder in Fig. 7 with f%¢ in the place of fik.
At the same time, color-dressed ¢> amplitudes can be written as

3 C‘E’
My =" (7.18)

iely !

as one can see from the straightforward Feynman-diagram computation with only one cubic vertex ~ fij"f“”f in the
Lagrangian (6.79). While (7.18) involves the complete (2n—5)!!-element collection of ¢;, ¢; with i € I, related by Jacobi

identities, the equivalent form (7.17) of M,‘f only features the color factors cyjpjn, C1jg|» Of the master diagrams in Fig. 7
under Jacobi relations. Hence, by equating (7.17) and (7.18), the doubly-partial amplitudes m(1, P, n|1, Q, n) turn out to
summarize the net effect of solving all Jacobi relations.

The last observation can be used to rewrite the color-dressed gauge-theory amplitude (7.1): in a color-kinematics dual
representation with N; obeying the same Jacobi identities as c;, the expansion of M***® in terms of color and kinematic
factors of master diagrams must take the form

Mg = Z cypnm(1, P, n|1, Q, n)Nyjqjn - (7.19)
P.QeSy_>

This can be understood from the fact that (7.17) follows from (7.18) solely by application of Jacobi identities among
c;, irrespective of their detailed form, and our assumption that the N; obey the same Jacobi identities as the ¢;. The
(n—2)!-family of Nyjg)s in (7.19) is again associated with the half-ladder diagrams in Fig. 7 and referred to as master
numerators. Indeed, all the (2n—5)!! instances of N; in a color-kinematics dual parameterization (7.1) must be combinations
of Nyj|» With coefficients in {0, 1, —1} determined by (7.19). In other words, any parameterization (7.19) of gauge-theory
amplitudes implies all kinematic Jacobi relations of the cubic-diagram numerators since the same is evidently true in the
¢> case (7.17) and (7.18).

In summary, we have encountered two representations of color-dressed tree amplitudes of gauge theories and bi-
adjoint scalars: cubic-diagram expansions (7.1) and (7.18) related by trading kinematic numerators for another species of
color factors ¢; <> N;. While cubic-diagram expansions still exist if some of the kinematic Jacobi relations are violated, the
(n—2)!?-term representations (7.17) and (7.19) are tied to Jacobi relations reducing all of c;, ¢;, N; to an (n—2)! basis. One
can again relate the gauge-theory amplitude (7.19) to the bi-adjoint scalar amplitude (7.17) by exchanging the kinematic
master numerators with corresponding color factors, Nyjgin <> C1jqjn-

7.1.3. Local BC] numerators from disk amplitudes

We shall now take advantage of the representation (7.19) of color-dressed gauge-theory amplitudes to retrieve the
Jacobi relations of the kinematic numerators obtained from the o’ — 0 limit of n-point disk amplitudes (6.8). By matching
the DDM form (7.16) of color-dressed gauge-theory amplitudes with the expansion (7.19) in terms of master numerators,
color-ordered n-point amplitudes are found to take the form

AuP)= Y m(P|1,Q, nNiqjn - (7.20)
QeSp—2

We also made use of the linear independence of the color factors cyp, associated with the master diagrams in Fig. 7 and
the fact that A(P) and m(P|1, Q, n) obey the same KK relations in P.

It turns out that (7.20) is precisely the form of A(P) obtained in the field-theory limit of disk amplitudes: as detailed
in Section 6.4.1, adapting (6.8) to a generic SL,(R) frame leads to the (n—2)! term representation (6.64) of n-point disk
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— (Via. jVi—in—2.4+1Va)

2

Fig. 8. The mapping between master numerators and expressions in pure spinor superspace according to (7.25).

amplitudes in terms of Parke-Taylor or Z-integrals (6.62) [176]
A(P)= > (=1)"ZPI1, X, n, Y, n=1)(VixV,_p)5Va) + perm(2, 3, ... n—2), (7.21)
XY=23..n—2

for instance

Aa(P) = —Z(P|1, 2,4, 3)(V12V3Va) + Z(P|1, 4, 2, 3)(V1V32 V), (7.22)
As(P) = —Z(P|1, 2, 3,5, 4)(Vi23VaVs) + Z(P|1, 2, 5, 3, 4){V12Va3Vs) — Z(P|1, 5, 2, 3, 4)(V1 Va2 V5) + (2 < 3),
As(P) = —Z(P|1, 2, 3,4,6,5)(V1234V5Vs) + Z(P[1, 2, 3,6, 4, 5)(V123V54V5)
—Z(P|1,2,6,3,4,5)(Vi2Vs43Ve) +Z(P|1, 6, 2, 3, 4, 5)(V1 V543, V) + perm(2, 3, 4).
Here and in later equations, the sum over permutations of 2, 3, ..., n—2 is understood to not act on the labels in the

integration domain P.
Given that the field-theory limit (6.81) of the Z-integrals yields doubly-partial amplitudes, the SYM amplitudes
resulting from (7.21) are given by

AP)= Y (=1)"'m(P[1, X, n, Y, n—1)(VixV,_15Va) + perm(2, 3, ..., n—2)
XY=23..n—2

= Z m(P|1,Q, n—1)Nyqn-1 (7.23)

QeSp—2

with master numerators [236]

Nl\XnY|n71 = (_1)‘Y|7]<lev(n_1)§/vn> B (7-24)
for instance

Nips_jna1)on—2n—1 = (= 1" (Viz_ Voo 1n-2. j+1Va) - (7.25)
The second line of (7.23) exposes the expansion of A(P) in an (n—2)! family of m(P|1, Q, n—1) (with Q a permutation of
2,3,...,n—2,n) characteristic to color-kinematic dual representations of SYM amplitudes. Since (7.23) is related to the

color-kinematics dual form (7.20) via n <> n—1, we identify the local superfields (7.24) as the BCJ] master numerators of
the half-ladder diagrams in Fig. 7 with n—1 in the place of n. In fact, by the diagrammatic interpretation of Vp in Fig. 1,
the right-hand side of (7.24) organizes the master diagrams into three subdiagrams as visualized in Fig. 8.

We spell out the simplest examples at four points

Nijaz = —(Vi2V3Vs),  Nyaziz = (V1V3Va) (7.26)
and at five points

Nipssia = —(Vi23VaVs),  Nipssja = (ViaVasVs),  Nisazjg = —(ViVaaVs) (7.27)
Niz2sia = —(Vi32VaVs),  Nysszia = (VisVaVs),  Nisszie = —(ViVaasVs) .

The superspace numerators (7.24) enter the representations (7.23) of color-ordered gauge-theory amplitudes that are
hallmarks of manifest color-kinematics duality by the discussion of Section 7.1.2. Hence, the master numerators (7.24)
determine all other cubic-diagram numerators in (7.1) by a sequence of kinematic Jacobi identities, and the coefficients
can be conveniently determined by isolating the propagators of interest from the doubly-partial amplitudes in (7.23).
Moreover, the master numerators are local, i.e. free of kinematic poles, by the construction of multiparticle superfields
Ag in BCJ gauge that enter Vp = A“Ag, see Section 4.1. On these grounds, the superspace expressions (7.24) are referred
to as local BC] numerators [236].
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7.1.4. Component expansion of BC] numerators

In order to extract the superspace components from master numerators (VxVyV;), it is convenient to combine B(C]
gauge for the superfields with the non-linear version of Harnad-Shnider gauge for their 0-expansion, see section 4.3
of [92] and Appendix F. In this BCJ-Harnad-Shnider gauge, the relevant orders in 6 are,

1 1 1
Ve = E(M/m@)eﬁ1 + g(lym9)(97/mx:») - i(AymG)(Oyman)fﬁq + 06, (7.28)
with local multiparticle polarizations ef', x5, ff" defined by (4.121) in the place of the single-particle polarizations
e, x7, f™ in (2.17). Similar to the discussion in Section 5.2.2, this organization of the -expansion reduces the component
expansion at all multiplicities,

1
(VxVWyVz) = Eeﬁ?fy’""eﬁ + (txvmxy ez + cyc(XYZ), (7.29)
to the 130> correlators (3.97) and (3.101) of the three-point amplitude [175].

7.1.5. The Mébius product

While the SYM amplitudes A(P, n) = (EpV,) satisfy the BCJ amplitude relations, a naive relabeling of P does not lead to
numerators that satisfy the color-kinematics duality. As discussed in [236] and reviewed above, the way string theory disk
amplitudes give rise to a local representation of numerators satisfying the color-kinematics duality is via the field-theory
limit of the pure spinor parameterization of the correlator with (n—2)! numerators of the form (V1pV(;_1yq Vi) with each
multiparticle vertex Vi in the BC] gauge reviewed in Section 4.1.6. This parameterization is generated by (7.20), and its
essential feature is the distribution of the labels 1, n—1, n into three separate superfields Vz within master numerators
(7.24). This splitting can be traced back to the fixing of the Mobius invariance of the disk correlator in (3.76).

The field-theory limit of the disk integrals with different disk orderings, given by bi-adjoint amplitudes (6.96), does
not modify this label distribution in the numerators, while relabeling the color ordering of A(P, n) in (5.14) does. Note,
however, that (5.14) and the field-theory limit of the string disk amplitude manifestly coincide for the canonical ordering
P = 12...n(and in fact for a (n—3)! basis of color-orderings P = 1R(n—1)n), as demonstrated in (6.109). Let us illustrate
the above point with an example.

The pure spinor formula (5.14) for the ordering P = 12435 in A(1, 2, 4, 3, 5) = (E1243V5) yields

(V124V3Vs)  (VgpV3Vs)  (ViaViasVs)  (ViVagsVs)  (ViVagVs)

A(1,2,4,3,5)= + + + + , (7.30)
S125124 5245124 $12534 524534 5345234

while the o’ — 0 limit of the superstring amplitude (6.64) with the same ordering gives, after using (6.96),
(ViaVaz + ViasVa)Vs)  (ViViaas + VisVap)Vs) | (ViaVasVs)

lim A(1,2,4,3,5)= — + (7.31)
o'=0 $125124 5245124 534512
_ (ViVanVs) — (ViVisVs)
5345234 $245234

These two amplitudes must be equal, but the numerators differ as only the latter preserves the superfield structure
ViaVi_1)3Vn due to fixing (z1,z,-1,2,) — (0, 1, 00) by Mébius invariance. Comparing both amplitudes we see the
correspondence

Vi24V3 = ViaViaz + Vip3Vy, ViVags = —V1Vig3, (7.32)
Vip1Vs — —ViVg3 — Vi3Vy, ViVagy — —VqVi3y .
In [234] an algorithm was proposed that reproduces the above correspondences. The idea is to guarantee that the two
labels i and j (usually i = 1 and j = n—1) always appear in two separate vertices.*? Therefore the algorithm redistributes

the labels i and j between two vertices if they originally appear inside a single vertex Vi, and does nothing otherwise.
To this effect, we define the Mdébius product oj; as [234]

Vigjg 0ij Ve == Z ViarVjs , Vaig oij Veip :== VaisVep (7.33)
5(BU(C))=R®S

where é(C) denotes the letterification (C.12) of the Dynkin bracket £(C) of (C.1) and §(P) is the deshuffle map (C.10). Note
that it is always possible to move label i to the front using (4.57), Vpig = —Vigp)o, S0 these two rules are sufficient. In
summary, the mapping (7.33) ensures that the labels i and j are split between the two vertices V4 and Vj in the product
Vi ojj V. The choice i = 1 and j = n—1 corresponds to the usual fixing of the Mobius symmetry of the disk. For example
applications of (7.33) we list

Viog 014 V3 = V2Via3 + Vip3Vy, (7.34)

49 The third vertex V. can always be fixed with label n by cyclic invariance.
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Vigz 014 V3 = V1Viap3 + Vi Viz + ViasVy + Vi3V,
Va1 014 V3 = =V Va3 — Vi3V,
Vigz 014 Vo = Vi Va3 + VisViap + Vi Vias + Vo Vs,
Vi3g 014 Vo = Vi3V + Vi Vg,
Vi23s 015 Vg = V123Vsq + Vi34 Vs,
Vias3 015 Vg = V12 Vs34 + Via3Vsg + Via3aVs + VingVss,
Vis23 015 Vg = V1Vsp34 + V12Vs34 + Via3Vsg + Vi34Vs
+ Vi24Vs3 + Vi3Vsa4 + Vi34Vsy + Vi4Vsos,
V1235 015 Vag = V123Vs46 — Vi23Vsea + Vi23a6Vs — Vi23e4Vs
Vis2 015 Vaq = V1Vs234 — V1 V5243 + V12 Vs34 — ViaVsaz + Vi34 Vs
— V1243V5 + Vi34Vs2 — Via3Vs; .
From the translation V4V — [£(A), £(B)] we obtain the free-Lie-algebra interpretation the above mapping: it is a rewriting

system of nested commutators from [£(iAjB), £(C)] to a basis®® of brackets of the form [£(iP), £(jQ )]. For instance, the first
example in (7.34) is equivalent to

([[1, 2], 4], 3] =[[1, 2], [4, 3]] + [[[1, 2], 3], 4], (7.35)

which can be explicitly verified by expanding the commutators. The correctness of the other examples can be checked
similarly. In [234], a similar interpretation was used to map the product VisVcV, to a multi-peripheral color factor
composed from a string of structure constants. The map (7.33) was then shown to correspond to a closed formula to
rewrite the multi-peripheral factors in the DDM basis of Del Duca, Dixon and Maltoni [205].

7.1.6. Local BC] numerators from the Mobius product

Using the Mdbius product (7.33) it is easy to obtain local numerators for SYM tree amplitudes satisfying the color-
kinematics duality, and in fact the full tree amplitudes in BC] form. To this end, for an n-point tree amplitude, we map
the planar binary trees in the expansion of b(P) in (4.124) with |[P| = n—1 and the root identified as the nth leg to pure
spinor superspace numerators as follows [234]

[I", X] —> (Vr 0 VsVy) (7.36)

with superfields in the BC] gauge and for arbitrary choices for i, j (usually i,j = 1, n—1). The graphical depiction is the
following:

n
(Vroi; Vs V)

where the blobs I and X represent arbitrary cubic trees. For example, the expression for the amplitudes A(1, 2, 3, 4, 5)
and A(1,4, 3, 2,5) are obtained from s1334b(1234) and s1234b(1432) from (4.124) using the prescription (7.36) with
i,j = 1, 4, see Fig. 9. More explicitly, after applying the Mobius product to the numerators one gets

(Vi2sVaVs)  (ViasVaVs—Vi3aVaVs)  (ViaVisVs)  (ViViasaVs)  (ViViazaVs— Vi VigasVs)

A(1,2,3,4,5) = + - + + ,
$125123 5235123 512534 5345234 5345234
ViViazaVs + ViaVi3Vs + Vi3V Vs 4 Visa V4 Vi ViVa32Vs + Va Vg3 Ve
A(1.4.3.2.5) = (V1V432Vs 12V43Vs 13V42 Vs 132V4Vs) _I_( 1Va32Vs 12Va3Vs) (7.37)
5145134 $345134
n (ViVa2Vs — ViViga3Vs — Vi3V Vs + ViaVaVs) n (V1Va32Vs — V1 Va3 Vs) n (V1V432Vs)
514523 5235234 345234

which agree with the results of [236]. For instance, the numerator of the pole 1/(s345134) in the amplitude A(1, 4, 3, 2, 5)
is given by V{1 [4.37 014 V2V5, whose evaluation via (7.33) yields

(V143 014 Vo — Vizg 014 Vz)Vs = ViV Vs — VipVgsVs (7.38)

50 Despite appearances, this is not a (n — 2)! dimensional basis of the free Lie algebra but a (n — 1)! one, even after the fixing of two letters i
and j. The reason is that the lengths of P and Q are not fixed. The simplest example is the case n = 3 where the (n — 1)! = 2 dimensional basis is
[€(1), £(23)] and [€(13), £(2)].
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1 2 3 4 12 3 4 1 2 3 4 12 3 4 1 2 3 4
W . \y + K/ . V + \\§/

5 5 5 5 5
A(12345):<V[[1~2]~31014V4V5> +<V[1,[2,3]]°14V4V5> +<V[1.2]°14V[3,4]V5>+ (Vi014Vig (3,4 V5) +<V1014V[[2,3],4]V5>

$125123 $238123 $12834 5345234 $235234
14 3 2 14 3 2 14 3 2 14 3 2 14 3 2
5 5 5 5 5
A(14325) — (M1,4),3°014V2V5) _|_(V[1,[4,311014V2V5> +<V[1,4]014V[3,21V5)_|_ (Vi014V(4,(3,21)V5) +<V1014V[[4,3],21V5)

5145134 5345134 514523 5235234 5345234

Fig. 9. The amplitudes A(12345) and A(14325) parameterized with BC] numerators according to the Mobius map (7.36) with i, j = 1, 4. The expanded
numerators after applying the Mobius product (7.33) are given in (7.37). See Fig. 2 for the binary tree expansion of b(1234).

where we used (4.54) and (4.55) to rewrite V|1 43)] = V143 — Vi34 followed by the examples in (7.34). Comparing with
the parameterization of the five-point numerators nj—1 .15 in [30]

n n n n n
A1,2,3,4,5) = — e -+ (7.39)
5125123 5235234 534512 $123523 5234534
n n n n n
A1,4,3,2,5) = — : ’ : =,
5145134 5234534 523514 5134534 5234523
it is easy to verify that the B(] triplet identity n; — ns 4+ ng = 0 is satisfied:
—(Vi2VazVs) — (ViVa3pVs) + (V1ViazaVs + VipVas) = 0. (7.40)

All the other BC] numerator identities can be similarly verified.

7.1.7. The field-theory limit of the superstring disk amplitude for arbitrary orderings
Finally, we define the Mdbius product of Berends-Giele currents My o;; My by the action on the products V, o;; Vp arising
from the expansion (4.82) of My and My which extends to

EI(,U) = Z MX Oij My . (741)
XY=P

It was argued in [234] that the field-theory limit of the superstring amplitude with arbitrary color ordering can be written
as

lim AP, n) = (ES"""VV,) = AMm=D(p n), (7.42)

o’ —0
such that the right-hand side can be viewed as a closed-formula yielding field-theory amplitudes whose (local) numerators
satisfy the color-kinematics duality.

7.1.8. Local BC] numerators from finite gauge transformations

In [166] a straightforward parameterization of YM tree amplitudes satisfying the color-kinematics duality was obtained.
The idea is to map the Lie-polynomial numerators I" = [I7, I;] of the planar-binary-tree-expansions b(P) generated by
(4.124) into kinematic numerators. This can be done using the 6=0 component of the local vector potential A/}, ., in the
BCJ gauge of [92,93] after setting the external fermions to zero. In this gauge, the vector potential AT is associated to a
cubic-tree Lie polynomial I” and satisfies the same Jacobi identities of the associated color factors but in kinematic space.”’
The B(CJ gauge at arbitrary multiplicity was shown in [93] to be equivalent to a standard finite gauge transformation of
the SYM field A™.

Starting from the binary-tree expansion b(P)b(n), where b(n)=n is a single letter, the YM tree amplitude AYM(P, n) is
obtained from the map°2

N(I'n) = (er - eq), (7.43)

5T More recently, mapping binary trees to kinematic numerators was proposed in [241,242] exploiting a beautiful connection to free Lie algebras
via the quasi-shuffle product [243].

52 Similar maps were considered in [93].
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where e’ is the local =0 component (4.121) of the superfield AT in the BC] gauge reviewed in Section 4.1.6, and the
fermion wave functions such as the contribution (x1y™xz) to e}, in (4.122) are understood to be set to zero. More
precisely,

A™(P, n) = lim 5N (b(P)b(n) (7.44)
sp—
where the expansion of the binary-tree map b(P) decorates the color-kinematics dual numerators with the cubic-diagram

propagators. While the earlier expressions (7.29) for the components of n-point BC] numerators involve multiparticle

polarizations of rank < n—2, the numerators in (7.43) involve rank-(n—1) building blocks.
For example, the four-point amplitudes in the KK basis of color ordering following from (7.44) are given by

A™M(1234) = (e[’flm
S12

em
A™(1324) = (M
S13

em
+ [1,[2,3]] ET’
523

€32
+ [’[’”>€T,
523

(7.45)

from which all BCJ kinematic numerator identities map one-to-one to the Jacobi identities of the associated Lie polyno-
mials. Similarly, the five-point amplitudes

elli1,213141  €l112,31.4 €ll1,21,3.4 ellL3n4 €54
AYM(]2345) — < [[[1,2],3],4] + [1,[[2,3],4]] [[1,2],[3,4]] [[1,[2,3]],4] + [1,[2,[ ]JJ>e , (7.46)
S12545 523551 512534 545523 S51534
m m m
AM(14325) = ( (43121 eriasen | Gmiansen | Cmuesne en 4,13, 2m>
$14525 543551 514532 525543 $51532
ellin,314121 . 113,412 €ll1,31,4.2 ellnizan2 - 13042
AYM 13425 [[[1,3],4],2] + [1,013,41,21] [[1,3],[4,2]] [[1,[3,41], ] [1,[3,[4,2]1] ersn’
$13525 543551 $13542 525543 S51542
e e e e e
AVM(]2435 < [[[1,2],4],3] + [1,[[2,4],3]] [11,2],[4,3]] [[1,[2,41143] [1,[2,[4,3]]] >€
$12535 524551 512534 535524 S51534
m m m
AM(14235) = ( 412131, G423 | Cinansn | G213 e[l [4.[2, 311])
514535 524551 $14532 535524 $51532
m m m
A™M(13245) = ( w32a s | G Gnsae ell-l3,l2q4JJJ>em
= 5
$13545 523551 513524 545523 S51524

have kinematic numerators that manifestly satisfy the color-kinematics duality. Similar expressions can be written down
at arbitrary multiplicity, and their form closely resembles the form of the amplitudes in the Berends-Giele method, but
now they arise from the planar binary tree expansion b(P).

The above BC] representations are equivalent to

AMP)= 3" m(PI1.Q.n)erq -en).

QeSn—

(7.47)

where the propagators are now organized into doubly-partial amplitudes instead of b(P). This representation was studied
in section 5 of [211] and generalized to tree-level matrix elements for the effective operators o/Tr(F3) and a/ZTr(]F“) of
the open bosonic string.

7.1.9. An explicit solution to B(J relations in KLT form

The process of obtaining the field-theory limit (7.23) from the local (n—2)!-term representation of disk amplitudes
(7.21) can be repeated for the non-local form (6.69) with (n—3)! terms. From the low-energy limit (6.81), we arrive at an
explicit representation of the BC] amplitude relations in terms of (n—3)! SYM amplitudes,

AP) = — Z m(P|1, R, n,n—1)S(R|Q 1A(1, Q, n—1, n),

Q.ReSy_3

(7.48)

of both practical and conceptual appeal.

At the practical level, (7.48) is a closed-form solution to the entirety of BC] relations (5.55) or (5.62), i.e. for the
expansion of arbitrary color-ordered amplitudes in a prescribed (n—3)! BCJ basis. The BCJ relations by themselves do
not offer any guidance on how to solve the huge equation system to rewrite the (n—1)! permutations of A(P, n) in terms
of the (n—3)! linearly independent A(1, Q, n—1, n). Hence, it is beneficial to have the closed formula for the expansion
coefficients in (7.48), in particular since the entries of m(-|-) and S(-|-); can be efficiently generated from the recursions
(6.85) and (4.159), respectively. For example, using (7.48) to rewrite the SYM amplitude A(24315) in the BC] basis
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{A(12345), A(13245)} we get
A(24315) = —(m(24315|12354)S(23|23); + m(24315]13254)S(32|23);)A(12345) (7.49)
— (m(24315]12354)5(23|32); + m(24315]13254)S(32(32);)A(13245)

— 512 pyp3g5)  $12F8) 413040y

S134 S134
where we used that m(24315|12354) = 0, m(24315|13254) = 1/(s135134), as well as (4.160) for the KLT matrix.

At a conceptual level, the KLT form of (7.48) leads to the conclusion that SYM is a double copy of bi-adjoint scalars
with SYM itself. Since this statement carries over to any other field or string theory subject to tree-level BC] relations,
bi-adjoint scalars can be viewed as the identity operator under taking double copies. This can of course be anticipated
from the identification (6.100) of doubly-partial amplitudes as the inverse KLT kernel [41]. The realization of SYM as a
double copy of bi-adjoint scalars with SYM is the o’ — 0 limit of the double-copy formula (6.69) for disk amplitudes:
when interpreting open superstrings as a double copy of Z-theory with SYM, bi-adjoint scalars are recovered from the
low-energy limit of the more general Z-theory of bi-colored scalars, see Section 8.6 for an «’-expansion of their equations
of motion.

We conclude by mentioning a quick consistency check of (7.48): for permutations P — 1, A, n—1, n within the BCJ
basis on the right-hand side, (7.48) holds trivially since m(-|-) and S(:|-); are inverse to each other by (6.100). For any
other permutation P outside the BC] basis of A(1, Q, n—1, n), SYM amplitudes A(P) obey the same B(C] relations in P as
m(P|B) at fixed B.

7.2. String-theory KLT relations and the double-copy form of gravity numerators

This section is dedicated to gravitational amplitudes in string and field theories. We review the string-theory
incarnation of the KLT formula, identify closed-string analogues of the Z-integrals along with their field-theory limits
and deduce the local form of the gravitational double copy with cubic-graph numerators given by perfect squares N;N;.
This is the tree-level case [30] of the conjecture due to Bern, Carrasco and Johansson [238] that representations of gauge-
theory amplitudes with manifest color-kinematics duality induce explicit loop integrands in double-copy form for a variety
of gravitational theories. The BCJ double copy radically changed the computational reach for multiloop amplitudes in
supergravity and drives precision calculations of gravitational-wave observables, see [36,37] for reviews and [38] for a
white paper.

7.2.1. String-theory KLT relations
The opening line for closed-string tree-level amplitudes in the pure spinor formalism is given by

Ol/ n—3
Melosed — (2 / Pz Pz ... Pzoy (Vi(20)Us (22). . Uy (zna)Vel 1 (za1)Vi (z0)) (7.50)
2 O3\ (z4=2,)
where the integration of z,, z3, ..., z,_, over the Riemann sphere realizes the moduli-space integral over genus-zero

surfaces with n marked points in the SL,(C) frame with zq, z,_1, z, fixed to (0, 1, oo). In comparison to the disk-amplitude
prescription (3.76), the closed-string vertex operators Vf', Uf‘ are double copies of the open-string ones V;, U;,

VE = A4 (0)2e X, U = |96%Ag(0) + An(O)T™ + dyWH(6) + INunF™(0)[ €5 X , (7.51)

where K(8) denote the SYM superfields without their plane-wave factor, see (3.62). Moreover, |A%A,(8)|> = )L"‘Aa(e)if’;\ 3(9)

introduces right-moving counterparts A%, 6% of the left-moving worldsheet variables 1%, 67 whose spinor indices &, B, ...
have same (opposite) chirality as «, 8, ... in the case of the type IIB (type II1A) theory. The 6-expansion of AB(Q) and all

the other superfields K(§) in Uf‘ again takes the form of (2.17) with independent gauge-multiplet polarizations &, ¢ in
the place of ey, x* in Ag.

The correlator {...) in (7.50) is adapted to the sphere rather than the disk: apart from the plane-wave factors ekiX
in (7.51), the OPEs for the left- and right-moving parts of Vf‘, Uf' are performed separately, and the zero-mode integral

(3.81) applies independently to A%, 6f and A%, a8, Hence, the sphere correlator in (7.50) factorizes into two copies of the
correlators K, on the disk defined by (6.1),

o \"3 _ n ,
aqgesed — (‘E) [, dmdna ) & [T, (752)
C>\{za=2p}

i<j
where the closed-string polarizations are obtained from the tensor products of the superfields in Ky and Kn. The OPE
singularities in K, are the complex conjugates Zl-j’-l of the zi]f] in K.
At three points, the absence of integrated punctures immediately leads to the factorization of the string amplitudes
into color-ordered open-string ones
Mglosed — -A(]y 2, 3)A(1’ 2, 3) , (7.53)
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where A(1, 2, 3) is the open-string three-point amplitude (3.98). At n > 4 points, one can even decompose the c[osed—
string Koba-Nielsen factor into products of meromorphic and antimeromorphic functions according to |z;|™*% =

(z,j)’%sff(fij)’%‘fi. The integrand of (7.52) is a holomorphic square of a meromorphic but multivalued function
(Kn) ]_[?q(zij)‘%sff with branch points at the diagonals z, = z,. Hence, it requires care to extend the double-copy structure

of (7.52) to the sphere integrals: the multivaluedness of (z,-j)‘%s"f introduces monodromy phases et 7S in relating
different integration contours which also take center stage in the discussion of monodromy relations in Section 7.3.

The monodromy phases in unwinding the sphere integrals (7.52) over closed-string Koba-Nielsen factors into products
of disk integrals (with open-string Koba-Nielsen factors at o’ — %) have been firstly determined by Kawai, Lewellen and
Tye (KLT) in 1986 [192]. At four points, the phases conspire to a single trigonometric factor in

a/

Myt= | A2y (Ka) (Ka) 22] 79512 [1—2,] =523
C"—>\{0,1,00}
o | [(md 1 _d o
:‘ES'“< 2 slz)/ dzyz, 2" (1-23)" %% (Ka) (7.54)
0

—0o0 / /
« / 02, (~22) 52 (1-2,)" 5 ()
0

2 ! ’ ~ ’
— - sin(%"‘slz>A(1, 2,3,4,%)4(2,1,3,4 %),

To’

/
o

where the rescaling o’ — % in the open-string amplitudes on the right-hand side can be seen by comparison with the

Koba-Nielsen exponents in |z,j|‘2°"5'7 in (6.51). Note that one can employ the Gamma-function representation (6.13) of
open-string amplitudes together with sin(7x) = = and the field-theory KLT relations (4.158) to factor out the

TR
supergravity amplitude Mj
F(1—%512)F(1—%523)F(1—%513)
F4+%s) M (4% s3) M (14 % s13)

where M5 is given in (4.158), but this is no longer possible at five points.
The analogous trigonometric phase factors in the n-point KLT formula furnish an «’-dependent generalization of the
field-theory momentum kernel S(P|Q); (4.159) involving n—3 trigonometric factors

Mclosed _ Mgrav
4 =

¢ (7.55)

2 /
S (AIBIC) = —— sin(%kj : km) So(AIBOY . S0y =1, (7.56)
T
for example,
2 /
Su(212) = — sin(ﬂk1 -k2> , (7.57)
o’ 2

S.(23123); :(—) sin{ 2% ks - kyp ) sin ZXky -k, )
o 2 2

2 2 ! !
sa/(23|32)1:(—) sin( 2k - ky ) sin Zky ks ) = S,(32(23),
o 2 2

2 2 ’ /
Sy(32]32); = (—) sin n—akz - ki3 ) sin n—ah -k3 ).
o’ 2 2

This generalizes the recursion (4.159) of the field-theory momentum kernel, and the normalization factors are engineered
to have Sy/(P|Q); = S(P|Q); + ().
The n-point KLT formula for closed-string tree amplitudes then takes the compact form [192,194,195]

MY = — S A(1L P, n, n—T: €)Su(PIQVA(T, Q. n—T.1; &) (7.58)
P,QeSp_3

and evidently reduces to the field-theory KLT relation (4.158) as &’ — 0. The KLT formula (7.58) with type I amplitudes
on the right-hand side computes tree amplitudes of the type IIB (type IIA) superstring if the chiralities of the fermions in
A(...)and A(...) are the same (opposite). Similarly (7.58) relates tree amplitudes of closed and open bosonic strings.

As will be discussed in Section 7.3, the (n—3)! permutations of A(...) and .A(...) on the right-hand side of (7.58) furnish
bases under the monodromy relations of color-ordered open-string amplitudes. Accordingly, the four-point KLT relations
(7.54) can be written in the alternative form

’

2 ’ ~ /
Moot = — = sin( T5,) 41,2, 3,4 %) A(1,3,2, 4, %), (7.59)
b % 2

92



C.R. Mafra and O. Schlotterer Physics Reports 1020 (2023) 1-162

These two equivalent forms stem from different ways of deforming integration contours in [192]. The systematic study
of the analogous n-point integration contours on the sphere led to the momentum-kernel formalism in [195].

One can also manifest the symmetry A < A of the KLT formula by repeated use of monodromy relations, but already
the four-point example

2 sin(Z%s,) sin(Zs S ,
mgosed — = (3 : 2) : (3 23)A(1, 23,4 9)A1,2,3.4 %) (7.60)
To sin(Zs13)

shows that the locality of the KLT kernel in (7.56) is lost in this way. This motivates the choice of asymmetric bases for
A and A in (7.58) which lead the simple and local entries (7.56) of the n-point KLT kernel.

7.2.2. Sphere integrals and their field-theory limit

The derivation of the KLT formula is independent on the polarizations accompanying the sphere integrals and the
rational functions of z;, z; entering the correlators (iCy), (Ky) in (7.52). Hence, one can rewrite it at the level of Parke-Taylor
integrals

o \" 3 d?zy Bz, -+ d*z, 1~ s S
o= (-5) [ e [T P )T) (761)
that furnish the closed-string counterparts of the Z-integrals (6.62): In both of Z(P|Q) and J(P|Q), the second entry refers
to the meromorphic Parke-Taylor factor PT(Q) in the integrand. The role of first word P in turn changes in passing from the
disk to the sphere — instead of a disk ordering D(P), it refers to an antimeromorphic (i.e. complex conjugate) Parke-Taylor
factor PT(P) in the sphere integrand of (7.61) which does not arise in disk correlators.

The equivalent of the KLT formula (7.58) for the sphere integrals (7.61) takes a universal form for any pair of

Parke-Taylor factors PT(Q )PT(P),

J(PIQ)=— Z Z(1,A,n,n—1|P)S,(A|B)1Z(1,B,n—1,n|Q) (7.62)
A.BES,_3

and in fact for any other pair of rational functions in z;, Z; of the same SL,(C)-weight. Here and below, the rescaling
o — % within the disk integrals Z(1, A, n, n—1|P), Z(1, B, n—1, n|Q) is implicit. This rescaling rule applies whenever
disk integrals are imported into closed-string computations as in (7.58) or (7.62).

The field-theory limit of (7.62) reveals another striking parallel between the Z(P|Q) and J(P|Q) integrals: Given that the
o’ — 0 limit (6.81) of disk integrals introduces doubly-partial amplitudes m(P|Q) and therefore the inverse field-theory

KLT matrix by (6.100), we conclude that [146]
l,imOJ(PIQ) =m(P|Q), (7.63)

i.e. the disk and sphere integrals Z(P|Q) and J(P|Q) have the same field-theory limit. As will be detailed in Section 8.7,
this parallel between Z(P|Q) and J(P|Q) even has an echo at all orders in their a’-expansions.

7.2.3. The local form of the gravitational double copy

The sphere integrals (7.61) of Parke-Taylor type and their field-theory limit (7.63) admit an elegant proof of the
gravitational double copy at the level of cubic tree diagrams, cf. Section 7.1. The starting point is the local representation
of the disk correlator in the form of (7.21)

. dz; dz,_1 dz,

(Kn) = VOlSLR) Z Nijpin_1 PT(1, P, n—1) mod V,,, (7.64)

PeSy_»
where the superfield representation ~ (VxVyV;z) of the master numerators Nyjpj,—1 (with P a permutation of 2,3, ...,
n—2, n) can be found in (7.24). The rescaling o’ — % in a closed-string context also applies to the expression (6.74) for
Koba-Nielsen derivatives V,,. The DDM-type formula (7.64) was already at the heart of deriving BC] numerators from
disk amplitudes in Section 7.1.3. Upon insertion into the closed-string amplitude representation (7.52) and identifying
the J-integrals (7.61), it leads to the (n—2)!?>-term expression

M=y Nippoi(1.Pon=111.Q n=1)Nijgn-1 - (7.65)
P.QeSp—»
where P, Q are again permutations of 2, 3, ..., n,n—2 (our choice of SL, frame led to a swap n <> n—1 relative to the

DDM-type formulae in Section 7.1.2). With the field-theory limit (7.63) of the sphere integrals and relabeling of n <> n—1,
one readily obtains gravity amplitudes in the form

MEY = 3" Nyppm(1,P.nl1,Q, mNigpn (7.66)
P,QeSy_»
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analogous to the color-dressed tree amplitudes of bi-adjoint scalars and SYM in (7.17) and (7.19). By Jacobi identities
of both color factors ¢; and kinematic numerators Nj, (7.17) and (7.19) were explained to be equivalent to the cubic-
diagram expansions (7.1) and (7.18). Since these rewritings solely depend on the properties of the universal building
block m(1, P, n|1, Q, n), the same equivalence must hold for (7.66) and

NiN;
Mgrav — Z [I)il , (7.67)

iely

where both types of kinematic numerators N; and N; obey Jacobi relations. Hence, we have derived the prescription
of [30,237,238] that kinematic Jacobi relations among the numerators are sufficient to obtain gravity amplitudes from

SYM via
—y N
D.

iely !

, (7.68)

Ci%[qi

grav __ jsgauge
Mn - Mn

Ciﬂlqi

i.e. by replacing color factors by another copy N; of kinematic numerators. In fact, the Jacobi identities of the color
factors ¢; imply that the cubic-diagram expansion (7.1) of gauge-theory amplitudes may still accommodate Jacobi-violating
numerators N;, see the discussion below (7.10). Accordingly, the color-kinematics dual representation (7.67) of gravity
amplitudes is still valid if only one of the sets of numerator {N;} or {N;} obeys Jacobi identities.

Note that (7.66) in combination with (7.20) yields another manifestly local formulation of the double copy

Mgrav = Z N1|p|nA(l, P, Tl) s (769)

PeSy_»

which is obtained from the DDM form (7.16) through the same replacement cyjpj;, — N”pm as in (7.68).

7.2.4. Consistency check with the field-theory KLT relation

As exemplified in Section 7.1.9, it is rewarding to also insert the non-local form (6.73) of the disk correlator into the
field-theory limit of string amplitudes. In the closed-string case, (7.52) together with a relabeling of n <> n—1 in £, leads
to the amplitude representation

Melosed Z A(1,P,n,n—1)S(P|Q)1J(1,Q, n—1,n|1, A, n, n—1)S(A|B);A(1, B, n—1, ), (7.70)
P,Q,A,BESy_3

where both left- and right-moving correlators (6.73) contribute one copy of the field-theory KLT kernel. In order to make
contact with the supergravity amplitude, we apply the field-theory limit (7.63) of the sphere integrals J and the inverse
relation (6.100) between m(1, Q, n—1, n|1, A, n, n—1) and S(A|B);, leading to

S(P|B)y = — E S(PIQ): lim J(1, Q, n—1,n|1, A, n,n—1)S(A|B); . (7.71)
a’'—0
Q.AeSp_3

Upon insertion into the o’ — 0 limit of (7.70), this reproduces the KLT formula (4.158) for gravity amplitudes. In this way,
we confirm the compatibility of the monodromy phases in manipulating integration cycles on the sphere and disk (which
among other things led to the field-theory limit (7.63) of the sphere integrals J) with the expansion of disk correlators
(6.73) in a basis of Parke-Taylor factors.

7.3. Monodromy relations

Color-ordered open-string amplitudes A(P) associated with different orderings P of the vertex operators on the disk
boundary obey monodromy relations [34,144]. Similar to the KLT relations (7.58) for closed-string amplitudes, they
solely rely on analytic properties of the disk worldsheet and are therefore universal to the bosonic theory and type
I superstrings. Monodromy relations can be equivalently formulated at the level of the Z(P|Q)-integrals (6.62): while
Section 6.4.3 featured relations between different “integrands Q" at fixed “integration domain P”, monodromy relations
concern different choices of the domain P at fixed integrand Q. To begin with, the procedure of fixing SL,(R) frames in
Section 6.4.1 leads to the following cyclicity and reflection properties,

Z(p1p2 - - -PalQ) = Z(p2p3 - . . pap11Q) = (= 1)"Z(py . . . p2p11Q), (7.72)

yielding a naive upper bound of %(n—l)! independent disk orderings. However, the actual basis dimensions for color-
ordered disk amplitudes identified by monodromy relations are considerably smaller with only (n—3)! choices of P at
fixed Q [34,144]. The proof relies on the following simple analytic property of the disk integrand and thereby extends
to integrands of suitable SL,(R)-weight beyond Parke-Taylor factors: the only non-meromorphic dependence on the
integration variables in (6.62) occurs through the Koba-Nielsen factor ]_['11<i<j |z,-j|*2"/5ij. The latter can be related to the

meromorphic but multivalued function [T}_;_;(z;)~**i by monodromy phases e***i which differ from one ordering
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P to another. The same type of monodromy phases gives rise to the trigonometric factor in the four-point KLT relation
(7.54). By applying Cauchy’s theorem as detailed in [34,144], one obtains,

n—1

0= exp[2mic(kp, - Kpyps..p)}Z(P2P3 - - . PiP1Pjs1 - - - PalQ). (7.73)
j=1
and the associated relation among color-ordered amplitudes of open superstrings,
n—1

0= exp[2mic'(kp, - Kpyps..p;) ] A(P2D3 - - - PiP1Pjs1 - - - Pa). (7.74)
j=1

which take an identical form for open bosonic strings. Since different choices of branches yield identical relations with
opposite phases as compared to (7.73) and (7.74), one can take sums and differences of both options and obtain [34,144]

n—1
0 = A(p1P2p3 - - - Pn) + Z cos[ 27w/ (Kp, - Kpyps..p;) | A(D2D3 - - - DiPADj1 - - - Pn)
j=2
n—1
0= Zsin[Zna’(kp] . kpzp}“pj)]A(png, <. DiD1Dj+1 - - Dn)- (7.75)
j=2

For real kinematics, these are simply the real and imaginary parts of (7.74). At leading order in o/, the trigonometric
coefficients reduce to cos(a’x) — 1 and sin(a'x) — «'x, respectively. As a result, one obtains (special instances of) KK
relations (5.40) and the fundamental B(J relations (5.62) as the low-energy limit of the first and second line of (7.75),
respectively [34,144]. Moreover, the fact that lim,/ .o Z(P|Q) obeys KK and B(] relations in P at fixed Q is consistent with
the relations of m(P|Q) obtained in the field-theory limit.

In the canonical ordering p; = j at four points, (7.75) reduce to

0= A(1,2,3,4)+ cos(2ma’ky - k2)A(2, 1,3, 4) + cos(2ma’ky - kx3)A(2, 3, 1, 4),
0 = sin(2wa’ky - k2)A(2, 1, 3, 4) + sin(2ma’k; - kp3)A(2, 3,1, 4). (7.76)

The second relation together with ky - ko3 = —s33 and A(2, 3, 1,4) = A(1, 3, 2, 4) establishes the equivalence between
the two forms (7.54) and (7.59) of the four-point KLT relations (taking the usual rescaling o’ — % into account). More
generally, one may view monodromy relations as a consistency condition for permutation invariance of the n-point KLT
formula (7.58): the (n—3)! x (n—3)! pairs of A(1,P,n,n—1)A4(1,Q,n—1,n) on the right-hand side need to generate
bilinears A(X).A(Y) with arbitrary orderings X, Y through linear combinations.

The monodromy relations of individual disk integrals

n—1
0 =Z(p1p2p3-..pnlQ) + ZCOS[Zﬂa/(kpl . kpngu.pj)]z(p2p3 ... DiP1Dj41 .- - PnlQ),
=2
n—1
0= "sin[27/(ky, - kpyp;..p)}Z(P2D3 - - . PiP1Pjs1 - - - PalQ) (7.77)
j=2

equivalent to (7.75) underpin our viewpoint on the disk integrals (6.62) as the doubly-partial amplitudes of Z-theory. By
(6.76) and (6.77), Z-theory amplitudes Z(P|Q) satisfy the color-kinematics duality in the integrand orderings Q at fixed P
to all orders in «’. The converse relations (7.77) among the integration domain orderings P at fixed Q, on the other hand,
exhibit additional trigonometric «’-dependence. These trigonometric functions imprint the monodromy properties of the
disk worldsheets on the S-matrix of Z-theory upon dressing with the relevant Chan-Paton factors ), Z(P, n|Q)Tr(tPt™).

7.3.1. The (n—2)! form of color-dressed open-string amplitudes

Since the first relation of (7.75) deforms the KK relations of gauge-theory amplitudes by cos(2wa’kp - kg ), one may
wonder about the string-theory uplift of the DDM decomposition (7.16) in gauge theory. By repeated use of monodromy
relations, one can express the color-dressed open-superstring amplitude (3.79) in terms of the (n—2)! color orderings
A(1, P, n) with P = paps...pn—1 [244],

Moo= Y TH(L I 2o P or, o 902D P o t")A(T, (2,3, 1), ). (7.78)
PeSy_o
Their coefficients generalize the color factors in the field-theory DDM formula (7.16)
iz ntn = Tr([L [, 21, €1, 7721, 601" (7.79)
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to involve an o’-dependent bracket instead of the conventional commutator
[tP, t9], = e kokapPrd _ gmimekpkgpapp (7.80)

For matrix products in the entries of [ -]o Or nested commutators, the exponentials are understood to involve multipar-
ticle momenta, e.g. [t1t2, t3], = eT¥kaksg142¢3 _ p=ima’kizksy3¢1¢2 At four points, for instance

My =Tr([[t", o, Cluth)A(1,2,3,4)+ (2 < 3)
— [eino/(lq ~k2+k12~k3)Tr(t]t2t3t4) _ eiﬂo/(flq -k2+k12~k3)Tr(t2t1t3t4) (781)
— el krko—kizka) (3¢ 12¢4) e (ke ki k)T 3¢201¢4)] A(1, 2, 3, 4) + (2 <> 3)
=Tr(t' 22 )AL, 2,3, 4) — Tr(2e Bt [e 27512 4(1, 2, 3, 4)+€279513 A(1, 3,2, 4)] + (2 <> 3)

can be checked to reproduce the conventional form (3.79) of the color-dressed amplitude by means of kq; - k3 = —sq; and
the monodromy relation e=27512 (1, 2, 3, 4) 4 27513 4(1, 3,2, 4) = —A(2, 1, 3, 4).

By isolating the coefficient of a given Tr(tP1tP2 . .. tP") on the right-hand side of (7.78), this DDM-type decomposition of
open-string tree amplitude generates the expansion of arbitrary A(P) in a prescribed (n—2)!-element set of disk orderings.
However, the expansion coefficients are not unique since the A(1, ..., n) on the right hand side of (7.78) are still related
by monodromy relations. As we will see in Section 7.4, the specialization of (7.78) to abelian Chan-Paton generators
t' — 1 has valuable applications to Born-Infeld theory and its double-copy structure.

7.3.2. The (n—3)! form of color-dressed open-string amplitudes

The next step after identifying the string-theory uplift (7.78) of the (n—2)!-term DDM decomposition is to reduce
color-ordered string amplitudes to an (n—3)!-element basis under monodromy relations. As can be anticipated from the
reduction of gauge-theory amplitudes into a BC] basis via (7.48), an elegant solution of the monodromy relations is offered
by the string-theory KLT kernel and its inverse.

In view of the interpretation (6.100) of the inverse field-theory KLT kernel as doubly-partial amplitudes of bi-adjoint
scalars, the inverse of the string-theory KLT kernel S,/ has been firstly studied in [245]. Its entries w.r.t. the (n—3)! x(n—3)!
basis of S,/ in (7.56) are given by

m_'(1,R,n—1,n|1,Q, n,n—1) = —Sx(RIQ)1, (7.82)
and one can infer more general entries m/(A|B) py inverting the kernel in different representations of the KLT relations
(7.58) with other (n—3)! bases B, B, of A(...), A(...),

M= Y AP (PIQ)AQ). (7.83)

P,QeB,B;
At four and five points, for example, we have,

o’

my(1,2,3,411,2,4,3) = ———————, (7.84)
2 Sin(”TO[S]z)

o’ o' o'
my(1,2,3,4/1,2,3,4) = —qcot| —s12 | + cot Sy3 s
2 2 2
o'\ 2 1 o' o'
ma/(1,5,3,2,4|1,2,3,5,4)=(—) Moot ™ s ) 4 cot( 55 ) L
2/ sin(Z-syy) 2 2

o' \2 1 1
my(1,5,3.2.411.3.2.5 9 =—(2) ———— (7.85)
2 sin(%-s14) sin(%-s23)

and permutations. The entries of higher-multiplicity m,/ are efficiently generated by the Mathematica notebook in the
ancillary file of [245].

At any multiplicity, m,/(A|B) enjoys cyclicity and monodromy relations of open-string amplitudes in both slots A, B
(while holding the other one fixed) after performing the usual conversion o’ — 4« between closed- and open-string
settings. This leads to the elegant formula to expand disk amplitudes or Z-integrals with an arbitrary integration cycle P
in a prescribed basis w.r.t. monodromy relations [245],

An(PY=— > may(P|1,R, 1, n—1)Ss(RIQ)1 A1, Q, n—1,n), (7.86)
Q.ReSy_3

Z(PIC)=— > mu(PI1,R. 1, n—1)S4/(RIQKZ(1, Q. n—1,|C),
Q.ReSy_3

which readily follows from the logic of Section 7.1.9. The first line of (7.86) furnishes the string-theory uplift of the BC]
reduction of SYM amplitudes in (7.48), and the second line is valid for arbitrary Parke-Taylor orderings C in the Z-integrals
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(see (6.101) for the converse formula for attaining a prescribed basis of Parke-Taylor factors at fixed disk ordering). For
example, using the expansions of m,/ in (7.84) and the KLT matrix in (7.57) we get
sin(2a’sp) sin(2m e/ (s13+523)) sin(2mwa’syy) sin(2mwa’s3)

- - A(1,2,3,4,5)+ — - A(1,3,2,4,5
Sin(2mwa’sq4) sSin(2wa’sy3) ( ) Sin(2mwa’sq4) sSin(2wa’sy3) ( )
sin(2a’sp) sin(2ra’s
_{cot(Zno/szg)+c0t(2no/s35)} (rasi)sin@rasi) g 5 5 45 (7.87)
sin(2wa’s14)

sin(2ma'sy3) sin(2mwa/(s124523))

A(1,5,3,2,4) =

A(1,3,2,4,5),

— [cot(Zn(x’sB) + cot(Znoc’s35)] .
sin(2r /s 4)
consistent with the five-point examples in [34,144].

In fact, Mizera identified the entries of m, with intersection numbers of twisted cycles [198] and thereby opened
up a fascinating connection between string perturbation theory and twisted deRham theory. In this framework, the KLT
relations are a consequence of twisted period relations [246], and their representation (7.83) follows from elementary linear
algebra in twisted homologies and cohomologies [198]. Similarly, the field-theory KLT relations can be understood from
intersection numbers of twisted cocycles [199].

Since m, can be algorithmically computed from intersection numbers, there is no circular logic in solving monodromy
relations via (7.86): the entries of m,/ beyond the (n—3)! x (n—3)! basis in (7.82) do not necessitate any prior knowledge
of the solutions to the monodromy relations.

7.4. Double copies beyond gravity from string amplitudes

The color-kinematics duality and double copy apply to a much wider classes of theories beyond gauge theories and
(super-)gravity [36-38]. In this section, we will review the input of superstring tree amplitudes on the double-copy
structure of Born-Infeld theory and its supersymmetrizations. The reasoning will be based on the KLT-form (6.73) of
the disk correlator which implies that all tree amplitudes of Born-Infeld are double copies involving a BCJ basis of SYM
tree amplitudes. The other double-copy component of Born-Infeld amplitudes turns out to be a non-linear sigma model
(NLSM) of Goldstone bosons even though the latter are not part of the naive string spectrum (but can be engineered to
arise as massless excitations in the setup of [247]).

7.4.1. Born-Infeld and NLSM

The low-energy limit of abelian open-superstring tree-level interactions gives rise to the Born-Infeld theory [248], also
see [249] for a review and [250,251] for its supersymmetrizations to so-called Dirac-Born-Infeld-Volkov-Akulov theories.
Tree-level amplitudes ME! of Born-Infeld were identified as a field-theory double copy of SYM with scalar amplitudes in
the NLSM of Goldstone bosons [252] as can be stated through the KLT formula

MP'=— > Ausm(1,R n,n—1)S(RIQ}A(1,Q, n—1,n). (7.88)
Q.ReS;_3

In contrast to the gravitational KLT formula (4.158), the polarizations of the colorless spin-one multiplets in MEI stem
entirely from those in the color-ordered SYM amplitudes A(R).

The study of the NLSM [253-257] and its tree-level amplitudes [258-261] has a long history. Within the modern
amplitudes program, the interest in the NLSM was fueled by the observation that its tree amplitudes obey KK and B(J
relations [262] and qualify to enter field-theory double copies. Just like the Born-Infeld amplitudes, color-ordered tree
amplitudes of the NLSM vanish for odd multiplicity, and their simplest non-zero instances are

Anism(1,2,3,4) = si2 + 523, (7.89)
S12+523)(Sa5+S
Anism(1,2,3,4,5,6) = s1p — (124_2233& +cyc(1,2,3,4,5,6).
123

In order to compute Born-Infeld amplitudes from the low-energy limit of abelian open-superstring states, we specialize
the color-dressed disk amplitude M, in (3.79) to t' — 1 and insert the KLT formula (6.69) for color-ordered disk
amplitudes:

1 1
M= —lim My [ == Dm0 Y Qi 290
n o' —0 (Zna/)n—z n |t —1 o0 (27‘[0[’)”*2 o5 2(Q, 1) ( )

=— Y (lim _ ' _zar n,n—l))S(R|Q)1A(1,Q,n—l,n),
o'—>0 (2ma’ )12

Q.ReSp_3
where we introduce the following shorthand for symmetrized disk integrals or abelian Z-theory amplitudes
Z.(Py= > Z(Q,nlP). (7.91)
QeSn—1
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The inverse n—2 factors of 2wa’ in (7.90) compensate for the leading order ~ o2 in the low-energy expansion of the
abelian open-string amplitudes M, | i_,, that will be exposed in the discussion below. Based on the reflection property
(7.72), the symmetrization in (7.91) annihilates Z, (P) of odd multiplicity.

Since the disk integrals Z, solely depend on Mandelstam invariants, the KLT formula (7.90) implies that Born-Infeld
is a double-copy involving SYM. For consistency with the alternative KLT formula (7.88) which identifies the NLSM as the
second double-copy component [252], the coefficients of the linearly independent A(1, Q, n—1, n) have to agree. Hence,
the conclusion from equating (7.88) with (7.90) is that NLSM amplitudes arise from the low-energy limit of symmetrized
disk integrals [197],

1

Anism(P) = 0}}210 sz(m- (7.92)
This adds support to the interpretation of disk integrals as tree-level amplitudes in a bi-colored scalar Z-theory: when
abelianizing the gauge-group generators t' — 1 dressing the disk ordering P of Z(P|Q), the low-energy limit reproduces
the tree amplitudes of the NLSM, a well-known scalar field theory. The appearance of NLSM amplitudes in the low-
energy limit of abelian Z-theory is here deduced from the double copy (7.88) of Born-Infeld in [252] and does not
rely on Goldstone bosons in the superstring spectrum. On the other hand, toroidal compactifications of ten-dimensional
superstrings along with worldsheet boundary condensates indeed give rise to NLSM Goldstone bosons among the massless
excitations [247].

7.4.2. BC] numerators of the NLSM from disk integrals

The definition (7.91) of symmetrized disk integrals does not manifest the leading term in its «’-expansion, so it may
appear surprising that the limit (7.92) does not diverge. In order to expose the leading order o2 of the Z,(Q), we
shall employ a variant of the DDM-type decomposition (7.78) of color-ordered open-string amplitudes. In reading this
decomposition at the level of the disk integrals and specializing to abelian gauge-group generators, we obtain

Z(Q) = Z Tr([[. .. [[1), 1721y, 173 ]y, . . ., 1P2]y, 1P-1],1M)Z(1, P, n|Q). (7.93)

PeSp_»

In slight abuse of notation, we have indicated through the superscripts of 1/ that these unit matrices arose from the
abelianization of t. In this way, the information about the momentum dependence in the «’-deformed bracket (7.80) is
preserved and we can evaluate

n—1
;. /
TH(L (0 172, 172 o 1902, 1001 27) = [ (7 it o7 bt ), (7.94)
j=2
Upon converting the exponentials to sine functions, this implies

n—1
ZQ) =" Y (1, P, njQ) ] [sin(wa'kip,.p, - ky) - (7.95)
PeS;_y j=2

which leads to vanishing Z,.(Q) of odd multiplicity and the following examples at even n:

Z.(q1. 92 G3. Ga) = 4sin*(ma'ky - k2)Z(1, 2, 3, 4(q1. G2. G3. qa) + 4sin’ (wa'ky - k3)Z(1, 3, 2, 4(q1. G2. G3. Ga) .

Z.(q1,q2,...,qs) = 16 Z sin(a'ky - kp, ) sin(o'kyp, - kp,) (7.96)
PeSy
x sin(ma’Kip,p; - kp,) sin(mwe’'Kipypsp, - kps)Z(1, P, 61q1, G2, - . .., Gs) -

Given that the low-energy limit of Z(1, P, n|Q) yields doubly-partial amplitudes m at order «’® and each sine function
introduces leading low-energy order «’!, one can easily identify the low-energy limit of (7.95) to be

n—1

Z.(Q) :(2imx’)”_2{ > m(1,PonlQ) ] [kipy..py -1<pj)+o(a/)}. (7.97)

PeSy_s j=2

Hence, the representation (7.92) of NLSM amplitudes in terms of low-energy limits of symmetrized disk integrals is
non-singular and simplifies to

n—1

Ansu(P)=1""2 > m(P|1,Q, m) [ [(kigy..qp_, - kgy)
QeSp_2 j=2
= Y m(P|1,Q,mNYG. (7.98)

QeSy—2

98



C.R. Mafra and O. Schlotterer Physics Reports 1020 (2023) 1-162

In passing to the second line, we have manifested the formal similarity with the DDM form (7.20) of gauge-theory
amplitudes in a BCJ form. Given that the coefficients in the (n—2)!-term sum (7.20) over doubly-partial amplitudes
m(P|1, Q, n) are BC] master numerators of SYM (cf. Section 7.1.3), the analogous coefficients Nﬂbsm in the second line

of (7.98) are bound to be local BC] numerators of the NLSM,
n—1
Ni\’\](-lsm =i"? H(khlzmqj‘q ) ktJj) =i"25(QIQ): . (7.99)
j=2
In the second step, we have identified the BC] master numerators of the NLSM as diagonal entries of the field-theory
KLT matrix as initially conjectured in [197] and then derived as outlined above in [263]. A Lagrangian for the NLSM with
manifest color-kinematics duality was presented in [264] which reproduces the numerators in (7.99) from Feynman rules.
Earlier explicit BC] numerators for the NLSM in terms of the KLT kernel can be found in [196].

7.4.3. Coupling NLSM to bi-adjoint scalars

The behavior of NLSM and Born-Infeld amplitudes under soft limits k; — 0 in the external momenta singles out
preferred ways of coupling Goldstone bosons to bi-adjoint scalars and supersymmetric Born-Infeld theories to SYM [265].
These extended theories to be referred to as NLSM+¢3 and Bl4+ SYM are related by KLT formulae

ABEM(PY = — 3" Ayguygs(PI1. R 0, n—1)S(RIQ)1A(1, Q. n—1, ), (7.100)
Q,ReSy_3

which can also be studied from disk amplitudes in the pure spinor formalism:

The BI+ SYM theory of [265] results from the low-energy limit of open-superstring amplitudes where a subset of
the Chan-Paton generators is abelianized. This amounts to keeping some of the t non-abelian in (7.90) and isolating an
appropriate order in o’ as the low-energy limit. The non-abelian / give rise to a color-decomposition w.r.t. |[P| < n legs,
and ABH+SYM(p) refers to the coefficient of Tr(tP1tP2 ... tPIPI),

Similar to the doubly-partial amplitudes m(A|B) of bi-adjoint scalars defined by (6.80), the amplitudes
Anism¢3(P|1, R, n, n—1) on the right-hand side of (7.100) are the coefficients of two types of traces — one over generators
t shared by the bi-adjoint scalars @ = &;,t/®t* and the Goldstone bosons of the NLSM as well as one over the ¢ exclusive
to the |P| external bi-adjoint scalars. The simplest examples that do not coincide with pure NLSM or ¢> amplitudes occur
at five points, where for instance [265]

N S S S
Anismsg?(3,4,51,2,3,4,5) =1 — oS Sutss

S34 Sa5
S45+S51

S3
Note that the coupling of Goldstone bosons to bi-adjoint scalars can be accommodated in the NLSM Lagrangian of [264]
with manifest color-kinematics duality.

In computing the SYM+ BI amplitudes (7.100) from the low-energy limit of the open superstring, the NLSM+¢>
amplitudes on the right-hand side arise via partially symmetrized disk integrals Zp(Q) [263]. As detailed in the reference,
the latter can be defined by starting from Chan-Paton-dressed Z-theory in the DDM-type form (7.78)

Zn(Q) = Z Tr([[. .. [[t", 7210, P30, ..., EP0=2] 0, tPn=1],E™)Z(1, P, 0]Q) (7.102)
PeSp_»

Anismig3(2,3,511,2,3,4,5) =1 — (7.101)

and setting a subset of the generators t/ to be unit matrices. We then obtain partially symmetrized disk integrals such as
the (|Q| = 5)-point example
Z345(Q) = 25(Q) |Tr([3t4t5)
= 4sin(wa’ky - ky)sin(mwa'kyy - kg) cos(ma'kizs - k3)Z(1, 2, 4, 3,5|Q)
+ 4sin(ma’ky - ky) sin(ma'kis - k) cos(ma'king - k3)Z(1, 4,2, 3,5|Q
+ 4sin )Z(1,4,3,2,51Q

( )

( ( ) (7.103)
— 4sin(mwa’ky - ky) sin(mwa'kyy - k3) cos(ma'kizs - ka)Z(1, 2,3, 4,5|Q)
( ( )
)

ks
7TO{,k1 . k4)Si1‘l 7TOl/k134 . kz) COS(T[O{,k14 . k3
ka

JTO[/k] . k3)sin 77,'01/’(13 . kz)COS(]TOl,kQ?, . k4)Z 1,3,2,4, 5|Q
7'[()[,,(1 . k3)SiH(7TOl,k]34 . kz)COS(T[O{,kB . k4)Z(l, 3,4,2, 5|Q

— 4sin
— 4sin|

= = = =

from the color-decomposition of Z,(Q) w.r.t. the non-abelian ¢'. In the low-energy limit where Z(P|Q) — m(P|Q) as well
as sin(wa'kp - ko) — ma'kp - ko and cos(zwa'kp - ko) — 1, we recover (2ra’)? times the first line of (7.101) from (7.103).
A variety of further examples and the systematics for general numbers of abelianized and non-abelian ¢/ can be found
in [263]. Among other things, the results in the reference give rise to local BC] numerators for the NLSM+¢> theory from
the monodromy properties of disk integrals along the lines of Section 7.4.2.
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By gradually converting some of the Chan-Paton dressings of the Z-amplitudes (7.102) to become abelian # — 1,
the low-energy limits interpolate between pure ¢*-amplitudes and pure NLSM amplitudes. In the “semi-abelian” case,
Z-theory can be viewed as an ultraviolet completion of the NLSM+¢?> theory in [265].

7.5. Heterotic strings and Einstein-Yang-Mills

The (n—3)! form of the disk correlators in (6.73) also has crucial implications for massless tree amplitudes of heterotic
string theories since their supersymmetric chiral halves can be described through the left-moving modes of the pure
spinor formalism. The massless sector of the heterotic string incorporates both gauge multiplets and the half-maximal
supergravity multiplet in ten dimensions. In contrast to the type I theory, heterotic strings already feature gauge-gravity
couplings at tree level due to worldsheets of sphere topology. Hence, one can study Einstein-Yang-Mills amplitudes from
the correlators of the heterotic string and the field-theory limit of the sphere integrals in Section 7.2.2.

7.5.1. Basics of heterotic-string amplitudes
The opening line for tree amplitudes of the heterotic string [266]

7\ n—3
Mmhet = <_i) f Pzy 25 ... d2zo_y (VU2 UMY (23). . UM (202 VP (20— VD (2,)) (7.104)
21 =3\ (zq=2p)

is almost identical to that of type Il superstrings in (7.50) up to the choice of vertex operators for the gauge and gravity
multiplet: both the integrated and the unintegrated variant involve a chiral half from the bosonic string

7
2 &MoXy : gravity multiplets,

: gauge multiplets,
(7.105)

Vihet — )»aA:X(Q)ek’XE . {
e : gauge multiplets,

2 EMdXy, : gravity multiplets,

o

UPet = (30“AL(0) + TTAT(0) + du Wi (0) 4+ INpgFF(6))el™ - { 3

where 7 are Kac-Moody currents of antiholomorphic conformal weight h = 1, the ¢ ghost known from bosonic strings
has conformal weight h = —1, and the polarization vectors of the gravity multiplets are transversal, €;-k; = 0. The
tree-level correlators are determined by ((c(z1)c(z2)c(23))) = Z12Z13Z23 and the OPEs

8ab N fabcjf(w)

T@T (W)~ s + T (7.106)
(z —w) Z—w
as well as
aym k-X ~ a'k™ k-X AyMmi,\qyn ~ a'sm
0X"(2)e" " (w) Z(E—E)e (w), 0X"(z)oX"(w) 2G_wp (7.107)

Similar to the organization of type Il amplitudes in (7.52), the correlator in (7.104) is guaranteed to comprise the Koba-
Nielsen factor on the sphere and one copy of the disk correlator (C,;) in (6.73) from the supersymmetric chiral half,

7\ =3 n

mhet = <—°‘—) / Pz d’zs .. Az o K7 () [ ] 12~ . (7.108)
2 =3\ {zg=2p) i<

The bosonic chiral half in turn contributes the rational function I%EOS of the z; that depends on the color degrees of freedom

a; of the external gauge multiplets as well as the half-polarizations € and momenta of the external gravity multiplets.

The non-vanishing three-point examples I%E‘)S(PlQ) of the bosonic correlator in (7.108) with external gauge and gravity

multiplets in the sets P and Q are

RU(1,2,310) = f%2% | R3%(1,213) = —/ %aalaz(ea ki), (7.109)

R2(011,2,3) = \/Z{[(a EB)E k) + oye(1,2,3)] = S k)@ - ka)Es kl)} :

and the massless three-point amplitudes Mg‘et are obtained upon multiplication with the supersymmetric correlator
(K3) = (V1V,V3), see Section 3.4.5 for its component expansion. As one can see from the appearance of the color factors
in these examples, the heterotic-string amplitudes in (7.108) are automatically color dressed. In fact, the OPEs (7.106) of
the Kac-Moody currents also introduce products of traces with a maximum of | | trace factors at n points as expected
from coupling between colored gauge multiplets and uncolored supergravity multiplets. One can still isolate color-ordered
single-trace amplitudes by picking up the antiholomorphic Parke-Taylor factors (6.57) in [267]

(T"(@)T% @) .. T" @) |y 00 _gany = —PT(L, 2, ). (7.110)
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Accordingly, multi-trace amplitudes associated with Tr(¢t"1)Tr(¢"2). .. Tr(t") and tP1P2PIPl = tP1tP2 (PPl are determined
by isolating the product (—1)* PT(P;) PT(P,). .. PT(P;) from the current correlator.

7.5.2. Heterotic double copy and Einstein-Yang-Mills

The expansion (6.73) of the supersymmetric correlator (K,) in terms of SYM trees can be readily applied to the
heterotic-string amplitude (7.108): in this way, all color-dressed tree amplitudes involving arbitrary combinations of gauge
and gravity multiplets conspire to a field-theory double copy with one SYM constituent,

M= — 3 B(1,R n, n—1)S(RIQ)A(L, Q. n—1.1), (7.111)
Q.ReSp_3
o n—3 n )
B(1,R,n,n—1) = _<_7> / d*z, d*z ... d%*z, o I%gos Zir 1—[ 2~
2 C"73\(Za=lb} isj

Given that the rational functions 21 on the right-hand side correspond to SL,(R)-fixed Parke-Taylor factors — PT(1, R, n,
n—1), see (6.59), one can uplift B(1, R, n, n—1) to a cyclic object B(P) by integrating over — PT(P) in the place of Z.

In order to understand the significance of the «’-dependent building block B(P) in the double copy (7.111), it
is instructive to compare with the Einstein-Yang-Mills amplitudes obtained from the low-energy limit of heterotic
strings: Einstein-Yang-Mills theories are double copies of SYM with the so-called YM+¢> theory [268]. Similar to the
NLSM+¢?> theory in Section 7.4.3, YM+¢? is characterized by a minimal coupling of bi-adjoint scalars to pure (i.e. non-
supersymmetric) Yang-Mills theory such that the BC] relations are preserved. More precisely, in a color-decomposition
of YM+¢3 tree amplitudes w.r.t. the generators & common to the gauge bosons and the bi-adjoint scalars,

MM+ D THE A g3(1, P). (7.112)
PeSp_q

the color-ordered amplitudes Ay, ,3 obey KK and B(J relations. Accordingly, they qualify to enter the following KLT
formula that encodes the double copy of Einstein-Yang-Mills:

M™M= — 3" Apgyga(1, R n, n=1)S(RIQ)A(T, Q. n—1,n). (7.113)
Q.ReSy_3

Similar to the bosonic correlators Iﬁgos and thereby the string-theory building blocks B in (7.111), the Ayy 43 still depend
on the color-factors t/ exclusive to the bi-adjoint scalars because only the # are stripped in (7.112). Since the KLT
formula (7.113) is obtained from the low-energy limit of (7.111) with all «’-dependence carried by B(P), we can identify
color-ordered YM+¢3 amplitudes as its low-energy limit

B(P) = A P (14 0()) . 7.114
(P) = Aymg3(P) |gYM_)\/g( (") ( )
As exemplified by (7.109), the bosonic correlators 15205 and hence the heterotic-string amplitudes (7.111) may already

o

carry integer powers of /% in their low-energy limits. These prefactors are interpreted as realizing the gravitational

coupling « of the heterotic string which, in the double copy of [268], translates into the gauge coupling gym of the YM+¢3
theory.”3

7.5.3. Heterotic strings as a field-theory double copy
By the bosonic origin of B(P) in (7.111), its a’-dependence can be further streamlined by expanding the bosonic
correlator ICE"S in a Parke-Taylor basis. Even though the computation of ICE‘)S is straightforward from the OPEs (7.106) and
(7.107), the Parke-Taylor decomposition relies on a way more intricate cascade of integrations by parts than encountered
in Section 6.3 for supersymmetric correlators, see for instance [220,269-271]. By the arguments in section 4.2 of [221], the
coefficients A ppy2  ym 43 in @n (n—3)!-term reduction (discarding total Koba-Nielsen derivatives Vz f = 9z, f —5f Z?j;l{ %}]
on the sphere)
~bos _d21 dz,—1 dz,

"7 T Vol(SLy(R)) > PTLR . n=1)S(RIQ)1Aprp s g3(1. Q. n—1, 1) mod Vz, (7.115)

Q.ReSp—3

are given by field-theory amplitudes in a massive gauge theory dubbed (DF)?> + YM + ¢3 [272], see the discussion below
(6.73) for the dz; in the prefactor. Just like for YM+¢> theory, the massless states of (DF)? + YM + ¢ are bi-adjoint

53 In any other section of this review, we have stripped off the uniform prefactors gc,\jlz from n-point tree-level amplitudes of SYM. In the YM+¢>
theory, on the other hand, generic tree-level amplitudes mix different powers of gyy according to the trace structure of the color factors: only the
gluon vertices and the minimal coupling of two scalars ¢ to gluons carry powers of gyy whereas the coefficient of the ¢ interaction is taken to be
independent on gyy.
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scalars and gauge bosons. The massive states in the (DF)? + YM + ¢ theory are tachyons m? = —% as expected for
the open bosonic string, so the Apry2ym443 are still rational functions of o' [221]. Similar to (7.114), the gauge coupling
of the (DF)? + YM + ¢> theory is understood to be converted to the gravitational one in the double copy (7.115), i.e.

_ |
g&ym — K = 5

The three-point amplitudes of the (DF)* + YM + ¢ theory (with subscripts ¢ and g for external scalars and gluons)
reproduce the simplest bosonic correlators in (7.109),

o 5
Aprpivmre3(1g: 26:39) =122 Aprpymig3(1g. 26, 3g) = — 55““2(63 k1), (7.116)

a/

e e o - -
Aprsymre3(lg, 2g, 3g) = 7 {[(61 &)Es - ky) +eye(1,2,3)] - ?(61 ka)(€2 - k3)(€3 - kl)} ,

where the o’-correction in the last line can be traced back to the Tr(F?) vertex in the (DF)? + YM + ¢ Lagrangian [272].
External scalars ¢ in legs 1,3 and gauge multiplets g in legs 2,4 in turn give rise to

€5-kq)(€4-k €5-k3)(Ea-k L o fmnfmn
A(DF)2+YM+¢3(1¢72g73¢74g)_5a1a32 {( 2° 1) 4° 3)_,’_( 2 3)( 4 1)+(62~64)+f24},

(7.117)
S12 523 2+ a'sy3

By the double copy with SYM in (7.111), the external states ¢ and g in (DF)?* + YM + ¢> amplitudes translate into gauge
multiplets g and gravity multiplets h in heterotic-string amplitudes.

The decomposition (7.115) is a useful way to disentangle the «’-dependence of (7.111) into the sphere integrals J(P|R)
in (7.61) with all the poles of massive-state exchange and the A pry2 vy 43 With only massless and tachyonic poles,

BP)=— > J(PI1,R.n.n—1)S(RIQ11Aprpsymig2(1, Q. n—1,n). (7.118)
Q.ReS;3
The sphere integrals J(P|Q) have zeros at s;_x = —% that prevent the tachyon poles of App2,ym43 from entering the

heterotic-string amplitude. At four points, this can be anticipated from the Gamma functions in the denominator of (7.55).
By combining (7.118) with (7.111), heterotic-string amplitudes can be brought into the form

M= 3" Aprpivmrgr(1, P n=1)S(PIQ)J(1,Q, n—1,n|1, A, n,n—1)S(AIBHA(1, B.n—1,n),  (7.119)
P,Q,A,BES,_3

which is directly analogous to the representation (7.70) of type Il amplitudes, with A2 vy 43 in the place of a second

copy A of SYM. External gauge and gravity multiplets in MQE‘ are represented by external scalars and gauge bosons in

Apr2-+ym+e3, TESPEctively, with the conversion gyy — ‘/"‘7/ of the gauge coupling as in (7.114). Given that the matrix
product ZQ,AQH S(P|Q)1J(1,Q,n—1,n|1, A, n, n—1)S(A|B); reduces to S(P|B); in the field-theory limit, we arrive at the
following refinement of (7.114)

Aprp-vtg3(P) = A3 (P)(1+ O(a)) . (7.120)

In the four-point example (7.117), for instance, the last term %/fzm”f‘lm” is subleading in «’, and the resulting YM+¢>
amplitude entering the Einstein-Yang-Mills double copy (7.113) is

(82-k1)(64-k3)+(€2~k3)(€4-k1)+ . - }

Apmig3(1g. 24, 3, 4g) = 3ala3g$M{ (€2 - &) (7.121)

S12 $23

where g%M translates into the prefactor "‘7/ of the corresponding (DF)? + YM + ¢ amplitude.

7.5.4. Einstein-Yang-Mills amplitude relations from string theories

As a key implication of the Einstein-Yang-Mills double copy (7.113), any tree amplitude of Einstein-Yang-Mills
(regardless on the number of external gauge & gravity multiplets or traces in the t!) can be expanded in terms of SYM
trees. On top of the manifestly gauge invariant KLT form (7.113), one can explicitly realize the double copy with manifest
locality,

MM = ) N]Y‘“,fﬁ’ A(1,P,n), (7.122)
PeSp_»

+¢3

with BC] master numerators Nmfln of YM+¢?3. This DDM form of Einstein-Yang-Mills amplitudes is analogous to the

~ 3
representation (7.69) of gravitational amplitudes. Field-theoretic computations of the master numerators Nf‘l\lf‘;‘p from
gauge invariance and color-kinematics duality as well as a discussion of the resulting Einstein-Yang-Mills amplitude
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relations (7.122) can be found in [273]. We shall here review the worldsheet approach to derive manifestly local
Einstein-Yang-Mills amplitude relations that amount to the DDM-type decomposition

- dz, dzp 1 dz, ~ (DF P+ YM+¢3 =

jhos = 1" 71 N PT(1, P, n) mod V; 7.123

= eL®E) 2 N (1, P.n) mod Vz, (7.123)
PeSy_»

analogous to (7.64). The YM+¢> master numerators in (7.122) can then be simply read off from the leading o’-order of

the (DF)? + YM + ¢ numerators or Parke-Taylor coefficients in (7.123):

e For single-trace amplitudes A"%(1,2, ..., n;p) with one external graviton p as well as n external gluons and
associated trace Tr(t't?...t"), the bosonic correlator due to (7.107) and (7.110) is given by
n ~
~ _— & - ki i+1
KPS ~PT(1,2,...,n) Y = =PT(1,2,...,n) Y (& -kiaj) _Zigt1
! le Zjp Z ZjpZp ji
n—1
= (ki PT(1,2,..J,p,j+1, ..., n=1,n), (7.124)
j=1
where we used PT(1,2,...,j,p,j+1,...,n) = ZJ?;:JL]PTU 2,...,j,j+1,...,n) in passing to the last line. By

matching with (7.123), one can read off master numerators

= (DF 2 +YM+¢3 ~ ~YM+4-¢3
Nips_jp11).ntm = €Kiz = Naps iy o = & - Kz (7.125)
which result in the following amplitude relation (7.122) (with gravity multiplet p and single-trace ordering
Tr(t't? ... t"))
n—1
AM(1L2, . np) = ) (& kiz DAL 2, oL n=Tn). (7.126)
j=1
This relation has been firstly derived from disk amplitudes of type I superstrings with one closed-string inser-
tion [274] and generalized to single-trace amplitudes with multiple external gravitons using CHY methods>* [276]
and heterotic strings [269]. For single-trace amplitudes with an arbitrary number of gravity multiplets, a decompo-
sition formula (7.122) in terms of intersection numbers of twisted cocycles can be found in [277]. Note that generic
(DF)? + YM + ¢° numerators are rational functions of «’, so their o’-independent instances in (7.125) are rather
atypical.
o For n-gluon double-trace amplitudes associated with Tr(tt")Tr(t2¢") and no external gravitons, the bosonic corre-
lator determined by the current algebra is

’

I%gos ~ PT(1, P)PT(Q, n) = LW mod V3, (7.127)
2+ a'sip
o/ (—1)PI [Pl 1Ql o -
- m Z Z(_l)l_]sij Z Z 1 A, Di, gj, B, n) mod Vlk
=1 =1 A€P1Py--Pi—1 BEGjt1--diq)

wP|p|-Pi41  wqj—q1--9241

where the second line is known from [269] and follows from expanding out the S-bracket via (4.143). The master
numerators (7 123) can be read off from the Parke-Taylor coefficients, and we now have a non-trivial «’-dependence

of the Nﬁfﬁl M through the geometric series
o o 0 o n
_ Y N (%) . (7.128)
2+ ao’S1p 2 =0 2

The master numerators of YM+¢> are obtained from the leading terms ﬁ — "‘7/ and result in the following

expansion of the Einstein-Yang-Mills double-trace amplitude A®*™™(1, P|Q, n) along with Tr(t1t")Tr(t2t"):
AM(1,P|Q, n) = %A(1, {P,Q}, n), (7.129)
for instance
APM(1,2]3,4) = L5341, 2,3, 4),
ABM(1,2,34,5) = %’[534,4(1, 2,3,4,5) — 524A(1,3,2,4,5)], (7.130)

54 The prescription for Einstein-Yang-Mills amplitudes in the CHY formalism has been given in [252,275].
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ABM(1,2,3,415,6) = % [s45A(1, 2, 3,4,5,6) — 535A(1, 2,4, 3,5,6) + (2 < 4)],
APM(1,2,3]4,5,6) = % [534A(1, 2, 3,4, 5,6) — 524A(1, 3, 2,4,5,6) — (4 < 5)].

The prefactor is identified with the gravitational coupling in Einstein-Yang-Mills theory according to k2 = "‘7/ and
signals two gravitational vertices as expected: each diagram contributing to double-trace amplitudes with external
gauge multiplets involves one gravitational propagator ending on vertices with one factor of « each.

The double-trace relations (7.129) have been derived and extended to one external gravity multiplet via CHY
methods [276] and heterotic strings [269]. Their generalizations to arbitrary number of traces can be found in [278].

~ 2 3
As illustrated by the tachyon pole (24+a’s1p)~! in (7.127), the numerators NS?PF% HMES feature propagators of the massive

states in the (DF)? + YM + ¢3 theory. Still, they are free of massless poles and therefore yield a local low-energy limit

~ 3
Nfl“,f#’ for the Einstein-Yang-Mills amplitude relations (7.122).

7.5.5. Reducing heterotic-string amplitudes to the single-trace sector
In fact, the Einstein-Yang-Mills amplitude relations (7.122) uplift to exact-in-«’ relations for heterotic-string ampli-
tudes in passing to the numerators of the (DF)? + YM + ¢3 theory

~ 2 3
Mzet _ Z Ngﬁf&HMW Ahet(LP’ n), (7.131)
PeSy_»

where AMY(Q) denote the single-trace amplitudes for |Q| external gauge multiplets. This follows from (7.123) in
combination with

7\ =3 n
A1 R n,n—1) = —(_o‘) / d’z, d?z5 . .. d*zy_y Z1g (Ky) ]_[ || S (7.132)
2 n3\(zg=2) i<j
and its SL,(C) covariant uplift 2z — —PT(1, R, n, n—1) in (6.59) [146],
A(Py=— 3" J(PI1,R n,n—1)S(RIQ1A(1,Q, n—1,n). (7.133)

Q,ReSy—3

One may view (7.131) as an alternative to the double copy (7.119) with locality w.r.t. the massless propagators but not
w.r.t. the massive ones. For instance, specializing (7.131) to double-trace amplitudes .4"(1, P|Q, n) of the heterotic string
yields [269]
A1, PIQ, ) = o — AM(1, (P, Q). ). (7.134)
2+ a's1p
with the Einstein-Yang-Mills relation (7.129) in its low-energy limit. The only case where (7.131) is free of massive
propagators is the following single-trace amplitude with one external gravity multiplet [269]

n—1

A1, 2, )= (6 ki )AL, 2, . jopa . n=1,n), (7.135)
j=1

which is the o’-uplift of (7.126).
8. o/-expansion of superstring tree-level amplitudes

In the previous sections, we have reviewed the derivation and structure of the expression (6.49) for the n-point disk
amplitude in terms of SYM tree amplitudes. By disentangling the contributions of left- and right-moving worldsheet
degrees of freedom, similar decompositions (7.70) and (7.119) were deduced for sphere amplitudes of type Il and heterotic
strings. On the one hand, these genus-zero results only cover the leading order in string perturbation theory and still
receive loop- and non-perturbative corrections. On the other hand, (6.49), (7.70) and (7.119) are exact in «’, i.e. they
incorporate all orders in the low-energy expansion at genus zero.

This section is dedicated to the «’-expansion of n-point disk and sphere amplitudes, with a detailed review of the
structure and explicit computation of the string corrections to the field-theory limits discussed in the previous sections.
These string corrections are organized into infinite series in the dimensionless Mandelstam invariants «'k;-k; with rational
combinations of multiple zeta values (MZVs) in their coefficients. The appearance of MZVs unravels elegant mathematical
properties of and striking connections between tree-level amplitudes in different perturbative string theories. Moreover,
the interplay of MZVs with the accompanying polynomials in «’k;-k; identifies several echos of field-theory structures at
all orders of the low-energy expansion including Berends-Giele recursions, color-kinematics duality and double copy.

The study of low-energy expansions in string perturbation theory has a long history. We focus on state-of-the-art
techniques to expand the n-point disk integrals (6.51) or their Z-basis (6.62) using the Drinfeld associator [279], see
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Section 8.5, or Berends-Giele recursions [235], see Section 8.6. Based on these results for the disk integrals of open
superstrings, the analogous expansions of the sphere integrals in tree amplitudes of type II and heterotic string theories
will be obtained as corollaries under the so-called single-valued map, see Section 8.7. At n < 7 points, a variety of
earlier calculations have been successfully carried out before the advent of the all-multiplicity methods in Sections 8.5
and 8.6, often exploiting synergies with hypergeometric functions [176,208,209,223,224,226,227,280-283]. The loop-level
extensions of the results in this section are under active investigation, and a short summary of the state of the art as of
fall 2022 can be found in Section 9.2.

Numerous developments related to the «’-expansion of string amplitudes have been crucially fueled by the recent
number-theory and algebraic-geometry literature. As will be detailed below, the mathematical references underlying
the tree-level results of this section include [233,284-290]. Parts of the results of this section can also be found in
the reviews [291,292] from 2016, also see [293] for a helpful introductory reference on the Hopf-algebra structure of
genus-zero integrals in the particle-physics literature.

8.1. Basics of a’-expansions

This subsection aims to set the stage for the main results of this section by reviewing four-point examples of
o’-expansions and the connection with low-energy effective actions.

8.1.1. Four-point o’-expansions

Similar to the computation and simplification of the correlators, the main efforts in determining low-energy expansions
kick in at five points. The four-point «’-expansion in turn has been known in closed form for decades from the simple
expansion of the Gamma function

o0
Zn
logF(l—z):yz—f-Z;{n, (8.1)
n=2

where the Euler-Mascheroni constant y = lim,Hoo(ZLl % — log(n)) drops out from string tree-level computations, and

the Riemann zeta values are given by convergent infinite sums
o0
= k", nz2. (8.2)
k=1

The o’-dependence of the four-point open-superstring amplitude (6.13) can be written as

oo

'(1=2a's12)(1-2a's:
2 = (1—2a's12)I( o 23)=exp(z n

I(1=2a's13—20a'sy3) ;(Zal)n [$1,4555 — (s12+523 )n])

n=2
=1— 20/ V5512523 + (203512523813 — (20 ) Cas12823 (5%2 + %512523 + 553) (8.3)

1
— (22 £2¢38%,855513 + 5(20/)545512523513(5?24-5534-5%3) +0®),

where F,? is the scalar four-point instance of the (n—3)! x (n—3)! matrix Fp? of n-point disk integrals in (6.51). The Gamma
functions in the numerators of F,? introduce poles at 2a/sq2, 20's23 = 1, 2, . .., i.e. at center-of-mass energies (k,-+kj)2 € g,
that signal the exchange of massive open-string vibration modes. After o’-expansions, say in the exponential of (8.3), these
poles are no longer manifest.

Also for closed superstrings, the a’-expansion of the four-point amplitude in the form (7.55) can be extracted from a

scalar combination of Gamma functions,

F(1=%s12)M (1= % 523)(1- % 513) = o\
z z 21 exp(2) S [261 4 21 4 s2%1] (8.4)

F(1+%/S12)F(1+%/Sz3)1—'(1+%/$13) — 2k+1\ 2

3 5
o o ,
=1+ 2(;) 3512523813 + <2> C5512523513(57,+S53+573) + Ol %.

The coefficients in this series are still exclusively built from Riemann zeta values (8.2), but there is no more reference
to the even zeta values ¢y, seen in the open-string expansion (8.3). While these cancellations at four points can still
be understood from Gamma-function expansions, their generalizations to n > 5 points are governed by an elaborate
mathematical structure known as the single-valued map, see Sections 8.2.3 and 8.7 for details.

8.1.2. Low-energy effective actions
One of the traditional motivations for «’-expansions of massless string amplitudes is to determine the low-energy
effective action of the gauge and gravity multiplets. An expansion around o’ — 0 amounts to integrating out the massive
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Table 1

Schematic overview of gauge and gravity interactions and their MZV coefficients in the tree-level effective action of type
I and type II superstrings, respectively. Gauge-field operators D*F™ are understood to be traced over the gauge group,
and the shown operators in both the gauge and gravity sector are representatives for supersymmetry multiplets of
interactions. The crossed out operators F? and DZ®™ could in principle have been expected from their mass dimensions
but turn out to be absent from superstring effective actions, either by supersymmetry arguments or by the properties
of their MZV coefficients. The column on gauge interactions closely follows the presentation in [209], and the rightmost
column is a subset of table I in [280].

Order MzvV Eff. gauge interactions Eff. gravity interactions

(') 1 F? R

(o)! x pich RY

(') & F4 el

() & D?F* + F° R?

(') la D*F* + D2F5 + F6 DRY 4 RE

(') g D°F* + D*F’ + D?F® + F’ D*R* + D?R® + R®
{382 DSF* + D*F° + D?*F® + F/ DAY+ DR 4+ RE

(e & D’F* + D°F° + ... + F® DSR* + D*R® + D’R® + R’
% DSF4 + DSFS + ... + T8 DSRY + DARY + D*RE + R

vibration modes which become infinitely heavy in view of their mass-spectra M?> € N/o’ and M? € 4N/o’ for open and
closed strings, respectively. This can be anticipated from the fact that the poles of the Gamma functions due to massive-
state exchange in (8.3) or (8.4) are no longer manifest in the exponentials encoding the respective «’-expansions, let alone
in the individual orders in «'.

The joint effort of all massive string modes leads to effective string interactions of schematic form o/™*=2Tr{D?**F™}
and o™ t*=1DZXR™ (with m > 4 powers of the non-linear gluon field strength F, Riemann curvature R and their respective
gauge- and diffeomorphism-covariant derivatives D) and their supersymmetrizations. Low-energy effective operators
o™k =2Tr{D*F™} or «’'™t*~1D?KR™ can be extracted from the «’-expansion of massless string amplitudes, i.e. by reverse-
engineering the Feynman rules that generate a given «’-order of the amplitude. This approach turns out to be cumbersome
in practice since®

(i) field redefinitions and relations of the schematic form D*F = F? or D’R = R? introduce ambiguities,
(i) extracting the new information on D*F" or D?R" interactions from n-point amplitudes necessitates the subtraction
of reducible-diagram contributions with insertions of D*F™ or D*R™ at m < n,
(iii) operators with four or more field strengths F and in particular curvature tensors R admit a large number of
Lorentz-index structures, which can be alleviated via manifestly supersymmetric approaches.

In the non-abelian gauge sector of the type I effective action, there are no explicit results beyond the order of «’* with
all the tensor structures spelled out. The purely bosonic terms at leading orders are given by [295,296]

1
S = / dloxTr{—4]anIF‘m" + a’zgz[—zwpwnwqu — F"F",FP Y, (8.5)
+ 3F™F PP F g + %IE"""IF‘"’FWIFM] + O(oc/3)} + fermions,,

followed by 8-term expressions a’>z3Tr{D?*F44+F°} and 96-term-expressions o'z, Tr{D*F44+D*F>+F®}. At higher orders
o’"=> one encounters multiple conjecturally Q-independent combinations of MZVs (say ¢s and ¢»¢3 at «”®, also see Table 2
below), and the accompanying operators Tr{D?F™} typically cover powers 4 < m < w+2 of field strengths. A schematic
overview of effective gauge interactions up to «'® is given in Table 1 as presented in [209].

A state-of-the-art method to determine the tensor structures of the effective gauge interactions in Table 1 can be
found in [297],°% also see [209,223,224,299-301] for earlier results at the orders of &’=%. The abelian gauge sector of type
[ superstrings incorporates supersymmetric Born-Infeld theory in its low-energy limit [248], see also [295,302,303].

The closed-string counterparts of the effective interactions of gauge multiplets in (8.5) are summarized in the rightmost
column of Table 1 as presented in [280]. The table illustrates that gravitational higher-derivative interactions are more
sparse than gauge interactions: in contrast to the first higher-derivative operator o’>Tr{F*} of the open superstring,
the first correction to the supergravity action of type II superstrings occurs at the third subleading order in «’, and its
gravitational a”>R* contribution was firstly investigated in [296]. Moreover, the possible MZV coefficients are constrained

55 For a brief review and for the practical struggles associated with (i) and (ii), see [294].

56 The absence of tensor structures (ej - k;)" in n-point disk amplitudes, i.e. the appearance of at least one factor of (e; - ¢;) in each summand of the
gluon components, was recognized as a valuable source of information on the open-string effective action [297] and properties of the amplitudes
themselves [298].
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Table 2
Conjectural Q-bases of MZVs at weights w < 11.
w 0 1 2 3 4 5 6 7 8 9 10 11
1 & &3 ;2 s Fed &7 foy ¢ 5 003 i §335
62 g ts 435 ety] G7 &6 0l G4
mzv &4 1% 834 A <19] &8 &
&3¢ et £2838s5 020 08
¢3 $3835
dim,, 1 0 1 1 1 2 2 3 4 5 7 9

to be single-valued as will be detailed in Sections 8.2.3 and 8.7, leading to the absence of coefficients ¢y, in the rightmost
column of Table 1 [280].

8.1.3. On the scope of four-point amplitudes

The polarization dependence of the four-point open- and closed-string amplitudes (6.13) and (7.55) enjoys a simple
tensor structure at all orders in «’: for the bosonic components, the polarization vectors in the prefactors A(1, 2, 3, 4) and
M35™ combine to linearized field strengths contracted by the famous ts-tensor

1
ts(f1. fo. f3. fa) = S f0f — Zflm"fzm"ffq T+ cyc(2,3,4), (8.6)
namely
1
$12523A(1, 2,3, 4) = —Efs(f1,f2,f3,f4) +0(x5), (8.7)

1 r 3 r3 s ~
S12S23s13ME™ = —Zfs(f],fz,f3,f4)f8(f1,f2,f3,f4) + O(x5, Xi) »

where A(1, 2, 3,4) and M5™ are given in (5.34) and (4.158). Accordingly, the closed-form expressions for the four-point
o/-expansions (8.3) and (8.4) can be used to swiftly propose operators Tr{D?*F*} or D**R* which reproduce the four-
point amplitudes. For instance, the first a’-correction in the open-superstring effective action (8.5) can be written as
—o/Z;“ZTr(tg(IF, F, F, F)) and readily reflects the subleading order of

A(1,2,3,4) = A1, 2.3, 9)(1 - Qo' Poosisas + 0(@)) (8.8)

However, the information from the four-point amplitudes does not fix any effective operators Tr{D*F™} or D**R™ with
m > 5 required by non-linear supersymmetry. Moreover, the Mandelstam dependence of the four-point «’-expansion
does not fix the order of the non-commutative covariant derivatives D,, acting on F* or R*. At the time of writing, it
is not clear whether one can find a tensor structure analogous to tg that governs the five-field operators Tr{D?F>} and
D?*R> at all orders in o>’

For closed-string effective actions, the complexity proliferates more drastically with the order in «’. As an additional
complication as compared to open strings, already the simplest o’-correction «’>¢3R* to the ten-dimensional type
Il supergravity action goes beyond the tg-tensor: The sixteen Lorentz indices of ]_[f:1 R™"Pi% are contracted with a

combination of tsts and two ten-dimensional Levi-Civita tensors ], ' 2 2"s"3mata gTp101P202PsB3Pa%4 i the tree-level

effective action of both type IIA and type IIB superstrings [306-308], where the e19£1¢ terms do not contribute to four-point
amplitudes.

Furthermore, the type II supergravity multiplets have a much richer structure than the gauge multiplet of ten-
dimensional SYM. The multitude of superpartners of the type IIB tree-level interaction o’3¢3(tsts + £10€10)R* for instance
includes a sixteen-dilatino term [309]. More generally, the operators in the type IIB effective action are organized
according to their charges w.r.t. the U(1) R-symmetry of type IIB supergravity which is broken by the string corrections.

As an even more fundamental limitation of four-point open- and closed-string amplitudes, they fail to anticipate the
effective operators whose coefficients are (conjecturally) indecomposable MZVs ¢y, .. ». of depth r > 2 to be introduced
in Section 8.2. Their first open- and closed-string instances occur at the orders of [280,281]

(a,)8§3,5Tr{W+ DF® 4+ ... + F1%), 9)
(@)"¢335(BERY+ DR + - - + R™?),

followed by infinite families of operators Tr{D?**F=°} and D**R>> with coefficients beyond the scope of the Riemann zeta
values in Table 1. The absence of Tr{D*F*}- and D**R* interactions with higher-depth MZVs as coefficients follows from
the fact that Riemann zeta values capture all orders of the four-point «’-expansions (8.3) and (8.4).

57 See for instance [304,305] for explicit tensors t, contracting r > 16 indices in eight-derivative interactions related to superpartners of R*.
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We finally note that also five-point string amplitudes feature dropouts of MZVs starting from the («’)!®-order [281,310].
As a result, certain combinations of MZVs firstly occur in six-point amplitudes and therefore in effective interactions
Tr{D?**F=5} or D*R=® such as (a’)'3Tr{P¥*F* + D3*F + DFC + ... 4+ F20),

8.1.4. Manifestly supersymmetric approaches

The manifestly supersymmetric form of the n-point disk amplitude in (6.49) severely constrains the effective action
of type I superstrings to all orders in «’: The amplitudes computed from reducible and irreducible diagrams at various
orders in o’ must conspire to linear combinations of SYM trees. It is an open problem to translate this property together
with the all-order results on the «’-expansion of disk integrals to be reviewed below into a new line of attack for the
effective action.

By the success of pure spinor methods to obtain compact expressions for n-point amplitudes, one can expect that the
open questions on effective actions will benefit from superspace methods. The supersymmetrization of the F# interaction
n (8.5) has a long history [311-314] and manifestly supersymmetric formulations of more general effective string
interactions have for instance been discussed in [97,301,315-321].

8.2. Multiple zeta values

The coefficients in the low-energy expansion of n-point string amplitudes and the associated low-energy effective
action are rational linear combinations of multiple zeta values (MZVs) [284,286]

o0
Cnyong, oy = Z k"M kT Ny, Ny, ...,ny €N, 1. >2 (8.10)
0<kq<ky<---<kr
that generalize the Riemann zeta values (8.2) to depend on multiple integers n;. The infinite sum converges if n, > 2, and

we refer to r and n;+n,+...+n, as the depth and the weight of the MZV, respectively. While even zeta values ¢y, are
rational multiples of 2k (with By denoting the Bernoulli numbersSS),

(zni)ZkBZk
=, 8.11
Sk 2020) (8.11)
the numbers =, ¢3, &5, &7, ... are conjectured to be algebraically independent over Q. MZVs arise from iterated integrals

over logarithmic forms dlog(zj—a;) with aj € {0,1} Vj=1,2,..., w and a; # 0,

1(0; a1a2...aw;z):/

- s
0<zy<zp<-<zy<z 21—y Z,—0y Zy—0y

dz; dzy dz,

Capmym = (—1)1(0;10...010...0...10...0; 1), (8.12)
n—1 ny—1 nr—1

i.e. multiple polylogarithms at unit argument. The combined set of relations following from the iterated-integral and
nested-sum representations can be used to reduce any MZV of weight w < 7 to products of Riemann zeta values ¢, and
leave the conjectural bases over Q in Table 2. The first instances of irreducible MZVs at depth 2 and 3 are believed to
occur at weight 8 (e.g. {35) and weight 11 (e.g. ¢33 5), respectively.

Comprehensive references on MZVs include [322,323], and a datamine of Q-relations with machine-readable ancillary
files can be found in [324]. Any known relation among MZVs over Q preserves the weight, and the dimensions dim,, of the
tentative Q-bases at weight w are conjectured to obey the recursion dim,, = dim,,_; + dim,,_3 with dimg = 1 = dim,
and dim; = 0 [325], see Table 2 for possible representatives.

8.2.1. Motivic MZVs and the f alphabet

The conjectural counting of Q-linearly independent MZVs through the above recursion for dim,, can be reproduced
from a simple model, the so-called f-alphabet [287]: introduce non-commutative variables f3, fs, f7, . . . for each odd integer
> 3, a single commutative variable f, and assign weight w to f,,. It is easy to show that the number of weight-w
compositions (non-commutative words in f,;.1 along with non-negative powers of f;) is counted by dim,, in Table 2,
e.g. {fs, fof3} at weight five or {fz“, fofsfs, fafs, fsfs} at weight eight. Note in particular that the first instance f3fs # fsfs of
non-commutativity ties in with the first conjecturally irreducible MZV ¢3 5 beyond depth one.

It is tempting to map MZVs into the f-alphabet, i.e. the Hopf-algebra comodule ¢/ = Q(f3, fs, . . .) ®q Q[f>], in order to
manifestly mod out by their Q-relations. However, the unsettled transcendentality properties of MZVs currently obstruct
a well-defined map to ¢/. As a workaround, one can consider motivic MZVs Cz;:,nz YYYYY n instead of the ¢y, n,,...n, € Rin(8.10).
By definition, motivic MZVs obey the complete set of Q relations among ¢, n,....n, known up to date, and their elaborate
definition in the framework of algebraic geometry can be found in [285,287,326].

58 _ 1 1

m .
f:o %Bm leads to even Bernoulli numbers such as B, = g, B4 = —55 and Bg =
1

vanish, By11 =0V k € N, apart from B; = —3-

1

The generating function ﬁ =y 25 Whereas the odd ones
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By passing to motivic MZVs, one can set up an invertible map ¢ to the f-alphabet starting from the normalization

D(Eok41) = foks1 () =f. (8.13)

For motivic MZVs ¢ of weight w beyond depth one, the ¢-image up to adding a Q-multiple of ¢(}) can be
determined from the shufﬂe product w and deconcatenation coaction A in U/:

fawfp = Z fe, (8.14)
CeAwB
A=Y fi®fc.
A=BC

We employ the shorthand fy = fo.fa, - - 'faw for A = a1a,...a, (with fy = 1), and the sum over ) ,_ .- includes the
terms with B = @ or C = ¢, for instance

(fafs) W fr = fafsfz + fafrfs + fofafs (8.15)
Alofofs) = Qfofs +ffo ® fs + fofofs @ 1.

More specifically, the ¢-images of motivic MZVs are required to preserve the product and coaction structure in the sense
of

Dy Sprops) = D(ER) YW A(GRT p)

(¢(;,11,,4,,m>) $(ACT ) - (8.16)

The shuffle symbol in the first line is understood to act trivially on the commutative variable f, e.g. ¢(£3'¢3") = fofs
and ¢((¢5")) = f5 for any k € N. In the second line of (8.16), the coaction A(¢" ) can be obtained from [285] and

leaves the freedom to shift #(¢y n,) at higher depth by the depth-one image (j)(g“,,]+ +nr) fay+- +nr 9 As the simplest
examples of this procedure, the (conjecturally indecomposable) MZVs beyond depth one in Table 2 are mapped to

#(L35) = —5ffs,  #(¢37) = —14f3f; — 6fsfs,
6 4
#(¢3'3.5) = —5fafafs — 45fafs — *f7f22 + *f5f23, (8.17)

where we have chosen to exclude fs, fio and fi; from ¢(¢3%s), ¢(¢3',) and ¢(¢3's 5), respectively. The coefficients of f,, in
each other ¢>(g“n1 ,,,,, o) @t weight w = 8, 10 or 11 are determined by (8.13), (8.16), (8.17) and imposing that ¢ preserves
the Q-relations among motivic MZVs.

Examples of qb(;;‘: _____ n,) at higher weight w can be found in [281], where the MZVs beyond depth one in the conjectural
Q bases of [324] are taken to have no f,, in their ¢-images (also see Section 8.2.4 for comments on the conventions). As
will be reviewed in Section 8.3, the ’-expansion of the disk integrals F»¢ in (6.51) takes a very compact form once the

(motivic) MZVs in the coefficients are translated into the f-alphabet.

8.2.2. The Drinfeld associator

As will be described in Section 8.5, the MZVs in the «’-expansion of n-point disk integrals can be derived from the
Drinfeld associator, a generating series of MZVs. Besides the MZVs in (8.12) obtained from convergent iterated integrals
I(0; 1...0; 1), the Drinfeld associator also involves so-called shuffle-regularized MZVs which descend from formally
divergent integrals. For the iterated integrals I(0; a; . ..a,; 1) in (8.12), we assign regularized values

1(0;0;1)=1(0;1; 1) =0 (8.18)

to the divergent cases at weight 1. At higher weight, the regularized values of integrals I1(0;0...;1) or I(0;...1; 1)
with endpoint divergences are defined by (8.18) and by imposing them to obey the shuffle relations of convergent
1(0;1...0; 1),

1(0; A; DI(0; B; 1) = Z 1(0; C; 1), also for ay, by =0 and aj4, bp = 1. (8.19)
CeAwB
One can recursively remove leading zeros by relating I(0; 0D; 1) with d; = 1 to I(0; 0%; 1)I(0; D; 1) minus terms with <
k—1 leading zeros, for instance I(0; 01; 1) = I(0; 0; 1)I(0; 1; 1)—1I(0; 10; 1) = &,. Similarly, subtracting I(0; D; 1)I(0; 1¥; 1)
from I(0; D1¥; 1) with dpy = 0 yields terms with < k—1 terminal ones, see for instance [328] for further details. The
resulting regularized values of 1(0; A; 1) with a; = 0 and/or aj4) = 1 are known as shuffle-regularized MZVs.

59 Strictly speaking, the second entry of the coaction A(¢s) ) involves deRham periods ¢57 ., , where the deRham version of ¢, vanishes, see
for instance [327].
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The Drinfeld associator @(eg, e;) (not to be confused with the perturbiners for bi-adjoint scalars in Section 6.4.4)
is a generating series of shuffle-regularized MZVs, where the coefficient of 1(0; A; 1) is a word e, = eg,eq, ... €q, Of
non-commutative variables ey, e,

Al
Dleg,er) = Y (—12=191(0; A; e
Ae{0,1}*

=1+ {2leo, e1] + {3[eo—en, [eo, e1]] (8.20)
+ §4<[€0, leo. [eo, e1]1] + le1. [eo, [e1. eoll] + [e1, [e1, [eo, e1]1] + 5eo, 31]2) +--

and the summation range {0, 1}* denotes the set of words (of arbitrary length 0, 1, 2, ...) in letters 0,1. The pairing of
1(0; A; 1)e4 ensures that the length of the words in eg, e; matches the weight of the accompanying shuffle-regularized
MZVs, and the ellipsis in the last line of (8.20) refers to words of length > 5.

In the first place, the Drinfeld associator has been introduced as the universal monodromy of the KZ equation

dF(z e e
@ _ (%, & F(2), (8.21)
dz z 1—-z
(with eg, e; some non-commutative indeterminates) relating its regularized boundary values Cy, C; [329,330]:
G = lirr(l)z_"’OF(z), Ci = lin}(l—z)elF(z) = (= P(e,e1)C . (8.22)
z— z—

The equivalence of this definition to the generating series (8.20) was then shown by Le and Murakami [331]. The relevance
of the Drinfeld associator for open-string amplitudes will later on be illustrated by presenting (n—2)!-component vectors
F subject to (8.21) and related to disk integrals, with matrix representations of eg, e; linear in «'s;.

8.2.3. Single-valued multiple zeta values

In comparing the o’-expansions of the four-point disk and sphere integrals (8.3) and (8.4), we already noted the dropout
of even zeta values from the closed-string amplitude. The n-point systematics of dropouts in passing from open to closed
strings is captured by the notion of single-valued MZVs to be reviewed in this section.

The terminology is borrowed from the polylogarithms that specialize to MZVs at unit argument, see (8.12): while the
meromorphic polylogarithms are notoriously multivalued as the defining integration path is deformed by loops around
z =0 or z = 1, one can form single-valued combinations by adjoining complex conjugates. For instance, the real part of
the multivalued I(0; 1; z) = log(1—z) yields the single-valued I*V(0; 1; z) = I(0; 1; z) + 1(0; 1; z) = log |1—z|°.

At higher weight, single-valued polylogarithms I°*V(0; A; z) can be systematically constructed from products of
I(0; B; z)I(0; C; z) and MZVs as detailed in [332]. The guiding principle of the reference is to preserve the holomorphic
derivatives

. . N . .
9,1(0; Ab; z) = w < 0,I°V(0; Ab; 2) = M
z—b z—b
on the expense of more complicated expressions for the antiholomorphic derivatives 9z1°V(0; Ab; z). The weight-two
example I*V(0; 10;z) = 1(0; 10;z) + I(0; 0; 2)I(0; 1; z) + 1(0; 01; z) illustrates that shuffle-regularized versions of
polylogarithms (based on I(0; 0; z) = log(z)) are encountered even if the holomorphic part (in this case I1(0; 10; z)) is
convergent.

In the same way as meromorphic polylogarithms yield MZVs at z = 1, see (8.12), we define single-valued MZVs as

single-valued polylogarithms at unit argument [288,289],

=(—1)7(0;10...010...0...10...0; 1). (8.24)
R ~———

ny—1 ny—1 nr—1

(8.23)

sv
;nl MY,y

At depth one, this annihilates even zeta values and doubles odd ones,

Ge=0, G =28k, (8.25)
and the expressions for single-valued MZVs at higher depth are usually less straightforward, e.g.
3% = —108385, 439 = —28387 — 1282, (8.26)

SV —_ 2 — 5 2 E 2 _§ 3
§3,3,5 =2{335 53 &5 + 908289 + 5 52 &7 7§2 5.

It is clear by the constituents of I°¥(0; A; z) that single-valued MZVs can be expressed in terms of Q-linear combinations
of MZVs.

The above constructions are formalized through the single-valued map that sends both meromorphic polylogarithms
and arbitrary MZVs to their single-valued versions. However, the single-valued map sv of MZVs is only well-defined in a
motivic setup, i.e. (8.25) and (8.26) are understood as

sv(¢y) =0, SV(Zokt1) = 28941 5 sv(¢35) = —1083'¢5" (8.27)
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As a major advantage of adapting the single-valued map to motivic MZVs, one can employ the f-alphabet where the
single-valued map follows a simple closed formula at arbitrary weight and depth [289],

.
VU fifiy - fi) =000 Y _fiy - Fiofiy Whifivea - fir (8.28)
j=0
where i1, iy, ..., i, € 2N+1, for instance
sv(fi,) = 2fi, , sv(fiufiy) = 2fi, wfy = 20 fiy +fiufiy) (8.29)

sV(fiifofis) = 20 fofis + fisfiofiy + fiofinfs + fiofisfi) -

In slight abuse of notation, we are employing the same notation sv for the single-valued map of motivic MZVs and the
induced single-valued map ¢ sv¢~" in the f alphabet. Since f; f;, and f,,f;, (with iy, i odd) are indistinguishable under the
single-valued map by (8.29), irreducible double zetas such as ¢35, ¢3'; in Table 2 factorize into products of odd Riemann
zeta values. Accordingly, 3% 5 in (8.26) is the simplest indecomposable single-valued MZV beyond depth one.

Note that the single-valued map preserves the product structure,

SV(Eay e Sprps) = SV ) SV(E ) (8.30)

as one can check from its f-alphabet representation (8.28). In Section 8.7, we will apply the single-valued map to the
o’-expansions of disk integrals which then acts on (motivic) MZVs at various weights.

8.2.4. Comments on conventions

In comparing the material of this section with the literature on MZVs and their f-alphabet description, the reader

should be warned about two sources of mismatching conventions. First, many references including [322-324] define the

,,,,,,,,,, ny» and our ordering conventions for the
arguments of MZVs agree with those of [146,281,284,286-289,291,292,310,325,326,333]. Second, our conventions for the
motivic coaction are those of [291,293,310] but differ from [146,281,287-289,292,323,326,333] by the swap AQB <> BRA.

In the above references with opposite conventions for the motivic coaction, the order of the non-commutative f;1
will be reversed in comparison to the expressions in this work. In particular, the coaction of the commutative f, becomes
1® f, instead of f, ® 1 in translating to those references. Moreover, the single-valued map of fJ'f; f;, .. .f, becomes
) }:0ﬁ1fi2 o fywhifi_y . fi,, inthe place of (8.28) when changing the conventions to AQ B— BQA.

For instance, the (conjectural) Q-bases of MZVs employed in the datamine [324] are related to those of this work
and [281] by reversing &n, n,....nr = nr,...,ny,n, - HOWever, in order to import the ¢-images at weight < 16 from [281] into
our present conventions, the order of the non-commutative letters for1 requires a separate reversal, i.e. f;.fi, ...fi, —
fir - fifyy with ij € 2N+1.

8.3. Patterns in the o’-expansion

In this section, we review the structure of the o’-expansion of the n-point disk integrals Fp¢ in (6.51) which has been
firstly described in [281]. First of all, the MZVs contributing to the order of &’ have total weight w, i.e. the «’-expansion
of Fp? is said to enjoy uniform transcendentality, see Section 8.5 for a proof.

Once the MZVs at given weight w are organized in the conjectural Q-bases of Table 2, the coefficients of the Riemann
zeta values ¢, are claimed to determine all other coefficients, say those of indecomposable higher-depth zetas ¢35 or
products such as ;¢ or ¢4¢p.c. These intriguing patterns are checked for a variety of weights & multiplicities and most
conveniently described in the f-alphabet of Section 8.2.1. They imply a remarkably simple formula for the coaction of
the integrals Fp? [310] that resonates with recent studies of Feynman integrals [334-337] and Lauricella hypergeometric
functions [338].

8.3.1. The pattern in terms of MZVs

For the four-point instance of the disk integrals Fp? in (6.51), the o’-expansion is given in closed form by the
exponential in (8.3). This expression manifests that the coefficients,

2k+1 | 241, 2k+1 k_y o2k _ 2k
(20 2+ Sia sy iyt Py, | = (2o Sak(sT5+s35—575)
2k+1 ’ n=4 2k(zp)k

of ¢or41 and &y determine those of products &4, {4, - . . by expanding the exponential. In order to generalize this observation
to n > 5 points, we shall consider the matrix-valued coefficients of Riemann zeta values

(Mai1)p® = Fp? | , (P2 )p® = Fp? |

Maii1|,_y = , (8.31)

(8.32)

Qok+1 if ’

where the entries of the (n—3)! x (n—3)! matrices P, and M,, are homogeneous degree-w polynomials in 2«’s; with
rational coefficients. A variety of examples at n = 5, 6, 7 is available for download from [339], where the conventions
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in this review are matched after rescaling s; — —2a's;; in the dataset of the website. At the leading orders in o/, the
expansion of n-point disk integrals is found to exhibit the following multiplicity-agnostic pattern [281]

F =1+ P+ 3Ms + §5Ps + §sMs + £03PaMs (8.33)
1 /
+ &3P + 5{321\/132 + &My + $85PoMs + £5¢3PaMs + O(a %),

where we have suppressed the row and column indices of the Fp? in (6.51). The coefficients P,,, M,, of ¢, defined in
(8.32) turn out to determine those of ¢,¢3 or ;“32 via matrix products P,M3 or M%. In other words, there is only one piece
of independent information P,, or M,, at each order o"=7 in (8.33).

Starting from weights w = 8, 10, 11, ..., the Q-bases of MZVs are believed to contain indecomposable elements of
depth > 2 which can be chosen as ¢35, {37, {335, . .. [324]. In the conjectural bases of Table 2, the simplest instances of
depth-two and depth-three MZVs are accompanied by the following matrix commutators [281]

1 1
Flias = &Ps + 55205PaM3 + ¢365MsMs + = ¢3.5[Ms, Ms],
1
Fliap = oMo + ©257PaMy + 53¢sPaMs + 6 63PeMs + 2E5M3
1 1
Fllgo = EP10 + £28305PaMsMs + = 623 5Pa[Ms. Ms] + 2 &3¢S PaM3
1o 1 3
+ 545 Mg + §3¢7M7M5 + ﬁ§3,7 + ﬁ§5 [M7, M3], (8.34)

1
F | i = §uMin 4 £569P,Mg + ¢307PaM7 + 15 ¢sPsMs + L5 t3PsMs + 6(25331321\433

+ 2e2emm 4 1 [Ms, M3]M3 + ! 900+ g2t — [Ms3, [Ms, M3]]
2(3{5 sM3 5{3,5{3 5, M3]M3 553,3,5 $289 25(2(7 355255 3, [Ms, M3]].

(e

These expressions are consistent with the dropout of {3 5, {37 and {3 3 5 at four points, see (8.3), since the (n—3)! x (n—3)!
matrices My, then reduce to the scalars (8.31) with vanishing commutators. However, rational prefactors such as % of
¢3.5[Ms, M3] or —% of {23;“5 [M3, [Ms, M3]] may appear surprising at first glance. As we will see in the next section, these
rational numbers conspire to unit coefficients once the MZVs in (8.34) are taken to be motivic ones and mapped into the
f-alphabet reviewed in Section 8.2.1.

8.3.2. The pattern in the f alphabet
In preparation for a well-defined map into the f-alphabet, we promote the MZVs in the «’-expansion of the matrix F
to their motivic versions,

(F")p® =R

(8.35)

The image of (8.34) in the f-alphabet can be assembled from the action (8.13), (8.16) and (8.17) of the ¢-isomorphism
on ¢, ;“_{‘5, {33 5 and products thereof,

PF™) | s = f3'Ps + ofsfsPaM3 + fafsM3sMs + fsfsMsMs ,

o(F™) @y =JoMo + fof7P,M; + f2fsPaMs + [ fsPeMs + fafsfsM3

E™) | yry10 = fy P10 + fofsfsPaM3Ms + fofsfsPaMsMs + f3fafsPaM3 (8.36)
+ fsfsM2 + fafyMsM; + f,f3M7Ms ,

O(E™) | oy = f1iMin + fofoP2Mo + f7f1PaM7 + ffsPsMs + f5'fsPsMs + fofsfafsPaM3

+ fafafsM3Ms + fafsfsM3sMsMs + fsfafsMsM3 .

Each word in the non-commutative generators fy,1 iS accompanied by a matrix product of M, with a matching
multiplication order, and powers of the commutative ¢-image f, of {J* occur with left-multiplicative kaPZk. Moreover,
4

all the unwieldy rational prefactors of % or —3z in (8.34) have conspired to unit coefficients in passing to (8.36)! By

reinstating the lower-weight results (8.33) in the f-alphabet,°" the orders of «’<'! can be reconstructed from
(F™) = (1 + £oPs + fPs + f5'Ps + f5'Ps + f; P1o)
X (1 + fsMs + fsMs + fafsMsMs + fyMy + fafsMsMs + fsfsMsMs (8.37)

60 At the orders of «'=7, the rational prefactors in (8.33) remain unchanged in passing to ¢(F™) apart from ¢((¢3')?) = f3 w f5 = 2fafs. Similarly,
contributions of %(;2“,“ +1Mak+1)" at higher orders that resemble the expansion of a matrix-valued exponential are mapped to n-fold concatenation
products foryifokst - - - fakr 1My, under ¢.
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+ foMa + faf3fsM3M3Ms + fsfsMsMs + fafsMsMy + f7f3M7 M3
+ 1M1y + fafafsM2Ms + fafsfsMsMsMs + fsfafsMsM3) + O(a' ™).
This suggests the following all-order formula for the «’-expansion of n-point disk integrals [281],

(Zfz PZk) Z Z filsz .. -firMhMiz .M,

r=0 iq,ip,...,ir€2N+1

1
_ <Z fszZk) - , (8.38)

net1J2n+1Man g

where the fraction in the last line is understood as a geometric series — Zm o X™. The only independent pieces of
information in (8.38) are the matrices Mo, and Py along with fo, 1 and f2 The coefficients of any product f2 ‘fon+1 OF
higher-depth term fy;,+1f2n,+1 - . - are determined by (8.38) in terms of matrix multiplications among the P, and My, 1.

At multiplicities n = 5,6, 7, (8.38) has been checked up to and including weight 21,9, 7 [176] and is conjectural
beyond this.

8.3.3. Coaction

The coefficients P,,, M,, of ¢,, in (8.32) are defined w.r.t. a prescribed Q-basis of MZVs at weight w. At weights w < 7,
we have employed the unique bases in (8.33) that are expressible in terms of Riemann zeta values. Starting from weight
w = 8, however, the choices of basis elements {35, {3.7, {3.3.5, . . . beyond depth one in Table 2 is somewhat arbitrary and
leaves various equally natural alternatives. One could for instance change the basis to include {5 3 = ¢3¢5— ¢35 — g instead
of ¢35 which would add commutator terms ~ [Ms, Ms] to the coefficient P of ¢; = 12¢g in the new basis. Similarly,
trading ¢3 35 for a different basis elements at depth > 3 leads to a shift of My; by a rational multiple of [M3, [M5, M5]].

We shall illustrate the basis dependence of M;; by rewriting the «’'!-order in (8.34) in terms of ¢353 = —2¢33.5 +
B0y + 03835 + 20305 — Brfey — 90054, rather than 4335,

F gy = cu(Mu + %[Ma [Ms, Ma]]) + £280P2Mg + £3¢2PaMy + £505PsMs + ¢5 ¢3PsMs

(o
1 a3, 1o 2, 1 2 1
+ 524“3 P,M5 + §3 sMs M3 + *53.54“3[1\/15, M3 §3,5,3[M3, [Ms, M3]]. (8.39)

The coefficient of {11 became My; + 22 [Ms, [Ms, Ms]] in the place of My in (8.34). Hence, the definition (8.32) of Moy
requires the specification of a (conjectural) Q-basis of MZVs at weight 2k+1, and we will follow the choices of the
datamine [324] as done in [281]. It would be interesting if alternative choices of basis MZVs at higher weight may lead
to similar shortenings as seen in the more compact form (8.39) of the a’!" order with ¢35 3 in the place of ;3 3,5 in (8.34).

These ambiguities in the definition of P~g and Mx1; are also reflected by the freedom to add fg = 175 21t to #(¢3's)
in (8.17) and more generally f,, to the ¢-image of indecomposable weight-w MZVs of depth > 2 in a Q-basis. In other
words, the isomorphism ¢ is non-canonical starting from weight 8. Nevertheless, the form of the all-weight result (8.38)
is unaffected by the above choices.

The information of the all-order result (8.38) can be encoded in the following coaction formula without any reference
to basis dependent quantities P,,, M,, [310],

AF™p% = Y (F" )R @ (F )2 (8.40)
ReSp_3

Following the coaction of MZVs in [285], the MZVs in the second entry F*" are promoted to deRham periods -
;nl S (see for instance [327]) with a net effect of modding out by ¢, since ¢J" = 0. One can straightforwardly verify
(8. 40) by insertion of (8.38) and using the simple form (8 14) of the deconcatenation coaction in the f-alphabet.

Based on Z(1,P,n—1,n|1,Q,n,n—1) = — ZReS 1(Q|R)1Fp® with the KLT matrix S(A|B); in (4.159), the coaction
formula (8.40) can be readily translated to motivic and deRham versions Z™, Z° of the Z-integrals (6.62). In the first place,
one arrives at the coaction of the (n—3)! x (n—3)! basis of Z(1, P, n—1, n|1, Q, n, n—1), but one can generalize to arbitrary
A,BeS,; in

AZ™(AIB) = — Z Z™(AI1,P,n,n—1)S(P|Q): ® Z"'(1,Q,n—1,n|B) (8.41)
P,QeSp_3

by noting that both sides of the equation obey the same monodromy relations in A and IBP relations in B.
Note that (8.40) and (8.41) are special cases of more general coaction formulae
d

(o) =2([=) ()

Jj=1 (

a)) (8.42)
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for wider classes of integration cycles y and differential forms w that were studied in the context of Feynman integrals
[334-337] and Lauricella hypergeometric functions [338]. The sum over j in (8.42) runs over d-dimensional bases of
twisted homologies {);} and cohomologies {w;}, respectively. Moreover, these bases are understood to be chosen as
orthonormal in the sense that the zero-transcendentality part of f wj is given by §;. In our setting, the orthonormality

condition is met by the Kronecker delta in the field-theory limit (6. 52) of Fp¢. The superscripts m and or in (8.42) again
refer to the motivic and deRham periods with £J" = 0 in the second entry.

8.4. KK-like and B(]J relations within the o’-expansion

We have seen in Section 7.4 that the monodromy relations obeyed by color-ordered open-string amplitudes deform
the KK and B(] relations of field-theory amplitudes by trigonometric functions in «'s;. It will now be shown that certain
sectors in the «’-expansions of disk integrals in Section 8.3 preserve the field-theory BCJ relations of the SYM amplitudes
they multiply. Other sectors in the «’-expansion of open-superstring amplitudes will be reviewed to obey analogues of
KK relations where the coefficients are still integers independent on s;.

8.4.1. B(J relations at all orders in o’

The organization (8.38) of the «’-expansion of Fp¢ can be used to generate solutions of the BCJ relations (5.55) or
(5.62) at arbitrary mass dimensions. This can be seen by inserting permutations of the string-amplitude formula (6.50)
into the monodromy relations (7.75) and expanding in «’. It is crucial to note that the trigonometric factors yield series
in even zeta values (8.11), i.e. exclusively the commutative generator f, in the f-alphabet upon passing to motivic MZVs
and taking the ¢-image,

sin(rx) = Txexp (— Z %x2k> . (8.43)

Hence, the only departures of the monodromy relations from the BCJ relations occur for non-zero powers of f, - the
appearance of the odd generators fy,41 is unaffected by the sine functions.

In order to identify independent solutions of the BC] relations, we impose (the motivic version of) the monodromy
relations to hold separately for the coefficient of any fz"f,»1 fi .- - fi with k, r € Ny and i; € 2N+1. The separation of different
transcendentality structures has been firstly applied in [145] to demonstrate the KK and B(] relations of the tree-level
matrix elements of the o>¢3Tr{D?F* + F°} operator in the superstring effective action and the o/Tr{F3} operator of the

open bosonic string. By focusing on the f, — 0 part of the monodromy relations, the coefficient of any f.f;, ...f; in
color-ordered open-string amplitude is found to obey KK and B(] relations,
0= A i,..;,(PwQ,n), P,Q#0, (8.44)
n—1
0= ) (kp, - kp,ps..p;)Aiyiy,....ir (D2P3 - - - PiP1Pj1 - - - Pn) s
j=2

where A;, ;, . ;(P)is a shorthand for the coefficient of f;, f;, . .. fi, in the ¢-image of the motivic versions A™ of superstring
amplitudes A4, i.e.

Aipir(1,Qun=1,m) = (A1, Q=1 m) |

> (MM, ... M, )o"A(1, R,n—1,n).
ReS;_3

(8.45)

By isolating the coefficients of f;,f;, ... f; in last three lines of (8.37), we for instance arrive at the simplest independent
solutions to the BC] relations at the orders of «’=!! in Table 3. The table only tracks the solutions of BC] relations that are
realized in the «’-expansion of superstring disk amplitudes - a variety of further solutions multilinear in polarization
vectors can be systematically generated from tree-level amplitudes of bosonic or heterotic strings [220,221] or from
building blocks of loop-level string amplitudes [178]. Similarly, as will be detailed in Section 8.4.4, the «’-expansion of
Z(P|Q) integrals can be used to generate rational functions in s; at various mass dimensions that obey B(] relations in Q.

Note that permutations A, j,,..;(P) outside the (n—3)!-element basis of A; ;... (1,Q,n—1,n) in (8.45) can be
expanded via

Aivigiy(P)=—>_ m(P|1, R, n,n=1SRIQ)1Ai, .., (1,Q, n—1, 1), (8.46)
Q.ReS;_3

i.e. by adapting the solutions (7.48) of BC] relations to A;, ir(P) in the place of SYM amplitudes.

L,

8.4.2. KK-like relations
Inspired by the Kleiss-Kuijf (KK) relations (5.8) among tree-level amplitudes in field theories, we shall now investigate
the «’-expansion of disk amplitudes in (8.38) for identities with constant coefficients. More precisely, we shall go beyond
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Table 3
The solutions A;, j,,.. ;. of B(] relations at the order of o/="" that can be read off from
the coefficient of f;, f;, ...f, in the «’-expansion of open-superstring amplitudes.

w solutions w solutions

0 A= Ay 6 A3z

1 X 7 Az

2 X 8 A3zs, As3

3 A3 9 Ag, As33

4 X 10 Asz7, A73, Ass

5 As 11 A1, Asss, Asss, Asss

the coefficients (8.45) of the fz = fy,fp, - . . fp, with odd b; and identify KK-like relations among

Agp(1, Qo n=1,m) = (A1, Q. n=1,m) [0y (8.47)
= Y (PuMy,My, ... My, )o"A(1, R, n—1,n)
ReSp_3

associated with arbitrary powers £ > 0 of f,, following version 3 of [ 147]. For instance, the well-known cyclic and reflection
properties of disk amplitudes hold separately along with each fffg,

Agp(1,2,...,n) = Agp(2,3,...,n,1), (8.48)
App(1,2,...,n) = (=1)"Agp(n, n—1,...,2,1),

leaving at most %(n—l)! independent permutations. However, the coefficients (8.47) of le fg at different values of ¢ obey
different additional relations, so we will focus on the individual components. To this effect, following [340], we will refer
to relations of the form

Z CsAgp(0) =0, (8.49)

with constant coefficients ¢, € Q as KK-like and study them separately at each ¢ > 0. For simple examples of KK-like
relations, we have the permutation symmetry A5(1, 2, 3, 4) = A;5(1, 2, 4, 3) as well as the six-term identity [173]

Aqp(1,2,3,4,5)+ perm(2,4,5) =0 (8.50)

universal to the coefficients of f,fz. These KK-like relations of .4z clearly differ from the KK relations (8.44) of Agp such
as the three-term identity Agp(1, 2, 3, 4) 4 cyc(2, 3, 4) = 0 at four points or the four-term identity Ag;p(1,2 1w 345) =0
at five points.

Note that the simplest examples of A; 3 up to and including the order of 1% do not require an f-alphabet description
and can be equivalently obtained from the coefficient of £, or products £;&ak+1, 282k, +182ky+1, $283,5 in (8.33) and (8.34).
Starting from the order of «'!" with the MZV basis choice of (8.34), the coefficients of ¢,¢241 in the matrix F generically
receive admixtures of products M M;, ... with odd i; on top of the expected P,Mi41 in (8.47). As illustrated by the
coefficient F |,y = P;My + 9[Ms3, [Ms, M3]] in (8.34), passing to the f-alphabet is necessary to isolate the matrix product
d(F™) |fro = P2My in (8.36). The five-point KK-like relation (8.50) only holds if A9 is constructed from P, My in (8.47),
i.e. defined by Aq9 = ¢(A"™) |5, but fails in presence of extra terms ~ [Ms, [Ms, M3]] that would arise from A |52§9.61
Note, however, that different MZV basis choices may push this issue to higher orders o’”" as evidenced by the expansion
(8.39) in which F |,¢y = P2Ms.

8.4.3. Berends-Giele idempotents and BRST-invariant permutations

In order to write down the explicit form of KK-like amplitude relations, we need to specify a way to generate
permutations with the correct properties. As discussed in [147], the relevant permutations achieving this are related
to the descent algebra of permutations via the so-called BRST-invariant permutations®? Y1|p,,Py.....P, depending on a number
k of words Py, ..., Py

Yipy.pe = 1(EP) w EP2) ... E(PY)) (8.51)

where £(P) is the Berends-Giele idempotent defined in terms of the right-action multiplication P o Q of permutations
by [147]

&P):=Po&, |Pl=n, (8.52)

61 we would like to thank Ricardo Medina for email correspondence on this point.

62 The terminology of “BRST-invariant permutations” was coined in [147] by the analogy of yyp,,..p, in (8.51) with certain BRST invariants in the
pure spinor computation of one-loop amplitudes. However, we are not claiming that BRST transformations act on permutations.
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where®?
(=1)*
Sn = Z Ks—10 , Ko = W ) (853)
€S lo1("4,
and d, denotes the descent number of the permutation . Moreover, they were shown to satisfy the shuffle relations
ERwS)=0, RS#0. (8.54)

This implies that the number of linearly independent BRST-invariant permutations at n points is given by
n—1 k
#V11py..py) = [ B ] , ; IP;| = n—1, (8.55)

where [Z] denotes the Stirling cycle numbers [344,345] (traditionally called Stirling numbers of the first kind) that count
the number of ways to arrange p objects into q cycles. For example, [Z] = 24,50,35,10,1 for q = 1, 2,3,4,5. For
example permutations of the above definitions, see the Appendix J.

KK-like amplitude relations. The KK-like relations among the component amplitudes of (8.47) were observed to satisfy the
following decomposition according to the number of parts k in the partitions of n—1 legs [147]

Aos(yipy,.. ) =0, k#1,
Aug(yipey,..p) =0, k#3, (8.56)
Aag(vipy,..p) =0, k#1,3,5...,2¢+1, £>2.

In addition, it was demonstrated in [147] that the even cases when k = 2m encode the parity and cyclicity relations

(8.48). In this sense, the KK-like relations for even k are equivalent to (8.48).

For example, the case k = 3 for n = 5 with y;23 45 given in (].3) leads to the 12-term relation after using (8.48):

Aoip(1,2,3,4,5)+ Agip(1, 2, 3,5,4) + Aga(1, 2, 4, 3,5) + Ag(1, 2,4, 5, 3)
+ Aga(1, 2,5, 3,4) + Ag(1, 2,5, 4, 3) — Ag(1, 3,2,4,5) — Agp(1, 3, 2,5, 4) (8.57)
— Aop(1,3,4,2,5) — Agp(1, 3,5,2,4) + Agp(1,4,2,3,5) — Agp(1,4,3,2,5)=0,

which can be reduced to linear combinations of the KK relations (8.44).

In addition, given that the BRST-invariant permutations constitute a basis for permutations in the descent algebra %
any other KK-like relation can be written as a linear combination of yyp,, .. p,. For instance, using the decomposition
1 1 1
Wiz3ss + perm(2, 4, 5) = 3ypp3as — V113452 + V114,235 + g Y1532 +(4 < 5), (8.58)

where a permutation o is written as W, for typographical convenience, it follows that the KK-like relation (8.50) can be
rewritten as

1 1 1
3A18(¥112345) — 5-’41\3(71\345,2) + 5A1|B(V1|4,235) + §A1|B(V1|5,4,3,2) +(4 < 5)=0, (8.59)

or, equivalently after using the reflection relation (8.48), 3.41(y12345) + 3.A1;8(y1)2354) = 0. Note the crucial absence of
Yiipy.....p, With k = 3 in the decomposition (8.58), which provides a consistency check of (8.56). For another example, one
can check that the following 720-term (or 360 after using (8.48)) linear combination vanishes, A13(y1)2,3,455,67) = 0, in
agreement with the second line of (8.56) with k = 5.

Basis dimensions. Using the counting (8.55) one can show that the number of linearly independent amplitudes under the
KK-like relations is given by [147]

n—1
#(.Ao‘g(], 2,..., n)) = 1 = (Tl—2)! s (860)
0
#(Aqp(1,2,....m) = 3 |
#(Agp(1, 2 n))—:n_1:+ L T e £>2
SR I I 3 2041 T

63 In fact, &, is given by the inverse permutations of the Eulerian or Solomon idempotent [341-343].

64 This claim follows from the conjectural relation between the BRST-invariant permutations and the inverse of the idempotent basis [149] of the
descent algebra. See [147] for more details.
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with the implicit assumption that [5] = 0 for g>p. The counting of independent permutations of the amplitudes
Ap(1,2,...,n) associated with fofg yields [“;1] = 1,6,35,225,... at n = 4,5,6,7,... and has been studied
in [173,340].

A consistency check on the claim that the cyclicity and reflection symmetries (8.48) are encoded in the even-k BRST-
invariant permutations follows from the counting (8.55) as Y_j even #(V11p...0) = 2(n—1). To see this, we note the
elementary identity ZZ;}en [";1] = %(n—l)! of Stirling cycle numbers. It furthermore follows from (8.60) that those
coefficients Agp(1,...,n) with £ > 2 and n < 2¢43 obey no additional KK-like relations other than the cyclicity and
reflection symmetry (8.48): the counting of (8.60) yields Zz;}d [”;1] = %(n—l)! independent permutations in these cases.
For instance, when ¢ = 2 the number of linearly independent permutations of A (1, 2, ..., n) w.r.t. KK-like relations is
%(n—l)! = 360 for n = 7 but 2519 = %(n—l)! — 1 for n = 8. This last prediction has been confirmed by a brute-force

search using [161].

8.4.4. B(J and KK relations of Z-theory amplitudes

The BCJ and KK-like relations in specific sectors of the «’-expansion of string amplitudes can be traced back to
analogous relations for the disk integrals Z(P|Q) in (6.62). As before, the discussion hinges on the f-alphabet description
of the a’-expansion and the underlying motivic MZVs, and we employ the notation

3(PIQ) = $(Z"(PIQ).  3.(Q)=(Z2Q) = Y 3(P.nQ) (8:61)

PeSp—q

for the ¢-image of motivic Z-theory amplitudes Z™(P|Q) = Z(P|Q) |cn1....—>cr§’;.,,, to avoid cluttering.

As shown in Section 7.4, tree-level amplitudes of the NLSM of Goldstone bosons can be obtained from the symmetrized
versions Z,(Q) of the Z(P|Q )-integrals defined in (7.91). The color-ordering Q of the NLSM amplitude (7.92) is encoded
in the Parke-Taylor integrand PT(Q) of the symmetrized integral Z,(Q). Hence, KK and B(] relations of the NLSM are a
simple consequence of partial-fraction and IBP relations of Parke-Taylor integrals, see Section 6.4.3.

This worldsheet derivation of amplitude relations of the NLSM is actually not tied to the low-energy limit in (7.92)
since the KK and B(] relations of Z(P|Q) w.r.t. the Parke-Taylor orderings Q are valid at all orders in «'. In particular, KK
and B(] relations apply to every Q-independent combination of MZVs in the «’-expansion of abelian Z-integrals. After
peeling off the leading power of (wa’)"~2 exposed by the sine functions in (7.95), we expect all combinations fzgf,-lfi2 .
with £ € Ny and odd letters i; to appear in the o’-expansion of Z,(Q) at sufficiently large multiplicity 1Q).°

Any combination of fZ‘fi1 fi, .. in the o’-expansion of Z, (Q) can be interpreted as an effective interaction among scalars
with one color degree of freedom that preserves the KK and B(] relation of the NLSM. By uniform transcendentality of
disk integrals, the w'™ subleading order of o’ features MZVs of weight w each of which signals scalar interactions with 2w
additional derivatives beyond the NLSM. The subleading order ~ z,(mwa’)"2 of Z,(Q) for instance defines a four-derivative
deformation of the NLSM that preserves its amplitude relations and can also be described through the Lagrangian in
section 3.3 of [346].

More generally, the f-alphabet images 3,.(Q) of symmetrized (motivic) disk integrals in (8.61) can be taken as
generating functions of scalar effective-field-theory amplitudes subject to KK and B(] relations,

3«(AwB,n {A,B},n =0 VAB#U, €£>0, ije2N+1. (8.62)

)|f2“filﬁ2... = 3x( )|f2‘5f,-]f,-2...

The same type of reasoning applies to the Parke-Taylor orderings Q of non-abelian Z-integrals and their ¢-images 3(P|Q)
in (8.61): each combination of MZVs in the «’-expansion corresponds to effective interactions of bi-colored scalars that
preserve the KK- and B(] relations of bi-adjoint scalars in Q,

3(PJAWB, n = 3(P|{A, B}, n) | =0 VAB#®, £>0, ie2N+1. (8.63)

) |f2@f,-1f,-2... L i fiy

For the amplitude relations where P is varied at fixed Q in turn, the reasoning in Section 8.4.1 implies that only the f, — 0

sector of the a’-expansion preserves KK- and BC] relations. These field-theory relations of 3(P|Q) at fixed Q then hold
independently for the coefficients of any f;, f;, .. . with odd ij,

3AwB Q) =3(ABLIQ)| =0 VAB#M. ie2N+l. (8.64)

For the coefficient of le ifiy .- in 3(P|Q) at £ > 1, we obtain bi-colored scalar amplitudes subject to the KK-like relations
of Section 8.4.2 in P.

Based on a Berends-Giele recursion for the «’-expansion of Z-integrals, a proposal for the non-linear equations of
motion of the underlying non-abelian Z-theory can be found in [235] and Section 8.6. Explicit results up to and including
the order of 7 are publicly available from the website [347].

65 Since the four-point o’-expansion (8.3) is expressible in terms of Riemann zeta values only, the onset of irreducible MZVs ¢35, {37, {335, - - -
at higher depth is relegated to Z,(Q) at multiplicities |Q| > 6.
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8.5. String corrections from the Drinfeld associator

We shall now review a recursive all-multiplicity method to determine the polynomial structure of the «’-expansion
of the disk integrals Fp¢ in (6.51). This methods generates all the MZVs from the Drinfeld associator (see Section 8.2.2)
whose non-commutative variables e, e; are identified with specific matrices with entries linear in «’s;;. More specifically,
the recursive step in passing from n—1 to n points [279],

(n—3)!

Foi= )" [@(e. el (F7], o) (8.65)
j=1
is based on (n—2)! x (n—2)! matrices eg, e; whose derivation will be described below. The F° are understood to be the
Q with P = 23...n—2 the canonical ordering and Q the ith permutation o; of 2, 3, ..., n—2 in lexicographical ordering.
The Drinfeld associator @ is expanded in terms of shuffle-regularized MZVs as in (8.20). The soft limit on the right-hand
side of (8.65) acts recursively in the sense that

3 Fo23.n=3) . o(n—2)=n-2,
kn—1=0 -

FU(23'”H72)
0 : otherwise,

(8.66)

which terminates with the three-point integral F# = 1. The relevance of the Drinfeld associator for string amplitudes
was firstly pointed out in [310], among other things by relating its coaction properties with those of the F»¢ in (8.40).
Nevertheless, it is an open problem to deduce (8.40) from the results of this section. The specific construction towards
the o’-expansion of the F,¢ was given in [279] and is based on an expansion method for Selberg integrals from the
mathematics literature [284]. Its description in terms of twisted deRham theory and intersection numbers of twisted
forms can be found in [348], where ey, e; are identified as braid matrices.

8.5.1. Construction of the matrices eg, e;
The recursion (8.65) can be derived from the deformation

_ _ ’
o = (22" 3/ dzydzs ... dz,_» H |Zpq| 72 5P0 l_[|z T200S0r g7
0<zp<z3<--<Zp_3<7g 1<p<q

_g{ﬁzsﬂ‘ 1‘[ Z 5""’} (8.67)

k=2 j=1 m=v+1n=m+1 Zmn

of the disk integrals F° = F3_,_2°@*"=2) in (6.51) by additional Mandelstam invariants so; and an auxiliary puncture
Zp € (0, 1) on the disk boundary. The permutation o acts on the labels of both s; and z; enclosed in the curly brackets of
the second line while leaving (1) = 1 and o(n—1) = n—1 invariant. One can recover (8.67) from a basis of disk integrals
in the (n+1)-point open-string amplitudes (6.50) after removing the integration over zy € (0, 1) and the associated dzo/zg;.

The integer v = 1, 2, ..., n—2in (8.67) labels different classes of integrands »{ that were related by the IBP identities
from the Koba-Nielsen factor in the undeformed case (6.51). By the contributions |ZOr|’2°‘/SOr to the Koba-Nielsen factor

n (8.67), the n—2 values of v together with the (n—3)! permutations o of 2, 3, ..., n—2 yield a total of (n—2)! different

mtegrals F?. The components of this (n—2)!-vector will be ordered as F = (F,f 2 F,;’ 3, ..., F5, F]) with lexicographic
ordering for the permutations o indexing the (n—3)!-component subvectors Fo,..., F7_,.The examples of (8.67)atn =4
and 5 points are the two- and six-component vectors
) ,
A W, _ —2d/ X
P,y =2 fo dzz 212|212 23] 252 | 252 (2 (8:68)
X12(X13+X23)
. X13§(X12X+X32)
Bl _s =) / dzs / dz, |22 7223 H 2| 250 gy 2 gy 2 [ e ]
j=2 (X23+X24)X34

(X32+X34)X24

with the shorthand X;; = % as in Section 6.3. Since the entries of the n-point vectors F form IBP bases, their zo-derivatives
are bound to yield homogeneous Knizhnik-Zamolodchikov (KZ) equations of the following form

d. (2 & \a
7F:(e—°+ & )F. (8.69)
20

dZO 1 —2Zp

The entries of the (n—2)! x (n—2)! braid matrices &, &, are linear in o’s; with 0 < i < j < n—1 as can be seen from the
zop-derivative of the deformed Koba-Nielsen factor in (8.67). The same factors of |zq, | 2% %or suppress the boundary terms
Zy—p = 2o from - actlon on the integration limits for z,_, € (z,_3, Z). The explicit form of &g, &; follows from reducing
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the contributions Zf;; %a)‘: of the Koba-Nielsen derivatives w.r.t. the unintegrated variable z; to a basis of ] /7, and
oy /(1=2).
In fact, the recursion (8.65) only requires the kinematic limit
€y = éo 50j=0" e = é] 501=0 (870)

of the braid matrices &g, &; in (8.69). The four- and five-point integrals (8.68) give rise to the following 2 x 2 and 6 x 6
examples:

_ o5 TSz Si2 o 0 0
e| _, =2 < o 0 ) .oe|_,=2a ( 5y sy ) , (8.71)
—S5123 0 5134523 S12 S12 —S12
0 —S123 S13 S12+S23  —S13 S13
_ ’ 0 0 —S12 0 S12 0
€o |n:5 =2 0 0 0 —S513 0 S13 ’
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
_ ’ —S34 0 S34 0 0 0
€ n=5 " 2 0 —S24 0 S$24 0 0
—S34  S34 —523—524 —S34 $234 0
S24 —S24 —S24 —S$23—S534 0 $234

The explicit form of the braid matrices ey, e; at n < 9 points is available in machine-readable form [339] (where our
conventions are matched after rescaling s; — —2co’s; in the dataset of the website), and a graphical all-multiplicity
description can be found in [348].

8.5.2. Uniform transcendentality

The factorization of «’ in the braid matrices eg, e; as exemplified by (8.71) persists to any multiplicity n. On these
grounds, the (n—2)! x (n—2)! matrix representations ®(eg, e;) of the Drinfeld associator enjoy uniform transcendentality:
the words e, in eg, e; of length |A| = w are of the order («')* and accompanied by MZVs I(0; A; 1) of transcendental
weight w in (8.20). It is then easy to show by induction that the recursion (8.65) propagates uniform transcendentality
from the (n—1)-point integrals F% | _,—o on the right-hand side to the n-point integrals F° on the left-hand side.

Together with the o’-independent SYM amplitudes A(...) in (6.50), we conclude that n-point open-superstring
amplitudes are uniformly transcendental. Following the discussions of transcendentality properties in the field-theory
literature such as [349,350], the first string-theory references to observe and define uniform transcendentality of bases of
disk integrals are [202,228,230]. The KLT relations (7.58) together with the uniform transcendentality of the KLT kernel
in (7.56) imply that also type Il amplitudes are uniformly transcendental. However, the «’-dependence of the kinematic
factors Apry2ymig3(- - -) In (7.119) obstructs uniform transcendentality of massless heterotic-string amplitudes (except
for single-trace gauge amplitudes with no or one graviton in (7.133) and (7.135) [146,269]). Massless amplitudes of open
or closed bosonic strings are in general non-uniformly transcendental for the same reason [220,221].

The factorization of o’ on the right-hand side of the KZ equation (8.69) can be viewed as a string-theory analogue of
the so-called e-form of differential equations of Feynman integrals [351,352]: the dimensional-regularization parameter €
of Feynman integrals in Dy—2¢ spacetime dimensions with Dy € N serves as an expansion variable similar to «’ in string
amplitudes. Various families of Feynman integrals admit uniformly transcendental bases under IBP relations [349,350,353-
355], also see [356-360] for white papers and recent reviews. In a growing number of examples, uniform transcendentality
can be manifested by casting the differential equations of vectors I of Feynman integrals into e-form dI = €AI, where the
matrix A of one forms no longer depends on ¢ [351,352].

8.5.3. Regularized boundary values

Given the braid matrices eg, e; derived from the KZ equation (8.69) at so; = 0, we shall now review the origin of the
recursion (8.65) for the o’-expansion of disk integrals. The key idea is to use the relation (8.22) between the regularized
boundary values Cp, C; of the solutions to a general KZ equation. For the (n—2)!-component vector F in (8.67), the
regularized boundary value as zo — 0 is given by [279]

Colyyo = (F 1, 120000, 0), (8.72)
(n—3)(n—3)!
where the (n—3)(n—3)! vanishing entries stem from the subvectors with v = 1,2,...,n—3. The (n—3)! undeformed

integrals F“|5jv”71=0 realize the soft limit k,_; — 0 in (8.65) and can be obtained from the subvector with v = n—2 by
rescaling of the integration variables z; = x;z, that transforms the integration domain in (8.67)to 0 < x; < X3 < --- <
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Xn—2 < 1. The appearance of lower-point disk integrals from the soft limit in (8.66) is easiest to see from the following
IBP rewriting of (6.51)

n—1 n—3 k—1 S
2o 2, I

Fo@3-n=2) — (¢~ / dzydzs ... dzoy [ ] I2pgl 2‘”""0[ =2 "} (8.73)
O0<zp<z3<-<zp_p<l1 1<p<q Zn—2,n—1 k=2 j=1 Zjk

If o(n—2) # n—2, then the denominator of 0{5"27"1} involves non-adjacent variables z,(;,—7), z,—1 in the integration
domain of (8.73). One can set sj,—1 = 0 at the levelnof the integrand and reproduce the zeros on the right-hand 51de of
(8.66). If 0(n—2) = n—2 in turn, the Koba-Nielsen integral over |z;_3 n_1|~ ~2¢'si-1n-2-1 regults in a kinematic pole Sn 2 n1
whose residue is obtained from setting z,_, = 1 in the integrand. This residue is given by the (n—1)-point integral
Fo(23-n=3) o the right-hand side of (8.66), and the soft limit Sjn—1 = 0 suppresses the regular terms in s,_, ,—; beyond
the residue.

The second regularized boundary value (8.22) obtained from the (n—2)! integrals in (8.67) reproduces the undeformed

n-point disk integrals in its first (n—3)! components [279]
G |Soj:0 - (F7,...). (8.74)
This can be intuitively understood from the fact that zg — 1 restores the original integration domain 0 < z; < --- <
Zn—p < 1 of F?, and we are setting so; = 0 in (8.74) to remove the deformation of the Koba-Nielsen factor. However,
the components in the ellipsis of (8.74) involve lower-multiplicity contributions from the difference between the regions
Zn—p € (zn—3,20) and z,_, € (z5—3, 1): for some of the components of the integrands ¢ in (8.67) with v < n—3, the
difference z,_5 € (2o, 1) between the above regions contributes to the «’-expansion even though it shrinks to zero size
as zop — 1. The detailed evaluation of these v < n—3 components of C; is subtle and fortunately not needed to derive the
recursion (8.65).

Note that the field-theory limit [®@(eo, e1)]; = 8; + O(a'?) of the associator in (8.65) together with the three-point
integral F¥ = 1 imply by induction in n that F% = §;; + O(«'?), i.e. that the o’-expansions of all the F% with j # 1 start
at order «'2. This is one way of deriving the orthonormal field-theory limits (6.52) of the Fp2.

In summary, the relation (8.22) between regularized boundary values and their representations (8.72), (8.74) for the
specific solution F of the KZ equation in (8.67) implies the recursion (8.65) for n-point disk integrals.

8.5.4. Connection with twisted deRham theory and outlook

The zp-deformed integrals (8.67) are special cases of more general Koba-Nielsen or Selberg integrals over the disk
boundary with an arbitrary number of integrated and unintegrated punctures [219,284,361]. They obey KZ equations
in multiple variables, and a recursion for the braid matrices in their differential operator has been given in [200]. The
discussion in the reference is tailored to specific fibration bases w.r.t. IBP, and the transformation matrices to the bases
(8.67) in the case of four unintegrated punctures can be found in [348]. This is how the all-multiplicity results for braid
matrices in [200] translate into the n-point instances of eg, e; in [348].

The coaction properties (8.40) of the n-point disk integrals in string amplitudes generalize to the case of more than
three unintegrated punctures at (z;, zj, zx) — (0, 1, 00), for instance to the family of Selberg integrals (8.67) with an
(n—2)! basis of integration contours. The «’-expansions of Selberg integrals with an arbitrary number of integrated and
unintegrated punctures were investigated in [362]. Their coactions in the basis choice of the reference line up with
the master formula (8.42) that initially arose from studies of dimensionally regulated Feynman integrals [334-337]. It
is striking to see that the coaction formula (8.42) manipulating contours y; and differential forms w; in twisted-(co-
Jhomology bases is compatible with that of the polylogarithms in the respective ¢- or «’-expansions. A mathematical
proof for Lauricella hypergeometric functions can be found in [338].

Selberg integrals with arbitrary numbers of integrated and unintegrated punctures on a disk boundary have been
generalized to genus one and investigated from a multitude of perspectives in the mathematics [363,364] and physics
[365-369] literature. These references offer several lines of attack to expand the configuration-space integrals of one-loop
open-string amplitudes in «'. In particular, the construction of [367] can be viewed as a direct genus-one analogue of the
Drinfeld-associator method of this section.

8.6. Berends-Giele recursion for disk integrals

In this section we review the construction [235] of a Berends-Giele formula to compute the «’-expansion of Z(P|Q)
disk integrals (6.62) recursively in the length |P|, or alternatively in the number of points of the associated disk amplitude
(6.105). Given the interpretation of Berends-Giele currents as coefficients in the perturbiner solution of an equation of
motion, this method adds support to the introduction of Z-theory [197,235,263]; the scalar theory whose amplitudes
computed by the standard Berends-Giele method [28] are given by the integrals Z(P|Q).
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8.6.1. Extending the field-theory limit
The starting point behind the Berends-Giele method to evaluate disk integrals is the assumption that the Berends-Giele
method to evaluate their field-theory limit &’ — 0 as [234]

lim Z(P,n|Q, n) = lim05p¢(P|Q), (8.75)
o’ —0 sp—

can be lifted to arbitrary o’ orders

/

Z(P.n|Q.n) = lim 54 (PIQ) (8.76)

via the introduction of an «’-corrected Berends-Giele current®® ¢‘”'(P|Q). In the field-theory limit case of (8.75), the
Berends-Giele current ¢(P|Q) is the coefficient of the perturbiner solution &(X) in (6.83) of the equation of motion
0@ = [@, @] of the bi-adjoint scalar theory as reviewed in Section 6.4.4. Interpreting ¢(P|Q) = lim,/_¢ ¢“’(P|Q), the
required step to evaluate (8.76) is to obtain the o’-corrections to the equation of motion of the bi-adjoint theory and to
recursively generate «’-dependent Berends-Giele currents from its perturbiner solution

B(X) =Y ¢" (PIQ)" @™, P = PieP2 P (8.77)
P.Q

with initial condition ¢”’(i[j) = §j in the single-particle case. The «’-corrected equation of motion found in [235] is written
in the following compact way

1 0 eom P
- _ /\p—2 =20 3
S0 = > (2 / H|z,,| i (8.78)
p=2 i<j
— (@131, ]
12..1 Ppp—1..141
X ( E + perm(2, 3,...,p—1))
(212223 - - - 21-1,1)0(Zp p—1Zp—1,p—2 - - - Zi42,141)

=1

eom
.. .,
=[P, o] + 20// |Z12] 72 %12 |25 |2 d”(

(P12, D3] i [®1, ‘1)32])
Z12 Z33

eom 3
, , , D123, D D1y, D D1, D
n (20/)2/ 295|223 I l 2] ~2 |2 aj4<[ 123 4]+[ 12 43]_|_[ 1, P432] PR 3)>
=2 212223 212243 243233

+...,

with z; = 0 and z, = 1 which is obtained directly from the local representation of the disk amplitude (6.8) under the
following mappings discussed at length in [235]. The unintegrated vertices in (6.8) are replaced as

(VeVo Vi) —> [Pp, Pql, (8.79)

where @p is a shorthand for various linear combinations of ¢""(R|S ) as explained below. The contributions spelled out at
the end of (8.78) descend from A(1, 2, 3) = (V;V,V3) as well as the four- and five-point amplitudes in (6.13) and (6.18).
The ellipsis refers to permutations of [®1_, @, 1+1] with p > 5 following the form of disk amplitudes (6.8) at six points
and beyond.

The mapping denoted by f M encodes a series of rules meant to compute the regularized integrals over z,, ..., Zp—1
appearing in (6.8) after fixing (z, z,) = (0, 1) and expanding the Koba-Nielsen factor in a series of «’. The replacement
sij — 9 in the Koba-Nielsen exponents will be defined in (8.90) below. The technical details involving manipulations of
shuffle-regularized polylogarithms can be found in [235] and lead to rational combinations of MZVs at each order in the
o’-expansion of (8.78).

Even though the origin of (8.78) from a Lagrangian is unsettled, we interpret it as the non-linear equation of motion
of Z-theory.

The shorthand ®p. The shorthand @p in the equation of motion (8.78) denotes an expansion of several factors of q)“’(AlB)
according to the following rules. First, define

Toom o ®TaN 5 = 0% (A1B1)$” (A2lB2) - - ¢ (An|Bn) (8.80)

for arbitrary words A; and B;. Next, define linear combinations

B1,B2,....Bn ,__ sdom int
Taragioan = Tay gy © Ty by 8oy » (8.81)

66 we adopt the notation ¢(P|Q) = ¢pjq Whenever convenient.
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where the map p on words is glven in (C.3), and it is understood here to act on the labels i of the words B;. It is
. B1.By,...,
straightforward to see that T, ">/ satisfies the recursion

—.,Bn B1.By....Bh—1 ,a’7a 1p \ ~B2.B3....s n o
Taaa o = Tans An,;¢ (AnlBo) = T2 0 & (AnlB). (8.82)

with initial condition Tf; = ¢""(A1|Bl) which can be taken as its alternative definition. The simplest examples of (8.82)
are,

Tolw? = ¢ (A11B1)¢” (A21B2) — ¢ (A1]B2)p™ (Aa|B) (8.83)
Tyu2 0 = ¢ (A|B1)g (AalB2)g™ (As|Bs) — ¢ (A11B2)p™ (A2|B3)g (As|B1)
— ¢ (A11B2)d” (A2|B1)¢” (As|Bs) + ¢ (A11B3)d” (A2|B2)¢ (As|By).
Tyt = ¢ (A11B1)p™ (A2|B>)g (As|B3)™ (Aa|Ba) — ¢ (A11B2)p™ (A2|B1)g* (As|B3)g (Ag|Ba)
— % (A11B2)0” (A2|B3)p™ (As|B1)g (AalBs) + ¢ (A11B3)o™ (A2|B2)p” (As|B1)d™ (AslBa)
— ¢ (A11B2) (A2|B3)p* (A3|B4)p (Aa|B1) + ¢ (A1]B3)p™ (A2|B2 )™ (A3|Ba)p® (AslB1)
+ ¢ (A11B3)g” (A2|Ba)g™ (As|B2)™ (AslB1) — ¢ (A1|Ba)g™ (A2|B3)o™ (A3|B2 )™ (As|B1)

By construction, the above satisfy the shuffle symmetries on the B; slots

B’”:o, i=1,2,...,n—1, (8.84)

as the nested commutator [[... [[A1,A2],A3] . .],An] such asT Bl fz = —Tfl 522 and Tfl fzzf: + szl fjff + Tf; flz 523 =0.
Finally, the shorthand @p for a word P = pip,...p, is defmed as
®p _ TB1B2 B (8.85)

Apy Apy vy
that is, the word P captures the ordering of the labels i of the words A;, while the labels j of the words B; are in the
canonical order. For example, &, = le as well as

_ 1B1.B2
Dy = TA2 Ar (8.86)
B1.B2,B3
P31 =Ty, usay
By.,By,B3,By4
¢4213 - TA4 Ay,A1,A3 0

and the properties of T, 1""‘A readily imply generalized Jacobi identities of @p such as @,; = —®1, and Py3 + Pa31 +

,,,,,

@31, = 0. The commutators of @p and @q in (8.78) yield the left-to-right Dynkin bracket (4.48),
[Pp, Pl = Pre(q) » (8.87)

for instance [@1, @3] = P13y — P13 = D31 OF (P12, f1>43] = @143 — P1234. In this way, the equation of motion (8.78)
leads to a recursion for the Berends-Giele currents ¢* (P|Q) that can be used to obtain the «’-expansion of the Z(P|Q)
integrals using the Berends-Giele formula (8.76).

The equation of motion up to o' order. Applying the integration rules discussed in [235] to (8.78) one obtains expansions
such as

com . a1 1 /T(1—2a'012) (1 —2a'0
20// 21| 2012 |7y 20s L _ L ( o' 012)1"( a'd3) 1
Z1; O I'(1— 20013 — 20 923)
—(20 L2 — (20)*¢3023(12+323) (8.88)
— (20')* 4023 (3122 + 3012003 + 3223) +0(a”)

and thereby the following equation of motion including «’-corrections

1
Equ = [P, P2] + ((205,)252312 + (223012312 + 323))[¢1, D3] (8.89)
- ((20/)252323 + (20 Y ¢3023(912 + 323))[9512, &3]

+ ((205,)2@ + (22 £3(021 + 2031 + 2032 + 2042 + 343) ) [ P12, Pas]

- ((205,)2{2 + (201/)353(2321 + 031 + 303 + 042 + 2343))[0513, D]
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— 2020/ ¢3(0a2 + 0a3)[P123, Pal + (22)’53(3042 + 0a3) [P132, D]
— 2020/’ 53(031 + 021) [P1, Puzz] + (2a')’¢3(3031 + 021) [ @1, Pas]
+ (20')°¢3 ([@12, Ds534] — 2[P12, Psaz] + 2[Pr23, Psal + 2[P13, Ps2a] — [P132, Ps4]
— 2[P134, P52] — 3[ P14, P523] + 2[P14, Ps532] — 2[Pr42, P53] + 3[Pras, <1552]) + 0",
where
8®p = (k- kn,)}Pp (8.90)

For a simple example of a practical calculation,using these definitions, the low—epergy eg(pansion of disk integrals up to
o' at any multiplicity is determined from ss¢“ (A|B) in (8.76) as follows (here ¢ZIB := ¢“ (A|B), and the initial conditions

are ¢;Ef = ;)

o o o o o
sadie = D (@5 Phm — P Pis,) (8.91)
AgAy=A
B1By=B
N2 o o o o o o
+QaPe Y] [("/ﬁ s (D0, 13, By 8, P15, — Py, Pty Pl
ArAyAy=A
B1ByB3=B

o o o o o o
+ 5,18, D15, B, — P 18 Dy, P, )
(X/ Q/ (1/ KX/ Cl/ D[/
+ (Kay + kny (D4, 16, By 15, Bhaiis — Py, By, Pty
/ ! ! ! ! !
+ ¢21|32¢22\33¢Z3\31 - ¢Xl\33¢zz\32¢1(‘\x3\31)]
2 \2 o o o o o o o o
+(2a') 42 ¢A1|81¢A2|BZ¢A3\B4¢A4\B3 - ¢A]\31¢A2\BZ¢A3\B3¢A4\B4
A1ArAzA4=A
B1ByB3B4=B
11/ C(/ 0[/ Ol/ 0[/ Ol, Ol, 0(/
+ ¢A1I31¢A2|33¢A3\32¢A4\34 - ¢A1 1B1 ¢A2\34¢A3\32¢A4\B3
o o o o o o o o
T D16, Py 81 Ps 83 Pas By — Payib, Pty 8y Pz 84 P s
11/ (1/ 0[/ 0[’ 0[/ Ol, 0/ 0(/
- ¢A1|Bz ¢A2|33¢A3\31 ¢A4\34 + ¢A1 \32¢A2\34¢A3\31¢A4\B3
a/ a/ a/ ! ! ! / a/
= 1185 Py 81 Py 18y Piag B, T Py 18 Py 8, Pty 34 g3y
(1/ Dl/ O[/ Ol, 0[/ Ol, Ot/ 0(/
+ ¢A1|B3¢A2|B4¢A3\31 ¢A4\32 - ¢A1 \33¢A2\34¢A3\32¢A4\31
a/ ! ! ! ! ! ! !
T P 18 Pl 8y Pt 35 Paginy — Pty 84 Pty 3, Pt 85 Pty
o o o o o o o o 3
= P84 Dy 35 Py 8, Py, ¢A1\B4¢Az\33¢A3\Bz¢A4\BI] +0(@”).
For example, one can show from the above recursion that

s S
+ (za/)%z(i T 1) +oE?). (8.92)

$135135 S135  S13

From the above example, it is not hard to imagine that these calculations, despite systematic, are long and tedious to

perform by hand. A FORM program that computes the «’-expansion of integrals of arbitrary multiplicity up to o' can be

found in the git repository [347].

Z(13524/32451) = —

8.6.2. Planar binary trees and «’-corrections
From the discussion above, the a’-expansion of string disk integrals is determined by the Berends-Giele formula (8.76)
whose currents qb‘”'(PlQ) are recursively generated by the equations of motion (8.78) of the non-abelian Z-theory [235].
As discussed in [166], one can promote this setup to the theory of free Lie algebras by assuming the existence of
o’-corrections to the binary-tree expansion (4.124) as b”’(P) by defining

¢ (PIQ) := (b (P), Q) (8.93)
where (A, B) = 84 5 denotes the scalar product of words defined in (C.11). Using the explicit expressions of ¢"‘/(P|Q) up
to o'’ order one can show that the Lie-polynomial form of the binary-tree expansion with «’-corrections becomes

spb™ (P) = D [b*(X), b (Y)] (8.94)

XY=P

+ (2078 Y ky - ky[B(X), [6(2), b (Y)]]
XYZ=P
123
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— V5 Y ky - ke[ (X), B (Y], b (2)]

XYZ=P

+(20 P Y 00, B (Y], 67 (W), b (2)1]

XYZW =P

— (200 Y 6 (X), b (2], b (W), b (Y)1] + 0e?).

XYZW=P

It is important to emphasize that the symmetries of the “domain” P and “integrand” Q are different, in particular
#“ (P|Q) # ¢*(Q|P), unlike its field-theory version (6.86). The integrand Q satisfies shuffle symmetry as ¢* (P|Rw S) =
(b”"(P), RwS) =0VR,S # @ because b“’(P) is a Lie polynomial, as a consequence of Ree’s theorem 3.1 (iv) in [152]. The
shuffle symmetries of the domain P are spoiled by the monodromy properties of the disk integrals.

The Lie polynomial (8.94) begs for a combinatorial understanding via free-Lie-algebra methods in combination with
the properties of MZVs following from the Drinfeld associator, whose logarithm is known to be a Lie series.

8.7. Closed strings as single-valued open strings

In this section, we review the relation between open- and closed-string «’-expansions through the single-valued map
of MZVs (see Section 8.2.3). In most parts of this section, we shall set o’ = % for open-string quantities and o’ = 2 for
closed strings in order to implement the rescaling of o’ — 4a’ in (7.58) or (7.86).

On the one hand, one can already reduce (integrated) closed-string tree-level amplitudes to open-string computations
by means of the KLT formula (7.58) or (7.62). On the other hand, the KLT formula does not manifest if some of the MZVs
in open-string o’-expansions (8.38) cancel in between the amplitude factors and the sine functions. As will be reviewed
below, the single-valued map reduces closed-string «’-expansions to those of open strings while exposing all the dropouts
of MZVs (including powers of ¢, at low weights and certain indecomposable MZVs such as ¢35).

Some of the selection rules on MZVs can already be illustrated from the «’-expansions (8.3) and (8.4) of four-point
open- and closed-string amplitudes. It is easy to see at the level of the exponents of (8.3) and (8.4) that the expansions
of the disk and sphere integrals are related by

(F(l—slz)F(1—523)> I'(1—=s12)I (1—=523)" (1+s12+523)

— , (8.95)
I'(1—s13—523) T (14s12)I" (14523) ' (1—812—523)

where the single-valued map is applied order by order in «’ and acts trivially on the s;. According to (8.27), sv annihilates
even zeta values ¢, while doubling the odd ones ¢;, 1. Note that we have eliminated s;3 = —S13—S5,3 in (8.4) to expose the
independent variables. From the perspective of the four-point KLT formula (7.54), the trigonometric expansion of the KLT
kernel S,/ in terms of even zeta values via (8.43) cancels all the ¢, in the a’-expansion of A(1, 2, 3, 4) or W
and leads to the relation (8.95). In the rest of this section, we will study the n-point generalization of this observation from
several perspectives and describe the cancellation of certain indecomposable MZVs at higher depth from closed-string

amplitudes in terms of the single-valued map.

8.7.1. From the KLT formula to the single-valued map

The selection rules on MZVs in n-point closed-string amplitudes were firstly identified by combining the KLT
relations with the structure (8.38) of the open-string o’-expansion and exploiting conjectural properties of the M,,, P,,
matrices [281]. The construction in the reference starts from the general form (7.83) of the KLT relations with a symmetric
choice of bases B1, B, — (1, P, n—1, n) of permutations. With the expansion (6.50) of open-string amplitudes A(...) in
terms of SYM tree amplitudes A(. ..), we obtain

Mot = N A1, P,n—1,n)G™A(1,Q, n—1,n), (8.96)
P,QeSp—3
G = Z (F am_'(1,A,n—1,n[1, B,n—1,n)Fz2 .
ABES,_3

The next step is to insert the «’-expansion (8.38) for both (n—3)! x (n—3)! matrices of disk integrals (F*)", and Fz¢ as
well as the observation [281]

PYm ) P=m"", My, m ' =m My (8.97)

forP = Z;’io 52"sz in order to move all the P,,, M,, matrices to the right of m;,l. We have suppressed the permutations
indexing the (n—3)! x (n—3)! matrices m;,l and m~! which are simply the KLT kernels of string and field theory for the
symmetric choice of bases B1, B, — (1, P, n—1, n) in (7.83), for instance

sin(mrsy) sin(mrs $128
(.7T 12) Sin(7s3) ’ m_l(l, 2.3,4[1,2,3,4) = 12523
7 sin(7 (s12+523)) S12 + 523
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at four points. By passing to motivic MZVs and applying the isomorphism ¢ to the f-alphabet, (8.97) leads to the following
simplified form of (8.96) [281],

") = m™! Z Z Z M, .. Mﬂlelez .- 'Mbs(fﬂ]fﬂz .- -far U—'fblsz .- ~fbs)

r,s= 0”1“2 ----- ar bq,by,..
N+1 ezN+1

:m*Z > MilMiz...MirZ(fij...ﬁzﬁlmﬁj+1ﬁj+2...fir), (8.99)
j=0

r=0 iq,ip,...,ir€2N+1

where the sums over words in odd g;, b; have been rearranged to expose the coefficients of a given matrix product in
the last line. At this point, one can recognize the form (8.28) of the single-valued map in the f-alphabet and obtain the
motivic version M‘,]"Cl"sed of the closed-string amplitude in the form [333]

pMpody = — N A1 P, n,n—1)S(PIQ);

P,Q,ReS;_3

o0
x> sy Sy XM M, .M )o"A(, R, n—1, ) (8.100)
r=0 iq,...,ire2N+1
=~ D ALP.nn=1)SPIQ): [sve(F™)],"A(1. R.n—1.n)
P,Q.ReSp_3
upon insertion into (8.96) and changing bases of left-moving SYM amplitudes to A(1, P, n, n—1).57 In passing to the last

line, we have identified the series over words in sv(fij) as the single-valued map of ¢(F™) in (8.38), where sv(f;) = 0
removes all contributions from the Py.

8.7.2. Closed-string amplitudes as a field-theory double copy
Since the ¢-map retains the complete information on the MZVs in its preimage, we can rewrite (8.100) as an amplitude
relation [333]

Mot = — N A1, P, 0, n—1)S(PIQ)1 sv.A(1,Q, n—1,n), (8.101)
P,QeSp—3

where the single-valued image of the entire open-superstring amplitude (6.50) can be presented in one of the following
forms:

svA(1,P,n—1,n)= Y (svF)®A(1,Q,n—1,n) (8.102)
QeSy_3
o0
=Y > ¢ V0SS Y (MyMy .. M %A1, Q n—1,n)
r=0 iq,...,ir€2N+1 QeSp_3
= Z (14 283M3 + 285Ms + 205M35 + 28:M7 + 2¢3¢5{M3, Ms} + 2¢0Mo + 3¢5 M3
Q€Sp—3

+ 282M2 + 283¢7{M3, M7} + 2¢11Mi1 + ¢2¢5(M3Ms + 2M3MsMs + MsM2)
2(38335 — 58505 + 20507 + 98280) M3, [M3, Ms]] + - -+ ) ,%A(1,Q, n—1,n),

with weight or «’-orders > 12 in the ellipsis. The matrix anticommutators {M,, My} = MyM,+M,M, along with {3¢s and
{3¢7 are the remnant of applying the single-valued map to the contributions from ¢35 and ¢3 7, where the relevant terms
of (8.34) are mapped to

1
5V<§3§5MSM3 + *{3,5[1\/15, M3]) = 44385 MsMs — 28385[Ms, M3] = 283¢5{M3, Ms}, (8.103)
5V<§3C7M7M3 + (53 7+ 3¢2) My, M3]) = 44387 M7 M3 — 28387[M7, M3] = 28387{M3, M7},

67 This has been done via

Z A(1,P,n—1,n)m '(1,P,n—1,n|1,Q,n—1,n) = — Z A(1,P,n,n—=1)S(P|Q); .

PeSy_3 PeSy3
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see (8.26) for sv¢s s and sv s 7. While ¢35, {37 and in fact all higher-depth MZVs with at most two odd letters f.f, in
their f-alphabet image drop out from closed-string amplitudes, the «’-expansion (8.102) retains {335 as the simplest
conjecturally irreducible higher-depth MZV in the image of the single-valued map.

Even though the derivation started out from the string-theory KLT formula (7.83), we brought the closed-string
amplitude into the form (8.101) of a field-theory KLT formula with the «’-independent kernel S(P|Q); in (4.159). At tree
level, the closed superstring is said to be a field-theory double copy of SYM with the single-valued open superstring. A
similar type of field-theory double copy was found for the open superstring in (6.69) with the scalar Z-integrals in the
place of the sv A: both double-copy formulae (6.69) and (8.101) for open and closed superstrings involve SYM trees as a
field-theory building block and carry the entire «’-dependence in a string-theoretic double-copy constituent Z or sv A.

Permutation invariance of the field-theory KLT formula hinges on the B(C] relations of the double-copy constituents
which are certainly satisfied for the SYM amplitudes A(...) on the left of the KLT matrix in (8.101). The single-valued
open-superstring amplitudes in turn obey BC] relations [146] by the reasoning in Section 8.4.1 — the matrix products at
each order in the «’-expansion of (8.102) preserve the B(] relations of the SYM amplitudes.

8.7.3. Sphere integrals as single-valued disk integrals

The relation between closed and single-valued open superstrings as well as the associated KLT relation (8.101) can be
rewritten at the level of Parke-Taylor-type sphere integrals J(P|Q) defined in (7.61). This can be seen by inserting the
single-valued map of (6.69),

svAP)=— Y svZ(P|1,Q,n,n—1)S(QIR}A(1, R,n—1,n), (8.104)
Q.ReSp—3

into (8.101) and comparing with the representation (7.70) of MEosed The coefficients of the (n—3)!? independent bilinears
A(1,P,n,n—1)A(1, Q, n—1, n) have to agree in both representations of Mfll‘md, and we conclude that [146]

svZ(P|Q) =J(P|Q). (8.105)

In comparing the definitions (6.62) and (7.61) of the disk and sphere integrals, the single-valued map is seen to effectively
trade a disk integration over the domain D(P) in (3.78) for a sphere integration with an insertion of the antiholomorphic
Parke-Taylor factor PT(P). This is natural from the connection between disk orderings and Parke-Taylor factors via Betti-
deRham duality [370,371], relating simple poles of PT(P) in z;—Z; to inequalities z; < z; characterizing the integration
domain D(P).

Instead of relying on the o’-expansion (8.38) of open-superstring amplitudes and the properties (8.97) of the matrices
P,,, M,,, one can prove (8.105) at all multiplicities and orders in «’ via single-valued integration [288]. A simple “physicists’
proof” on the basis of the Betti-deRham duality between D(P) and PT(P) as well as standard transcendentality conjectures
on MZVs can be found in [372], and the reader is referred to [233,290] for a mathematically rigorous proof. Moreover, the
fact that the expansion coefficients of J(P|Q) are single-valued MZVs can be explained from the study of single-valued
correlation functions [373].

As an important plausibility check of (8.105), we note that both sides obey BC] relations in both P and Q. First, IBP
relations among Parke-Taylor factors readily imply the BC] relations of Z and J in Q and those of J in P. Second, the
sv-action %sin(nx) — x on the trigonometric factors of Section 7.3 maps the monodromy relations of Z in P into BCJ
relations, see Section 8.4 and [146].

8.7.4. The web of field-theory double copies for string amplitudes

Single-trace amplitudes 4™ of gauge multiplets in heterotic string theories have been expressed in terms of SYM
trees and the sphere integrals J in (7.133). By the relation (8.105) between sphere and single-valued disk integrals, one
can identify [146],

APY(PY = sv A(P), (8.106)

i.e. single-trace amplitudes of the gauge multiplet in type I and heterotic string theories are related by the single-valued
map. Moreover, the field-theory double copy (7.119) together with (8.104) and (8.105) imply that all massless tree
amplitudes for the heterotic string reduce to single-valued type I amplitudes [221],

ME == 3" Apepiyargs(1, P, n=1)S(PIQ ) sv A1, Q, n—1, 1), (8.107)
P,Q€Sy_3

where the amplitudes A g2 yy143 Of the (DF)? + YM + ¢ field theory [272] (see Section 7.5.3) are rational functions of
o' Just like the expression (8.101) for type Il amplitudes, (8.107) double-copies single-valued open superstrings with a
field theory (with Apry2 yp443 0 the place of SYM amplitudes in case of the heterotic string).

Similar double-copy formulae apply to bosonic strings: removing the bi-adjoint scalars from the (DF }>*+YM+¢?> theory
leaves a simpler field theory (DF)? + YM with the same massive states [272] which casts n-point tree-level amplitudes
AP and MPs of open and closed bosonic strings into the compact form [221]

ASR)=— Y Apppiw(1, P.n,n=1)S(PIQ1Z(R|1, Q. n—1,n), (8.108)
P,Q€Sy_3
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Table 4
Double copy constructions of tree-level amplitudes in various string theories as presented in [221].
string ® QFT SYM (DF)? +YM (DF)? +YM + ¢°
Z-theory open superstring open bosonic string comp. open bosonic string
sv(open superstring) closed superstring heterotic (gravity) heterotic (gauge & gravity)
sv(open bosonic string) heterotic (gravity) closed bosonic string comp. closed bosonic string
M = — Z Aprpaya(1, P, n—=1)S(P|Q); sv.A™5(1,Q, n—1,n).

P.QeSy—3

Moreover, the gravity sector of heterotic-string amplitudes admits an alternative form [221]

M |grav__ Z A(1,P,n,n—1)S(P|Q); sv.A"(1,Q,n—1,n), (8.109)
P,QeS;—3

where the supersymmetries arise from the opposite double-copy constituent as compared to (8.107) — from the SYM
field-theory amplitudes A instead of single-valued superstring disk amplitudes.

A summary of the field-theory double-copy formulae (6.69), (8.101) and (8.106) to (8.109) for tree amplitudes in various
string theories can be found in Table 4. In all cases, the double copy refers to the KLT formula with «’-independent kernel
S(P]Q); and features a field-theory building block (SYM, (DF)? 4+ YM or (DF)? + YM + ¢3) without any transcendentality.
The infinite tower of massive poles characteristic to string amplitudes occurs through the other double-copy constituent
— either the universal basis of disk integrals Z for open strings or single-valued open-string amplitudes in case of type II,
heterotic or closed bosonic strings.

Note that the compactified versions of open and closed bosonic strings in the rightmost column of Table 4 refer to the
geometric realization of the gauge sector of the heterotic string: the Kac-Moody currents .7%(z) in the vertex operators
of the gauge multiplet in Section 7.5.1 can be obtained from compactifying free bosons 9,X'(z) on a torus, where I labels
the Cartan generators of the gauge group [105].

8.7.5. Twisted KLT relations

An interesting variant of the sphere integrals J(P|Q) in (7.61) arises in so-called chiral or twisted string theories
[374-376]. These theories are characterized by finite spectra due to a flipped level-matching condition that can be
informally identified with a relative sign flip of «’ between left- and right-moving worldsheet degrees of freedom. In
particular, the spectrum of twisted type II superstrings reduces to the associated supergravity multiplets.

At the level of the sphere integrals in the tree-level amplitudes of twisted string theories, the sign flip between left-
and right movers applies to the antiholomorphic part of the Koba-Nielsen factor,

-~ . o n-3 d221 d222 dzzn 1 Zl-j %Sij —_—
o= (-5) [ e ]‘][(z) PT(Q)PTP). (8.110)

where the single-valued factors of |z;]™* i in (7.61) from the correlators of conventional strings are replaced by (z’-’ ) 'sii/2,
Apart from these modifications of the Koba-Nielsen factors, the chiral correlators K, among closed-string vertex operators
can be freely interchanged between the type II versions of twisted and conventional strings [376,377]. Hence, the
supergravity n-point function, computed from twisted type II strings, takes the form of (7.70) with the modified sphere
integrals J(P|Q) in the place of J(P|Q). In order to arrive at the field-theory KLT formula (4.158) for supergravity, the
sphere integrals of the twisted strings have to directly match the doubly-partial amplitudes m(P|Q),

J(PIQ) = m(P|Q). (8.111)
However, the sphere integrals (8.110) are ill-defined due of the multivalued factors of (Z’J e Si/2 in the integrand. Still,

one can formally define ](P|Q) by a KLT formula, where the reversal of &’ along with the antlholomorphlc Zjj leads to a
sign-flipped version of standard Z-integrals

Z(PIQ) = Z(PIQ) |, ., - (8.112)
namely
JAB) =— > z(1,P.n—1,njA)S,(PIQ1Z(1,Q.n,n—1|B). (8.113)

P,QeS,_3
Upon comparison with the requirement (8.111), the KLT formula for the twisted sphere integral needs to reproduce the
o’-independent doubly-partial amplitude,
m(AB)=— Y Z(1,P,n—1,njA)S,(PIQ):Z(1,Q. n, n—1|B). (8.114)
P,QeS,_3
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Hence, the conclusion is that a sign-flip in one of the Z-integrals in the conventional KLT formula (7.62) is enough to cancel
the entire tower of «’-corrections. In fact, (8.114) can be deduced from the twisted period relations [246] as introduced
into the physics literature in [199].

Another way of understanding the dropout of «’-corrections from (8.110) is to revisit the simplification of the sphere
integrals in Section 8.7.1. The sign flip effectively reverses My — —Mb41 in one of the F-factors in the matrix G’ of
sphere integrals in (8.96) and turns (8.99) into

o0 r
PG >m Y Y MMy, My Y (=1 oy whfin - fi)- (8.115)
r=0 i1,iz,...,ir €2N+1 j=0
By the alternating signs (—1) on the right-hand side, the coefficient of each non-trivial matrix product M;, ... M;, with

r # 0 cancels [376]. Hence, the matrix G’ in (8.96) is mapped to the KLT kernel in passing to the twisted string, and we
obtain supergravity amplitudes as expected.
One can also turn the logic around and impose that the expression for G*¢ in (8.96) reduces to

m~'(1,P,n—=1,n]1,Q,n=1,n) = Y (F'\’sm_'(1,A,n—1,n/1,B,n—1, n)Fs (8.116)
A,BES,_3

with Fz@ = Fz@ s fy=%%% 0or fory1 in (8.116) then imply the properties (8.97) of
the matrices P,,, M,,.
Finally, we note an amusing variant of (8.114): instead of obtaining doubly-partial amplitudes m(P|Q) by contracting

Z(A|P)Z(B|Q) with the string-theory KLT kernel S,/(A|B);, one can instead contract the free indices P, Q with the
field-theory kernel S(P|Q );. In this way, one arrives at the inverse m, of the string-theory KLT kernel [245]

ma(AB)=— 3 Z(AI1,P,n—1,m)S(PIQ)Z(B1, Q. n,n—1). (8.117)
P,QeSp_3

o 35 in (8.112). The coefficients of

Note that the heterotic and bosonic versions of twisted strings provide a worldsheet realization of the (DF)* + YM and
(DF)? 4+ YM+ ¢* theories [378]: up to the sign flip o’ — —a’ between left- and right-movers, the Parke-Taylor expansion
(7.115) of bosonic correlators takes the identical form in twisted string theories. The massive modes in the (DF)? + YM
and (DF)? + YM + ¢3 theories arise from asymmetric double copies of vertex operators for an open-string tachyon and
the first mass level of compactified open bosonic strings. Similarly, the spectrum of heterotic twisted strings contains a
colorless spin-two multiplet from a double copy of tachyons with the first mass level of the open superstring.

The generalizations of the correlators iC,,, IC';"S to massive states also take a universal form for conventional and twisted
strings up to o’ — —a’. This was exploited in [379] to pioneer field-theory double-copy structures in tree-level amplitudes
involving massive open- and closed-superstring states based on tools from the heterotic twisted string.

9. Conclusion and outlook

This work aims to give a comprehensive review of string tree-level amplitudes in the pure spinor formalism. The
manifestly spacetime supersymmetric worldsheet description of the pure spinor superstring reviewed in Section 3
introduces massless open-string excitations in the framework of ten-dimensional SYM, see Section 2. The OPEs of
these superspace vertex operators give rise to the multiparticle formalism whose rich combinatorial structure has
been presented from different perspectives in Section 4. The multiparticle formalism connects conformal-field-theory
techniques with recursive organizations of Feynman diagrams and led to compact formulae for n-point tree amplitudes
of SYM, see Section 5.

The setup of the first sections is the key to find the decomposition (6.49) of n-point superstring disk amplitudes into a
basis of color-ordered SYM trees. This is the main result of this review whose derivation and interplay with disk integrals
and their field-theory limit is presented in Section 6. The structure of the disk amplitude together with its corollaries for
type II superstrings and heterotic strings have profound implications on field-theory amplitudes reviewed in Section 7
— the color-kinematics duality of gauge theories and Goldstone bosons as well as double-copy descriptions of gravity,
Born-Infeld and Einstein-Yang-Mills. The last Section 8 is dedicated to the low-energy expansion of superstring tree-level
amplitudes and the elegant mathematical structures of the multiple zeta values therein.

From the material in this review, both the moduli-space integrand for n-point string tree-level amplitudes and the «'-
expansion of the integrated expressions are available to any desired order. We have presented the strong connectivity of
both the integrands and the integrated results with the web of double-copies among field-theory amplitudes and various
areas of pure mathematics including combinatorics, number theory and algebraic geometry. The detailed control over
string tree amplitudes cross-fertilizes with ambitious questions on string dualities (say through the multiple zeta values
in multiparticle type IIB amplitudes) but also offers new connections between perturbative string theories beyond any
known duality (e.g. gauge amplitudes of heterotic strings as single-valued type I amplitudes).

The diverse insights unlocked by the results on string tree-level amplitudes in this review motivate a similar
investigation of loop amplitudes, where already the last years witnessed progress on several frontiers. We shall now
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give an overview of recent loop-level developments that generalize selected aspects of this review beyond tree level. The
subsequent path through the literature is far from complete and may quickly become outdated after the time of writing
this review. The reader is referred to [380] for an overview of loop-level amplitude computations in the pure spinor
formalism as of October 2022 and to the white paper [85] for a status report on a broader selection of topics in string
perturbation theory as of March 2022.

9.1. Loop amplitudes in the pure spinor formalism

By the manifest spacetime supersymmetry of the pure spinor formalism, it automatically incorporates a variety of
cancellations in loop amplitudes between internal bosons and fermions. In the pure spinor prescription for loop-level
open- and closed-string amplitudes, many of these cancellations can be traced back to the saturation of fermionic zero
modes. The loop-amplitude prescription in the “minimal” worldsheet variables of Section 3 dates back to 2004 [2],
followed by its extension to “non-minimal” variables in 2005 [3]. A central ingredient in loop amplitudes of the pure
spinor superstring is a composite b-ghost whose explicit form in the non-minimal variables [3] involves poles in the pure
spinor ghosts.

Just like at tree level, the loop amplitudes computed from these prescriptions automatically involve kinematic factors
in pure spinor superspace after integrating out the non-zero modes of the worldsheet variables. Moreover, the pure
spinor formalism is readily compatible with the chiral-splitting procedure [5,381] to express closed-string correlators
at arbitrary genus as a holomorphic square of chiral amplitudes that integrate to open-string amplitudes after specifying
boundary conditions for the endpoints. Accordingly, the subsequent status report on explicit loop-level computations in
the pure spinor formalism refers to both open- and closed-string amplitudes unless stated otherwise. In fact, the so-called
homology invariance of chiral amplitudes - their single-valuedness on higher-genus surfaces under suitable shifts of the
loop momenta - provided crucial input for recent loop-amplitude computations in the pure spinor formalism.

The constraints from zero-mode counting facilitated the derivation of non-renormalization theorems in string the-
ory [382,383] and led to multiloop results on the ultraviolet structure of maximal supergravity through a worldline
version of the pure spinor formalism [ 184]. The computation of non-vanishing string loop amplitudes with the pure spinor
formalism was initiated with the one-loop four-point amplitude in 2004 [2] and the two-loop four-point amplitude in
2005 [99]. The bosonic components of the two-loop result were later on confirmed [384] to reproduce the earlier two-loop
four-point computation in the RNS formalism [385].

The non-minimal pure spinor formalism has been used to compute one-loop five-point amplitudes [386], the exactly
normalized four-point amplitudes at one loop [120] and two loops [121] as well as the low-energy limits of the three-loop
four-point [94] and two-loop five-point [387] amplitudes. In all of these cases, the b-ghosts only contribute through their
zero modes. However, the non-zero modes of the b-ghost and the complexity of its multiparticle correlators currently
cause a bottleneck in performing higher-order computations directly from the prescription. Still, consistency conditions
on loop amplitudes and in particular the multiparticle formalism of Section 4 often allowed to circumvent the most
daunting challenges from the b-ghost and led to many recent advances on higher-point amplitudes.

The multiparticle formalism spawned simplified expressions for one-loop open- and closed-string amplitudes in
an integral basis at five points [178] and at six points [388]. The latter reference also reconciles the hexagon gauge
anomaly of individual worldsheet diagrams in type I theories [389,390] with BRST cohomology techniques and derives
the anomaly kinematic factor [391] from an explicit amplitude representation. Based on additional input from locality,
chiral splitting and the associated homology invariance, a systematic procedure to derive one-loop correlators is described
in [181,392,393]. The resulting chiral amplitudes enjoy a double-copy structure [394] similar to the KLT-type formula
for the open-superstring correlator (6.73) at genus zero. However, the coefficients of holomorphic Eisenstein series in
(n > 8)-point correlators have so far resisted a computation from this method.

Similarly, two-loop five-point amplitudes were constructed beyond their low-energy limit by a confluence of BRST
invariance, locality and chiral-splitting techniques [ 182]. Their parity-even bosonic components were later on verified from
a first-principles computation in the RNS formalism [395]. Finally, an exact-in-o’ expression for the three-loop four-point
amplitude was proposed in [396] based on input from the field-theory limit, ambitwistor strings and modular invariance.
It would be interesting to analyze this three-loop result from a pure spinor perspective.

The combined power of the multiparticle formalism, BRST invariance and locality has also been used to directly propose
loop integrands for ten-dimensional SYM, see [179] for one-loop integrands up to six points and [180] for two-loop
five points. The five-point results at one and two loops readily manifested the color-kinematics duality and induced the
corresponding loop integrands for type II supergravity in pure spinor superspace via double copy as in [397]. Based on
the tropical-geometry methods of [398], these five-point field-theory amplitudes were independently derived from the
o’ — 0 limit of the corresponding string amplitudes at one loop [179] and at two loops [182].

However, the present pure spinor methods leave open questions on the loop-level realization of the color-kinematics
duality and double copy at n > 6 points. The first superspace construction of one-loop six-point SYM numerators in [179]
violated certain kinematic Jacobi identities. These violations disappear®® in passing to the linearized variant of Feynman

68 The violations of kinematic Jacobi identities in the one-loop six-point results of [179] also disappear in MHV helicity configurations upon
dimensional reduction to D = 4 [399].
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propagators [400] that typically arise from ambitwistor strings [401]. The resulting supergravity integrands on linearized
propagators are available in KLT- and cubic-diagram form [400,402] obtained from the forward limits of (7.67) and (4.158).
A solution of all the one-loop kinematic Jacobi identities on quadratic propagators was offered in [403] by taking the field-
theory limit of the corresponding string amplitudes in different color orderings. However, the conventional cubic-diagram
double copy [238] of these color-kinematics dual SYM numerators conflicts with BRST invariance, so it is an open problem
to construct supergravity loop integrands on quadratic propagators at n > 6 points.

Both the above subtleties in finding string-theory realizations of the gravitational double copy and the non-zero mode
contributions of the b-ghosts kick in at the one-loop six-point level. One may speculate about a connection between
the two kinds of challenges, for instance whether an incorporation of the b-ghost into the multiparticle formalism is the
missing puzzle piece for n-point one-loop string amplitudes with manifest double-copy structure in the field-theory limit.
This scenario is supported by the role of the b-ghost for a kinematic algebra and its connection with tree-level multiparticle
superfields identified in [404]. Also higher-loop string amplitudes call for further investigations of the b-ghost since its
poles in the pure spinor ghosts necessitate regularization techniques such as [405,406] at genus g > 3.

9.2. Worldsheet integrals in loop-level string amplitudes

A central line of tree-level results in this review is driven by the Parke-Taylor bases of disk integrals Z in (6.62) and
sphere integrals J in (7.61). First, their integration-by-parts relations and (n—3)! bases fruitfully resonate with the BRST
properties and B(] relations of the accompanying kinematic factors in pure spinor superspace. Second, their logarithmic
singularities (including the absence of double poles) ensure that the «’-expansion is uniformly transcendental and in
fact realizes field-theory amplitude relations along with infinite families of multiple zeta values. These properties of
Parke-Taylor integrals at tree level motivate the goal of constructing similar kinds of integral bases at higher genus.

At genus one, generating functions Z, of open-string integrals in different string theories furnish conjectural (n—1)!-
element bases with uniformly transcendental «’-expansions [365,366]. At suitable orders in the bookkeeping variables
12,13, - . - , Nn, ONe can read off the combinations of theta functions for one-loop correlators of the pure spinor superstring
that share the logarithmic singularities of the Parke-Taylor factors. More precisely, the function space to assemble the
one-loop analogues of the tree-level correlators iC, in (6.73) is controlled by the loop momenta of the chiral-splitting
procedure [5,381] and the coefficients g¥)(z, ) of the Kronecker-Eisenstein series [407],

94(0, 7)01(z+n, T) 1 = k=1 (k)
2 TR = — 1Y R g, n). (9.1)
Oz, T)r(n.T) ,;

After integration over the loop momenta, the moduli-space integrand of open- and closed-string amplitudes is expressed
in terms of doubly-periodic versions f®)(z, t) of the Kronecker-Eisenstein coefficients g¥(z, t) which also manifest the
modular properties in the closed-string case.

In the same way as Parke-Taylor factors share the BC] relations of gauge-theory tree amplitudes, the combinations
of g(")(z,-j, t) and loop momenta seen in one-loop correlators [181,394] are observed to obey the same identities as the
BRST-invariant kinematic factors [393]. Up to and including seven points, this duality between kinematics and worldsheet
functions is fully established in the references and underpins a double-copy structure in the chiral amplitudes. Starting
from eight points, the chiral amplitudes involve holomorphic Eisenstein series Gi(t) = —g™®)(0, t) with k > 4, and it is
an open problem to accommodate them into the duality between kinematics and worldsheet functions.

The loop-level analogue of the string-theory KLT relation of Section 7.2.1 is uncharted terrain at the time of writing.
However, the tree-level monodromy relations whose vibrant interplay with KLT relations was illustrated in Section 7.3
were generalized to loop level, investigated from several perspectives [408-412] and extended to one-loop amplitude
relations between mixed open-and-closed-string amplitudes and pure open-string amplitudes [413]. It would be very in-
teresting to relate properties of the Kronecker-Eisenstein-type functions in the chiral correlators to one-loop monodromy
relations as done for Parke-Taylor factors and disk orderings through the relations (6.76), (6.77) and (7.77) of the Z(P|Q)
integrals.

The dependence of integrated string loop amplitudes on &’ and the kinematic variables is more involved than at tree
level and features branch cuts in addition to the poles for the infinite tower of massive string modes. At one loop for
instance, the analytic continuations in the external momenta required by the integral representations and compatible
with the poles and branch cuts are discussed in [414-416]. Already the «’-expansion of one-loop string amplitudes
contains logarithms in Mandelstam invariants on top of the Laurent series in s;_ seen in the tree-level «’-expansions of
Section 8. The logarithms in one-loop four-point closed-string amplitudes due to effective tree-level interactions D**R™
were pioneered in [417,418] and computed to all orders in «’ in [419]. Two recent lines of attack to determine the non-
analytic sector of higher-point one-loop string amplitudes are based on one-loop matrix elements of tree-level effective
interactions [420] and an implementation of Witten’s ie prescription [421].

A prominent motivation for the computation and low-energy expansion of string loop amplitudes stems from their
implications for string dualities. In this context, the main interest is in the analytic contributions to the «’-expansion
which reflect new interactions in the loop-level effective actions. For type IIB superstrings, the SL,(Z)-invariance w.r.t.
the axio-dilaton field [422] must be realized in the coefficients of all independent D*R™ interactions. Perturbative string
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amplitudes carry important information on these modular invariant functions of the string coupling. Four-point string
amplitudes up to and including three loops were successfully matched with SL,(Z)-invariant coefficients of the R*, D*R*
and DR* interactions [94,423-427].

Pure spinor methods gave rise to compact representations of loop amplitudes also beyond four points. Together with
a low-energy expansion of the worldsheet integrals, the five-point amplitude computations at one loop [178] and two
loops [428] made a duality analysis of D*R> interactions tractable. Both references confirmed the duality properties of
supermultiplet components that violate the U(1) R-symmetry of type IIB supergravity [282,429,430] and cannot arise in
four-point string amplitudes [431]. Moreover, the loop-level effective actions will involve new superinvariants starting
with D®R> that are absent in the tree-level effective action [178,428]. The classification of independent interactions and
SL,(Z)-invariant type IIB couplings necessitates precise control over the tensor structure of multiparticle loop amplitudes
as provided by pure spinor superspace.

A frequently used strategy towards low-energy expansions of string loop amplitudes is to first integrate over vertex
insertion points prior to the complex-structure moduli t of the genus-g surface. In this way, the o’-expansions generate
infinite families of modular invariant functions of T w.r.t. Sp,,(Z) on the worldsheet (rather than the SL,(Z) acting on the
axio-dilaton field in case of type IIB). These functions generalize the (single-valued) MZVs of Section 8 to higher genus
and were dubbed modular graph forms in [432,433] after earlier case studies in [417,418,434]. Already at genus one,
modular graph forms stimulated interdisciplinary research lines at the interface of string theory, algebraic geometry and
number theory, see e.g. [435] for an overview as of November 2020, [436] for lecture notes and [437] for the connection
with Brown'’s equivariant iterated Eisenstein integrals [438,439]. The study of higher-genus modular graph forms started
with [427,440-444] and suggests a generalization to modular graph tensors [445].

From a string-theory perspective, a major appeal of modular graph forms is to investigate the loop-level gener-
alization of the tree-level relation (8.105) between closed-string and single-valued open-string integrals. In one-loop
amplitudes of open superstrings, the iterated integrals over vertex-operator insertions on a cylinder- or Mobius-strip
boundary were shown in [407,446] to yield elliptic MZVs [447] and elliptic polylogarithms [448]. There is a variety of
evidence [432,449-451] that modular graph forms may be viewed as single-valued elliptic MZVs. In particular, the closed-
string counterparts [452,453] of the conjectural (n—1)! basis Z, of one-loop open-string integrals led to an explicit all-order
proposal [454] how to relate modular graph forms to single-valued elliptic MZVs in the respective «’-expansions. On the
one hand, this line of reasoning aims to extract the more challenging configuration-space integrals over punctured tori
from the simpler iterated integrals over cylinder- and Mobius-strip boundaries. On the other hand, this research direction
may reveal loop-level manifestations of a deeper relation between closed and open strings beyond any known string
duality.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

We are grateful to Maor Ben-Shahar, Nathan Berkovits, Lorenz Eberhardt, Max Guillen and Callum Hunter for helpful
discussions and comments on a draft version of this work. Moreover, we would like to thank the anonymous referee
for a highly diligent study of the manuscript, several important corrections and numerous valuable suggestions. CRM is
supported by a University Research Fellowship from the Royal Society. OS is supported by the European Research Council
under ERC-STG-804286 UNISCAMP. CRM would like to thank the engineers and the construction workers responsible for
good quality of the electric poles alongside the roads in Waterloo, Canada. Without them, this work would not have been
possible in its current form. OS dedicates this work to the 18th birthday of his brother Robin Schlotterer — finally you
are old enough to have fun with pure spinors, Robin.

Appendix A. Gamma matrices

Pure spinor calculations in ten dimensions often involve the handling of gamma matrices. In this appendix we review
some of the most common manipulations involving ten-dimensional gamma matrices (for a computer implementation,
see [455]). Most of this material can also be found in [456]. In particular, the book [457] contains a variety of discussions

in general dimensions and should be consulted for further reading.

A.1. The Clifford algebra in R"®

Lorentzian signature. The 32 x 32 Dirac matrices "™ in ten-dimensional Minkowski space R!® withm = 0, ..., 9 satisfy
the Clifford algebra
('™, r'"y = 20" 135432 . (A.1)
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The signature of the metric is the mostly plus (— 4+ + - - - +). In the Weyl representation of I"™ only the off-diagonal
16 x 16 blocks are non-vanishing, parameterized as

0 (ym)P
rm= , A2
((y'")a,s 0 (A-2)
in terms of chiral gamma 16 x 16 matrices y™ subject to
Yap (" + vy ™y =205, (A3)
Numerical representation. An explicit representation of the 16 x 16 gamma matrices (A.2) is given by
1 0 -1 0
O\af __ 8x8 0 _ 8x8
()’ ) - ( 0 ]st> ’ (V )Oéﬂ - ( 0 _18><8> ’ (A4)
; 0 ol ; 0 ol
hap _ 4 aa i _ ' aa
(V ) - <U;b O > ’ (y )Olﬂ - <O.l;b 0 ) ’
1 0 1 0
9vap _ [ lsxs 9 _ [ lsxs
()’ ) - ( 0 _18><8) ’ ()/ )01,3 - ( 0 _18><8) )
where o/ withi=1,2,...,8 are 8 x 8 matrices (1 := 15,3)
Oy =e®e®¢, o4=1Q0'®e¢, (AS5)
0(13&=Il®0’3®8, a(fd=01®8®11,
aasaza3®s®1l, afa:e®ﬂ®al,
o =e®1®0°, oi=101®1,

and ¢! with i = 1, 2, 3 are the Pauli matrices with ¢ = icg2

1_ (0 1 (0 1 3 (1 0
0—(10,8—_10,0'—0_1. (A.6)
While the gamma-matrix representations (A.4) are tailored to Minkowski-space R'?, their Euclidean analogues can be
found in (B.3) below.
Charge conjugation and chirality matrices. The chirality matrix in ten spacetime dimensions is given by
1 0
r=rort.. . ro=| 1e® A7
0 —li6x16 (A7)

which splits a 32-component Dirac spinor into two 16-component spinors of opposite chiralities

A= (i:) (A8)

called Weyl (1%) and anti-Weyl (A, ). The charge conjugation matrix satisfying CI'™ = —(I'™)'C is C = I'°. Since it is
off-diagonal, the Weyl and anti-Weyl are inequivalent representations in ten dimensions (unlike in four).

Generalized Kronecker delta. It is convenient to define the generalized Kronecker delta as
1
a1ay...a [aq qa: an]
8b:b§...b: = E(Sb116b§ e Oy (A.9)

which is totally antisymmetric in both sets of indices, e.g. 8% = 1(8%82 — 628%). Using the notation of words, in D
dimensions we have

(%)
(3

For example in D = 10 we have 371" = %83}]". In particular, when D = 10 where 8 = 10, the identity (A.10) gives the

full contraction when P = Q = ¢ as

PA
Soa =

8. p=IP|, a:=IAl, p+a<D. (A.10)

10
g+ — <n> = 10,45, 120,210,252 forn=1,2,3,4,5. (A11)

mi...My

A.2. Fierz decompositions

Antisymmetric products of gamma matrices are defined by the n-forms

1
ymlmzmmn — my[mlymz o ymn] , (A.lZ)
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and they lead to four possible configurations of Weyl-spinor indices, namely (¥ )ug, (y=)8, (y)? and (y~)P,. The
mixed combinations occur at ranks 2, 4, 6, 8, 10,

(ymlmz)aﬁ , (ymlmm4)aﬁ , (ymlmme)aﬁ , (ymlu.mg )aﬁ , (yml.“mw)aﬂ , (A13)
o> (yml...m4 )ﬂa , (yml...me )ﬁot , (yml...mg )ﬂa , (yml---mlo )ﬁot , (A14)

and are related by (anti)symmetry, i.e. the matrices in (A.14) can be rewritten in terms of the matrices in (A.13), see
below. Ranks 1, 3, 5,7, 9 give rise to spinor indices of alike chiralities

Y™Map, (P )ep, (Y )ep s (Y Nag, (V™) (A.15)
()/ml )aﬁ7 (ymlmzmg )aﬁ , (ymlmm5 )aﬂ , (ymlmm7 )0(/3 , (ymlmmg )aﬁ ,

(ymlmz )/3

and their symmetry properties do not mix the two lines.
The symmetry properties of the four types of matrices with respect to their spinorial indices are

symmetric: (y™ s, (y™-m),f (™" g (™) (™" g, (A.16)
antisymmetric: (y™™),”, (™M) (™o ™" ag (ym-moy,
where for example (y™™2),# = —(y™™2)8 , and the symmetry properties of the matrices with all upper spinorial indices

is the same as those with all lower indices, i.e. (y™ )*# = (™)’ etc.
The Fierz decompositions of spinor bilinears reads

vexf = %Syml (Yy™x)+ %(ymwm)""(Wm"“"‘3x) + ﬁ(yml...ms)‘“S(W'““"’"Sx), (A17)
Vax® = S0 + o Umm GV ™30+ 2 Gy da ™).
For anticommuting spinors 8 and bosonic pure spinors A%, important special cases of (A.17) are®?
AN = ﬁ(xym”f’qmygﬁpq,, 0%0F = %(9 "G )yl . (A.18)
A.3. Duality properties
In ten-dimensional Minkowski space R, using the convention
€1.9=1, €9 =1, (A.19)
with (in particular, e™™2-Mo¢,, o o= —10!)
€nyonyg€ MO = —10185, 700 (A.20)

the antisymmetric gamma matrices (n-forms) are related by the duality properties

1 1

(ym14.4m5 )aﬂ — §€rTl].4.11151114.4r‘l5(yn1mns )aﬂ , (ymp.fﬂs )06,3 — _§€m1wm5n]m“S(ynlmnS )0‘13 , (Az‘l)

my..mgy B __ 1 my...MgNq...N4 B my..mgyo 1 mq...Mgnq...N4 o
(v ' = € (Vay.ngda” > (v Yo =—2¢ (Vny.ng ) s
(ym14.4m7 )aﬂ _ _leml.,.m7n1mn3(yn n )Utﬂa (ym14.4m7 )aﬂ — lEmlmm7n1‘.‘n3(yn n )aﬂ ,

3! 113 3! 1--13
( my..mgy B __ _l my...mgnqny B my..mgyo l my...mgniny o
Y ! = 2’6 (Vnmz)ot ) (v ) B = 2‘5 (annz) B>

(ymlmmg)aﬂ — Eml...mgnl(ynl )05,3 , (ym14.4m9)a/3 — _6m14.4m9n1(yn1 )aﬂ ,
(ym1...m10)aﬂ — 6m1...m1085 , (ym1...m10)aﬂ — _Em14.4m108g .

A good exercise is to check them explicitly using the SO(1, 9) parameterization in (A.4). In ten-dimensional Euclidean space
where €110 = ¢;, ;0 = 1, the equations above are still valid after redefining the Levi-Civita epsilon tensor € — ie.

A.4. Traces of gamma matrices

In ten dimensions there are no invariant tensors with k antisymmetrized vector indices except when k = 10, so all
the k-forms with even 2 < k < 8 are traceless,

(ym1m2...mk)aa — 0 , k — 2, 4’ 6, 8 ) (AZZ)

69 The first identity in (A.18) is sometimes incorrectly stated with a coefficient 1920 rather than 3840 To see why the latter is correct, one has to
pay attention to the epsilon term in the trace (A.25) and the self-duality (A.21) of y'””""r
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When k = 10 compatibility with the duality conditions (A.21) implies

(ym1..JTI10)a(¥ — 16€m14.4m10 , (ym%.mm)aa — _16€m1..,mw . (A.23)
The trace relations for the 1, 2, 3,4 and 5 forms are given by [458]
= (™ ap(yn, " = 16871, (A24)
ymm )aﬁ(ynlnz )" =—16- 2!8:1,711"? ’

Tr(ym1 Vn1
Tr(ym1m2 Vrnnz ) =

~

Te(y ™™ Yy ng) = (V™™ g (Vny.ony )" = —16 - 3185170
Ty ™ ™y ng) = (™) (Vayng ) = 16 - 414
Te(y ™" Yy g ) = (V™™ g (Vny.ong )% = 16 - 5180, > + 16€™-M5, (A.25)

)
where Tr(yMyN) = yo%(y"’)ﬁ“ or Tr(yMyN) = (yM),P(¥N)* depending on the lengths of the multi-indices M and N. We
also note the vanishing of the traces with unequal lengths of M and N

Tr(y ™" yn ) =0, i#]. (A.26)
These identities can be conveniently summarized using word notation as’?
Tl'()/P)/Q) = 163P,q[p!83 4 §PoP ] ., |Pl=p, 1Ql=q. (A.27)

A.5. Products of gamma matrices

The antisymmetrized products of gamma matrices form a basis in the space of bispinor indices, as evidenced by the
Fierz identities. In order to freely move between upstairs and downstairs indices with the Euclidean metric, we consider
the Clifford algebra after a Wick rotation, {I"™, I'""} = 26™". Since in the pure spinor formalism it is convenient to consider
a Weyl representation leading to off-diagonal y™ matrices as in (A.2), the Clifford algebra for the 32 x 32 matrices I'™
reduces to

{y™, y"} =28™ (A.28)

in terms of 16 x 16 chiral gamma matrices. The explicit construction of such matrices can be found in Appendix B.1.
We now want to convert products of gamma matrices into sums over antisymmetrized gammas in the spinorial index
basis. The starting point is the Clifford algebra (A.28) which implies

ymyt = pmn 4 gmn (A.29)

This formula can be used iteratively when more indices are present, but the amount of generated terms grows quickly
when doing so. General formulae and strategies to handle the combinatorics exist in the literature. For instance, a general
formula for the product y,,. .my™ " has been written in [459] using a diagrammatic method, while in [460] an OPE-like
algorithm was presented. A nice formula was given in [456] with the combinatorics conveniently organized as (note that
the convention here has 1/k! in [a; ... a;])

A b
biby..bg __ 1502 k bg+1.---bgl
Yargy.qpV 2 = z : k!(k> (k>6[ap aapfl ..'(Saple»l ya1...ap7k] A (A.30)
k=0

where all the signs in the sum (prior to antisymmetrization) are uniformly positive due to the reverse ordering chosen
for some indices on the right-hand side. This formula can be further decluttered using a notation based on words. If we
adopt the convention where a lower case letter corresponding to the word denotes the length of the word, |A| := a, we
can rewrite (A.30) more compactly as (here we have 1/k! in [a; ... ax])

B a\ (b\ .z W)
yay® = X;y!(y) @%m : (A31)

ZW=B

7=y
where Y denotes the reversal of Y and we note the constraint y = z on the lengths of Y and Z due to the generalized
Kronecker delta. The combinatorial coefficients compensate the overall 1/(a!b!) due to the antisymmetrizations over the
A and B indices and the normalization of the generalized Kronecker delta (A.9) such that in the expanded result all terms

70 The reversal Q in (A.27) is explained by noting [mn] = —[nm], [mnp] = —[pnm]. In general, [P] = “3] 7P =0 Tmod4
—[P]:p=2,3mod4
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have a £1 coefficient, as follows from the iterated use of (A.29). For example,

b
Yajay Vb]bz = yﬂlﬂzblb2 + 4(S[[azl yﬂl]bﬂ + 25221111? (A-32)
bib by, b by, b by, b by, b by sb by b
=Yaa, '+ Sa; Ya, 2 — 5a§)’a1 T+ 8afyﬂz t— 5{111 Yo, * + Bazl5af - 5a§5a} .
Another example, which when fully expanded generates 136 terms in total, is given by
bybyb bbb [b byb [b1b b bbb
Yaraaasaas V27 = Yayagasages 00+ 158[11; Yaraasal ot 606[a;a3 Vajaza3] 3 608[111511241133 Yayap] - (A.33)

The different coefficients in front of each term correspond to the numbers of terms (with £1 coefficients) that are
generated once the explicit antisymmetrization takes place (note 136 = 1 + 15 + 60 + 60).
Related formulas for the commutator of gamma matrices can be found in [461].

A.6. Gamma matrix identities and pure spinors

A set of frequently used identities when manipulating pure spinor superspace expressions is listed below (repeated
indices are contracted):

Ya(p¥ys) =0, (A34)
v v = 0. (A.35)
yab vy = 48(8%s) — 568%). (A.36)
i Vs = 2E, = Vi), 37

1 1
YapVss = =5 YasVhs = 3zYes Vo > (A.38)

1
Vab Vio® = ~18YaVho + 3Vas Vo (A-39)
y(%"py;;"p = —12y,5Vs0 — 24VasVfo - (A.40)
(V™) ()" = —885 85 — 28085 + 4VaVm » (A.41)

21 1

(™ Yimnpa)o” = 315887 + Z-(r™ o’ (rmn)o + 2 (™) (V)" (A42)
("™’ (nnpg)o” = —48878;, + 2888,87 + 48y, v’ (A43)

They can be derived by using that the gamma matrices form a complete basis for the spinorial indices, see [462] for more
examples. Another important identity is the self-duality of the five-form that yields,

yarr;npqr yar(r;npqr —-0. (A.44)

Some of the above identities are particularly useful when contracted with pure spinors. The first identity of (A.34), for
instance, implies

(Ay™M)e(Aym)p =0. (A.45)

To see this it suffices to contract ygl’(’ﬂyy”(';) = 0 with A*A” and use the symmetry (A.16) of the one-form y;;; =
obtain (Ay™)g(Aym)s = —(Ay™)s(Aym)g — (Aymk)ygg = —(Ay™)s(A¥m)p = 0 based on the pure spinor constraint
An important corollary of (A.45) is

(AYm)a(Ay™PI0) =0, (A46)

which can be proven by decomposing the five-form using (A.31) as (Ay™P4 L) = (Ay™y™PI" L) +(Ay™PIX)E™ —(Apy™PTA)8™I+
(AyMrA)8™P — (AyPT"A)S™ and observing that all the three-forms contracted with two pure spinors vanish by the
antisymmetry (A.16). We can thus rewrite (Aym)e(Ay™PI L) = (AVm)e(Ay™y ™4 L) which vanishes by (A.45).

(0]

Yyp t
(3.26).

Appendix B. The U(5) decomposition of SO(10)

In this appendix we will list some of the formulae relevant for the decomposition of various SO(10) representations
into their U(5) components. Some useful references are [463] and the appendices of [464-466].

B.1. The Clifford algebra in R

For convenience, we will consider the Wick-rotated version SO(10) of the Lorentz group SO(1, 9). The ten-dimensional
Clifford algebra in Euclidean signature
{(rm, r'y =28™, mn=1,2,...,10 (B.1)
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admits a recursive construction [467] starting from the 2 x 2 representation in terms of Pauli matrices

B R R ) .

satisfying {03, 0j} = 26;; for i,j = 1, 2, 3. To assemble the explicit 2% x 2% gamma matrices I'"™ in ten dimensions we use
the Kronecker product of Pauli sigma matrices as follows [468] (1 := 152; also see (A.4) for the analogous numerical
representation of I'™ for Minkowski spacetime R'?):

N=08010181, r‘'=080019111,
’=000808181, NMN=0,80mne1®1,

PF’=0008080 11, MNf=000008081, (B3)
M=0080;00 Q0 o, I’=0,003003;8030,,
I°=0,803®0380;® 03, M= 6,110 1Q1.

The properties of the Kronecker product, (A ® B)(C ® D) = (AC ® BD) and (A ® B)T = AT @ BT, imply that the Clifford
algebra (B.1) is satisfied. Moreover, the symmetry properties of the above gamma matrices are

-1 =1,...,5
L (B4)
+Im, m=6,...,10.
In addition, the gamma matrices in (B.3) are purely imaginary for m = 1,...,5 and real for m = 6, ..., 10, as they are
constructed with an odd or even number of o,. This means that the representation (B.3) is hermitian
Il =ry. (B.5)

Charge conjugation and chirality matrices. Given the above symmetry property of I3,, the charge conjugation matrix C
satisfying

Chn=-I)C (B.6)
is obtained by the product of all antisymmetric I"’s [469]
C=NhLhI3M5=—-0,R01 Q0,01 Ro0,. (B.7)
]l)t is easy to see that C is antisymmetric, off-diagonal and satisfies C> = 13,,3,. In addition, the chirality matrix is given
y

, T16x 0
Fn=—11“1...F10=03®]1®]l®]1®]l=( o 1 16), (B.8)

and has the same numerical value as in the Lorentzian version (A.7).
B.2. Vectors and Lorentz generators

The generators M™" of the group SO(10) are antisymmetric M™ = —M™ and satisfy the Lie-algebra relations
[M™ MPI] = §™M"™ — §PM™ — STIMP  STIMTP (B.9)

The vector VP and spinor ¥ representations of SO(10) are defined by the following transformations’’

[M™, YP] = §mPY" — TPy (B.10)
1

[M™, ¥] = 51“"’"!1/. (B.11)
To decompose the vectorial representation SO(10) — U(5) we shall split the ten components of the SO(10) vector V™
withm =1,..., 10 into two vectors v¢, v, labeled by an indexa=1,...,5 as

1 1
v = — (VO Ve, vy = — (VP —iVS), a=1,...,5. (B.12)
V2 ( ) V2 ( )

71 Note the consistency between (B.9) and (B.10) as the transformation (B.9) can be viewed as the two-form version of (B.10) using [M™, V' ®V*] =

[M™ VIIQVS+ V' ®[M™, V] and setting MP? = VP QVI—VIQVP. The sign on the right-hand side of (B.11) may naively appear to conflict with the
fact that the Lorentz algebra (B.9) is obeyed by Gamma matrices in the normalization of M™ — —%1""’". However, repeated Lorentz transformations
lead to Gamma matrices in the opposite multiplication order [MP?, [M™ W¥]] = %(F"'“I“P")ll/ such that [[MPI, M™], W] = %[1"“”, rry =
—%(8"['”1“”]‘7 — 89m Py and the normalization on the right-hand side of (B.11) is determined by consistency with (B.9). In case of the pure
spinor ghost ¥ — A* and its Lorentz current M™ — N™' a more detailed version of this calculation can be found in (3.35), where (B.11) is
implemented through the OPE (3.33).
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Consequently, the components of tensors of SO(10) are split following the tensor products of the vector decompositions
(B.12) with the corresponding symmetry conditions. This implies, for example, that the generators M™" split as follows:

mab — % (Mab 4 iMa(fH—S) + iM(a+S)b _ M(G+5)(b+5)) , (B13)
Mgy = 1 (Mab _ l'MG(b+5) _ iM(a+5)b _ M(G+5)(b+5))

2 s
mg — % (Mab _ iMa(IH—S) + iM(a+5)b + M(a+5)(b+5)) .

Moreover, the trace of mj is given by

5
_E a __;
m= m, =1
a=1 a

From the above it follows that

5
M+ (B.14)
1

[m® v]=0, [Mab, vc] =0, (B.15)
[Map, v°] = 85vp — S5 v, [m®, v, = SC“vb - (vaa ,

[mp, v] = —§,v°, [mf, ve] = 8%vp,

[m, v] = —v°, [m, ve] = v .

To derive the above commutators, the decompositions (B.12) and (B.13) have been used to rewrite them in SO(10)
language, where (B.10) can be applied with its outcome cast back in U(5) variables using (B.12).
Similarly, the same strategy shows that the SO(10) Lie algebra (B.9) decomposes to U(5) as

[Map, Meg) = 0, (m®, m) =0, (B.16)
(Mg, m] = —(ngg + (Sffmlc, + Sng —8dm¢, [Mgp, Mgl = —85Mqq + 85Mpq
[m®, m§] = —84m® + 85m“, [mj, mg] = —8;m§ + 8my; ,

[m, mgy] = 2mgp, [m, m®] = —2m™,

[m,my] =0, [m,m]=0.

This shows that mj are the generators of U(5) embedded in SO(10). Moreover m? and my, transform as two-forms under
U(5), and vg, v° transform in the defining representations 5 and 5 of U(5). The trace m is the U(1) generator in the
decomposition U(5) = SU(5) ® U(1). The U(1) charge g of a representation R is defined by [m, R] = qgrR and denoted
by a subscript Ny, for an N-dimensional representation of SU(5). We conclude that the vector V™ and the antisymmetric
tensor M™ transform as follows under the SU(5) ® U(1) decomposition of SO(10),
VT = 08 @ g, M™ — m® @ my, ®miOm, (B.17)
10— 5,05, 45— 10 , 910, D24, D 1.

Decomposition of the Lorentz currents OPE. In the pure spinor formalism the SO(10) to U(5) decomposition must be applied
to the OPE between the Lorentz generators for the pure spinor variables,

BTPN"(w) — 8"N™(w) — S™IN™(w) + MNP (w) (8T8 — 6™P8™)

N™(z)NPI(w) (B.18)
zZ—w (z — w)?
Starting from the generators in (B.13) and (B.14), we perform the redefinitions
m 1
n= 7 ny =mj — §8§m, (B.19)

which identify nj as the traceless generator of SU(5). Using the same strategy as above leads to the following OPEs among
the SU(5) ® U(1) decompositions

Nab(2)nca(w) ~ regular, n%(z)n(w) ~ regular, (B.20)
—scnd +8dnS — 2586 8in  sesd _ segd
nap(2)n(w) ~ lab) ~ Her®l V5T 3%% T %% , n(z)nj(w) ~ regular,
z—w (z —w)?
—85n% + 8%n¢ sasc — Lsase 2 ng
n9(z)n ~ b''d d’b d“b de’ n(z)n ~ a ’
p(Z)ng(w) F— Z—w) (z)ngp(w) N
_5anbc + abnac _ gacnab 2 nab
n(ZnS(w) ~ —2 d s d_ n(z)n®(w) ~ —— ,
@n(w) — @) ~ 2
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~ytaa + i + 5050 n@n(w) ~ — ——
zZ—w ’ (z—w)"’

Nap(Z)ng(w) ~

Redefining the U(1) charge to [n, R] = %R in view of (B.19) we see that (n, nj, n®, ng) transform as the (1o, 24o, 10_,, 10,)
representations of SU(5) ® U(1).

B.3. Spinors

To obtain the decomposition of the spinorial representation of SO(10) under SU(5) ® U(1) it will be convenient to
consider the linear combinations [463]

1 1
b= (r*+ir*),  by= 3 (r*—ire), (B.21)
where a = 1, 2, ..., 5. The Clifford algebra (B.1) implies the fermionic oscillator algebra
{ba, b*} = 8, {ba, by} = {b", b} = 0. (B.22)

This means that the matrices b, and b? can be interpreted as annihilation and creation operators. To exploit this
interpretation we define a vacuum |0) annihilated by all the b, operators, b, |0) := 0 (also (0| b* := 0) and normalized as
(0]|0) = 1. States are created by acting with the creation operators b* on the vacuum, for a maximum of 32 states. We
will also define (1| = |)". These operators also satisfy

J

by =b", (b°)! = ba, (B.23)
bl = —b, (") = —b,,
fora=1,...,5, as can be verified from (B.4) and (B.5). In this language, the charge conjugation and chirality matrices in
(B.7) and (B.8) become
5 5
C=[[w+v),  ru=]]wb-nbb). (B.24)

1 j=1
To connect this description with the U(5) decomposition of SO(10) above, we write the generators M™ for the spinor
representation as
1 1
M™ —EF'"” = —Z[r"", rm, (B.25)

which satisfy the commutation relations (B.9). Therefore, from the expressions (B.13) and (B.14), the U(5) Lorentz
generators become

—%(babb — byb%), m= —%(b“ba — beb®) = —b%b, + % : (B.26)

m® = —hhb, Mgy = —bgby, .

a _
my =

These expressions can be verified by plugging the spinorial representation (B.25) into the decompositions (B.13) and
using the inverse of (B.21). In this language, it is straightforward to verify the decompositions (B.16) using [b,b®, bgb‘] =
[byb?, bg]b® + bg[byb?, b°] and [by, byb"] = {bg, by}b* — by{b4, b*}. Furthermore,

[mg, b = —8gba , [mﬂ, b.] = (Sgbb , (B.27)
[m®, b1 =0, [m®, b] = 5°b° — 82b°
[mababcl = ‘Sgbb _51C)ba, [mab,bc] =0,

[m, bc] = —b° s [m, bc] = bc .

These relations identify m] as the generators of U(5) and m as the generator of U(1). Moreover (B.27) implies that b¢ and
b, transform in the 5_; and 5; representations of SU(5) ® U(1), respectively.

Pure spinors. Recall that a ten-dimensional pure spinor was defined by Cartan as a bosonic Weyl spinor A satisfying the
equation [114]

ATcrma =o, (B.28)

where C is the 32 x 32 charge conjugation matrix (B.7) and I';;A = —A. From (B.8) we obtain AT = (L 0) for a 16
dimensional bosonic spinor A%, and this implies the familiar equation A* yar%kﬁ = 0. We will now describe the pure spinor
constraint using the creation and annihilation operators (B.21). To do this, first we will need to characterize a Weyl spinor
in this language.
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Lemma 14. The 16 @ 16’ states of ten-dimensional Wey! |1) and anti-Weyl |§2) spinors satisfying I'11 |A) = —|A) and
I |R2) = |2) are created by

1 1

[A) =AT10) + Exabbbba |0) + Ek“eabmb%dbfbb 0) . (B.29)
1 apbpcndne 1 ab cndne a

[2) = — Wy Eapeaeb® bbb |0) + —— 0™ eapedeb Db |0) + wyb® |0) .

5! 213!
These expressions correspond to the following representation decompositions of SO(10) — U(5):

A= (O, e, A1), Wy = (04, 0™, ), (B.30)
16 — (1,10, 5), 16’ — (1,10, 5).
Proof. The chirality matrix in terms of the creation and annihilation algebra is given by (B.8) such that I'j; |0) = — |0)

and {711, b"} = 0. This means that states with an even (odd) number of creation operators acting on the vacuum have
eigenvalue —1 (41) under I'y;. This explains the expressions (B.29). The number of independent components of each U(5)
representation in (B.30) follows easily from the fermionic nature of the creation operators b® as #(b ... b%) = (2) O

Note that the U(5) components of the Weyl and anti-Weyl spinors can be extracted as

1
AT =(0n), Aap = (0] baby 1) A= Ee‘“’“’e (0] bybcbabe [1)
1 1 '
wy = ge“”“"’ (0] babybcbgbe |0) | o™ = —ge“"fde (0] bebgbe ) wq = (0] by |0) . (B.31)

In order to obtain the number of degrees of freedom of a ten-dimensional pure spinor we will need the following results

(0] Cb*b° bbb |0) = €%, Chy = b°C, Cb® = b,C, (B.32)

which can be obtained from (B.8) and (B.22) together with the normalization (0|0) = 1. Using the Weyl spinor
decomposition (B.29) one can also show

(0] Cb* |A) = A%, (B.33)
1
(0| Cbabbbc |)»> — _Eeadee}"de ,
(0| Cbabbbcbdbe |)») — Gadee)»+ .
We are now ready to show

Proposition 21. A ten-dimensional pure spinor has eleven complex degrees of freedom.

Proof. Under the decomposition of SO(10) — U(5), the constraint (B.28) generates two sets of independent equations
(withi=1,2,3,4,5 each)’?:

(Al Cb'|r) =0, (B.34)
(Al Cb;i 1) =0. (B.35)

The transpose relation (b')" = —b; in (B.22) implies (A| = (0| Ay + 3 (O babpras + 55 (O] bybcbabeA®€apeae- SO Eq. (B.34)
becomes

1 1.
0 = (A|CHP |A) = A (0| CbP |A) + Ek”f (0] bib;CbP 1) + ﬂx'e,jk,m (O] bjbybibyn ChP |1)
1
=2ATA% — Ze“bcdexbcxde , (B.36)

where we used b,C = Cb® from (B.32) and (B.33). Hence, (B.36) implies that we can write the five components A“ in
terms of the others

1
A = 8)\7+Gabcdekbckde ; (B.37)
which solves the first equation (B.34). Moreover, the second equation (B.35) yields
(0] Cbp [0) = 22"Aap , (B.38)

72 The constraint (B.28) for both I'! = b! 4+ b, and I'S = —i(b! — b;) implies (x| Cb; |A) = 0 and (x| Ch" |A) = O from suitable linear combinations.
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which is automatically satisfied when inserting the solution (B.37) due to an over-antisymmetrization of five-dimensional
indices. Therefore the pure spinor constraint in ten dimensions removes only the five components (B.37) from the
16-component Weyl spinor, leaving a total of eleven degrees of freedom. O

Spinorial transformations in U(5) language. In the fundamentals of the pure spinor formalism it is necessary to know how
the U(5) components of the pure spinor transform under the SO(10) rotations. To do this we note the interpretation [463]
O |v) = |Ov) for an arbitrary operator O that allows one to read off how the different tensor components transform under
0. Straightforward calculations using the operators (B.26) imply that the right-hand side of the spinorial transformation
(B.11), given by the action of %Fm” = —M™", decomposes as follows

1
Map [A) = —Aap 10) — - €ancae b [0} ,
1
m® |x) = —ATb° |0) — Excdbabbbdbc 10) , (B.39)
1 1
m |2 = 28 14) = Aapbb¢ [0) - iAcea,eﬂ,b“bf b°b?|0) ,
5 1 1
mir) = 5A+ |0) + Zxabbbba |0y — EA"eabcdelﬂ;ﬂ'bfb” |0) .

Note the factor of |A) instead of |0) in the first term of (B.39).
Using the projections to the U(5) components (B.31) these transformations imply

mab)\Jr = —Aab, MapAed = _eabcde)‘ea mab)\c =0, (B-40)
1

m®rt =0, m®ag = —(8482 — 8285 T, m®Are = — ey,
1 1 1

mirt = Esgﬁ , Miheg = —8Ghey + 88hap + Esgxcd, mgAS = §5A% — 53‘;# ,
5 1 3

mrt = ZAt, Mhed = =hed mrS = —ZA°.

2 cd 2 cd 2

For example, [mA)qy := (0] babym [A) = §Ag (0] babpb¥b' |0) = 1y, where [mA)qs denotes the projection of |mA) into its
10 component of SU(5).
After identifying the SU(5) ® U(1) Lorentz currents with a traceless nj as

m 1
(n, ng, n®, ngy) = —< mi — —8gm, m™, mab) , (B41)

VL

we arrive at the following SO(10) — SU(5) ® U(1) decompositions

nab}L+ = Aab » NapAcd = Eabcde)te s nab)tc =0, (B.42)
1
nab)h+ -0 , nab)hcd — _S[EGBZ]Aﬁ» , nab)hc — _5€adee)\de ,
2 1
it =0, Nrea = 8Acy — 8¢ hap — gagxcd, npAS = —8HA° + gagﬂ,
5 1 3
nat = —iﬁ, Nhed = ———=Aed s naS = ——A°.
2 24/5 24/5

These are the coefficients of the single pole in the OPE N™A* in (3.33).
To find the U(1) charges of the anti-Weyl spinor we compute

1 1 3
m|2) = —— . €apeaebb’bbb° |0) — — @ ™eapegeb b?b® |0) + = w,b® |0) (B.43)
48 24 2
which implies, after projecting to the components via (B.31),
1 3
Mo, = -, mo® = —Ew”b, Mwg = 5 a. (B.44)

Appendix C. Combinatorics on words

In this appendix we list some of the most common maps on words used throughout this review. With the exception
of the letterification defined in [93], these definitions are standard and can be found in the books [152,470].
The left-to-right bracketing map ¢(A), also called the Dynkin bracket, is defined recursively by

£(123..n) == £(123..n— 1)n — nf(123..n— 1), £(i)=1i, <£W)=0. (C.1)
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For example,

0(12) = 12 — 21, (C2)
£(123) = 123 — 213 — 312 + 321.

In addition, the map p(A) is defined by
p(123...n) = p(123...n—1)n — p(23...n)1. (C.3)
For example,

p(12) =12 - 21, (C4)
p(123) = 123 — 213 — 231 + 321.

The shuffle product w is defined recursively by
BWP=Pw@ =P, iP wjQ = i(P wjQ) +j(Q wiP), (C5)
where i and j are letters, P and Q are words while {J represents the empty word. For example,

1w2=12+21, 1w23=1234213+ 231, (C.6)
121w 34 = 1234 4 1324 4 1342 4 3124 4 3142 + 3412.

The deshuffle 5(P) = X ® Y of P (sometimes denoted as P = X w Y) is the sum of all pairs of words X, Y such that P is in
the shuffle of X and Y. An efficient algorithm to obtain the words X and Y in §(P) = X ® Y is given by [152]

8(aray . ..ay) :=8(ay)d(az)...8(ay), 6(a;) =0@a+a0, W) =00, (C.7)
where the product is defined as
(A®B)R®S):= (AR ® BS). (C.8)

For example,
(N=01+1 47, (C.9)
8(12) =8(1)82)=0PR1+10)(WR2+2N=0Q12+1R2+2101+12Q 7,
8(123) =46(12)0(3) =W ® 124+ 1R2+2Q 1+ 12Q0)V®3+3 Q1Y)
=0®123+1®23+2®134+1203+3Q12+13®2+231+123Qx 7.
An alternative characterization of the deshuffle map is
5(P)=) (P.XWwY)X®Y, (C.10)
XY

where (-, -} denotes the scalar product on words’>

1, ifA=B
A,B) := 843, dap=1_" . C.11
( ) AB AB {0, otherwise . ( )
In addition, the letterfication maps a word Q to a letter g,
Q—q. (C.12)

The purpose of this map is to avoid deconcatenation of ¢ since a letter cannot be deconcatenated. For example, suppose
that the word Q = 12 has been letterified to § = 12 and that P = 3. Then deconcatenating QP is different from
deconcatenating gP. For example, one gets only one term ny:qp SxTy = S4T3 = S1,T3 instead of the usual two
(ZXY:QP SxTy = S1To3 + S1T3) if Q is not letterified.

In the proof of (4.131) we used a result that was already implicit in the proof of the shuffle symmetry of Berends-Giele
currents in the appendix A of [92]:

Lemma 15. For A and B non-empty words
A(AWB) = (7J®(AuJB)+(AuJB)®(7J+A®B+B®A+ZPQ_AZRS_B(PuJR)®(Q|_uS), (C.13)

where >’ denotes deconcatenation over non-empty words.

73 Not to be confused with the pure spinor zero-mode measure.
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Proof. The deconcatenation coproduct A(P) = Y ,,_,X ® Y is a homomorphism with respect to the shuffle product,
A(Aw B) = A(A) w A(B) (see Proposition 1.9 of [152]). Noting that (P ® Q) w(R® S) = (P wR) ® (Q w S) we get for
A B#(

A(AWB)=AA)WAB)= Y Y (PR®QWR®S) (C.14)

PQ=ARS=B
:Q)@(AuJB)+(AuJB)®(()+A®B+B®A+ZPQ:AZRS:B(PLUR)@)(QLUS),

where the first four terms in the second line come from separating off the empty words in the sums such that the
deconcatenation words in )" are not empty. O

C.1. The dual Lie polynomials
The dual Lie polynomials in £* are characterized by the dual basis iQ satisfying

(iQ, £(iP)) = éq.p (C.15)

where {(iP) is the Lyndon basis of Lie polynomials when i is the minimum letter of iQ. Given a dual Lie polynomial P*
and a Lie polynomial P, their expansions in their respective bases are given by [471]

P* =) (P*.((iQ))iQ.. (C.16)
Q

P = (P, iQ)L(iQ). (C.17)
Q

Using Ree’s theorem (4.133) it is easy to see that dual Lie polynomials are unchanged by proper shuffles and therefore
define equivalence classes P* + Y RS ~ P*. For related work, see [472] and also [190].

Appendix D. Dynkin labels of SO(10)

In this appendix we will very briefly summarize the representation theory of SO(10) in the language of Dynkin labels
that was used in the main text. The practical calculations were done using [155]. For the mathematical background,
see [473,474].

An irreducible representation of the Lie algebra of SO(10) is labeled by five indices (aiayaszasas) characterizing its
highest-weight vector. For instance a scalar of SO(10) is represented by (00000), while a vector is the (10000); see the
table below for more examples.

Dynkin label SO(10) content

(00000) 0-form A

(10000) 1-form A™

(01000) 2-form A"

(00100) 3-form APl

(00011) 4-form Almnpal

(00020) @ (00002) 5-form Almar]

(00010) anti-Weyl spinor ,,
(00001) Weyl spinor %

(0000n) A%IA® A% pure spinors

The dimension of the representation labeled by (a; . ..as) is given by [475]

87091200 dim(ajayaszasas) = (1 4+ a1)(1 + ax)(1 + as)(1 + a4)(1 4+ as)(2 + a; + a2)(2 + a; + as)
X 2+a3+a)2+as+as)3+ay+a+az3)3+ax + a3+ aq)(3 +az + a3 +as)
X (3+as3+as+as)4+a;+ax +as+ag)(4+a; +a; +as+as)
x(4+a+a3+as+as)5+ay+a;+a3+ag+as)(5+ ap + 2a3 + ag + as)
x (6+a;+ay +2a3+as +as)(7 +a; + 2a; + 2as + ag + as). (D.1)
For example, dim(00000) = 1, dim(10000) = 10, and dim(00001) = 16. From the formula above it is easy to be convinced
that these calculations are better handled by computers, see [155,475].
Many calculations in this review require to know the decomposition of product representations. A common example

is the familiar fact thargntwo vectors decompose into a symmetric and traceless, antisymmetric and trace parts; V"W" =
FVMW + VIW™ — SV W) + LMW — VW) + L8™V - W. In terms of the Dynkin labels, this is represented by
(10000) ® (10000) = (20000) & (01000) & (00000), (D.2)
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where (20000) is the symmetric traceless and (01000) is the antisymmetric part. The dimensions match as 10 x 10 =
54445+ 1.

Of special importance for us is the pure spinor representation. A single pure spinor A* is a Weyl spinor (00001), but
a product of n pure spinors A*1A%2 ... A% is (0000n). The dimensions of the pure spinor representation A" = (0000n) are
16, 126, 672, 2772,9504, 28314, ...forn=1,2,3,4,5,6, .. ..

Appendix E. Pure spinor superspace correlators

The result (3.95) of Lemma 2 guarantees that any pure spinor superspace expression with three pure spinors and
five thetas can be reduced to the unique scalar proportional to (A36°) with coefficients carrying the tensorial structure
whose normalization is uniquely fixed by the condition (3.80). Therefore one can assemble a catalog of correlators
using symmetry arguments alone. For instance, (in contrast to the rest of this work, the antisymmetrization brackets
[mym; ... my] enclosing k indices here include 1/k!, e.g. VI"W™ = (VMW" — V"W™))

(Ay"O) Ay 0) Ay 0O ygend)) = 2455," , (E.1)
288
(YA s0 )y P OO Yn®) = —=Sif sy
A0 (A0 A P90 0 _E nprstu E 3[H(Sr s][p(st(su] 8[p8t u][n(sr(ssl
vy 0Ny ™ 0N O 16) = 5 g™ + a8 P38 — sl
72
_ 7[77111[)‘77”[1)8;77“][“8}2]8? _ nmUUU[nsgﬁs][psé]sz]] ,
(G ™)y Y ryeD O yi) = — o (s — e
Y Yd Ve Yfgh = 7 defgh ]205 defgh) >
576 1152
((oy™PTO) Ayt Ay ' O)Osen0)) = 777“[’"5{18577”]@28;{ - 78[1?8{‘6{,’]5&5;15;;]
1 576 1152 ;
+ %Gmnpqr abcde (?7) [US[L’SS[CHU]US;S;} - 78[[38585]86'8;]817]) ’
i 172871 i i o .
(™00 Ay OOy ™)) = — 2= [ 85 816157018 — 85l 3118181 -+ ol 817

+ 8&nb["(?{lnk”mnw[qﬁns]aéﬁ] _ (Sﬁqnb[i(sjr'nk][mnsl[t(sgm]agﬁl _ 5[[;5{,77k”m77u][q8:5§]]:| ,

! h’
line of (E.1), note that its right-hand side is the only tensor antisymmetric both in [msu] and [fgh] and which is normalized

to yield 2880 upon contraction (because 4,5 = 120, see (A.11)), therefore respecting the normalization (3.81). The other
identities are justified by similar means.

where 67" is the antisymmetrized combination of Kronecker deltas beginning with %6}"828” see (A.9). To justify the first

Basis of zero-mode correlators. Using the Fierz identities (A.18) appropriately, all pure spinor superspace expressions can
be written as a linear combination of the following three correlators [391,476]

1152 2304
((Ay ™I LY Ay 0O Ven® N Oyjad)) = — s spsaRssr — — 8855187818 (E.2)
1 1152 ;b heced 2304 , poced
o™ e O SR8ISESSE — o erasisi |

+ [mnpqr](fghlljkl] + (fgh < jki),
6917
((Ay ™™ Ay 10O yign ) O ji)) = T[asafaglagafaﬁa,"ag - 3;3;531535;’5,‘35{]
3456
oo™ e [5;5}535@’5}’5,55;’35 - a;a;aga,’;a;a;}sf]
+ [mnpqr](stul(fghl(jki] + (fgh < jki),

, , 8 8
((Ly ™I )0y %0 )6 B0 )0y M) = 2880[;8?8?5}’8@8,28}‘6,’35;‘ — ﬁ;’l&p&{,’&ﬁ&;@;@;&{l

16 24
+ TS 8L8]8] 0y 88T — 75;"5;13;’5;3;5;;3;5,*]

8 8
+ 24e’”””q'abcde[ﬁ;’ﬁ’&;a;‘aga;a;af O

7S[Ll

16 24
+ - 87808,57 878,88 — 7555?5;5;15]?5;;3,33,*]

+ [mnpgr][stuvx](fgh][jkl] + (fgh <> jkI),
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where the notation +[i; ...i]... instructs to antisymmetrize the indices iy, ..., iy including the normalization 1/k!. In
the correlations above we obtained the epsilon terms by considering the duality (A.21) of the five-form gamma matrix,
explaining their relative factors of the form (parity even) + 1;—Oem(p.alrity even).

Suppose one wants to compute the following pure spinor correlator

((AymO) Ay y0) Ay Py 0) O yint)) - (E.3)
Using the gamma-matrix identity y™y™ = y™P 4 y™yP — Py " we obtain a linear combinations of correlators present
in the catalog above:

(Ay™0) 0y "y 0) 0y Py ™0 O ynd)) = (Ay™ )2y 0) Ay 0)(0 yygn6)) (E4)

+ 2((y """ (hy 10 Ay PO )0 yign6))

+2((hy 0N Ay O™ (hy 11O O yiend))

+ 4y (0P (10 ) O ygen) -
Proceeding in this way we can quickly calculate any zero-mode correlator, and a FORM implementation can be found
in [162].

Practicalities of pure spinor superspace component expansions. By virtue of Fierz identities, all possible pure spinor
superspace expressions can be written in the basis (E.2) of three fundamental zero-mode correlators: (AyPIA)(Ay™M8)
(0yB19)0yPl9) with n = 1, 3 or 5, where the notation y™ for an integer n means an antisymmetric gamma matrix with
n vectorial indices. The explicit form of this basis can be found in (E.2).

However, it is often more efficient to assemble beforehand a catalog of common correlators and use them out of
storage rather than performing the Fierz manipulations to go to the above basis. This avoids wasteful manipulations that
dramatically simplify in the end, such as computing the simple correlator (3.96) via

1
(Ay™0) Ay "0)AyPO)Oyanc0)) = %<(?»er“”)»)(?»)/"0)(9Vabc0)(9)/rsr9)) , (E5)

which, as can be seen in the expression (E.2), leads to many intermediate terms.
Another approach is to evaluate the correlators of three lambdas and five thetas by brute-force in terms of the
tensor [476,477]

1

81082983984 905\ . 1818283848 ) ) LEPT

(A1) %2)939019929%39%4 %) = T*192%3:0192030405 — 792 yn0111 1yr‘112 2),;‘3 3Vm?1p5 + [8182838485] (E.6)
where +[§1 ... ds] instructs to antisymmetrize over the indices 81, ..., d5 including the normalization factor 1/5!.74 Note
that the right-hand side of (E.6) is found to be symmetric in (o z003) after taking the antisymmetrizations over 41, . . ., 85

and m, n, p into account. In addition, it is straightforward to see that T*/7:%1%295%4% 1% i oD, 75 — 2880 recovers the

normalization (3.81).
Evaluating pure spinor superspace expressions using this method follows from

(AEAP N 0710%20%30%40% f, g5, 58,0455 (€, X, K)) = TOPVI192030405f 0o 5asa0s(€0 X k), (E7)

but this usually leads to the calculation of many gamma-matrix traces, often with many free indices. While there are closed
formulae for these traces in the Appendix A.1, doing these calculations on demand tends to become a time-consuming
task. Therefore, to avoid any spurious inefficiencies, the catalog approach is used in the program [162]. As we have seen,
pure spinor superspace expressions with many external particles can be evaluated very efficiently using multiparticle
superfields in the Harnad-Shnider gauge.

Appendix F. #-expansion of SYM superfields

A convenient gauge choice to expand the superfields of ten-dimensional SYM in theta is the Harnad-Shnider gauge [96],

6°AS = 0. (F.1)

At the linearized level, the gauge O“Afl = 0 has been used in [97,98] to obtain the 6-expansions (2.17) of the single-
particle superfields K; to arbitrary order. Since the recursive definition of multiparticle Berends-Giele currents .A” in
(4.94) quickly generates many terms, it would be expensive to follow the recursion up to single-particle level and then
expand the multiparticle superfields using the Harnad-Shnider gauge fixing (F.1). Luckily it was shown in [92] that one
can exploit the gauge-transformation properties of multiparticle superfields to arrive at Berends-Giele currents satisfying
the Harnad-Shnider gauge (F.1).

74 For definiteness, the definition (E.6) has 60 terms starting with gk vy ys®™ ymtes — ...
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It is easy to see that Berends-Giele currents in Lorenz gauge do not satisfy the condition (F.1), i.e. 9*AL 5 0. The idea
is to find a non-linear gauge transformation L
AP = Al — [Dy, L]+ [A}, L] (F2)

such that 6% AHS = 0. Assuming that the superfields have been brought to this gauge, the derivation of their §-expansions
proceeds in a similar way as in their single-particle counterpart.

We start by contracting the non-linear equations of motion (2.11) with 8% while assuming the Harnad-Shnider gauge
0%A, = 0. The result [96]

(D4 1)Ag = (0y™)pAm, DAR = (OymW), (F.3)
1
DW= 2(0y™") P, DF™ = —(W"y"9)

is most conveniently expressed in terms of the Euler operator
a
90

that weights the kth order in 6 by a factor of k. One can therefore use (F.3) to reconstruct the entire 6-expansion of all
SYM superfields from their zeroth orders K(6 = 0),

D = 0°D, = 0° (F.4)

1 1
[Aglk = . (G’Vm)a[Am]k 1, [Anle = —(0Vm[Wl-1), (E.5)
+ k

1
(Wi = ( M o k1 5 [Fm"]k=—,;([w“"]k4y”]9),

where the notation [...]; instructs to only keep terms of order ()¢ of the enclosed superfields. The analogous relations
for the superfields at higher mass dimensions in (2.20) are

k—
1
[W%]k = k{ (Qypq) []Fm\pq]k 1= 9)’111 Z{[Wﬂ]l, (W ki 1}} (F.6)

=0

k—1
1
[F™1Pe], = % {([W’““’]“y‘”e) +(0y™)a ;[[W“]u [qu]km]} ,

11
[W(rxnn]k = k{4(9qu)a[an|pq]k1 - (Qym)ﬁ Z{[Wﬂ]l, [Wg]kflfl}

k—1
=0

k—1
— (Ovn)p Z({[Wﬁ]l, (W1} + {[WP],, [Wfln]kfm})} .

=0

Using the notation Kp(X,0) = Kp(0)ekr*, the recursions (F.5) and (F.6) were shown in [92] to yield the following
multiparticle 6-expansions,

1 1 1 n,
AL(0) = 5 (OVmlacy + S (Oym)a(Oy" Xp) 33(9)/’")“(97/mnp9)fp” (F.7)

1 1
+ @(eym)awymnp@)(ﬁ’;)’p@) + 7(6)/ ) (9anp9)(9)/pqr9)f;‘qr

1152
+ D A s+
XY=P

1 1
Ap(0) = ep' + (0" Xp) — g(g)/mqu) b+ E(Qymnﬁ)(z\ﬁ?)/%)

1 nlpg 1
+ @(QV nre)(eypqe) 480(97/ nre)(eypq )( P V 9)

+ ([A?,yh + [A)r("qy]5> .

XY=P

1 1 1
WEO) = X7 + 2O " = 2Oy (A577"0) = 2= (0% P OVans 7™

] mn
+ (07 (O VamO (X" YP0) = ——— (0¥ ) (0¥ 0N O VipgO "

%6 1920
+ Z ([W)D(t,y]z, + DV yla+ [Wx.y]5> 4.,
XY=P
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1 1
FEO)= 15" = (BTYM0) + S0y, O — (03,0 O 0)
1 1
— 355 0% "R OV 1 0) + 1o OV 0N 0 )0y, 0)

3 (1A + LE s + LE L+ LFs) + D LA s+
XY=pP XYZ=P
with terms of order #=° in the ellipsis. The non-linearities of the form > xv—plKx vl can be traced back to the quadratic
expressions in (F.6), e.g.

1
(4515 = 122 (Ovm)a07 ™0 Xx a0 XXy v30) (F8)

1
LA)T,Y]4 = ﬂ(gymnpg)(xxyne)(xﬂ/pg) )

1
Wy yls = —6(9ymn)°‘(2€xy’”9)(2€yy”9),
[y ]2 = —(Xxy ™)Xy y™0),

and further instances as to make the complete orders #=° available are spelled out in the appendix of [92]. It is easy
to see that these non-linear terms vanish in the single-particle case, and one recovers the linearized expansions (2.17)
of [97,98].

Analogous 0-expansions for the superfields of higher mass dimensions start with

1 min m o
WE(X,0) = X (a7 + 20y ™ + Y [(By "0 — (X V)] + -+ ). (F.9)
XY=P

FP(X, 0) = ekr ¥ (f,’,""’q — (Y 10) + Y [(By O — (X < V)] + - ) :
XY=P

where the lowest two orders ~ 62, 6% in the ellipsis along with generalizations to higher mass dimensions are spelled
out in the appendix of [92].
Appendix G. Redefinitions from the Lorenz gauge to the BCJ gauge

As shown in [93], multiparticle superfields in the BC] gauge can be generated by starting from the multiparticle
superfields in the Lorenz gauge defined recursively in (4.33). In contrast to the hybrid gauge discussed in Section 4.1.6,
the redefinitions are more involved and require the following iterated redefinition,

Kip.o) = LiKip.o1). (G.1)
where the operator L; is defined as the local version of the perturbiner (4.113)

1 DaIA‘I[p,Q] K= AO, B
Li(Kip.q)) = Kip.o) — ]T(H ® Lgﬂ)(K))c([P’QU —3 kipHpo) @ K =A™, (G.2)
0 K =we,

where we used the notation (4.31) and H is defined below in (G.6). The action of Lj(f([pin]) gives rise to L(,-H)(IA([A,B]) on the
right-hand side with |A|+|B| < |P|+|Q|. Therefore this is a iteration over the index j, and it eventually stops as each step
involves splitting the nested brackets in [P, Q]. The iteration built into the redefinition (G.1) yields the infinite series of
non-linear terms [187] present in the finite gauge transformation of the corresponding perturbiner series.

The examples (4.61) of redefinitions from the hybrid to BCJ gauge have the following Lorenz to BCJ counterparts:

m am
Afi21 = A s (G.3)
m Am m 7y
A[[1,2],3] = A[[1,2],3] - I<123H[[1.2],3] ’

Al1213.41 = A{TLZJ,BAJJ — (kq - k2)<1:1[1,[3,4ﬂAg1 - I:II2,[3,4HAT>
+ (ks - k4)(1:1[[1,2],4];\§n - 12][[1,2]4,3];‘51”) - I<T234I:I[[1.2],[3,4]] )
A’[?H,Z],E»]A] = AI{?{].2],3],4} — (kq - "2)(1:1[[1.3].4]1@1 - I:I[[Z.B]A]AT)
— (k12 - I<3)([:1u14,2],4j/2\3m> — (k123 - k4)(1:I[[1,2J.3JAT) - kqn2341:1[[[1,2J,3J,4J s

Alli.2131.4150 = Alfi1.21.31.415 — (k1 - "2)(HHL3L41A'[15,5] + Hin31.51A0.4) + Hinars14p 3)
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+ Hyjn.31.4.545 — (1< 2))
— (ka2 k3)(ﬁ[“v21s41;‘f§,51 + Hipn 2151A% 4 + Hip2.a151A5 — (11,21 < 3))
— (k123 - I<4)(1:1[[1$2],3]/:\f2,51 + I:I[[[1,2]_3],5]AT>
— (k1234 - ’<5)(ﬁlu1.21,31.412"5") — Hi1.2131.41.51K 345 -
ATt s = Allinznasn — k1 - kz)(ﬁ[l,[&sn;"[ga] + Hypr 3145047 — (1 < 2))
— (knz - "3)(&[1,21,[4,511;"3" - PAIB,M,snA['},ZJ)
— (k123 - k45)(1:1[[1,2]¢3];\[7;,5]>
+ (kg - ks)(FI[[[Lz].3],51/:‘31 - 1:1[[[1.21,31.4]12\?) — K345 Hli11.20.31.(4501 - (G4)

For an example of the redefinition (G.1) for more than one iteration of L;, it is enough to consider the superfield Aﬁ‘uj%%r
A long and tedious calculation yields [93]

A[?12,34],56] = Aﬁ12,34},56] - kqn234561:1[[12,34],56] (G.5)
— (kq - kz)(;\rz"ﬁul,%],sm +AE,34]1:1[1,56] +Ag,55]1:1[1,34]
- %’@1341:’[2,3411:’[1,561 - %I<'2n561:1[2,5611:1[1,34] -(1e 2))
— (k2 - k34)(A§"41:1[12,56] —(12 < 34))
— (k1234 - kSG)A?GI:I[lz,M]
— (ks - k4)(AZ11:I[123,56] +Aﬁ2,4lﬁ[3,561 +Aﬂ,5511:1[12,3]
- %I<T241:1[12,411:1[3,561 - %ICTSGI:IH.SGJI:IHZ&J -B <« 4))
— (ks - k6)<;\£3"1:1[[12,34],5] -5« 6)) .

The factors of 1/2 correspond to the appearance of quadratic terms of the redefining superfields Hi, p) in the finite gauge
transformation given by the infinite series (4.112).
In the above redefinitions Hpp o is given by

R . 1~ o~
Hiap = H[A_B] - E(H ® H)é([A_B]) s (G.6)
% 1 [y’ [ [y
Hiyp = Hap — 5[(HAI<;\" -H® H"')@(A))Aﬁ1 — (A< B)] ,
Hi = Hy; =0,

where the Hi, ) are defined as they were in (4.62) to (4.64), and I:I/"11 = k}fI:IA. Furthermore, the maps C and C’ in the
subscripts of (G.6) are variants of the contact-term map C reviewed in Section 4.1.1 and introduced in [93],

C(i)=0,  C(A,BI) = [C(A), B, +[A, C(B)], (G7)
see (4.21) for the definition of the C map on the right-hand side, and we use the notation
[P®Q,B]; =[P,B]®Q. (G.8)

The definitions in (G.6) furthermore involve the map

C'([A, B]) = C([A, B]) — (ks - kY A® B —B®A). (G.9)

1

2
In this way, iterative use of (G.6) will reduce any I:I[A‘B] to combinations of AT, Mandelstam invariants and the superfields
Hia p) defined in (4.62) to (4.64), for instance

Hyr1,21,31.14,51.61 = Hirirn, 21,31, 14,511,610 (G.10)

1

1
- EH[[“‘2]‘3]‘[4‘5]](k12345 - Ag) + ZH[[1_2],3](’<123 - Ags)(k12345 - Ag)
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(k1 - k2)(Hir1.31.6/Hi2.14.51 — Hiz 3161111451

| = N =

(k12 - k3)(Hip1,21.6/Hi3.14.511) (k123 - kas)(Hya,51.6:H1.21.31) -

1
2 2

Appendix H. The contact-term map is nilpotent

To show that the contact-term map in (4.21) is nilpotent’> we will first determine the action of the adjoint C* on
X1 A Xy A X3, where X; € £* are dual Lie polynomials (see Appendix C.1). From the definition (4.154) we know that the
adjoint of the contact-term map is the S bracket. For convenience we can use

X1 A Xy, C(I)) = {C* (X1 A Xp), T) (H.1)

for a Lie monomial I'7 € £ and dual words X1, X5 € £*, and C*(X; A X3) = 2{X1, X3} is the S bracket. Recall that in (4.26)
the contact-term map C is extended to act on the antisymmetric product of Lie polynomials £ A £ as a graded derivation
of grading +1 acting on Lie polynomials I of grading +1,

C(NHALR)=CI)ANTy, — T AC(1). (H.2)
To compute C*(X; A X5 A X3) we use the definition

(C"XiAXa AX3), T AT = (X1 AXy A X3, C(IT7 A T)) (H.3)
which exploits the fact that C(I; A I3) has grading +3. Using (H.2) we get

(C*XiAXogAX3), M ALY =X AXoAX3, C(I) A — X1 AXy AX3, T AC(1)) . (H.4)
Defining (A ® B, C ® D) = (A, C)(B, D) we obtain

(AANB,C AD)=2(A,C)(B,D) — 2(A,D)(B, C) . (H.5)
To use this, we need to split the three-fold wedge product democratically into two factors:
XiANXag AX3 = %((X1 AX)ANXs +X1 A X2 AX3)+ (X3 A Xq) /\Xz) (H.6)
which exploits the cyclic symmetry of X; A X A X3 and the parenthesis indicates the split. Therefore (H.4) becomes
(CXiAXaAX3), [T A T2) = %((Xl AX2) A X3, C(I1) A ) — (I < 12) + cyc(Xq, X2, X3) (H.7)
= 2106 AX), CTN 06, T3) — (T < 13) + e, %o, Xo)
= %(C*(XI AX2), I1){Xs, I2) — (11 < I2) + cyc(Xi, X2, X3)
= %(C*(Xl AX2) A X3, Iy A 1) + cye(Xq, Xa, X3),

where we used (H.5) in the second line, (X; A X3, I3) = 0, and (H.5) again to identify the last line. Therefore we conclude

1
CXiAXa AX3) = gC'(Xl A Xa) A X3 + cye(Xq, X2, X3) (H.8)

which resembles the action of the (nilpotent) homology operator d of [478] (see also [479]). Noting that C*(X; A X3) =
2{X1, X2} € £*, the right-hand side is in £* A £* and therefore C* can act again,

4
CoCXiAXaAX3) = 5{{X1,X2},X3} + cyc(X1, X2, X3) =0 (H.9)
by virtue of the Jacobi identity of the S bracket [166]. Therefore C* o C* = 0 and we conclude

Proposition 22. The contact-term map is nilpotent

CoC=0. (H.10)

Proof. Using that C o C(I7) € L A L A L we get
(X1 AXo AX3,CoC(I)) = (C*(X] AXy AN X3), C(IY)) = (C* oC*X1 AXo AX3), I7) =0. (H.11)

75 we acknowledge illuminating discussions with Hadleigh Frost.
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Therefore C2(I) = 0 for any Lie polynomial I'j. By induction if C?(I}) = C?(I;) = 0 we also get C?(I'y AT) = 0 as (H.2)
implies
CoC(IMAD)=CHI AT+ Ty ACHDTY), (H.12)
where we used that C(I7) has grading +2. O
Appendix 1. Different representation of multiparticle vertex
In [21,169], an alternative representation for the multiparticle vertex Vi3 was found closely following the OPE

celllculation in the tree-amplitude prescription. Its expression was denoted by Ti3 and given by (note the shorthands
A;’ = (k;j - A;) or y"' = ymk{", and repeated indices are summed)

Tis = % [ WHATAT — Gy WRATAT — (X WHATAT + (G W2ATAT] (L
5[0 WAy - 0 W)
- %[(Ay’”wl)(wzymw) — (Ay"WAW!y"WR) — 200 "W YW Ty W )]
2 [OmWIALAT - WA AT + Gy WA AT — Gy WA AT
+ %[(Aymw3)Aq"A’2‘3 — (WA AT + g[(xymwf')Aq"A’j — (WA Az
+ %[(AymWZ)A’{’AgZ — (y"WhHATAY ] + %[(AymWZ)ATA’; — (oy"WhHATAY ]
+ % VAL AY 4 % ViAL AR+ % VAL AL — é VIATATS 5 — % VIATATs,
_ %VZA’{ZA’; - %va’fA’;z - %VZA’fA’;Z 4 % LATAT'Sy + %VZAQ"AQ"SH
+ é VAV AL — % VAL AL — % V3ATAsy3 + % V5ATATs 5 .

In [91] a new representation for this object was proposed based on an analysis of the equations of motion of a class of
superfields. It was denoted by V1,3 and given by
1
Vizs = [y X M WATAL — (W AS A

1
12

1
+ Z[(Ay"zwl)A'z"Ag’ — (N WRATAT — Gy K WHATAT + (o WATAT ]
5
12

+ [()\]/klmnW3)Ar1nAg + (kykZmnW3)ATAg + ()L)/I(3mnW1)A'2nAg _ (Ayk3mnWZ)ArlnAg]

1
[y ™ WAL AT — (y"WAHATAS ] + = [y "WAAL AT — ("W IAY AT

12

1
+ 5[(Ay""wz)ATA’;Z — ("W hHATAY']

+ [y WHATAE — ("W ATAY — ("WAAY AT 4 ("W RATAY |
[y "WHW2y™W?) — ("W W 'y "W?) — 20y "W W Ty MW )]

111 12 1 3 1 1 1 1 1
V]Ag Alé + 5 V]Alz< A’; — E V1A’2< A’; + E V]AE"A%"SB — E Vlququslz — 6 V](sz/k WB)
1 1

1 1 1
— —VARA 2 VLAY A + 3 VLA AK — 5 VaATA 523 + = VaATA s + V(W' K w?)

5 1 1 1
+ VAR AR — - VAR AL — g VaATAT s + VAT AT + o Vs W'y K w2y, (12)
Both of these building blocks satisfy the required generalized Jacobi identities:

+
— A=A =N =

6

Ti23 +T13=0, Ti23 + To31 +T312 =0,
Vizs + V213 =0, Vigz + Va3 + V31 =0, (1.3)
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therefore both qualify as representatives of the unintegrated vertex at multiplicity three. A tedious calculation shows that
their difference is BRST exact, namely

T3 — Viz3 = Q X123, (14)
where
1, 1 3 2 3
X3 = Z[A’é (A1-A3) + AY (Ar - As) — A (Ay - As) — AY (A2 - A3)]
1 1 1
=3 WhymWhAT — 2 (WhymWAG + = (W WAT (L5)

Appendix ]J. BRST-invariant permutations at low multiplicities

To help understanding the definition of the Berends-Giele idempotent given in Section 8.4.3, the first few permutations
of (8.52) read as follows

£(1)=Wwq, J.1n

1
gmzyziwwz—mbﬂ,

1 1 1 1 1 1
£(123) = —Wip3 — —Wigp — —Wh13 — —Wh3; — —Wipo + = Wi,
( ) 3 123 6 132 6 213 6 231 6 312 + 3 321
£(1234) = Tw LYY L L D Wais + W
- 4 1234 12 1243 12 1324 12 1342 12 1423 12 1432
1 Clw 1y 1 e
12 2134 12 2143 12 2314 12 2341 12 2413 12 2431
Ly 1 e 1 Ll
12 3124 12 3142 12 3214 12 3241 12 3412 12 3421
L Waiss + - Warss + = Wigss + Wizt + W, Tw
12 4123 12 4132 12 4213 12 4231 12 4312 4 4321 »

where a permutation o is written as W, in order to avoid confusion with the rational coefficients. Using these definitions
and examples, it is easy to generate the first few permutations of (8.51). For instance, at multiplicities three and four we
have

1 1
i3 = Wiz + Wiz, yips = EWlB - 5W132, (J.2)

V12,34 = Wiazg + Wings + Wispg + Wizgy + Wignz + Wissa

1 1
Y1123,4 = =Wiazs + 5W1243 — =Wisog — mWizgp + Wiz — -z Wiz,

2 2 2 2 2

1 1
= ~Wigss — —Wings — ~Wispg — =Wizgy — —W ~Wuis
Y1234 3 1234 6 1243 6 1324 6 1342 6 1423 + 3 1432

where it suffices to list only the different partitions of labels as other permutations follow from relabeling due to the
total symmetry of (8.51) under exchanges of any pair of words P; <> P; and the functional form of (8.52). Similarly, at
multiplicity five the BRST invariant permutations are given by

V112,345 = Wiuswaws) » (J.3)
—1W —i—lW ~|—1W +1W —i—lW ~|—1W
Vizas = 5Wizsss + 2 Wiasss + S Wiaass + 5 Wiaass + S Waasss + 5 Wiasas
L W 1 w 1 W ! W L w 1 W
5 Wisaas — SWisass — 5 Wisazs — SWisasz — 5 Wissaa — o Wissay
+ ! W + 1 w 1 W 1 W + L W 1 W
5 Wiazss + SWiazss — 5 Wiaszs — SWiassz + 5 Wiasas — o Wasss
+ ! %% + L W ! w ! %% + ! W ! W
5 Wiszza + SWisaas — 5 Wissaa — SWisaa + 5 Wisazs — 5 Wisasa
= ! W + L W ! w ! W + L W W
visas = sWizsas + s Wiassa — cWiaass — cWiaass + 5 Wiasaa — - Wiasas
! W ! w ! w ! W ! w ! w
g Wiszas — cWiszsa — = Wisaos — - Wisasz — <Wassas — cWassay
! W ! W + L W + ! w ! W + L W
g Wiazss — £ Wiazss + 5 Wiass + 5 Wiassz — cWaaszs + 5 Waasz
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1 1 1 1 1 1
-W - =W - =W — =W - =W -W ,
+ 3 15234 6 15243 6 15324 6 15342 6 15423 + 3 15432
1 1 1 1 1 1

= —Wis — - W W ~Wigass — —Wigsas — - W
y1|23,45 4 12345 4 12354 + 4 12435 + 4 12453 4 12534 4 12543

1 1 1 1 1 1
— —Wisaas + ~Wiszsa — —Wisgs — —Wisasy + —Wissoa + - W
4 13245 4 13254 4 13425 4 13452 4 13524 4 13542

1 1 1 1 1 1
—w ~Wiass — ~Wiazos — ~W ~Wigszs — - W

+ g Va3 + g Via2s3 = 7 Waans — 7 14352 + g V4523 — 7 Wiasn2
1

1 1 1 1 1
— —Wisyza — ~Wisaas + —~Wissg + —Wiszg — —~Wisaos + - W
4 15234 4 15243 4 15324 4 15342 4 15423 4 15432
“lw Ly L Ly L Wi+ W
V1|2345 - 4 12345 12 12354 12 12435 12 12453 12 12534 12 12543
L o + W Ly L W sas2 & = Wyssas + —W
12 13245 12 13254 12 13425 12 13452 12 13524 12 13542
Ly L W53 & = Wiasas + —W ! Wz + W
12 14235 12 14253 12 14325 12 14352 12 14523 12 14532
1 1 1 1 1 1

— —Wispza + —=Wispas + —= Wissa + —Wiszar + —Wisazz — —Wisaz .
12 15234 12 15243 12 15324 12 15342 12 15423 4 15432
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