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Abstract
We apply the barcodes of persistent homology theory to the c Chekanov–Eliashberg
algebra of a Legendrian submanifold to deduce displacement energy bounds for arbi-
trary Legendrians. We do not require the full Chekanov–Eliashberg algebra to admit
an augmentation as we linearize the algebra only below a certain action level. As an
application we show that it is not possible to C0-approximate a stabilized Legendrian
by a Legendrian that admits an augmentation.

Mathematics Subject Classification 53D10 · 53D40 · 53D12

1 Introduction

The (Lagrangian) Arnold conjecture states that the number of intersection points of
a Lagrangian submanifold with its Hamiltonian image is bounded below by the sum
of the Lagrangian’s Betti numbers. Floer developed Lagrangian Floer theory to prove
this bound in certain cases [16], but the bound does not always hold. Chekanov, using
Hofer’s norm [20] for the Hamiltonian isotopy, measured how “long” this bound
persists by measuring how long Floer theory remains valid: how long d2 = 0 holds,
and how long the Floer theory remains invariant [5]. Lagrangian Floer theory also
provides a similar temporary lower bound on the number of Reeb chords between a
Legendrian and its contact Hamiltonian image [7].

In this article, we study the persistence of Reeb chords between a Legendrian
submanifold � ⊂ (Y , ker α) of a contact manifold and its image under a contact
isotopy. We replace Floer theory with the linearized Chekanov–Eliashberg algebra
A(�) (also called the Legendrian contact DGA) induced by a choice of augmentation.
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We again measure things in terms of the Hofer norm of the contact Hamiltonian
isotopy. In addition to measuring how long a certain linearized Chekanov–Eliashberg
homology theory remains well-defined, we also measure how much of it persists.

We require that A(�) be rigorously well-defined, that the “handle-slide and
birth/death bifurcation-analysis” (Sect. 3.2) proof of invariance holds, and (for
Theorem 1.1) that there is a certain correspondence of J -holomorphic disks (Proposi-
tion 3.6). As of this writing, these requirements restrict our ambient contact manifold
to be (Y , ξ) = (P ×Rz, ker α). Here (P, dλ) is an exact symplectic manifold tame at
infinity (Gromov compactness holds), and the contact 1-form, which determines the
Reeb flow, must be of the type αstd := dz + λ [12]. Note that this includes one-jet
spaces endowed with the canonical contact form.

1.1 Background

AReeb chord on a Legendrian submanifold is a non-trivial integral curve of the Reeb
vector field Rα ∈ �(TY ) defined by ιRαα = 1 and ιRαdα = 0. We are interested in
estimating the number of Reeb chords from a given Legendrian � to its image under
a contact isotopy. If there are no such Reeb chords, we say that the contact isotopy
displaces �. Of course this notion depends on the choice of contact form.

The set of α-Reeb chords of � canonically generates A(�) as a free noncom-
mutative algebra. The grading is a certain Maslov index. The differential ∂ counts
J -holomorphic disks in the symplectization (Rt ×Y , d(etα))with Lagrangian bound-
ary conditionRt ×�. The homotopy-type of the DGA is invariant under Legendrian
isotopy, which is a smooth isotopy of Legendrian submanifolds. We often notation-
ally suppress the grading, the differential ∂ , the dependence on J and α. See [12] and
references therein for definitions.

Each Reeb chord c has a length (also called action) 	(c) := ∫
c α. For 0 < l ≤ ∞,

letAl(�) be the unital sub-algebra generated by those generators with length bounded
from above by l. The action preserving properties of the differential of the Chekanov–
Eliashberg algebra implies thatAl(�) ⊂ A(�) is a unital sub-DGA.To that end, recall
that the differential applied to a generator c consists of a sum of words of generators
whose lengths all are strictly less than the length of c, as follows from an elementary
application of Stokes’ theorem.

An augmentation for the DGAA, ε : (A, ∂) → (k, ∂k := 0), is a (graded) DGA-
morphism to the ground field k viewed as a DGA. We will want to choose l such that
Al(�) has an augmentation; since Al = k for l > 0 sufficiently small, this is always
possible. If� is loose in the sense ofMurphy [23] and c is the Reeb chord in a standard
representative of the loose chart then there are a number of standardLegendrian contact
homology arguments which show, up to unit, ∂(c) = 1. The contradiction

ε ◦ ∂(c) = ε(1) = 1 �= 0 = ∂k ◦ ε(c),

means that we cannot choose l ≥ 	(c).
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Henceforth assume all Legendrians are compact and all isotopies are compactly
supported. The oscillation of a contact Hamiltonian Ht : Y × Rt → R

‖Ht‖Yosc :=
∫ 1

0

(

max
y∈Y Ht − min

y∈Y Ht

)

dt

is the key ingredient in the Hofer norm of the corresponding contact Hamiltonian

isotopyφt
α,Ht

(which is definedby Ht (φ
t
α,Ht

(x)) = α
(

d
dt φ

t
α,Ht

(x)
)
).Contact isotopies

are generated by uniquely-defined contact Hamiltonians, that depend only on the
choice of contact form; we thus sometimes say the oscillation of a contact isotopy
when we mean the oscillation of the corresponding generating contact Hamiltonian.
This article focuses on contact isotopies acting on Legendrian submanifolds. These
are Legendrian isotopies. For a Legendrian isotopy ϕt : � ↪→ Y we can consider the
induced family of smooth functions

gt := α

(
dϕt

dt

)

: � → R,

that we identify with a family of functions ht : ϕt (�) → R defined on the subsets
ϕt (�) ⊂ Y . Define the oscillation of a Legendrian isotopy to be

‖ht‖�
osc :=

∫ 1

0

(

max
y∈ϕt (�)

ht − min
y∈ϕt (�)

ht

)

dt

The perspectives between Legendrian isotopies ϕt and ambient contact isotopies
φt

α,Ht
can be switched. By a smooth restriction of Ht to � and smooth extension of ht

to P × R we obtain a bijective correspondence

φt
α,Ht

(ϕ0(�)) = ϕt (�) ←→ Ht |ϕt (�) = ht .

The smooth extension can be chosen arbitrarily, and two different such extensions only
results in different parametrizations of the Legendrian isotopy. Conversely, changing
the Legendrian isotopyϕt by the precompositionϕt ◦ψ t of a smooth isotopyψ t : � →
� leaves ht unchanged. See e.g. the proof of [19, Theorem 2.6.2]. Furthermore, in the
casewhenht is indefinite, i.e.h

−1
t (0) �= ∅, there exists a smooth extension to aglobally

defined compactly supported contact Hamiltonian Ht such that ‖Ht‖Yosc = ‖ht‖�
osc.

Indeed, we can extend ht to Ht by first making it constant in each fiber of the normal
bundle of the Legendrian, and then cutting off this local extension by themultiplication
with a suitable smooth cut-off function.

By using [7, Lemma 2.3] we may replace ht by a contact Hamiltonian that is indef-
inite without changing its oscillatory norm. This changes the isotopy by a translation
of the z-coordinate, which is irrelevant for the displaceability questions that we study
here.

Henceforth, we abandon these distinctions and refer to the oscillation, using the
compromise notation of ‖Ht‖osc.
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1.2 Results

Fix 1 ≤ k ≤ n = dim�. Given a Reeb chord c, let Mk(c) denote the formal-
dimension k moduli spaces of J -holomorphic disks (D, ∂D) → (Y × R,� × R),
with one positive boundary puncture at c and m ≥ 0 negative boundary punctures
for a cylindrical almost complex structure J . [For k = 1 these are exactly the moduli
spaces used to define ∂(c) in A(�) [12].] Let

σ̃k := min
c|Mk(c) �=∅

	(c) ≤ ∞.

Let σk := min{σ̃k, σ̃n−k} for 1 ≤ k ≤ n − 1 and let σk := σ̃n for k = 0, n. Note that
σk = σn−k . Let {ι0, ι1, . . . , ιn} denote an ordering such that σιi ≥ σιi+1 .

Theorem 1.1 Suppose that Al(�) with 0 < l ≤ ∞ admits an augmentation into the
field k. For any compactly supported contact Hamiltonian Ht : P ×R → R, suppose
that the inequality

‖Ht‖osc < min
{
l, σιi

}

is satisfied for some i ∈ {0, . . . , n}, and that φ1
αstd,Ht

(�) is transverse to the Reeb flow
applied to �. Then there exists at least a number

i∑

j=0

dim
(
Hι j (�;k)

)

of Reeb chords with one endpoint on�, one endpoint on φ1
α,Ht

(�). Furthermore, these
Reeb chords are all of length less than ‖Ht‖osc.
Remark 1.2 If � is spin and orientable, we can define the Chekanov–Eliashberg alge-
bra with Q or Zp-coefficients for p prime [11]. Our arguments work for these fields,
so we can set k to equal Q or Zp in the above bound. Without this assumption on �,
we set k equal to Z2.

Remark 1.3 Fix a generic choice of points pti ∈ � disjoint from the Reeb chords, one
for each connected component of �. If we wish to, for the definition of σ̃n , we can
impose the additional requirement that some disk in Mn(c) must have its boundary
pass through the union of rays R × {pt1, . . . , ptπ0(�)}.

Recall the standard Legendrian sphere in R
2n+1 whose front projection in

R
n+1
x1,...,xn ,z has anO(n)-symmetry in the xi -directions. It has oneReeb chord c along the

z-axis of Legendrian Contact Homology index n and its Thurston-Bennequin invariant
is tb = (−1)(n

2+n+1)/2. The front when n = 2 is depicted in Fig. 1. See [9, Section
4.3] for a review of these concepts. When 	(c) = a we denote this sphere by �St(a).
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−a/2
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x2

ΛSt(a)c

Fig. 1 The front of the standard Legendrian two-sphere

z

c1 c2

x

Fig. 2 The front projection of the stabilized unknot �Stab

c1 c2

x

Fig. 3 The Lagrangian projection of the stabilized unknot �Stab. The pseudoholomorphic disks with one
positive puncture are shaded

Example 1.4 For the standard Legendrian n-dimensional sphere �St(a) ⊂ R
2n+1 we

have l = +∞ and

σk =
{

+∞, 0 < k < n,

a, k = 0, n.

(See e.g. [10].) Theorem 1.1 shows that a contact Hamiltonian that displaces �St(a)

must be of oscillation at least a.

Example 1.5 For the stabilized unknot �Stab shown in Figs. 2 and 3, l = min{	(c1),
	(c2)}. If we take the point constraint pt ∈ �Stab for the definition of σ0 = σ1 as in
Remark 1.3 to live near the crossing of the front projection of �Stab, we further get
σ0 = σ1 = +∞; there are no pseudoholomorphic discs with one positive punctures
passing through that region.
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Lemma 1.6 For any closed Legendrian � ⊂ {|z| ≤ a/2} ⊂ (R2n+1, αstd) and ε > 0,
there exists a contact Hamiltonian of oscillatory norm a + ε that displaces �. In
particular, Theorem 1.1 is sharp for Example 1.4

Theorem 1.1 result follows from amore technical Barcode Proposition 2.7, adapted
from persistence homology literature. The following non-squeezing result also follows
from the Barcode Proposition.

Consider an open subset U ⊂ Y 2n+1 having the homotopy type of a closed n-
manifold. We say that a Legendrian � ⊂ Y can be squeezed into U if there exists a
contact isotopy φt of the ambient space such that

• φ1(�) ⊂ U ; and
• [�] ∈ Hn(U ;Z2) is nonzero.

Stabilized Legendrians [9, Section 3] of dimension at least two are loose and satisfy
an h-principle due to Murphy [23]; in particular, they are C0-dense in the space of
Legendrian embeddings. By this h-principle, a loose Legendrian �′ can be squeezed
into U whenever this subset contains a formal Legendrian embedding in the same
formal Legendrian isotopy class as �′.

Theorem 1.7 Let �stab ⊂ R
2n+1 be a stabilized Legendrian, and suppose for �′ ⊂

R
2n+1 thatA(�′)admits anaugmentation. Then�′ cannot be squeezed into a standard

contact neighborhood of �stab.

There has been recent interest in C0-limits of Hamiltonian diffeomorphisms (con-
tact or symplectic) [3,26]. In particular, Rosen and Zhang prove that for the C0-limit
of the images of a Legendrian submanifold under a sequence of contactomorphisms, if
the limit is smooth and the sequence satisfies [26, Definition 4.1], then the limit is also
Legendrian. The definition in particular requires the sequence of contactomorphisms
to have uniformly converging conformal factors. In [26, Remark 1.5] the authors sug-
gest that the latter mechanism prevents such a sequence from being an “approximation
by zig-zags” (recall that e.g. any, not even necessarily Legendrian, knot can be approx-
imated by a Legendrian knot by adding more and more zig-zags). Theorem 1.7 could
be interpreted as evidence that something stronger actually prevents this, as it shows
that a stabilized Legendrian cannot be approximated by any Legendrian that admits
an augmentation.

The homology condition in the definition is crucial. In R
2n+1 all Legendrians can

be put in a neighborhood of any other Legendrian by first rescaling it to make it
sufficiently small. Also, the 2-copy of �stab sitting in an arbitrary small neighborhood
of �stab, has non-zero Z-homology but vanishing Z2-homology. The 2-copy has
an augmentation which one can see either by an explicit construction of an exact
Lagrangian filling by a cylinder I × �stab or, alternatively, by an explicit calculation
of the Chekanov–Eliashberg algebra of the two-copy using the theory from [13].

Using this h-principle to approximate a non-Legendrian deformation of the initial
Legendrian by the stabilized version we prove Theorem 1.8 below, in contrast to
Theorem 1.1 above.



The persistence of the Chekanov–Eliashberg algebra Page 7 of 32 69

Theorem 1.8 Consider the 2-sphere �St(1) ⊂ R
5. Fix any 1 � δ > 0. After making

the sphere loose by adding a stabilization contained inside a sufficiently small neigh-
borhood of an arbitrary point in �St(1), it is displaceable by a contact Hamiltonian
of oscillation less than δ.

Our proof is specific to the this Legendrian �St(1). However, we expect that the
techniques can be adapted to show the statement also for arbitrary Legendrians.

1.3 Related results

Persistence homology has made some recent inroads in symplectic geometry, some of
which we list here. Polterovich and Shelukhin introduced the technique of persistence
homology in Floer homology in their work [24], which included measuring the bottle-
neck distance between Hamiltonian Floer complexes. This was later generalized to
the Floer-Novikov complex which by Usher and Zhang [30]. Polterovich, Shelukhin
and Stojisavljevic introduce a new structure to persistence homology for Floer theory,
coming from the quantum cup product [25]. Buhovsky, Humiliere and Seyfaddini [3]
apply the barcodes technology of Kislev and Shelukhin [21] to study Hamiltonian
(non-smooth) homeomorphisms.

All of the above are in the symplectic setting, focusing on quantitative results for
Hamiltonians. There are fewer quantitative results for Reeb dynamics.

Entov and Polterovich prove that there is a Reeb chord between a Legendrian and
its image under the Reeb flow of a different contact form that defines the same co-
orientated contact structure, assuming that theHamiltonian restricted to theLegendrian
has a small oscillation [15, Remark 1.14]. They are currently developing a barcode
approach to this result. Their chord can be viewed as a flow from the Legendrian to
itself gotten by taking the Reeb flow first followed with the contact flow, whereas our
chords in Theorem 1.1 are gotten by taking the contact flow first followed with the
Reeb flow. We prove a lower bound on the number of Reeb chords similar to that of
Theorem 1.1 [7]. In this earlier article, our bound uses the conformal factor and is like
Chekanov’s bound [5]: the lower bound is either the full sum of Betti numbers, or 0
(we do not measure its persistence). In the symplectic setting a similar refined count
of intersection points was obtained in [18] by Fukaya, Oh, Ohta and Ono.

2 Barcodes of filtered complexes with action windows

Weconsider an abstract setup of filtered complexes thatwe laterwill apply to the setting
of Legendrian contact homology. First we define a notion of a piecewise continuous
(PWC) family of filtered complexes with action window parametrized by time t ∈ R.
Roughly speaking, the complexes have a continuously varying finite action window
and the generators of the complex can leave and enter this window. Observe that these
bifurcations need not preserve the homology of the complex. We adapt the theory of
barcodes from persistent homology theory (see e.g., [30, Section 1] and its references)
to this setting.
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Throughout this section we will always assume our complexes to be finite-
dimensional k-vector spaces.

2.1 PWC families of complexes with action window

Fix t ∈ R. A filtered complex C(t)btat with action window [at , bt ) ⊂ R is a finite-
dimensional k-complex with action function

	t : C(t)btat → [at , bt ) ∪ {−∞}

that induces the filtration by subcomplexes of the form {x; 	t (x) < c} ⊂ C(t)btat for
any number c ∈ R.

Given any sub-interval [a′
t , b

′
t ) ⊂ [at , bt ) there is an induced filtered complex

C(t)
b′
t

a′
t
:= {x ∈ C(t)btat ; 	(x) < b′

t }/{x ∈ C(t)btat ; 	(x) < a′
t }

with action window [b′
t , a

′
t ) obtained as a suitable quotient complex.

A basis e1, . . . , em is compatible with the filtration if the action filtration on any
arbitrary element is given by the formula

	t (r1e1 + · · · + rmem) = max
ri �=0

	t (ei )

in terms of the actions of the basis elements.

Remark 2.1 In our application, the complexes are endowed with a geometrically
induced compatible basis which consists of Reeb chords, whose elements have action
equal to their Reeb chord lengths.

Lemma 2.2 (Barannikov decomposition) There always exists a (non-canonical)
choice of basis which is compatible with the filtration. Furthermore, given any
compatible basis, there exists an action-preserving change of basis (i.e. which is upper-
triangular when the basis elements are ordered by non-decreasing action) such that
the following holds.

• A subset of the basis yields a basis for the cycles and, thus, the differential applied
to its complementary subset yields a basis for the boundaries.

• The differential of a basis element is either zero or itself a basis element.

Proof Consider the filtrationCc = {x; 	t (x) < c} by subcomplexes and the inclusion
maps

ιc,c+ε : Cc → Cc+ε .

For all but finitely many action levels c ∈ R the cokernel of ιc,c+ε is empty whenever
ε > 0 is sufficiently small. This cokernel can be (non-canonically) identified with a
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subspace ofCc+ε generated by elements of action precisely equal to c. The compatible
basis can then be taken as the union of the elements from the bases of these cokernels.

Any compatible basis can be made into a “Barannikov decomposition,” also called
“canonical form”, by a basis change which is upper-triangular; we refer to [1, Lemma
2] for the details. ��

Before arriving at the final description of the type of families of complexes that
we want to study, we begin with the following intermediate definition. A family of
complexes C(t)btat defined on an interval t ∈ I ⊂ R is said to be a continuous family
of filtered complexes (with action window) if it satisfies the following.

• The underlying (unfiltered) complexes in I are all canonically identified.
• There is a fixed basis for the complexes (under the identification in the previous
bullet point) which remains compatible for all filtrations in I .

• The action 	t on each element in the compatible basis, as a function of t ∈ I is
continuous and almost everywhere differentiable.

• The starting and endpoints of the action window [at , bt ) vary continuously with
t ∈ I .

Note that the filtered isomorphism type of the complex may change in a continuous
family. For example, the relative action of two (compatible) basis elementsmay change
signs.

We then define a piecewise continuous (PWC) family of filtered complexes (with
action window) to be a family of complexes parametrized by R, which is continuous
on each of the finitely many connected components of R \ {t1, . . . , tK } for some
t1 < . . . < tK , while it satisfies the following.

• The endpoints of the action window at , bt ∈ R vary continuously on all of R.
• The differential ∂t is strictly action-decreasing in the sense that the action of ∂t (x)
is strictly less than that of x for all t ∈ R \ {t1, . . . , tK }.

In addition, we prescribe the following behavior at the singular moments t1 < . . . <

tK . For ε < min j �=k |t j − tk |, let {I0, I1} = {(ti , ti + ε), (ti − ε, ti )} denote two
intervals near ti with their assignments unspecified. We require that precisely one of
the following simple bifurcations takes place at each ti .

• Handle-slide The differential of the complex is changed by an action preserving
handle-slide, i.e. with conjugation by an invertiblematrixwhich is upper-triangular
with respect to any basis that is compatible with the filtration.

• Birth/death There is a continuously varying family C̃(t)btat of filtered complexes
defined for all t ∈ (ti − ε, ti + ε) and a splitting

(C(ti )
bti
ati

, ∂ti ) = (C̃(ti )
bti
ati

, ∂̃ti ) ⊕ (S, ∂S)

into a direct sum of filtered complexes (where the total complex is endowed with
the induced filtration), with S = kx⊕ky, 	ti (x) = 	ti (y) and ∂S(x) = y, such that

the following holds. For t ∈ I0, (C(t)btat , ∂t ) continuously extends to (C(ti )
bti
ati

, ∂ti )

and for t ∈ I1, (C(t)btat , ∂t ) continuously extends to (C̃(ti )
bti
ati

, ∂̃ti ).
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• Generator enters/exits at the bottom Possibly after shrinking ε > 0, there exists
an extension of the family of complexes to a family (C(t)btat−ε, ∂t ) that depends
continuously on t ∈ (ti −ε, ti +ε) and for which there is a canonical identification

(C(t)btat , ∂t ) = (C(t)btat−ε, ∂t )/C(t)atat−ε

with the quotient complex. Further, the quotient map has a one-dimensional kernel
for t ∈ I0 while it is an isomorphism for t ∈ I1.

• Generator enters/exits at the top Possibly after shrinking ε > 0, there exists an
extension of the family of complexes to a family (C(t)bt+ε

at , ∂t ) for some ε > 0
that depends continuously on t ∈ (ti − ε, ti + ε) for which there is a canonical
identification

(C(t)btat , ∂t ) ⊂ (C(t)bt+ε
at , ∂t )

of subcomplexes. Further, this inclusion has a one-dimensional cokernel for t ∈ I0
while it is an isomorphism for t ∈ I1.

In the standard setup of persistent homology, invariance is studied for complexes
that are related by action-preserving “continuation maps.” In particular, continuation
chain maps induce isomorphisms on homology. Because we allow generators to enter
or exit the action window, our induced homology maps might not be isomorphisms,
at which point we replace the standard continuation maps with quotients or inclusions
of complexes.

2.2 The barcode

In Definition 2.3, Lemmas 2.5 and 2.6 below, we fix the parameter t . The filtration
induces an inclusion C(t)c0at ↪→ C∗(t)c1at of complexes for each c0 ≤ c1 ≤ bt . Denote
the induced maps on homology by

φc0,c1 : H(C(t)c0at ) → H(C(t)c1at ).

The maps satisfy

φc,c = IdH(C(t)cat )
and φc1,c2 ◦ φc0,c1 = φc0,c2 .

Definition 2.3 A barcode is a finite collection of subsets of R, each an interval of the
form [s, e), called bars. We call s ∈ R the bar starting point, e ∈ R ∪ {+∞} the
bar endpoint, and e − s > 0 the bar length. A bar B persists at action level l ∈ R

if l ∈ B. The barcode of the complex (C(t)btat , ∂t ), denoted by B(C(t)btat , ∂t ), is the
barcode uniquely characterized by the following properties.

• The number of bars with starting point s is equal to the dimension of the quotient

coker(φs,s+ε) = H(C(t)s+ε
at , ∂t )/im φs,s+ε



The persistence of the Chekanov–Eliashberg algebra Page 11 of 32 69

where ε > 0 is any sufficiently small number.
• The number of bars with starting point s that persist at action level l ≥ s is equal
to the dimension of the subspace

[φs+ε,l+ε](coker(φs,s+ε)) ⊂ H(C(t)l+ε
at , ∂t )/im φs,l+ε

where ε > 0 is any sufficiently small number and where the map

[φs+ε,l+ε] : coker(φs,s+ε) → H(C(t)l+ε
at , ∂t )/im φs,l+ε

is induced by descending φs+ε,l+ε to the quotients.

We begin with some basic facts and characterizations of barcodes that will facilitate
their computation, especially in conjunction with the Barannikov decomposition from
Lemma 2.2.

Lemma 2.4 (1) Two complexes which are related by an action preserving chain iso-
morphism have the same barcode.

(2) The barcode of a direct sum of two filtered complexes is the union of the respective
barcodes.

(3) A one-dimensional filtered complex spanned by the element c (necessarily a cycle)
has a barcode which consists of a single (semi-)infinite bar [	(c),+∞) ⊂ R.

(4) The acyclic complex spanned by two generators c0, c1 satisfying 	(c0) < 	(c1)
and ∂(c1) = c0 has a barcode which consists of a single bar [	(c0), 	(c1)) ⊂ R.

Proof This follows from the above definition. ��
Lemma 2.5 (1) Take any choice of basis for the complex (C(t)btat , ∂t )which is compat-

ible with the filtration, and assume that ∂t is strictly action decreasing. The total
number of bars inB(C(t)btat , ∂t ) which have either a starting point or endpoint at
level l ∈ R equals the number of basis elements of precisely that action.

(2) The number of bars that persist at action level l ∈ R and which have starting
points located strictly below the level c ≤ l is equal to the dimension of the image

φc,l+ε(H(C(t)cat , ∂t )) ⊂ H(C(t)l+ε
at , ∂t )

for ε > 0 sufficiently small.

Proof We use Lemma 2.2 to obtain a Barannikov decomposition for the complex
(C(t)btat , ∂t ).

(1) The number of basis elements at each action level remains unchanged by the
filtration preserving basis change carried out in Lemma 2.2. The statement now
follows from Lemma 2.4: the Barannikov composition exhibits the complex as
a direct sum of filtered complexes of dimension at most two, where the two-
dimensional complexes are acyclic.
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(2) Any Barannikov decomposition for (C(t)btat , ∂t ) induces a Barannikov decompo-
sition on the subcomplexes C(t)cat ⊂ C(t)l+ε

at ⊂ C(t)btat by taking appropriate
subsets of the basis elements.

The Barannikov decomposition provides a filtered isomorphism between C(t)cat
and a direct sum of filtered complexes of dimension at most two, where the two-
dimensional complexes are acyclic. Since Part (2) is easily seen to hold for any such
summand, Parts (1) and (2) of Lemma 2.4 again show the full claim. ��

The following proposition tells us that the properties that are considered in
Lemma 2.5 are sufficient to recover the entire barcode.

Lemma 2.6 The barcode can be recovered from the following data:

(1) the set c1 < c2 < · · · < ck of values which is given by the union of action levels
of the starting points and endpoints of all bars in the barcode; and

(2) the number of bars which persist at level li ∈ R and start at level c j ∈ R, for each
1 ≤ j ≤ i ≤ k, where we write li = (ci+1 + ci )/2 ∈ R, i = 1, 2, . . . , k − 1 and
lk = ck + 1.

Proof For each fixed 1 ≤ j ≤ k, the number of bars which start at c j and end at ci is
equal to the difference between the number of such bars which start at c j and persist
at li and the number of bars which start at c j and persist at li−1. The number of infinite
bars that start at c j is equal to the number of such bars which persist at lk . Obviously
this information can be deduced from the data in (1) and (2). Since we can do this
analysis for all j = 1, . . . , k, it is thus possible to recover the entire barcode. ��
Proposition 2.7 (Barcode Proposition) Consider a PWC family of filtered complexes
with action window, C(t)btat , that undergoes only simple bifurcations.

When the complex undergoes no such bifurcation, the barcode undergoes a contin-
uous change of action levels for its starting and endpoints.

At the bifurcations the barcode undergoes the following corresponding changes.

• Handle-slide The barcode is unaffected.
• Birth/deathWhen two generators x, y undergo a birth/death, then a bar connect-
ing 	(x) to 	(y) is added to/removed from the barcode. (The bar is not present at
the exact time of the birth/death, but immediately after/before it is visible and of
arbitrarily short length.)

• Exit below A generator slides below the action level at at time t. If the uniquely
determined1 bar which starts at the action level of that generator is of finite length,
then that bar gets replaced with a bar of infinite length whose starting point is
located at the same action level as the endpoint of the original bar. If the bar has
infinite length, then it simply disappears from the barcode.

• Entry below This is the same as a exit below but in backwards time.
• Exit above A generator slides beyond the action level bt at time t. There is a
uniquely determined bar which either ends or starts at the action level of that

1 This bar is uniquely determined near the exit moment by Part (1) of Lemma 2.5 and the definition of an
exit below.
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generator. In the first case, the bar gets replaced with one that has the same
starting point but which is of infinite length. In the second case, when the bar
necessarily is infinite, then that bar simply disappears from the barcode.

• Entry above This is the same as an exit above, but in backwards time.

Proof Assume that the bifurcations occur at the finite subset of times {t1, . . . , tK } ⊂ R.
Lemma 2.6 can be used to recover the barcode by the data supplied by Lemma 2.5.
Since the latter data varies continuously for any continuous change of action for a
compatible basis, it follows that the barcode depends continuously on t inside each
component of R \ {t1, . . . , tK }.

We can then consider each bifurcation moment separately.

• Handle-slide: The effect of this bifurcation on the barcode is immediate from Part
(1) of Lemma 2.4, since the bifurcation at a handle-slide moment is an action
preserving chain isomorphism.

• Birth/death: The effect of this bifurcation on the barcode can be deduced by Parts
(2) and (4) of Lemma 2.4, since at the birth moment the complex is changed by
taking the direct sum with an acyclic filtered complex of dimension two.

• Entry/exit above: There are two possibilities for the bifurcation: either the filtered
complex is changed by the addition/removal of a direct summandof dimension one,
or the complex has an acyclic summand of dimension two inwhich the generator of
greater action exits/enters at level bti . One readily deduces the change of barcode
by using Lemma 2.4 in the two different cases.

• Entry/exit below: Again there are two possibilities for the bifurcation: either the
filtered complex is changed by the addition/removal of a direct summand of dimen-
sion one, or the complex has an acyclic summand of dimension two in which the
generator of less action exits/enters at level ati . Again one can apply Lemma 2.4.

��

3 Proofs of Theorem 1.1 and Lemma 1.6

First we compare the oscillation and the change in Reeb chord length. Then we study
a length-filtered invariance property for the linearized Chekanov–Eliashberg DGA.
We apply it to a two-component Legendrian, which includes the two-copy link of
a single Legendrian. The infinite dimensional DGA has its disadvantages. So we
construct a partial linearization of the Chekanov–EliashbergDGA inside a finite action
window, which is an associated finite-dimensional complex. The main point is that
this linearization can be done even when there is no augmentation of the Chekanov–
Eliashberg DGA. Proposition 3.5 uses bifurcation analysis to show that when varying
the geometric data, the partial linearizations form a PWC family of complexes with
action window as defined in Sect. 2. This allows us to apply the theory barcodes
developed in the same section, in particular Proposition 2.7, which we then use to
prove Theorem 1.1. We end with the proof of Lemma 1.6.

Denote by �(t) a Legendrian isotopy parametrized by t . Let Ht be the contact
Hamiltonian Ht : Y → R generating an ambient contact isotopy inducing �(t), and
let Xt denote the contact vector field.
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3.1 Reeb chord length and oscillatory energy

Thefiltration properties depend on the size of the oscillation of the contactHamiltonian
inducing the Legendrian isotopy. The main contact geometric property that we need
is the following.

Lemma 3.1 A smooth one-parameter family c(t) ⊂ (Y , α) of Reeb chords with end-
point and starting point e(t), s(t) ∈ �(t) on a family of Legendrian submanifolds
satisfies

d

dt
	(c(t)) = α(Xe(t)(t)) − α(Xs(t)(t)). (3.1)

In particular |	(c(0)) − 	(c(1))| ≤ ‖Ht‖osc.
Proof Cartan’s formula gives us

d

dt
(φt

α,Ht
)∗ α = (φt

α,Ht
)∗(ιX(t)dα + dιX(t)α).

Using this we compute

d

dt

∫

c(t)
α = d

dt

∫

(φt
α,Ht

)−1◦c(t)
(φt

α,Ht
)∗ α =

∫

(φt
α,Ht

)−1◦c(t)
d

dt
(φt

α,Ht
)∗ α =

∫

c(t)
dιX(t)α.

For the second equality we have use the fact that a Reeb chord (φt
α,Ht

)−1 ◦ c(t) with
endpoints on Legendrian � are critical points for the functional γ �→ ∫

γ
(φt

α,Ht
)∗ α

(with t fixed). For the last equality we combine Cartan’s formula with the fact that the
one-form ιX(t)dα pulls back to zero on any Reeb chord (by the definition of the Reeb
vector field). ��

3.2 Handle-slides and birth/deaths for the DGA

Lemma 3.1 uses only elementary calculus and applies to a Legendrian isotopy in
any contact manifold Y . Henceforth, however, we need to assume as stated in the
introduction, that (Y , ξ) = (P × R, ker{dz + λ}).

Given the Legendrian isotopy �(t) and constants 0 ≤ t− ≤ t+ ≤ 1, denote the
stable-tame DGA morphism constructed in [12] by

�t−,t+ : (A(�(t−)), ∂t−) → (A(�(t+)), ∂t+).

A generic Legendrian isotopy has isolated singular moments during which exactly
one of the following occurs: a unique rigid index −1 disk appears (handle-slide); a
unique pair of Reeb chords appears/cancels (birth/death); or, the relative actions of
two Reeb chords changes signs.
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Let here (and elsewhere) δxy be 0 if x �= y, and δxy be some unit in k if x = y.
Also, let c+ be the chord in �(t + ε) representing the image of the Reeb chord c− of
�(t − ε) under the isotopy.

If the handle-slide disk u ∈ MA(a, b1 · · · bk) exists at time t then by [9,12] the
induced DGA morphism for ε > 0 arbitrarily small is

�t−ε,t+ε(c
−) = c+ + δa

−
c− b

+
1 · · · b+

k . (3.2)

We extend the definition of length from Sect. 1. For any non-zero element in the
algebra x ∈ A(�), let 	(x) ∈ [0,+∞) be the maximum of sums of lengths of Reeb
chords in a nonzero word of Reeb chord generators that appears in x . We use here
that we have a canonical basis of A(�) given by the words of Reeb chords. Stokes’
Theorem implies

	(a±) ≥ 	(b±
1 · · · b±

k ).

We review the induced algebraic continuation map at a birth-moment in the proof
of [9, Lemma 2.13] below. Suppose a+, b+ are the newly-born pair of points at time
t which exists at time t + ε with |a+| = |b+| + 1. For all sufficiently small ε > 0, we
can assume that the other (l + k) ≥ 0 chords satisfy

	(a±
k ) > · · · > 	(a±

1 ) > 	(a+) > 	(b+) > 	(b±
l ) > · · · > 	(b±

1 )

for all 2k+l possible assignments of signs ±.
Let S(A(�(t − ε))) denote the DGA-stabilization of A(�(t − ε)). Recall from

[9] this means we append to A(�(t − ε)) the (“artificial”) generators a− and b−
with ∂a− = b−, ∂b− = 0. The induced DGA-map �t−ε,t+ε : S(A(�(t − ε))) →
A(�(t + ε)) is defined inductively on the a−

i as ordered by their action/subscript.
For the base case (the map �t−ε,t+ε restricted to the sub-DGA generated with no a−

i
generators), we define

�0(c
−) = c+ + δb

−
c− (∂t+εa

+ − b+). (3.3)

Again note that any word w appearing in (∂t+εa+ − b+) satisfies

	(b+) ≥ 	(w).

Define the algebra morphism f : A(�(t+ε)) → A(�(t+ε)) on wordsw+ which
contain the letter b+ by replacing the first occurrence of the letter b+ with a+:

f (w+) = δ
α+b+β+
w+ α+a+β+.

Here α+, is not divisible by b+. Observe that

	(α+a+β+) − 	(w+) = 	(a+) − 	(b+) > 0
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can be assumed to be arbitrarily small.
Assume �i−1 is defined (i.e. the map �t−ε,t+ε restricted to the sub-DGA which is

generated by b−
1 , . . . , b−

l , b−, a−, a−
1 , . . . a−

i−1). Then �i = gi ◦ �i−1 where

gi (c
−) = c+ + δ

a−
i

c− f ◦ ∂t+ε(a
+
i ). (3.4)

The map �t−ε,t+ε may be viewed as a sequence of artificial handle-slide maps:
each rigid disk in M(a+

i ;α+b+β+) contributes to a handle-slide map a−
i �→ a+

i +
α+a+β+; and each rigid disk inM(a+; x+

1 · · · x+
n ) with x+

1 · · · x+
n �= b+ contributes

to a handle-slide map b− �→ b+ + x+
1 · · · x+

n .
The above considerations on Reeb chord lengths implies that �t−ε,t+ε can only

increase the action by an arbitrarily small amount for sufficiently small ε.

Lemma 3.2 Assume �(0) and �(1) are generic. For any δ > 0 there exists a contact
Hamiltonian H ′

t such that the induced isotopy�′(t) is generic as above,�′(i) = �(i)
for i = 0, 1 and

∣
∣‖Ht‖osc − ‖H ′

t ‖osc
∣
∣ < δ.

Proof AC∞-small perturbation of the Legendrian isotopy provides the needed gener-
icity used in [9, Proposition 2.9] to prove families of moduli spaces of J -holomorphic
curves are transversely cut out. Inside a family of one-jet neighborhoods of the Legen-
drians where the Legendrian is identified with the zero-section (see e.g. [19, Theorem
6.2.2]), such a perturbation can be described as the one-jet of a family of C∞-small
real-valued functions defined on the Legendrian. It is now clear that H ′

t can be obtained
from Ht by the addition of a C∞-small function on the contact manifold which coin-
cides with the latter family of functions near the Legendrian (appropriately extended
from the Legendrian to the entire jet-space neighborhood). ��

3.3 Partial linearizations for the two-component link

We show how to linearize the Legendrian contact homology DGA inside an action
window, and investigate its invariance properties. For a generic one-parameter family
of data, we obtain a PWC family of filtered complexes in the sense of Sect. 2.1.

Consider a Legendrian isotopy �(t) of a two-component link. (Each “component”
may itself be disconnected and have interesting topology but we do not consider such
sub-components individually.) There are two types of chords: pure chords Qpure =
Qpure(t) which start and end on the same component; and, mixed chords which run
between the two different components.

The sub-algebra Apure(�(t)) freely generated by pure chords Qpure is of course a
DGA of its own, given as the free product of the DGAs for the two different compo-
nents. Henceforth we will only consider an augmentation ε which vanishes on each
mixed chord, i.e. which is induced by an augmentation of Apure(�(t)). Note that an
augmentation of the second type always induces an augmentation of the first type by
elementary topological reasons: the differential of a mixed chord must output words
in which at least one chord is mixed. For an ordering�0(t)��1(t) = �(t) of the two
components, let Qmixed = Qmixed(t) denote the mixed chords starting at �0(t) and
ending at �1(t). Let LCCε∗(�(t)) the induced linearized (chain) complex generated
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by Qmixed. The (linearized) differential ∂ε counts holomorphic disks with a positive
puncture at a mixed chord and the augmentation applies to all but one of the negative
punctures (and thus the output is thus again a mixed chord of the first type). We refer
to [2] for more details.

We let LCCε∗(�(t))ba denote the linearized subcomplex generated by the subset of
mixed chords inQmixed having lengths contained in the interval [a, b). The arguments
of [2] which imply that LCCε∗(�(t)) is well-defined combined with a standard filtered
chain complex argument and Stokes’ Theorem, imply LCCε∗(�(t))ba is well-defined
(but of course not necessarily invariant). We call [a, b) the action window.

We are also interested in the case when the DGA of �(t) might not have an aug-
mentation, but at the same time, the sub-DGA Al

pure(�(t)) ⊂ Apure(�(t)) generated
by only the pure chords of length less than some fixed number l ≥ 0 admits an
augmentation

ε : Al
pure(�(t)) → k.

Consider the subspace Al
1 ⊂ A(�) spanned by words of chords of which

• precisely one is inQmixed (so this chord starts on�0 and ends on�1) whose length
lies in the interval [a, b), while

• the remaining chords are all pure and with lengths each less than l.

This subspace can naturally be identified with the free Al
pure–bimodule generated by

the chords Qmixed of lengths in the interval [a, b). This bimodule can be made into a
chain complex, which we denote by LCCl,ε∗ (�(t))ba . Since this complex is new to the
literature, we describe its (linear) differential below.

There is an automorphism �ε : Al
1 → Al

1 given as the restriction of the algebra-
map that is defined by c �→ c + ε(c) on each generator (which by assumptions on ε

thus fixes the mixed generators). Let πε : A → Al
1 ⊂ A be the canonical projection

A → Al
1 induced by our canonical basis, post-composed with �ε . The linearized

differential can then be expressed as the linear part of πε ◦ ∂ restricted to the vector
subspace LCCl,ε∗ (�(t))ba ⊂ Al

1 spanned by the mixed chords, which is a map

∂ε := (πε ◦ ∂)1 : LCCl,ε∗ (�)ba → LCCl,ε∗ (�)ba .

Lemma 3.3 If b−a ≤ l then LCCl,ε∗ (�(t))ba is a well-defined complex, i.e. (∂
ε)2 = 0,

which we call the partially linearized complex (with action window [a, b)).

Proof The inequality b − a ≤ l implies that when counting the glued pairs of disks
which contribute to (∂ε)2, the Reeb chord at which the gluing occurs cannot be a one
for which the augmentation is not defined. This reduces the

[
(∂ε)2 = 0

]
-proof to the

established case when the augmentation is globally defined. ��
We need to set-up a bifurcation analysis to prove a certain form of invariance for

the complex LCCl,ε∗ (�(t))ba as the parameter t varies. We start by considering the
case of a singular moment t for the bifurcation of the DGA, at which no chord has
length equal to l.
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Choose ε > 0 sufficiently small so that the chords which do not undergo a
birth/death are preserved for all s ∈ [t−ε, t+ε]. In the event of a birth of pair of chords
a+, b+ we suppress the stabilization notation, usingA(�(t − ε)) for S(A(�(t − ε))).

Lemma 3.4 Assume that no chord at time t has length equal to either of the values
l, a, b ∈ R and that there exists an augmentation ε : Al

pure(�(t − ε)) → k for all
sufficiently small ε > 0. Let

�t−ε,t+ε : (A(�(t − ε)), ∂) → (A(�(t + ε)), ∂ ′)

be either a birth/death or a handle-slide as in (3.2). For sufficiently small ε > 0, there
exists an augmentation

ε′ : Al
pure(t + ε) → k

for which the map

φε := πε′ ◦ �t−ε,t+ε : LCCl,ε∗ (�(t − ε))ba → LCCl,ε′
∗ (�(t + ε))ba

is a composition of action-preserving (linear) chainmaps c �→ c+ f with 	( f ) < 	(c)
(here we include the case f = 0) together with cancellations of death pairs.

Proof Since ε is small, we can assume the same set of pure chord generators for
Al

pure(�(t − ε) and for Al
pure(�(t + ε)), as well as the same set of mixed chord

generators for LCCl,ε∗ (�(t − ε))ba and for LCCl,ε′
∗ (�(t + ε))ba .

The proof reduces to the the three cases when �t−ε,t+ε corresponds to either a
single (real or artificial) handle-slide, a single stabilization, or a single destabilization.

Handle slide There exists an inverse �t−ε,t+ε which also is action preserving.
The augmentation can thus be taken to be ε′ = ε ◦ �−1

t−ε,t+ε |Al , and we thus get
ε = ε′ ◦ �t−ε,t+ε |Al . In this case we define

φε = πε′ ◦ �t−ε,t+ε |LCCl,ε∗ (�(t−ε))ba
.

We need to check that φε is a chain map of the sought form.
When �t−ε,t+ε is defined by a handle-slide “disk” (real or artificial) for which all

negative pure punctures action less than l, then statement follows from a standard
argument; see e.g. [2, Section 2.4]. (We can interpret φε as a linearization of a DGA
morphism in the standard sense.)

Consider the “disk” with positive puncture e and negative punctures f1, . . . , fk .
The inequality b − a < l and the description of the real and artificial handle-slides in
Sect. 3.2 imply the following: if e is a pure chord of less length than l or a mixed chord
between length a and b, then no fi can be a pure chord of length greater than l, unless
possibly if at least one of the fi ∈ Qmixed is a mixed chord with action less than a. In
this case, the induced linear map is the identity. That the identity map is a chain map
can be seen from the point of view Gromov compactness: the handle-slide disk with
a negative mixed chord of action less than a cannot be glued to a disk used to defined
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the boundary, since the action difference of the mixed chords of such a glued disk is
greater than b − a.
Stabilization We extend ε′ to vanish on the new pair of generators, and φε is simply
the canonical inclusion.
DestabilizationWe let ε′ take the same value as ε on the remaining generators. In the
case when the death involves pure chords, the chain map φε is the identity. In the case
when the death involves mixed chords, φε is simply the corresponding quotient. Note
that these are chain map, even though it is possible that ε′ ◦ �t−ε,t+ε �= ε. (However,
since we are only considering the destabilization, as opposed to a death together with
its artificial handleslides, this is irrelevant.) ��

The main difference between the invariance of the usual linearized complex and
the invariance of a sequence of complexes LCCl,ε∗ (�(t))btat considered here is that
generators of the latter can slide in and out of the action window [at , bt ).

In the following we assume that there exists an augmentation

ε : Al
pure(�(0)) → k

for some l ∈ R and write

l(t) :=
∫ t

0

(

max
�(s)

Hs − min
�(s)

Hs

)

ds = ‖Ht‖0,tosc. (3.5)

Proposition 3.5 Consider a smooth path of Legendrians �(t) for which �(0) and
�(1) are generic. After the perturbation supplied by Lemma 3.2 we can moreover
assume the following. First, there exist augmentations

εt : Al−l(t)
pure (�(t)) → k

with ε0 = ε. Second, the induced family of partially linearized complexes

LCCl−l(t),εt∗ (�(t))btat , bt − at ≤ l − l(t),

with smoothly varying at , bt form a PWC family of filtered complexes with action
window (see Sect. 2.1 for the definition). Here the filtration is induced by the Reeb
chord length and the compatible basis is given by Reeb chords.

Proof Lemma 3.4 shows that the complexes undergo standard bifurcations, i.e. handle
slides and birth/deaths, except at the following moments:

(M) There exist mixed chords on �(t) of length equal to at or bt .
(P) There exist pure chords on �(t) of length equal to l − l(t);

A genericity argument as in the proof of Lemma 3.2 allows us to assume that moments
(M) and (P) are isolated and generic in the sense that at most one chord is involved at
each separate moment in time, and also that they are disjoint from any handle-slide or
birth/death occurring in the Chekanov–Eliashberg algebra. To see this, note that via the
front projection, neighborhoods of Reeb chords can be modeled by the neighborhood
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of a critical point of the difference of two smooth functions. Since Morse functions
generically have distinct critical values, we can isolate our bifurcation moments.

One can directly verify that the bifurcations from (M) are precisely the entrances
and exits as described in Sect. 2.1.

The bifurcations (P) involving pure chords have the property that no pure chord
can enter the action window [0, l − l(t)) at any t ∈ [0, 1]. Indeed, by Lemma 3.1, the
speed by which the length of any Reeb chord on the Legendrian shrinks is strictly less
than max�(s) Hs −min�(s) Hs , which also is precisely the speed by which the action
window [0, l − l(t)) is shrinking.

We are thus left with the investigation of a moment when a pure chord c exits the
action window [0, l − l(t)) at some given time t = t0. More precisely, the chord c is
of length 	(c) < l − l(t) when t < t0 while 	(c) = l − l(t) at time t = t0. In this case
there is a canonical inclusion

Al−l(t0)
pure (�(t0)) ⊂ Al−l(t0−ε)

pure (�(t0 − ε))

of DGAs for all ε > 0 sufficiently small, where the sub-DGA is generated by the
same generators as the larger DGA except for the chord c. Take εt0 to be the pull-back
of εt0−ε under any of the above inclusion. We claim that the corresponding partial
linearizations are canonically isomorphic for these two augmentations. The crucial
property used here is that, as shown by an action consideration, if x and y are mixed
chords for which 	(x) − 	(y) ∈ [at0 , bt0), then any word that contains y and appears
in the DGA differential ∂(x) at t = t0 does not contain any chord of length l − l(t0).
(The differential ∂ is strictly action decreasing.) Since the words that contribute to
the linearized differentials thus cannot consist of a word that contains the letter c at
either moment t = t0, t0 − ε, the linearized differentials on the mixed chords agree as
sought. ��

3.4 Completing the proof of Theorem 1.1

We use the notation introduced in Sect. 1 before the theorem statement. In particular,
� is some Legendrian, not the link from the previous subsection.

With an arbitrarily small change in the Legendrian and the contact Hamiltonian,
we can assume all moduli spaces below a pre-determined index are transversely cut
out [12]. In particular Lemma 3.2 and [13, Theorem 3.6] (used below) hold.

Let �̄ = � � �′ be the 2-copy of � where the second copy �′ is translated in
the positive Reeb direction by N � maxc 	(c). Here the max is taken over all pure
Reeb chords. We perturb �′ by a small Morse function with C2-norm bounded by
ε � minc 	(c). Here the min is taken over all Reeb chords. For each pure chord c
of � there are two mixed chords p+

c , p−
c such that the projections P × R → P of

c, p+
c , p−

c are within ε, and such that |	(p±
c )− (N ±	(c))| < ε. The remaining mixed

chords are called the Morse chords, which we denote by x . They correspond to the
critical points of the Morse function and satisfy |	(x) − N | < ε.

Proposition 3.6 For a suitable choice of almost complex structure and sufficiently
small Morse perturbation of �, the following can be said about the punctured pseu-
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doholomorphic disks on the two-copy with one positive puncture and precisely two
punctures at mixed chords. (It follows that the positive puncture must be mixed.)

(1) When both mixed chords are Morse chords, any rigid disk corresponds to a unique
rigid gradient flow-line for the Morse function considered.

(2) Let x be a Morse chord of index k. For every rigid disk with x as the unique
positive (resp. unique mixed negative) puncture, the other mixed puncture is a
negative puncture at some p−

c (resp. positive puncture at some p+
c ). Moreover,

the existence of such a rigid disk implies that the moduli space Mn−k(c) (resp.
Mk(c)) is non-empty.

(3) Assume that the Morse function has a unique max and min on each connected
component. The disks having the max chord (resp. min chord) as a positive (resp.
negative puncture) are small triangles that are in a one-to-one correspondence
with gradient flow-lines that connect the max (resp. min) and an endpoint of a
Reeb chord on �. Furthermore, the max is a cycle and the min is a cocycle for
the linearized differential, if the same augmentation is used on both components
� and �′.

(4) Assume that the Morse function has a unique max and min on each connected
component, both of which moreover are located sufficiently close to a given gener-
ically chosen point pti ∈ �, i ∈ π0(�). Any disk with the negative puncture at
the max chord (resp. positive puncture at the min chord) corresponds to a moduli
space Mn(c) for which the boundary of the disc passes through the ray R × pti .

Proof(1): This is Part (4) of [13, Theorem 3.6].
(2): This is Part (3) of [13, Theorem 3.6], which identifies the disks on the two-copy

with appropriate generalized pseudoholomorphic disks on one copy, together with
the dimension formula [13, (3.11)] for the generalized pseudoholomorphic disks.

(3): The first part is Theorem 5.5 and Remark 5.6 of [13]. The second part follows
analogously, see e.g. Lemma 4.21 of [4].

(4): This follows as a special case in the proof of (2). Note that the moduli spaces
Mn(c) defined for different choices of point constraints pt′i all can be canonically
identified, if we assume that the moduli space defined with point constraint at
pti ∈ � is transversely cut out and that pt′i is sufficiently close to pti .

��
We consider the linearized Legendrian contact homology complex as defined in

Sect. 3.3, determined by the choice of ordering �0 = � and �1 = �′ of the compo-
nents of �̄. Define �̄(t) by fixing � and apply the N -vertical-shift of the isotopy to
�′. In this manner we may assume that the component � is contained outside of the
support of Ht .

In the followingwe endowAl(L)with the same augmentation on both components,
and suppress it from notation. Proposition 3.6 (1) implies that LCCl∗(�̄)N+ε

N−ε is quasi-
isomorphic to the Morse homology of �. These homology classes need not survive in
LCCl∗(�̄) when increasing the action range. (For example, if � has an augmentation
and can be pushed off its Reeb-flow image, then LCC∞∗ (�̄)+∞−∞ is acyclic.) So if x
(a linear combination of Morse chords) represents a degree k homology generator of
this Morse subcomplex, its action value is a starting or ending point of a bar (under
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an association from Part (1) of Lemma 2.5) in the barcode for LCCl∗(�̄)ba for any
b − a < l, a + ε ≤ N ≤ b − ε.

Suppose ε � ‖Ht‖osc < min(l, σk) − ε. Recall l(t) from Eq. (3.5). Let x1 =
x, x2, . . . , xn denote representatives of the homology classes of degree k′ such that
σk′ ≥ σk . We wish to show that �̄(1) has at least n mixed Reeb chords. For each xi
we consider two one-parameter families of barcodes

Bi,±
t = B

(

LCCl−l(t)∗ (�̄(t))
bi,±t

ai,±t

)

,

where both action windows are shrinking at a rate of l ′(t) and their small overlap
contains the start or endpoint of a bar “associated to xi”; the precise recipe for how
to construct ai,±t and bi,±t , thereby giving rise to the associated pair of families of
barcodes, will be described below.

First we make a (generic) assumption that the critical values 	(xi ) of all Morse
critical points are distinct. Next, we require that

[ai,−0 , bi,−0 ) = [	(xi ) − min(σk, l) + 2ε, 	(xi ) + ε),

[ai,+0 , bi,+0 ) = [	(xi ) − ε, 	(xi ) + min(σk, l) − 2ε),

which uniquely determines ai,±0 and bi,±0 . Note that we fix the action window size

based to k, independent of i . When extending these parameters to ai,±t and bi,±t we
require

bi,±t − ai,±t = bi,±0 − ai,±0 − l(t) < l − l(t), (3.6)

bi,−t − ai,+t = 2ε. (3.7)

We uniquely determine ai,±t and bi,±t once we specify 	i (t) and require

	i (t) = bi,−t + ai,+t

2
. (3.8)

Note that 	i (0) = 	(xi ).
The condition (3.6) enables us to use Proposition 3.5, which implies the partially

linearized complex can be assumed to constitute a PWC family of filtered complexes
in the sense of Sect. 2.1. This in turn allows us to apply Proposition 2.7 to Bi,±

t .
Because we have not yet specified 	i (t), the barcodes B

i,±
t still remain unspecified

for t > 0.
By the genericity argument in the proof ofLemma3.2wemay achieve the following.

• The lengths of the Reeb chords are all distinct during the isotopy, except for a
finite set of “singular” times t j when precisely two lengths coincide.

• At each such t j , the t-derivatives of these two Reeb chord lengths are distinct, and
bi,±t j , ai,±t j are distinct from all Reeb chord lengths.



The persistence of the Chekanov–Eliashberg algebra Page 23 of 32 69

In particular, it follows that the starting points or end points of the bars in Bi,±
t do

not intersect for any t �= t j . In the components of the complement of this discrete set⋃
j {t j } the individual bars can thus be uniquely singled out by the location of their

starting points, which depend continuously on t away from exits/entrances. Thus,
Lemma 2.5 (1) implies that away from

⋃
j {t j } there are canonically determined Reeb

chords (the compatible basis elements that correspond to the starting points) associated
to each bar.

Lemma 3.7 Consider an interval [T0, T1) disjoint from the singular times
⋃

j {t j }.
Assume that bi,±t , ai,±t and 	i (t) have been defined for all t ∈ [T0, T1] satisfying Eqs.
(3.6)–(3.8). Moreover, assume 	i (t) coincides with the length of a Reeb chord for all
t ∈ [T0, T1]. If 	i (T0) is the starting point of an infinite bar in each of the two Bi,±

T0
,

then for all t ∈ [T0, T1], 	i (t) is the starting point of an infinite bar in each of the two
Bi,±

t .

Proof There is an infinite bar with starting point at 	(T0) in each of the two barcodes
Bi,±

T0
by assumption. We need to show that they remain infinite for all t ∈ [T0, T1]. By

Proposition 2.7 an infinite bar can only become finite if an endpoint suddenly appears
above (entry above), or if the bar switches behavior to a finite bar with endpoint at
	i (t) (entry below). In either case, we show that these bifurcations are not possible by
a consideration of the needed Hamiltonian oscillation.

Suppose αt < βt denote the lengths of two arbitrary mixed chords of �̄(t).
Lemma 3.1 and the fact that Ht vanishes on �0(t) = � (which contains the Reeb
chords’ start points) then imply

−
∣
∣
∣
∣
d

dt
αt

∣
∣
∣
∣ ≥ min

�1(t)
Ht

≥ min
�̄(t)

Ht ,

∣
∣
∣
∣
d

dt
βt

∣
∣
∣
∣ ≤ max

�1(t)
Ht ≤ max

�̄(t)
Ht −→ d

dt
(βt − αt ) ≥ − d

dt
l(t).

Using Lemma 2.5 Part (1), we consider the two cases when precisely one of αt or βt

is equal to 	i (t), while the other is the length of the hypothetical chord which enters
from either above or below. Since the size of the action window changes at a rate
d
dt (b

i,±
t − ai,±t ) = − d

dt l(t), the above bound combined with the location of 	i (t)

within the two action windows [ai,±t , bi,±t ), proves that for either action window, a
generator cannot enter to make finite the infinite bar starting at 	i (t). ��

We claim that Lemma 3.7 implies that the chord of length 	i (T0) at t = T0 cannot
undergo a death at any time T2 ∈ [T0, t j ], where t j is minimal singular time such
that t j > T0. Suppose the chord dies at T2 ∈ [T0, t j ]. Extend 	i (t) to [T1, T2] (if
T2 > T1) by letting 	i (t) be the length of (the deformations of) this Reeb chord for
t ∈ [T1, T2]. Extend bi,±t and ai,±t for t ∈ [T1, T2] using Eqs. (3.6)–(3.8). Lemma 3.7
(replacing [T0, T1] by [T0, T2]) implies the chord is the starting point of an infinite (in
particular non-zero length) bar at T2, and therefore cannot die. So the chord survives
to t j . Extend 	i (t), b

i,±
t , ai,±t to [T1, t j ] in the identical manner as it was extended to
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[T1, T2]. Lemma 3.7 (replacing [T0, T1] by [T0, t j ]) implies the induced pairBi,±
t of

families of barcodes has infinite bars with starting points at 	i (t) for all t ∈ [T0, t j ].
We next extend 	i (t) continuously through (past) t j as follows. By the aboveB

i,+
t j

has one or two infinite bars with starting point 	i (t j ). (For sufficiently small ε, both
bars inBi,−

t j starting at 	i (t j ) are infinite by Eqs. (3.7) and (3.8).) We treat separately
these two cases.

Case (i) (one infinite bar) There are two chords of the same length at t j so there are
two possibilities for a continuous extension of 	i (t) to t > t j . One is C1 and the other
not. Proposition 2.7 together with the assumption that no entrance/exit can happen
near t j implies there is precisely one such extension for which the bar with starting
point at 	i (t) remains infinite in Bi,+

t j+δ for all sufficiently small δ ≥ 0. Choose this
infinite extension for 	i (t).

Case (ii) (two infinite bars)We require that 	i (t) is the uniqueC1-extension over t j .
This is well-defined since the two Reeb chords’ lengths have distinct t-derivatives at
t j . Proposition 2.7 together with the assumption that no entrance/exit can happen near
t j implies thatBi,+

t j+δ contains an infinite bar that starts at 	i (t + δ) for all sufficiently
small δ ≥ 0.

By induction we can then construct 	i (t) for all t ∈ [0, 1]. Once we show that
(generically) 	i (1) �= 	ι(1) for all i �= ι, the number of xi is a lower bound for the
number of mixed chords of �̄(1). This implies the theorem.

Suppose 	i (1) = 	ι(1). Then for some t j , 	i (t j ) = 	ι(t j ) and 	i (t j+δ) = 	ι(t j+δ),
while 	i (t j − δ) �= 	ι(t j − δ) holds for all sufficiently small δ > 0.

We first claim that the barcode Bi,+
t j = Bι,+

t j has two infinite bars with starting
point 	i (t j ). This is a consequence of the stability of the finite bars as shown in
Proposition 2.7 together with the fact that Bi,+

t j−δ and Bι,+
t j−δ have infinite bars which

start at the two distinct levels 	i (t j − δ) and 	ι(t j − δ), respectively. We now reach a
contradiction with our continuous extension convention, by which the bars for t j − δ

inBi,+
t j−δ and Bι,+

t j−δ have distinct C
1-extensions through t j .

3.5 Proof of Lemma 1.6

Consider the contact isotopy

(x, y, z) �→ (x, (1 − t)y, (1 − t)z), t ∈ [0, 1).

Its contact Hamiltonian is equal to Ht (x, y, z) = − z
1−t . Using this contact isotopy

we can thus rescale the subset {|z| ≤ a/2} to its image of the time-s map for any
0 ≤ s < 1. We compute the total oscillation for the isotopy t ∈ [0, s], 0 ≤ s < 1
restricted to the image of the subset {|z| ≤ a/2} to be equal to

‖Ht‖osc({|z| ≤ a/2}) =
∫ s

0

(
(1 − t)(a/2)

1 − t
− (1 − t)(−a/2)

1 − t

)

dt = sa.



The persistence of the Chekanov–Eliashberg algebra Page 25 of 32 69

In other words, since � ⊂ {|z| ≤ a/2} by assumption, taking 1 − s > 0 to be
sufficiently small, we may move � into an arbitrarily small neighborhood of {x ∈
Dn, y = 0, z = 0} by a contact isotopy of total oscillation equal to sa < a. For any
δ > 0, any sufficiently thin neighborhood of {x ∈ Dn, y = 0, z = 0} is displaceable
from the subset Dn × R

n × R by a Hamiltonian of oscillation at most δ. (Take an
ordinary smooth isotopy of Rn which displaces Dn ⊂ R

n and lift it to the jet-space
J 1Rn = R

n × R
n × R; the corresponding contact Hamiltonian vanishes along the

entire zero section and is thus very small near it.) Since � ⊂ Dn × R
n × R, the

composition creates the sought displacement. In other words, we have shown that �

is displaceable with a total oscillation a+ ε. Appropriate cut-offs using smooth bump
functions can then be used to make the contact Hamiltonians compactly supported. ��

4 Proof of Theorem 1.7

Recall that two Legendrians are said to be formally isotopic if they are connected by
a smooth isotopy covered by a Lagrangian bundle monomorphism, called the formal
tangent map, such that there exists a homotopy relative endpoints from this formal
tangent map to the canonical inclusion of the tangent planes (i.e. the one induced by
the smooth family of embeddings) [23, Definition 1.1].

Lemma 4.1 Assume that two Legendrian spheres �,�′ ⊂ R
2n+1, n ≥ 2, agree in a

neighborhood of a point, and that they are formally Legendrian isotopic. Then there
exists a formal isotopy which is fixed in a possibly smaller neighborhood of the same
point, in the sense that the underlying smooth isotopy, the Lagrangian frames, as well
as the homotopy from the formal tangent map to the inclusion of the tangent planes,
all can be taken to be constant there.

Proof One can readily construct an ambient contact isotopy which deforms the initial
formal isotopy to one whose underlying smooth isotopy fixes the given point. (Start by
smoothly contracting the loop traced out by the point, then use the fact that any family
of tangent vectors can be extended to a family of contact vector fields, finally we can
now construct a contact isotopy which contracts the loop.) Note that contact isotopies
act naturally on formal isotopies by post-composition, and our formal Legendrian
isotopy thus may be assumed to fix the point (but not necessarily its neighborhood or
even its tangent plane).

After a subsequent deformation by-hand near this point or, alternatively, an appli-
cation of the one-parametric h-principle for open Legendrian embeddings, we may
in addition assume that the smooth isotopy near the given point stays Legendrian
throughout the isotopy, and that the homotopy from the formal tangent map to the
inclusion of the tangent planes is trivial at the point. (We can e.g. make the embed-
dings coincide with the Legendrian planes prescribed by the formal bundle morphism
near the point.)

What remains is tomake the isotopy fix awhole neighborhood of the point. Unfortu-
nately, since π1(U (n)) = Z is non-trivial, the loop of Legendrian tangent frames at the
given point is not automatically contractible. However, a final application of a suitable
S1-family of contactomorphisms of R2n+1 obtained as lifts of symplectomorphisms
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fromU (n) ⊂ Symp(R2n, ω0), the latter frame over the point may be assumed to give
rise to a contractible loop inU (n). Again, since these are contact transformations, they
act naturally on formal Legendrian isotopies by post-composition. ��
Lemma 4.2 Let � be an arbitrary Legendrian embedding of dimension n ≥ 2, and let
�′ be a Legendrian formally isotopic to �St. The cusp connected sum between � and
�′ is formally Legendrian isotopic to �.

Proof Cusp connected sum is an operation supported in a neighborhood of an isotropic
arc γ with endpoints on the two different Legendrians, where the two Legendrians
are separated by e.g. the hyperplane {x1 = 0}; see e.g. [6]. In the dimensions under
consideration this operation is well-defined by [6, Proposition 4.9], and does not
depend on the choices made.

First note that the cusp connected sum of � with the standard Legendrian sphere
�Std is Legendrian isotopic to�. The Legendrian isotopy is easy to construct explicitly
if the representative of the standard Legendrian is chosen to be the flying saucer (in
the front projection) as shown in Fig. 1.

We may assume that �′ coincides with the representative of the standard sphere
in a neighborhood of the isotropic arc γ along which the surgery is performed. The
formal isotopy from �′ to �St may further be assumed to have support that is disjoint
from the neighborhood of the union � ∪ γ by Lemma 4.1, together with a general
position argument (for the interior of the arc). ��
Lemma 4.3 Any loose Legendrian � ⊂ R

2n+1, n ≥ 2, is Legendrian isotopic to a
representativewhich satisfies the following property for an arbitrary choice of numbers
A > δ > 0:

• There exists a Legendrian fiber F = {x = x0, z = z0} for which there are precisely
two Reeb chords with one endpoint on� and one endpoint on the fiber, both which
moreover are transverse;

• the two Reeb chords between � and F both start on �, and their length difference
is greater than equal to A > 0; and

• the Legendrian� can be displaced from the fiber by a contact isotopy of oscillation
less than δ > 0.

(See Fig. 4 for an example.)

Proof In view of Lemma 4.2 and Murphy’s h-principle for loose Legendrians [23] it
suffices to construct a Legendrian sphere in the formal Legendrian isotopy class of the
standard sphere that satisfies the properties in the statement. Indeed, it is then a simple
matter of taking a cusp connected sum with � and that sphere.

We begin by constructing the sphere � of dimension n = 2 that satisfies the
assumptions, and which is formally isotopic to�St. In this dimension there is a unique
formal isotopy class of Legendrian spheres [23]. Considering loose spheres as depicted
in Fig. 4, with sufficiently many zig-zags, one can readily produce sought examples.

Increasing the number of zig-zags allows us to increase the z-coordinate while
keeping y1, y2 small. By Lemma 1.6 the displacing Hamiltonian can then be made
small. Thus, a high number of zig-zags makes more optimal the constants A > δ > 0.
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Fig. 4 Introducing many
zig-zags we may assume that the
difference of length between the
chords a and b from � to the
fiber F becomes arbitrarily
large, while the Lagrangian
projection of � is still contained
inside a fixed subset of R4

z

x1

x2

Λ

F

a b

The construction of the spheres in higher dimensions R2n+1, n > 2, can be done
by induction. Assume that we have produced the sought embedded sphere �n−1 in
dimension n − 1.

Consider the standard Legendrian n-sphere�n
St, which we assume to have its cusp-

edge contained above the unit sphere in R
n = {(x1, . . . , xn)}. We then perform a

stabilization over a closed domain U ⊂ Bn ⊂ R
n with smooth boundary and Euler

characteristic χ(U ) = 0. The resulting Legendrian is loose and formally isotopic to
the standard sphere; see [8, Lemma 2.2].We can find such a domainU whichmoreover
is of the form [−ε, ε] × Un−1 near the hyperplane {x1 = 0}, where Un−1 again has
vanishing Euler characteristic.

We can assume the stabilization of �n
St intersects the hypersurface

{x1 = 0 = y1} = {(0, 0)} × R
2n−1 ⊂ R

2n+1

in an (n − 1)-dimensional Legendrian sphere, which again is loose and formally
isotopic to the standard sphere; this intersection is itself the stabilization of �n−1

St by
Un−1. After a suitable Legendrian isotopy in R

2n−1 lifted to R
2n+1 we have thus

managed to construct a loose Legendrian n-sphere in the formal isotopy class of �n
St

which coincides with the cylinder

[ − ε/2, ε/2] × {0} × �n−1 ⊂ {(x1, y1)} × R
2n−1 = R

2n+1
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in some neighborhood of {x1 = 0}. The sought fiber F can be found in the same
region. ��

We now prove Theorem 1.7 when n ≥ 2; note that a stabilized Legendrian is
loose in these dimension. Given that the statement is shown in higher dimension, we
obtain the statement for knots as follows. The front-spinning construction [10] applied
to a stabilized Legendrian knot in R

3 produces a loose Legendrian torus inside R
5.

A potential example of a knot that is squeezed into a neighborhood of a stabilized
can thus be spun to an example of an augmentable torus that can be squeezed into
a neighborhood of a loose torus. To that end, note that the front spinning preserves
Legendrian isotopy classes as well as augmentability [14].

Remark 4.4 Lenny Ng pointed out to us that the dimension 1 case can also be proved
with rulings. Consider the local picture of an odd-covering of the stabilization. Any
attempt at pairing the sheets, necessary for the (local) construction of the ruling,
leaves one copy and its two stabilization cusps unpaired. A 1-dimensional knot with
an augmentation must have a ruling [17,27].

Denote by �loose ⊂ R
2n+1, n ≥ 2, the arbitrary stabilized, hence loose, Legen-

drian from Theorem 1.7, and assume there exists a Legendrian � which admits an
augmentation and can be squeezed into a standard contact neighborhood of �loose.

Place the loose Legendrian in the position satisfying the conclusion Lemma 4.3. By
assumption, we can isotope� into a standard neighborhood of�loose contactomorphic
to a neighborhood of the zero section inside J 1�loose [19, Theorem 6.2.2].

By a fiber-wise rescaling of� inside this jet-bundle, togetherwith a general position
argument, we can then assume that all mixed Reeb chords between the fiber F (see
Lemma 4.3) and� all end on F and start on�, and come of two types: an odd number
of Reeb chords of action roughly equal to length l > 0 and an odd number of Reeb
chords of length roughly equal to A + l, where A � 0 is arbitrarily large. Here we
use the assumption that the degree of the bundle projection

� ⊂ J 1�loose → �loose

is of odd degree to infer that both clusters of Reeb chords are odd.
We claim that theremust be a bar in the complex LCC∞∗ (�∪F)+∞−∞ of length at least

equal to A. (We use that� and F have augmentations to be able to set l = ∞.) Indeed,
the subcomplex consisting of chords of length strictly less than A is odd-dimensional
and hence not acyclic, one can then apply Lemma 2.5 to infer the existence of the long
bar. Since � is displaceable from the fiber by a contact isotopy of some fixed small
oscillation δ > 0 by Lemma 4.3, we now arrive at a contradiction by the following
argument: Proposition 3.5 shows that the analysis of the bifurcation of barcodes from
Proposition 2.7 can be applied to the family of linearised Legendrian contact homology
complexes induced by the displacement. However, using Lemma 3.1, the long bars
found above cannot disappear in such a family induced by a Hamiltonian of small
oscillation.
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5 Proof of Theorem 1.8

Consider a smooth isotopy �t ⊂ (X4, ω) of a compact symplectic embedded surface
inside a symplectic four-manifold, where ∂�t �= ∅. Assume that �t is fixed near the
boundary.

Lemma 5.1 The Hamiltonian Ht : X → R for which φt
Ht

(�0) = �t can be taken
to vanish along all of �t . Hence, after a deformation by a suitable family of cut-off
functions, we may assume that the uniform norm of Ht is arbitrarily small on all of X.

Proof The Hamiltonian is constructed in the proof of [28, Proposition 0.3]. ��
Assume that the cusp-edge of the front projection of �St(1) lives above the unit

circle in the (x1, x2)-plane; see Fig. 1. Let � : R5 → R
4 = {(xi , yi )} denote the

canonical projection.
We begin the proof of Theorem 1.8 in Steps 1–3 below by constructing a (non-

Legendrian) smooth and arbitrarily C0-small push-off of �St(1) that can be displaced
by a contact Hamiltonian of any fixed small oscillation. (Compare to the result in
[22] for non-Lagrangian submanifolds.) In Step 4, we show how with a small oscil-
lation, the stabilized sphere in the Theorem’s statement is Legendrian isotopic to a
Legendrian C0-close to the initial push-off. We then apply the ambient isotopy of the
non-Legendrian’s displacement from Steps 1–3 to complete the Legendrian isotopy
and the proof.

Step 1Arguing similarly as in the proof of Lemma 1.6 in Sect. 3.5, but while taking
some additional care, one can readily find a Legendrian isotopy�t from�0 = �St(1)
to�1 = �′ forwhich the isotopy�(�t ) has support in the interior ofU := {(x1, x2) ∈
D2
1−2ε\D2

2ε} ⊂ R
4, and such that �′ is displaceable by the lift of a Hamiltonian on

R
4 of very small oscillation. This is because �(�′) may be assumed to live in a small

neighborhood of the Lagrangian disc {(x1, x2, y1, y2) ∈ D2
1 × {0}} ⊂ R

4.
To live in such a small neighborhood, the Reeb chord of �t must certainly shrink;

however, the Lagrangian projection �(�t ) still can be assumed to be fixed near the
corresponding double-point. We may assume that all �t have a unique Reeb chord
and that their projections to the (x1, x2)-plane are submersions inside �−1(U ) ⊂ R

5.
Step 2 We now construct a C0-small non-Legendrian push-off �̃t of �t such that

• the image �(�̃t ) is symplectic in the subsetU = {(x1, x2) ∈ D2
1−2ε \ D2

2ε} ⊂ R
4,

• �̃t = �t in the complement of the subset �−1(V ) for V := {(x1, x2) ∈ D2
1−ε \

D2
ε } ⊂ R

4, and
• �̃t does not depend on t inside �−1(V \U ).

The deformation can be performed by, for example, considering a Lagrangian standard
neighborhood of �(�t ) ⊂ R

4 and pushing it off as a section consisting of a suitable
family of one-forms whose exterior derivative is a symplectic form on �t inside U .
Note that this deformation �̃t necessarily must be anti-symplectic somewhere inside
V \U by Stokes’ theorem: a closed chain inside R4 cannot have nonzero symplectic
area. However, the family of one-forms can still be taken to be fixed inside V \ U ,
which ensures the third bullet point above.
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Step 3 We can now apply Lemma 5.1 inside U ⊂ R
4 to �(�̃t ) in order to deduce

the existence of a Hamiltonian on R4 of arbitrarily small oscillation that generates the
isotopy �(�̃t ) ⊂ R

4. Since �̃1 is assumed to be arbitrarily C0-close to �′, and �′ is
displaceable by the lift of a Hamiltonian on R

4 having small oscillation, this finishes
the construction of the push-off with a displacement of small oscillatory norm.

Step 4 Consider a standard contact neighborhood (T ∗≤εS
2 × [−ε, ε], dz − pdq)

of �St(1) in which �St(1) corresponds to the zero section, and which contains the
non-Legendrian sphere �̃0 which can be displaced with small oscillation. Here we
may assume that ε > 0 is arbitrarily small.

We add a stabilization to �St(1) inside the above standard neighborhood to create
a loose Legendrian �loose in the same formal isotopy class as �St(1), which is the
unique 2-sphere formal isotopy class [23]. By Murphy’s h-principle [23] we can find
a Legendrian isotopy confined to the above standard neighborhood that takes�loose to
a Legendrian that approximates �̃0 arbitrarily well in the C0-norm; here we need that
�̃0 admits a C0 approximation by a Legendrian sphere [29] and the aforementioned
uniqueness of the formal isotopy class. What remains is to argue that the oscillation
of this Legendrian isotopy can be assumed to be of order ε.

This can be achieved by applying a fiber-wise rescaling by a small positive number
to the whole isotopy, thereby making it confined to an arbitrarily small neighborhood
of the zero-section.We then just need to estimate howmuch oscillation is needed to do
the initial shrinking of�loose, togetherwith the expansion back to the approximation of
�̃0. The crucial estimates of the oscillation of the fiber-wise rescaling, i.e. the contact
isotopy

(q,p, z) �→ (q, (1 − t)p, (1 − t)z), t ∈ [0, 1),

were considered in the proof of Lemma 1.6 in Sect. 3.5. Its generating contact Hamil-
tonian with respect to the standard tautological contact form dz − pdq is given by
Ht = − z

1−t . The ε-neighborhood of the zero-section can thus be shrunk to a λ · ε-
neighborhood, where 0 < λ < 1, with a contact Hamiltonian of oscillation 2(1−λ)ε.
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